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ABSTRACT
The various numerical solution methods targeting the Sig-

norini problem differ in their treatment of the complementarity
boundary conditions. In the finite element method, the needed
application of a Newton impact-law either produces chattering
or induces energy dissipation while Nitsche’s and penalty meth-
ods do not strictly enforce the impenetrability condition with the
obstacle. Also, the up-wind finite volume approach does not
conserve energy for multiple spatial dimensions. Hence, a new
methodology called the Nodal Boundary method is proposed for
treatment of Signorini conditions within the framework of Fi-
nite Element. Similarly to mass redistribution techniques, this
method defines the motion of contact nodes based on internal
nodes. However, this method does not require computation of a
modified mass matrix. Applications of the derived scheme on dif-
ferent settings of the Signorini problem are presented. It is found
that, while energy is not always conserved, this method allows
for existence of periodic solutions together with the elimination
of chattering at contact.

INTRODUCTION
Periodic solutions of the Signorini problem are of interest for

vibration analysis of structures in unilateral contact [1]. The Sig-
norini conditions describe the dynamics of a deformable struc-
ture prone to frictionless unilateral contact with a rigid obstacle

∗address all correspondences to this author

via two sets of mutually exclusive boundary conditions: active
contact (the structure is in contact with the obstacle) and inac-
tive contact (the structure may move freely). Mathematically, the
Singorini conditions form a complementarity problem, and exact
solutions could be obtained only for a few specific cases [1, 2].
The finite element method (FEM) has been commonly used to
solve the Signorini problem numerically [3]. However, applying
the Signorini boundary conditions in the FEM framework leads
to an ill-posed problem [4]. Hence, there exist diverse numerical
schemes for treatment of the Signorini conditions in FEM. In this
context, schemes using a Newtonian impact law induce question-
able chattering for energy conserving schemes and theoretical
sticking at contact leads to unwanted dissipation of energy [2].
Thus, schemes using Newtonian impact law do not allow for pe-
riodic solutions consisting of sticking at contact, which exist for
the analytical solution [5]. In turn, penalty [2] and Nitsche’s [6]
methods do not enforce impenetrability of the obstacle exactly.
In contrast, the up-wind finite-volume-method (FVM) applied
to the one dimensional case of the Signorini problem eliminates
chattering while conserving energy [5]. However, its extension
to multiple spatial dimensions results in energy dissipation [7].
At last, the mass redistribution method [8], while allowing for
energy conservation and elimination of chattering, requires solv-
ing a constrained optimization problem to form the reduced mass
matrix. We propose here the Nodal Boundary Treatment of Sig-
norini boundary conditions in FEM. Particularly, this method al-
lows for existence of periodic solutions while eliminating chat-
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tering. Similarly to [8], the proposed method requires redistri-
bution of masses but does not require solution of a constrained
optimization problem and may apply on already existing mass
and stiffness matrices.

1 Signorini problem with gravity
The Signorini problem in dynamics is described by a system

of hyperbolic partial differential equations defining the contribu-
tions of elastic forces and inertial forces within the structure in
the spatial domain Ω and time t:

ρutt −div(σ(u)) = f, (x, t) ∈ Ω× [0,∞) (1)

where u, ρ , and f describe the displacement field, density, and
external forcing, respectively. The stress field is consistent with
linear elasticity for isotropic materials. Homogeneous Neumann
boundary conditions are applied on the portion ΓN of the bound-
ary not prone to contact, and Homogeneous Dirichlet conditions
on the boundary ΓD. The portion ΓC is prone to unilateral contact
and treated using the Signorini complementarity conditions

0 ≤ g−u(x, t) ·n, σn(u)≤ 0
(g−u(x, t) ·n)σn(u) = 0 x ∈ ΓC

(2)

where g defines the distance between the non-deformed bound-
ary ΓC and the rigid obstacle at rest. The contact pressure is
captured by σn(u) = n⊤σ(u)n where n is the outward normal to
ΓC.

2 Nodal Boundary Method
In FEM, enforcement of the Signorini conditions (2) results

in an ill-posed problem as there exist infinitely many possible
values σn satisfying (2) in the FE discretized system [2, 8]. A
common work around is to explicitly add an impact law [2, 3].
In the present work, to make the problem well-posed, σn is
treated as a function of the nodal displacement u. This func-
tion, σn(u), us the FE approximation of the stress function σ(u)
on the boundary ΓC.

Here, the displacement field is approximated using shape
functions and attendant nodal quantities stored in u(t)∈RN . Test
functions with nodal quantities stored in w are used to enforce
equilibrium in a weak fashion. In the nodal boundary method,
we distinguish between nodal displacements uC prone to unilat-
eral contact on ΓC and the remainder of the nodal displacements
uO such that u = (uO uC)

⊤ (with corresponding N = NO +NC).
The same convention is applied to the test functions such that

w = (wO wC)
⊤. The FEM formulation of (1), with the homoge-

neous boundary conditions on ΓN applied, reads

w⊤(Mü+Ku− f)+w⊤
C fC = 0, ∀w. (3)

Here, the quantities M, K and f are the finite element mass
matrix, stiffness matrix and external force vector, respectively.
Moreover, the vector fC represents the contact-force on the
boundary ΓC.

In the Nodal Boundary Method, we impose that fC(u) is a
linear function in u given by the FEM approximation of the stress
σn on ΓC. Next, the displacement of contact nodes uC is dictated
by the internal nodes uO via Condition (2). Here, we may use the
the “max” operator formulation of Condition (2) to express this
relation [6]

F(uC,uO)≡ fC(uO,uC)+max(0,g1−uC − fC(uO,uC)) = 0
(4)

where 1 is a vector with unit entries. The solution to (4) is unique
for given uO and g and can be found numerically [8] . In what
follows, it is useful to present the solution to F(uC,uO) = 0 ex-
plicitly

uC = A(uO,g)uO +gd(uO,g)

u̇C = A(uO,g)u̇O

üC = A(uO,g)üO

(5)

Here, A(uO,g) and d(uO,g) are non-smooth functions in uO. Af-
ter determining uC(uO,g) using (5), the system of ODEs in (3)
is over-determined since it includes ODEs in uC. To render the
system of ODEsfrom (3) well-posed, the corresponding wC func-
tions are substituted with a linear expression in wO. In fact, we
define wC such that the total energy is conserved during active
or inactive contact motion. This implies that wC behaves in a
similar manner to the velocities u̇C, ie wC = A(uO,g)wO. Ap-
plication of the latter together with with (5) to the ODE (3) for
all arbitrary wO leads to a system of NO non-smooth ODEs in uO
exclusively

(
I A⊤)(M

(
I
A

)
üO +K

(
I
A

)
uO +K

(
0

gd

)
− f

)
= 0. (6)

where I is the identity matrix of size NO ×NO. The resulting
non-smooth ODEs (6) can be solved using explicit or implicit
schemes.

3 Results
The NBM has been implemented on three examples: the

bouncing bar (Figure 1), the bouncing plate (Figure 2) and the
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FIGURE 1. CONTACT NODE DISPLACEMENT FOR BOUNC-
ING BAR PROBLEM WITH THE NBM USING 40 ELEMENTS.
BLUE: QUADRATIC POLYNOMIALS. ORANGE: ORDER 4 POLY-
NOMIALS. BLACK: EXACT SOLUTION

FIGURE 2. SOLUTION TO THE BOUNCING PLATE PROBLEM
WITH THE NBM USING 400 ELEMENTS AND LINEAR SHAPE
FUNCTIONS. COLOUR GRADIENT REPRESENTS ||u||.

fixed (“cantilever”) plate (Figure 3). In the case of the bounc-
ing bar, the NBM was shown to converge to the exact solution
in a similar rate to schemes utilizing the dissipative Newton im-
pact law (zero coefficient of restitution). Next, for the case of
the bouncing plate, the NBM shows a less dispersive behaviour
then Nitsche’s and Newton’s impact law while converging to the
same solution. At last, a periodic solution for the case of the can-
tilever plate was obtained using NBM and the harmonic balance
method [9].

4 Conclusions
The NBM for treatment of the Signorini complementarity

conditions in the FE framework in multiple spatial dimensions
were presented. The classical impact law was replaced by appli-
cation of Signorini conditions both on the nodal displacements
and the test functions. Future applications of this scheme will be
in non-smooth modal analysis where families of periodic solu-
tions of the Signorini problem must be detected.

FIGURE 3. PERIODIC SOLUTION OF FEM APPROXIMATION
OF FIXED PLATE IN CONTACT USING NBM: 25 ELEMENTS
AND LINEAR SHAPE FUNCTIONS. COLOUR GRADIENT REP-
RESENTS ||u||. T - PERIOD OF MOTION
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