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Introduction

Laser cooling and laser trapping of particles are arguably two of the
major advances in atomic physics and quantum optics over the last three
decades. In particular, laser light can be used to create ”potential land-
scapes”, thereby controlling the motion of already cooled atoms. These
atoms can remain trapped in such light cages for long periods of time and
undergo a large variety of dynamical process, depending on the nature of
the designed landscape.

A particularly interesting type of trap is obtained with a standing light
wave, which realizes a periodic potential called an “optical lattice”. The
motion of atoms in an optical lattice has a deep analogy with the motion
of electrons in a crystal, which makes it an important tool for quantum
simulations of condensed matter phenomena using cold atoms.

This year’s lecture series is devoted to the presentation of the basic prin-
ciples governing the motion of atoms in these optical lattices. We will also
describe several recent experiments exploiting this very particular dynam-
ics. We will encounter aspects related to metrology as well as illustrations
of condensed matter phenomena. The lecture series will be composed of
the following six chapters:

Chapter 1. The dipolar potential. We will show how to describe the force
F(r) created by a monochromatic light beam in terms of its intensity profile
I(r). We will first evaluate this dipole force with the simple model of a two-
level atom, then for a more realistic model of an atomic transition. We will
show that this force derives from a potential V' (r), called dipole (or dipolar)
potential, which is proportional to I(r) in the limit of low intensities. We
will finally evaluate the role of spontaneous emission processes, which can
lead to undesired heating on the trapped atoms.

Chapter 2. Optical lattices: the basic principles. We will focus on the
case of the periodic dipolar potential created by a 1D standing wave,
V(x) = Vp sin?(kx), where k is the wave number of the light beam creating
the standing wave. We will see that such a problem can be handled with
the tools and concepts developed in solid state physics to study the motion
of electrons in the periodic potential of a crystal lattice. We will see that the
natural energy scale is given by the recoil energy E, = h*k*/(2m) where m
is the mass of the atom. We will present Bloch’s theorem, the notion of Bril-
louin zone and we will describe the shallow lattice limit Vy < E,, which is
used in particular in many Bragg diffraction experiments.

Chapter 3. Optical lattices in the tight-binding regime. In this lecture,
we will continue to transfer concepts from solid state physics to optical lat-
tices, this time focusing on the tight-binding limit V5 > FE\, and introducing
the concept of Wannier functions. In this tight-binding limit, the tunnelling
of a low-energy atom from one site to another is only possible if these two
sites are contiguous. The dynamics of the particles in the lattice can then
be described by a very simple Hamiltonian, whose main properties will be
described. We will discuss the role played by interactions in a lattice by
looking at the stabilization of dimers occupying the same site, even if the
atoms composing this dimer repel each other.

Chapter 4. Time-dependent lattices. The possibility to vary in time the
parameters of the laser creating the standing wave opens many perspec-
tives. For example, we can realize moving lattices V (z,t) = V; sin®[k(x —
xo(t))], where x¢(t) is a controlled function of time. In this course, we will
establish the equivalence of several Hamiltonians that can describe this
problem by using unitary transformations, each Hamiltonian being useful



to address a given phenomenon. We will focus on the phenomenon of dy-
namic localization, obtained by periodically modulating the position x(t).
We will see that this modulation can have spectacular consequences, such
as the almost complete suppression of the tunnelling effect. We will de-
scribe the experimental demonstration and the use of this effect for lattices
in one and two dimensions.

Chapter 5. Bloch oscillations in an optical lattice. When a constant force
is added to the periodic force created by a lattice, a surprising phenomenon
appears: the particles oscillate. Cold atoms trapped in optical lattices have
allowed to study this phenomenon in great detail and we will present sev-
eral experimental demonstrations. We will also discuss the metrological in-
terest of these Bloch oscillations, both to determine fundamental constants
such as the ratio 2/m and to measure forces such as gravity.

Chapter 6. Topology in a lattice : the example of Dirac points. Optical
lattices allow the realization of more complex potentials than sinusoidal
sin?(kx) potentials. In particular, one can produce two-dimensional lat-
tices analogous to graphene, for which some singular points of the Bril-
louin zone, called Dirac points, appear. In the vicinity of these points, the
behaviour of the particles is similar to that of ultra-relativistic particles,
with a quasi-linear dispersion relation. We will see how the control of the
lattice parameters allows one to move the Dirac points inside the Brillouin
zone, or even to make them disappear. We will describe a recent experi-
ment which allowed to reveal these points and to exploit the control one
can have on the topology of the Brillouin zone.

Due to time limitations, these lectures only partially cover the current
and extremely intense research activity on optical lattices. Thus, we will
address the effects of interactions between particles only a few times, sav-
ing for the lectures of an upcoming year important phenomena such as the
transition between the superfluid state and the Mott insulator. We will not
deal with artificial magnetism in lattices this year either: it will also be the
subject of a future series of lectures. Nevertheless, we hope that the tools
provided in the following chapters and the description of the experiments
will allow the interested reader to approach more easily the numerous re-
search topics related to these "crystals made with light".



Chapter I

The dipolar potential

The starting point of this year’s lectures is the fact that light can create a
potential V' (r) on atoms. We will restrict ourselves here to monochromatic
light of angular frequency w and we will show that, in a perturbative limit
to be defined, this potential is proportional to the light intensity. The ability
to shape the light intensity profile /(r) thus allows one to realize a fully
controllable potential landscape.

The goal of this first lecture is to establish the relation between V' (r) and
I(r). We will start our study with a simple semi-classical approach before
going to a quantum treatment. For a review of the dipole force and optical
traps, one can refer to the very detailed article by Grimm, Weidemiiller,
et al. (2000).

To describe the action of light on an atom, we will start by considering a
hypothetical atomic species that would have only one valence electron (as
the alkali atoms), this electron having no spin (there will thus be no atomic
fine structure), and the spin of the atomic nucleus being zero. Moreover,
we will start by considering the case where only one atomic transition is in-
volved, linking the ground state of zero angular momentum to an excited
state of angular momentum 1. We will then gradually enrich this descrip-
tion of the atom to reach the case where the ground state has a non-zero
spin (electronic and/or nuclear), and where the potential V'(r) depends on
the spin of the occupied state.

1 The Optical Bloch equations

1-1 The two-level atom approximation
Our starting point in this paragraph is as stated in the introduction

* A laser wave with linear polarization €, whose electric field is written
E(r,t) =€ &E(r) cos [wt — ()] 1)

The amplitude £ of the field and its phase ¢ both depend, a priori, on
the position.

® An atomic transition that we model by a ground state of zero angular
momentum |g) and an excited level of unit angular momentum, with
its basis {|e,m), m, = —1,0,+1}, where we have chosen the quanti-
zation axis for the angular momentum basis parallel to €. The energy
difference between |g) and |e) is denoted by fiwy.

The interaction between the atom and the electromagnetic wave is
treated within the electric dipole approximation, from which follows that
the |g) state is coupled to the |e,m = 0) state, that will be written more
simply as |e) in the following. This electric dipole coupling has the form

Vea () = —D-E(1)
= —do&() (64 + 6_) cos [wt — @(7)] 2)
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€,m,; = _1> |€7mz = O> |€1mz = +]—>
Jo=1
hwo
Jg =10
l9)

Figure 1. Transition modelling a two-level atom: the ground state of zero angular
momentum is coupled to an excited level of unit angular momentum. The elec-
tromagnetic field is assumed to be linearly polarized and the quantization axis of
the angular momentum is chosen to be parallel to this polarization. The atom-field
coupling then only involves the |g) <+ |e, m, = 0) transition.

where dj is the reduced atomic dipole, characteristic of the considered
atomic transition, where 7 represents the operator associated to the position
of the center-of-mass of the atom, and where we have introduced the raising
and lowering operators:

oy =leygl, o =lg)el 3)

Note that the possibility to restrict the problem to a two-level transition
remains valid if the polarization of the light wave is arbitrary. One should
then define |e) as the linear combination of the three states |e,m) that is
coupled to |g). For example, if the wave is circularly polarized, we will
take for |e) one of the two states |e, m = £1).

We also define the force operator

F = -V,.Vea(r,1)
= do (64 +6-) Vp {E(7) coswt — o(7)]} 4)

which involves both the gradients of the amplitude £ and the phase ¢ of
the electromagnetic field.

10

1-2 The semi-classical approach

The semi-classical approach consists in describing in a classical way the
motion of the center-of-mass of the atom, while taking into account the
quantum nature of its internal dynamics. For a static atom at position r,
we can then evaluate the average force acting on the atom from the steady-
state value of the following matrix elements of the density operator p of
the atom:

peg =Tr(6-p), pge =Tr (64p). 6)

This steady-state value is calculated with the optical Bloch equations,
which are the superposition of the semi-classical Hamiltonian evolution

of the density operator
dp 1.
T T Hs ’ O 6
ar = g e ©
and irreversible evolution due to spontaneous emission processes, includ-
ing
dpeg r dpge T

|, 2’ |, 2

(7)

In (6), the semi-classical Hamiltonian H, . is the sum of the electric dipole
coupling and of the Hamiltonian for the internal variables of an isolated
atom: R X

Hg.e. = Ve, + hwole) (el 8)

In (7), the coefficient I' represents the natural linewidth of the excited state
le), whose lifetime is thus I'~!. In the framework of this two-level model,
the coefficient I is expressed as a function of the reduced dipole dj

2,3
__dowy
3meghc3

©)

1-3 Dipole force and dipole potential

The evolution equation for p., can be explicitly written from the optical
Bloch equations (Cohen-Tannoudji, Dupont-Roc, et al. 1992):

dpe . r .
gtg = — (lwo + 2> Peg — 12 cos(wt — @) (Pgg — Pee)s (10)



CHAPTER I. THE DIPOLAR POTENTIAL
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where we have introduced the Rabi frequency

FLQ(’I") = —d()g(’l"). (11)

In most laser trapping experiments, one chooses a combination of laser
intensity and detuning from the atomic resonance w —wy so that the steady-
state population of the excited state is very small compared to 1, the atom
thus essentially occupy the ground state. We can then approximate p,, ~
1, pee =~ 0 in (10), which provides the driven steady-state solution

Q e—i(wt—¢p)

2 lw—wo+il/2 wHwy—il/2]’

el(wt—¢)

Peg (t) = (12)

and the value for p . is deduced by complex conjugation. In all the appli-
cations that we will consider in the following, the detuning

A=w-—uwp (13)

is very large (in absolute value) compared to the natural width I' (and a
fortiori we have w + wg > T'). One can thus take at the lowest order of the
calculation

Q e_i("dt_w) ei(Wt—SD)
pal =5 |- . (14)
We deduce the average atomic dipole in the steady state
o7 9 o d3
d(t)="Tr [D p(t)] = edOZ cos(wt — ) = —ﬁf!(r,tL (15)
where we have defined
1 1 1
- = - (16)

A w—wy whwy

Depending on the sign of A, which is itself given by the sign of the detun-
ing A, the dipole is in phase (if A < 0) or out-of-phase (if A > 0) with the
electric field.

It is then simple to calculate the average value f of the force operator F°
defined in (4):
f=(e-d)V[Ecos(wt — ). 17)

11

Using the expression (15) for the mean dipole, we can immediately see that
two types of terms will appear: time-independent terms and terms oscil-
lating as e*?“!. The frequency w being very large (optical frequency), the
micro-motion of the center-of-mass of the atom induced by these oscillat-
ing terms is negligible and we can limit ourselves to the time-independent
terms. We can then notice that the term related to the phase gradient V¢
has a zero contribution, and only the term in V¢, related to the intensity
gradient of the light wave, remains.

We thus find the expression of the dipole force f;,, deriving from the
potential V:

Vi) = hQ2(r) _ d%é’Q(’r). (18)

with A AhA

.fdip =-VV

In the approach we have taken here, the physical interpretation of this
potential is very simple. The light beam illuminating the atom induces
a dipole d = a(w) €, where the polarizability «(w) can be deduced from
(15):
dg

—ax
The induced dipole then interacts with the incoming field and the corre-
sponding interaction energy is written! —(1/2)d - £, whose time-average
gives back (18). Note that our perturbative treatment leading to the ex-
pression

alw) = (19)

viry = - “Werp (20)

for the dipole potential can be effortlessly generalized to the case where
several excited levels ey, €2, . . . have a non-negligible contribution. The to-
tal polarizability is obtained by summing over these levels the different
terms d?, i = 1,2..., with the energy denominators chosen as w + w;.

The crucial point that can be read on (18) or (20) is the following: the
light creates on the atoms a potential V' (r) proportional to the local light
intensity I(r) o< £%(r). Depending on the sign of the detuning w — wy, this
potential attracts (w < wo, red detuning) or repels (w > wyp, blue detuning)
the atoms in/from the regions of high light intensity. In the case of an
optical lattice, on which we will focus in the following lectures, we will

1Don’t forget the 1/2 factor due to the fact that this dipole is induced!
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choose a periodically-varying Rabi frequency by taking for example in one
dimension
Qx) = Qo sin(kx). (21)

This variation is obtained by creating a standing light wave. The atoms
will then accumulate in the vicinity of the nodes (A > 0) or of the antinodes
(A < 0) of the wave.

What about the radiation pressure force? We do not find any force re-
lated to the gradient of the phase at this order of the calculation. Thus, if
the laser wave is a travelling plane wave, £(r) = &, ¢(r) = k - r, we find
no force acting on the atom while we would expect to find a non-zero ra-
diation pressure. This is related to the approximation made between (12)
and (14) which imposes that the induced dipole is exactly in-phase or out-
of-phase with the electric field. In this case, the term related to the phase
gradient in the expression (17) of the average force

Radiation pressure:  f., = —(e-d) EVy sin(wt — ¢) (22)

has a zero time-average. To find a non-zero mean value for this term, one
must (at least) push the calculation one step further in powers of I'/A and
approximate (12) by:

1 1 r/2

R —1i . 23
w—wo+il'/2  w—wy l(w—wO)Q @3

The mean dipole then acquires a component in quadrature [sin(wt — ¢)]
with the incident field, which leads to a non-zero time average of (22). In
practice, we will not need to look at these correction terms in the present
lectures.

1-4 Rotating wave approximation.

Note that our treatment does not resort to the rotating wave approximation
(RWA). This approximation requires the additional assumption (Cohen-
Tannoudji, Dupont-Roc, et al. 1992)

A~ A. (24)

rotating wave approximation: |A] < wo,

12

The main interest of this approximation is to allow analytical calculations
with Bloch’s equations even if the laser excitation is non-perturbative, i.e.
even if we cannot make the approximation pyy ~ 1, pee ~ 0 in (10). It
simplifies the calculations from the start by replacing the electric dipole
coupling by

i L e S (25)

However, this approximation can be marginal in some cold atom trapping
experiments. For example, if rubidium atoms, with A\g = 780 nm, are ma-
nipulated with a laser at A = 1064 nm, the non-resonant term increases the
dipole potential by 15%. On the contrary, for a laser detuned on the blue
side of the resonance at a typical value of A = 532nm, the non-resonant
term reduces the RWA potential by 19%.

2 The dressed atom picture

The dressed atom picture is a convenient alternative to the calculation of
the dipole potential from the optical Bloch equations that we have per-
formed above (Dalibard & Cohen-Tannoudji 1985). It is particularly sim-
ple in the case where the rotating wave approximation is valid. This
point of view consists in studying the energy levels of the system atom
+ laser mode. We start from a basis of this system without a coupling
{lg,N),le,N), N € N}, where N represents the number of photons present
in the laser mode. We immediately see that if |A| < wy, these levels group
by multiplicities of dimension 2 (cf. figure 2):

lg, N) : energy Nhw, le, N —1) :energy (N — 1)Aiw + fwp,  (26)
the difference between these two levels being A|A|. In the RWA approxi-
mation, the atom-laser interaction (25) is written in this picture

o FLQl(T‘>
ed. — 9

[6+a+6_a' (27)

where G and a' destroy and create a photon in the laser mode, whose pro-
file is described by Q4 (r). This quantity €, can be understood as the Rabi
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1(N 1(N
ORI [1(N)) N |1(N)) "
)r_/ y il P
N N
Y v .
g, Ny Va e, N 1) T

Figure 2. Levels of the dressed atom, without and with a coupling between the
atom and the electromagnetic field, and for the two possible signs of the detuning
A. The dipole potential Vg, is interpreted as the light shift of the ground state |g).
This shift occurs downwards or upwards, depending whether the detuning A is
negative or positive.

frequency at position r when there is only one photon in the considered
mode to excite the atom.

The interaction (27) couples only the two levels of the same multiplicity
of the dressed atom:

(e~ 110zg. My = "M 8)

At this stage, the value of ©; and the number of photons N are undeter-
mined. When we consider a problem of cavity electrodynamics, the value
of O is imposed by the volume of the cavity itself. For an atom in free
space, the only thing that matters is the value of the product ;v/N which
is taken to be equal to the Rabi frequency (2. To simplify the notations, we
will assume that the phase of the laser ¢(r) is zero. This phase anyway
does not appear in the expression of the energy of the dressed states [see
for example (34)] and we will reinsert it in a natural way in the expression
of the dressed states (38).

It is then very simple to find the eigenenergies for an atom located at
position r. The Hamiltonian for the multiplicity {|g, N), |e, N — 1)} is writ-

ten
N h(A Q

13

where we have set
1 1
EN = (N - 2> hw + 5?7/.% (30)

It is useful to introduce the mixing angle ¢ defined by

A Q(r)

cos[20(r)] = \/ﬁ, sin[20(r)] = \/ﬁ’ (31)
to write the Hamiltonian in the form:
B ) @
The eigenvectors are written
|[L(N)) = cosf|g,N)+sinf|e,N —1)
|2(N)) = sin@ |g,N) —cosf |e,N — 1) (33)

and the corresponding energies are

En + :GNig\/ AZ + Q2 (34)

with sign + for [1(NV)) and — for |2(N)).

In the perturbative limit that we are considering here, the inequality
|©2| < |A] holds and we obtain the approximate expression for the energy
levels that “repel each other” due to the coupling:

hQ? hQ?

T (V= Dhw+ e — (35)

Nhw + A

The first energy corresponds to the level stemming from |g, V), which is
the populated level that interests us here. The second energy corresponds
to the level from |e, N — 1) which has a negligible population. The dipole
potential AQ?/4A [cf. (18)] can therefore be interpreted as an energy shift
of the state |g,n) due to the coupling with the laser. This shift can be
downward or upward, depending whether the "repelling" level |e, N — 1)
is above or below |g, N) (cf. figure 2).
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For A > 0, the angle 26 defined in (31) can be chosen close to 0, and the
eigenstate linked to g is written

Q
A>0: l9, N) = [L(N)) = |g, N) + 5 le. N = 1) (36)

For A < 0, the angle 26 can be chosen close to , so that
—_— Q

NYy=[2(N)) = |g,N) — ——
98] = [20V) % 1o V) - 5

In both cases we can reintroduce the explicit position dependence and rein-
sert, if relevant, the phase ¢(r) of the laser [cf. (25)], by defining:

A<O: le, N —1). 37)

9.7 ) = o, V) + ) ) e, 1) &)

The expression (38) is very convenient because it allows one to compute
the steady-state values of the matrix elements of the density operator at
order two in 2. Indeed at this order, one can show that the steady-state
population of the other dressed state of (33) is zero (it is at least of order
4 in Q/A, see for example Dalibard & Cohen-Tannoudji (1985)). We can
therefore deduce from (38) the matrix element p.4 already given in (14)

i
peo = (e, N =11 (I, N7 @ M) lo, N) = 25
the difference with (14) being due to the RWA approximation. In addition,
the explicit time evolution e™“! of (14) is here implicitly contained in the
difference between the numbers of photons on the left and the right. We
also deduce from (38) the population II. of the excited state at this order of
the calculation

(39)

02
T AAY
an expression that allows one to estimate the rate of spontaneous emission
v = T'1l,.

M. = (e, N =1/ (19, N) . NT) [e,N = 1)

(40)

3 The case of alkali-metal atoms

The model of a J;, = 0 <+ J. = 1 transition applies well to alkaline earth
atoms (at least if their nuclear spin is zero), but it cannot be used as such
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A Jo=3/2  npsg
......... p— —_— Je=1/2  npy
D, Dy
h 4 Y —_— Jg=1/2 mns

Figure 3. Modelling the resonant transition of an alkali-metal atom. The effect of
the hyperfine interaction with the nuclear spin and the degeneracy linked to this
spin have been neglected.

for alkali atoms. Because of their practical relevance, we will give some
indications on how the previous results can be adapted. To simplify the
notations, we will use here the rotating wave approximation.

We first consider the case of a simplified alkali atom for which the nu-
clear spin is zero (figure 3). The ground state, a ns state, is then doubly
degenerate because of the spin of the valence electron, and its angular mo-
mentum is J, = 1/2. The resonant transition couples it to the np state
which, due to the fine structure interaction, is split into two sublevels of
angular momentum 1/2 and 3/2 noted np;/, and nps,;. The two reso-
nances ns <+ np; /o and ns < nps /o correspond to the Dy and D, lines of
angular frequency w; and ws.

3-1 Linearly polarized light

If the polarization of the light beam is linear, the symmetry of the problem
implies that the light shift of the two sublevels |g,m, = +1/2) are identi-
cal®. In this case, the light-shift operator is proportional to the identity in
the subspace |g,m = +1/2). Using the algebra of the angular momentum
operators and the Clebsch-Gordan coefficients shown in figure 4, one can

2To see this easily, it is better to choose as before the quantization axis along the direction
of the polarization.
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- J.=1/2 Jo=3/2
LA 2
i 3 3
3
— J,=1/2 —_— Jy=1/2

Figure 4. Amplitude of the couplings for the two transitions Dy and Do of the
resonance line of an alkali-metal atom, starting from the ground state m, = +1/2.
The spin of the nucleus is assumed to be zero. The amplitudes of the couplings from
the ground state m, = —1/2 have values symmetrical to the ones shown here.

prove that this light shift is

N VRN . 1 1/1 2

where Ay = w —w; and Ay = w — wy are the detunings of the laser with
respect to the resonant D; and Ds transitions. It is therefore sufficient to
take a weighted average of the two detunings to recover the result of the
0 ¢ 1 transition. This result remains valid when the hyperfine structure
of the atom is taken into account, provided that the detunings A; and A,
are large compared to the hyperfine structure of the excited levels np; /5
and np3 /2, which will in practice always be the case during the rest of this
lecture.

When A, , is large compared to the fine structure splitting ws — w1, then
Ay = A, and the fine structure has no particular effect. On the other hand,
when the detuning is on the same order as the fine structure splitting, the
result is notably modified. In particular, we see that there is a particular
value of A, such that Ay, = —2A; for which V cancels. For a rubidium
atom, the wavelengths of the D; and D, lines are A\; = 795nm and Ay =
780 nm; this particular detuning is thus obtained by choosing a laser of
wavelength A = 790nm. For this value of A, the dipole potential felt by
the atoms is null; the atoms continue to see the light beam and to scatter
photons (it is not a dark state), but they do not feel any dipole force.
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3-2 Light with an arbitrary polarization

The situation becomes more complicated if the polarization of the laser is
not linear, but elliptical or circular. In this case, the light-shift operator is no
longer proportional to the identity in the subspace |g,m = £1/2), which
allows to generate potentials that depend on the spin S associated to this
level. Let us write the laser field in the form

E(r,t) = %e E(r) @) e (42)

where the polarization vector € is now complex. Let us introduce the Rabi
frequency vector €2 whose three complex components ,, a = z,y, z char-
acterize the atom-laser coupling

hQa = —dof () (€ - ua) (43)

in the Cartesian basis u,. We can also introduce the coordinates of the
vector €2 in the standard basis

1
Oy = — (FQ +19Qy) , Qo =9Q.. 44
+ \/? ($ y) 0 (44)
From this vector €2, we can write the light-shift operator in the form
B, )
V= A 1+B-8, (45)

where the effective magnetic field is

/1 1 .
B—G(AZ—Al)QXQ. (46)
The light-shift operator (45) thus involves both a scalar part and a vector
part.

The origin of this result is clear; let us consider for example a circular
light polarization o_ close to the D, transition (we here forget the D, tran-
sition). One can immediately see on figure 4 (left) that the ground state
lg,m, = —1/2) is not coupled to the light, while the level |g,m, = +1/2)
is coupled to the light with a Clebsch-Gordan coefficient equal to —/2/3.
The differential light shift between these two levels is described by this ef-
fective magnetic field B. More precisely, the combination of the scalar term
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and the vector term of (45) accounts for the fact that |g,m, = —1/2) feels
no potential while |g, m, = +1/2) is displaced twice as much as if the light
had a linear polarization of the same intensity.

The vector part of the light shift (Cohen-Tannoudji & Dupont-Roc 1972;
Deutsch & Jessen 1998), proportional to B, is comparable to, and possibly
larger than the scalar part if the detuning is chosen of the same order as
the fine structure. In particular, this vector part remains non-zero when
we choose the detuning Ay = —2A; that cancels the scalar part. On the
other hand, this vector part decreases as 1/A? if we choose the detuning
to be large compared to the fine structure. In this case, it is thus negligi-
ble compared to the scalar part, which only decreases as 1/A. This last
point makes sense: if the detuning is large compared to the fine structure,
the latter is negligible during the characteristic time A~! associated to the
atom-light interaction. If we can neglect the fine structure, we recover the
Jy = 0 & J. = 1 transition that we have studied in the first part, since
the electronic spin plays no role in the coupling Hamiltonian between the
atom and the light. The degeneracy between the two spin sublevels +1/2
therefore cannot be lifted by the atom-light interaction.

Let us look at two special cases of the general expression (46):

e For a linear polarization, for example 2 = Qu,, then the cross product
u, X u, is zero, as is the effective magnetic field. The vector part of the
light-shift operator vanishes, as mentioned above.

* For a circular polarization, for example a light beam propagating
along the z axis such that Q = Q(u, + iu,)/v/2, then the vector prod-
uct (u, + iuy) X (u, — iu,) = —2iu, and the effective magnetic field
is aligned along z:

Q92 /1 1
B="—"(—-— : 7
6 \B, A" (47)

Note that unlike a magnetic field generated with external coils, this effec-
tive B can have spatial variations on the scale of the optical wavelength:
this happens for example for a standing wave resulting from the overlap
of two running waves with opposite directions and non-parallel linear po-
larizations.
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We now only need to add the effect of the hyperfine structure of the
ground state. If the nucleus has a spin I, this manifold is split into two
sublevels of angular momentum F' = I + 1/2. The Wigner-Eckart theorem
indicates that the light-shift operator can be written in this case

~ h|Q?. ;s
= 1+ B - F 4
Vv AA + ; (48)
with, for the level FF =T +1/2:
B
/_
_i21+1‘ (49)

The effective magnetic fields are thus opposite for the two hyperfine lev-
els. The previous remarks on the relative values of the scalar and vector
components of this light-shift operator are unchanged.

4 Quantum approach

The semi-classical approach has provided us with the value of the dipole
potential, but it is useful to validate this result with an approach that treats
the motion of the atom in a quantum manner. Most applications of opti-
cal lattices concerns aspects that are directly related to the quantum nature
of this motion: energy bands, geometric phases, topological states of mat-
ter, ... Fortunately, the structure of the semi-classical treatment that has
allowed us to compute the dipole potential can be transposed almost word
for word; we will only have to add a few elements to obtain the fully quan-
tum Hamiltonian describing the motion of the center-of-mass. In order
to minimize the technical aspects of this study, we will restrict ourselves to
the case of a two-level atom, as considered in § 1-1. The case of a multilevel
atom is treated in detail by Gerbier & Dalibard (2010).

4-1 Slow and fast variables

The problem we deal with consists in eliminating fast variables to obtain
the dynamics of slow ones. The fast variables relate to the internal dy-
namics of the atom, the slow variables to the center-of-mass motion. The
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evolution of all these variables is described by the Hamiltonian

L2
=21 Vea +huwole) e, (50)
2m
where the atom-light coupling in the electric dipole approximation was
given in (2). We have to add to the reversible evolution described by this
Hamiltonian the irreversible evolution due to spontaneous emission pro-
cesses. This evolution has been given in (7) for the matrix elements of the
density operator between |g) and |e). We will not need here the explicit
expression for the terms describing the evolution of p.. and py,; they are
given in Gerbier & Dalibard (2010).

Let us consider the evolution of the total density operator of the atom
p, which contains both the internal and external degrees of freedom. Let us
first consider the evolution of p., = (e|p|g) which is an operator with re-
spect to the external variables only. The corresponding evolution equation
is deduced from the one written in the semi-classical picture (10):

2
b

2m

dpeg 1

dt ik

. . r. . . . .
vpeg] — (lwo + 5)/)69 — i cos(wt — @) (Pgg — Pee).  (51)

We will make two approximations at this stage, similar to what we did in
the semi-classical case. On the one hand we will neglect the fraction of
atoms in the excited state, and thus omit the p.. term in the above equa-
tion. On the other hand we will assume that the evolution of j., due to
internal variables, with characteristic frequencies A and I', is much faster
than the one due to external variables, coming for example from the kinetic
energy Hamiltonian p°/2m. Under these conditions, one can (i) omit the
first commutator of the right-hand side of (51), (ii) neglect the variation of
Pgg OVer a time ~ I'"1, (iii) formally integrate (51) in the limit |A| > T to
finally obtain, in a very similar way to (14) :

Q e_i(Wt_W)

ﬁeg(t) = 5 W — wo -

el(wt—e)

P Pgg(t). (52)

This result means that the density operators corresponding to the “optical
coherences” p.q and p,. follow adiabatically the much slower evolution of
the density operator restricted to the ground state |g).
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4-2 Effective Hamiltonian for the center-of-mass

The result (52) is then transferred into the evolution equation of j,, to ob-
tain:

dp dp 1| p° . . A

dig — dig " + 7 [2m,pgg +1Q cos(wt — ©) (Peg — Pge) ;
~ LIE vy, (53)
| om TP

Note that we restricted here to the lowest non-zero order in 1/A and omit-
ted the terms oscillating as e=?“?, as we did in the semi-classical approx-
imation. Note also that the term describing the evolution of py, due to
spontaneous emission is  I'pc.; it does not contribute at this order of the
calculation and is only relevant at a higher order in I'/A [see e.g. Gerbier
& Dalibard (2010)].

The result (53) corresponds to what we are looking for. This Hamil-
tonian evolution equation describes the motion of a particle of mass m
without internal structure in the dipole potential V(r) given in (18). The
Hamiltonian )

N D R
H="—+V 54
Tvi) 59

will serve as a starting point for the following lectures, possibly with the
modifications related to electronic and nuclear spins mentioned in 3.

5 Red vs. blue lattices

5-1 The “paradox” of Gordon & Ashkin (1980)

In this set of lectures, we will consider traps made of light, in particular pe-
riodic optical lattices, in a regime where spontaneous emission phenomena
are negligible. In this context, spontaneous emission is indeed a nuisance®:
its random character is a source of heating for the atoms, which must be

3The situation is very different for the original use of optical lattices, where optimal ways
to cool an assembly of atoms were investigated.
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reduced as much as possible. This non-dissipative regime is obtained by
minimizing the excited state population (40):

0?2
He == E, (55)
for a given value of the optical potential
hQ?

This leads to the choice of the largest possible detuning and intensity:
when keeping 22?/A constant, the quantity Q?/A? — 0 if Q, A become
very large.

More precisely, consider an optical lattice generated by a one-
dimensional standing wave, Q(z) = Qqsin(kx), leading to the potential

hQZ
=IA-
The spontaneous emission rate can be minimized by a proper choice of the
sign of the detuning A, for a given lattice depth 1. For A > 0 (blue),
the atoms are trapped in the vicinity of the nodes of the standing wave
that forms the lattice. On the contrary, for A < 0 (red), the potential is
minimal at the antinodes of the standing wave. One could naively think
that, regarding the heating due to spontaneous emission phenomena, the
situation is more favorable for a blue detuning than for a red one, since the
intensity is smaller at the location of the atoms.

V(z) = Vg sin® kz, Vo (57)

This naive reasoning was invalidated by Gordon & Ashkin (1980), who
calculated the momentum diffusion coefficient of an atom in a standing
wave. They showed that at a given Vj, this diffusion coefficient is the
same at all points of the standing wave and does not depend on the sign
of A. However, they did not give any physical interpretation of this re-
sult which thus remained somewhat mysterious. It has been analyzed by
Cohen-Tannoudji (1992), then taken up recently in a more general frame-
work by Gerbier & Dalibard (2010). The transposition of this problem to
the case of atoms in cavities has been studied by Murr, Maunz, et al. (2006).

In the appendix of this chapter, we summarize the original argument
of Gordon & Ashkin (1980) and its transposition to the formalism devel-
oped in paragraph 4, including in particular the approach of Gerbier &
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Dalibard (2010). In the following, we explain the surprising result of Gor-
don & Ashkin (1980) by using the dressed atom formalism.

5-2 Raman transitions in a deep lattice

To explain the paradoxical result of Gordon & Ashkin (1980), we consider
a lattice with a large depth Vj so that the motion of an atom is restricted
to the bottom of a potential well; the tunnelling to neighbouring wells is
assumed to be negligible.

In the case of a blue-detuned lattice, we take as in (57) a 1D lattice with
a Rabi frequency Q(z) = Qo sin(kz) and we assume that the extent of the
spatial motion of the atom is small compared to k=1 = \/(27) so that we
can approximate sin(kz) ~ kz. The atom then undergoes a harmonic mo-
tion in the potential

hQ2 k2 1
V(z) = 40A x2:2 22

(58)

The eigenstates describing the motion in this potential are the Hermite
functions H,,(z/ano,), where the characteristic size of the ground state is

ano = V/ h/muw, (59)

and the corresponding energies are (n + 1/2)hw.

In the case of a red-detuned lattice, we will take 2 = Qg cos(kz) to
keep a well centered on z = 0. The expressions for the frequency w at the
bottom of the well, the size of the ground state ay,, and the energy spectrum
(n 4 1/2)hw are unchanged (up to the change A — —A).

Spontaneous emission phenomena will cause transitions between the
energy levels of this well by inducing Raman transitions (figure 5): the
atom, initially in the electronic ground state g and a vibrational state n
for its center-of-mass, can be transfered to an excited electronic state e by
absorbing a photon from the laser beam creating the standing wave, and
then fall back into the electronic ground state by emitting a fluorescence
photon. During this second step, the atom can reach another vibrational
state n’: the Raman scattering thus induces a random walk for the state of
the center-of-mass, which corresponds to heating.
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Figure 5. Left: Raman transition that can cause a change in the vibrational state
n of the atom. Right: the same transitions in the dressed atom picture correspond
to a “radiative cascade”.

The formalism of the dressed atom is very convenient to visualize this
random walk. The Raman transition we have just described corresponds
to a transition from the {|g, N + 1), |e, N)} multiplicity to the next lower
multiplicity {|g, N),|e, N — 1)} (figure 5). More precisely, at the lowest
non-zero order in (2, the only significant transition is

lg, N +1) — |g, N). (60)

The state |g, N + 1) has a non-zero (weak) overlap with |e, N) and is there-
fore unstable from the point of view of spontaneous emission. When de-
exciting, it emits a photon and falls to the state |g, N), which itself has a
non-zero (strong) overlap with |g, V).

5-3 The transition rates n — n’

We now evaluate the rates of n — n’ transitions using the Fermi Golden
Rule (FGR). The coupling Vi, between the atom and the empty modes of
the electromagnetic field (here considered in a 1D model) responsible for
the spontaneous emission is written

Viae = Y _Vwe¥™al, 6. +he. (61)
k:/
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where dl, creates a photon of wave vector k£’ along the = axis. The natural
width of the excited atomic state |e) is in this model

27

R 2
I'=—|; K'|[Viacle ; vac)|  p(hck’ = hwa), (62)

where p(E) represents the density of states for a final energy fc |k'| equal
to the initial energy of an excited atom hwa (i.e. k' = £wa /c).
The initial state corresponds to the vacuum state of the radiation and

the atom in the state |\II§,N +1)>, which represents the n-th vibrational level,

and the internal dressed state |g, N + 1):
(| WD) = Hy () {cos[f(2)] 9, N +1) + sin[0(z)][e, N)}.  (63)

The final state corresponds to an emitted photon £’ and the atomic state
|\I'EL],V )>. The rate 7,,—,,» we are looking for is then written using the FGR

Yo (K1) oc (W75 K (e af, 6 [NFD s vac) 2

‘<\1/55>])|eik’m 5'_|\I/(N+1)>|2 (64)

n

By transferring the expression (63) in the matrix element to be calculated,
we get to

Vnosn (k') o< ‘/H"/(x) H,(x) elb'@ sin[f(z)] cos[0(zx)] dzx

2

x i /Hn/(a:) H,(z) cik'e Q(x) dz| (65)

where we have used the approximation sin(20) ~ Q/A [cf. (31)]. With
this result, we are now able to compare what happens for an atom trapped
at the vicinity of a node (blue lattice) or an antinode (red lattice) of the
standing wave.

Blue lattice. Assuming a spatial extension of the atom wavefunction
small compared to 1/k, we can make the approximation Q(z) ~ Qo kz,
¢'*'* x~ 1 in the integral (65). The latter then simply reduced to

Q3 .
st 0 g |(Ho k2| H) | (66)
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or, by restoring the so-far-omitted proportionality coefficients:

Yn—n' = % (kah0)2 [(n + 1) 6n’,n+1 + nén’,nfl} 5 (67)

where we have introduced the “typical” diffusion rate v, for a Rabi fre-
quency {2o:
a3
IAZ
The expression (67) calls for two important remarks.

Y =T (68)

¢ The localization of the atom in the vicinity of a node of the standing
wave leads to a strong reduction of the photon emission rate com-
pared to the typical rate 7o, by a factor (kay,)? = hk?/(mw) < 1 for
the lowest vibrational level n = 0. This effect logically follows the fact
that the atom experiences a reduced light intensity along the extent of
its wave function, which is on the order of ay,.

e We see on (67) that the emission of a photon is necessarily accompa-
nied by a level change of one unit, with a rate o< (n + 1) for the transi-
tion n — n+1, corresponding to the energy gain 7w, and a rate o n for
the transition n — n — 1, corresponding to the energy loss hw (figure
6). The energy gain per unit of time for an atom prepared in the n-th
band is thus:

dE _

T = (kano)® [(n+ Dhw — nhw] = 70 B, (69)

where we have introduced the recoil energy

h2k2
= om

(70)

T

Red lattice. In this case, to evaluate the integral (65), we can make the
approximation that the Rabi frequency is constant along the extent of the
atomic wave function: Q(z) = Qg cos(kz) = Q. We develop the exponen-
tial ¢/*'* at first order in 2 and we obtain

2

Q
Ynsnr (K) ¢ 1 [(Hr |1+ iK'z H,)|

(71)
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Figure 6. The main transitions in the dressed atom picture (Lamb—Dicke regime).
For a laser detuned on the red side of the atomic transition (A < 0), the fluores-
cence rate is high: most of the photons are emitted on the recoil-less line n — n and
the rest corresponds to n — n £ 1 transitions. For a blue-detuned beam (A > 0),
the photons are only emitted on the n — n =+ 1 lines. The heating rate is the same
in both cases, for fixed Qg and |A|.

leading to

(k:aho)2

TYn—n’ = 0 {(sn,n’ + [(TL + 1) 671’,n+1 +n 6”’,n1}} (72)

where we have taken &’ = k. The dominant term is this time -y d,,,, i.e.
a spontaneous emission of photons without change of vibration level (fig-
ure 6). The corresponding rate is high, as expected at the antinodes of a
standing wave, but this process does not correspond to a change in the en-
ergy of the atom: this photon emission without a recoil is the equivalent of
the Mossbauer effect in nuclear physics, and is frequently encountered in
trapped ion physics (Lamb-Dicke effect). The energy change comes from
the second term of (72) which involves jumps from a vibrational state n to
a neighboring state n & 1. These jumps are much rarer than the previous
ones, and they lead to an energy gain per unit time identical to the one
found for a blue lattice [equation (69)].

To conclude, we recover with this simple analysis the result of Gor-
don & Ashkin (1980): the heating rate is indeed the same at the nodes and
at the antinodes of a standing wave. However, the mechanisms leading
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to this rate are very different. For a blue lattice and atoms located at the
nodes, the photon scattering rate is very small but each photon emission
is accompanied by an energy change fiw. For a red lattice and atoms local-
ized at the antinodes, the spontaneous emission rate is much higher, but
the average energy gained during a spontaneous emission process is much
lower because most of the emissions are recoil-free.

Here, we limited ourselves to the case where the tunnelling effect be-
tween the different wells of the lattice is negligible. When this tunnelling
becomes significant, the discrete vibrational levels n are replaced by en-
ergy bands and a significant difference between the blue and red lattices
may appear. In addition, one should consider the decoherence associated
to the spontaneous emission processes: each process localizes the atom
with a resolution of A. A wave packet initially extending over several sites
will thus lose its coherence much faster in the case of a red lattice than in
the case of a blue lattice, even if the heating rates dE/dt are similar. This
difference is studied in detail by Gerbier & Dalibard (2010).

6 Appendix: the Gordon-Ashkin paradox

We start with the Hamiltonian of a two-level atom with a resonance fre-
quency wa = (E, — E,)/h, illuminated by a monochromatic laser field of
frequency wr, the strength of the coupling being characterized by the (pos-
sibly complex) Rabi frequency Q(z). In the framework of the rotating wave
approximation, this Hamiltonian is written

52 hQ(2)

Har = 21"7” — AP, + by + V@) 73)

2

where P,, denotes the projector on the state |a) (o« = |g), |e)), and where
¢4 are defined in (3). In addition to the Hamiltonian dynamics described
by H, we take into account the irreversible evolution due to spontaneous
emission phenomena, characterized by the natural width I' of the excited
state |e).

The reasoning of Gordon & Ashkin (1980) starts from the limit of an
infinite mass m, so that the atom has zero velocity and remains stationary
at position z. The momentum can however be non-zero, and we define the
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average force f(z) as R
f(x) = (F(z)) (74)

and the diffusion coefficient in momentum space D, (x)

D,(x) = /OOO E@(% 0)E(x,t) + E(z,t)F(x,0)) — (<F(x)>)1 . (75)

We have introduced here the force operator:

F(z) = —% - —% (hQQ(x)) G4 +cc. (76)

The average values of (74-75) are calculated assuming steady state for the
internal variables of the atom, taking into account the dissipation induced
by the spontaneous emission phenomena. In the definition (75), the quan-
tity F'(&,t) represents the force operator in the Heisenberg representation.

The explicit calculation of the diffusion coefficient is rather technical,
and requires the use of the quantum regression theorem. We will only give
here the result of Gordon & Ashkin (1980), which we will derive in the next
paragraph with a slightly easier method. Let us concentrate on the case of
a standing wave

Q(z) = Qosin(kx), € real positive, (77)
and on the limit of large detunings
Qo < |A] (78)
The average force is the dipole force
_ dV(x) B 02 L9
flx)=— P V(z) = —7A Sin (kx). (79)

As for the diffusion coefficient, it is expressed as*
a3
8A2’

4We have slightly adapted the result of Gordon & Ashkin (1980) to the case where the
photons emitted spontaneously by the atom propagate along the x axis.

D, = h?k*T (80)
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This diffusion coefficient is independent of the position x considered: no
matter whether the atom is placed around a node of the standing wave
(z = 0, mod 7) or around an antinode (z = 7/2, mod ), the momentum
diffusion and thus the heating related to the spontaneous emission pro-
cesses are the same!

We now switch to a quantum description of the center-of-mass motion
and we follow the approach proposed by Gerbier & Dalibard (2010) to re-
cover the result of Gordon & Ashkin (1980). We found in § 4 that, when the
heating related to spontaneous emission processes can be neglected, the
dynamics of the atom is described by the Hamiltonian

i 0%

g = — T = in2 = —
H= o +V(&), V(z)=VWsin“(kz), W A (81)
We now calculate the time evolution of the average energy
E(t) = (H), = Te(Hp(1)), (82)

where /(t) represents the density operator of the atom, acting in the space
of both internal and external variables. In the absence of spontaneous emis-
sion phenomena, this mean value would be constant, but this is not the
case if these phenomena are taken into account.

We start with the equation of motion for p:
dp  dp 1 .

B =), e (53)

where the first term of this master equation describes the evolution due to
the spontaneous emission. From this we obtain

LE(t) =Tr (ﬁ dp

) + o ([, Ao (34

dit dt

Evolution due to spontaneous emission.
lated to spontaneous emission is written as

In (83) the evolution term re-

4T / N(E)o_e* P pe ¥ 5, k. (85)
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The first line of this equation gives the decay of the matrix elements of p
that involve the excited state:

pes L djye r
= — 5 Peg> = — 5 Pges 86
|, 27 T 2 (86)

sp.

dpee
dt

_Pﬁeea

sp.

and the second line describes the population growth of the ground state
Pggq due to the decay of the excited state. Note that these matrix elements
Pap (With o, B = e, g) remain operators with respect to the external vari-
ables = and p describing the motion of the center-of-mass of the atom. The
function NV (k") describes the distribution of the projection on the z axis of
the wave vector of the spontaneously emitted photon. Since we take here a
1D model, we assume that these photons propagate along the z axis, with
an equal probability to be emitted in the positive and in the negative direc-
tion, which amounts to take

NK) = =6k — k) + 6k + K. (87)

N | =

Let us now evaluate the contribution of the first term of (84). The Hamil-
tonian H which intervenes in this term has itself two contributions, p?/2m
and V (2). Let us start with $?/2m and write

/\2 A~ 2 ~
p= dp p dpee
Tr | — — = [ —
r <2m dt Sp_> /2m <<p| dt

We use (85- 87) and obtain

dlag!]
p) + (ol L2

sp.

;0>> dp. (88)
sp.

dp
(p| =22

T X .
at Ip) = = ((p + "k|pee|p + hk) + (p — hk|pec|p — RK)) . (89)

Ssp. 2

By transferring this result into (88), we get to
Trﬁ@ —_L/2<|A‘>d
2m dt o, - 2m p PPeeP p
r
b [ [ 107 + (0= 1) lpeclp) o
h?k?

= Tl —, (90)
2m
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where II. represents the total population of the excited state:

I, = / (Plpeclp) dp. 1)

One can check with a similar calculation that the contribution of V() (via
H) to the first term of (84) is null. We thus arrive at

L dp
(g2
r( at

) =T1I.E,, (92)
Sp.

an expression that can easily be interpreted: I'Il. corresponds to the photon
scattering rate by the atom. Each spontaneously emitted photon gives a
random kick of £7k to the atom, thus an average energy increase E, =
i2k? /2m. At order two in Rabi frequency, the value of 1L, is [cf. (40)]

1~ (@0

e ™~ 4A2 ’ (93)
which gives for the standing wave
. dp _ Q2
Tr (H pn Sp-> = FEYE (sin®(kx)). (94)

For an atom located at the vicinity of a node of the standing wave, sin?(kz)
goes to 0, the photon scattering rate also goes to 0, as does the correspond-
ing energy increase.

Second term of (84). The commutator [H , H aL] is easily calculated:

1.5 = hkSQy .. . . R A
ﬁ[H’ Hpapl= — 4m0 (64 4+ 6-) (pcos(ki) + cos(kz)p)
hkQ?
+ 5 AO (psin(2k2) + sin(2k2)p) . (95)

We are looking for a result at order 2 in 2y /A. We then start by evaluating
the matrix elements of 5 p at the desired order to get the average value of
the first row of (95). The master equation (83) gives

dpe . ry . Q) .
Peg ~ (IA - > Peg — 1LP997 (96)

dt 2 2
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where we have neglected the contribution of j... In the (realistic) hypoth-
esis where the characteristic time of evolution of the external variables is
long compared to I'"!, we can consider that the internal dynamics of the
atom follows adiabatically the external dynamics and solve (10) as’

) (2) O (2)

Peo = 58 /o - P

and similarly pge = pyq

To evaluate the first line of (95), we start by taking the trace on the internal
variables. At the desired order in Qy/A, we find:

. A ya Qo (. s s
Tring [(64 +6-)p] = —22 [sin(k&)pgq + Pgg sin(kd)]
Qe i a
+ i ﬁ [Dgg sin(kz) — sin(k&)pge] . (100)

Let us finally transfer this result into the trace of (95). We see that the
contribution of the second line of (95) exactly cancels the one coming from
the first line of (100). Finally, there remains only the contribution coming
from the second line of (100) which after a simple calculation gives

2

%([ﬁ, Harl) = rEr%@os?(m«».

This term is all the more important as the atom is located at the vicinity of
the nodes of the standing wave.

(101)

In total, when we sum the two contributions (94) and (101), we get the
result 1B 0
0
i FEYE’
which is independent of the spatial state of the atom in the standing wave
and also independent of the sign of the detuning of this wave: this is the
result initially found by Gordon & Ashkin (1980).

5We can then push the calculation one step further to obtain the expression of pe. at the
lowest order. Starting from

(102)

dpee
dt
and using (99), we obtain the ”steady-state” value for the internal variables
1 o a .
Eﬁ(m) Pgq SV (2), (98)
which allows in particular to recover (93).

i i
- _Fﬁee + iﬁegg*(i) - §Q(j)lég€7 (97)

ﬁee =






Chapter I1

The basics of optical lattices

The goal of this chapter is to present the basic concepts of optical lattice
physics. We start by recalling Bloch’s theorem, which is the central tool
to address the motion of individual particles in a periodic potential V(7).
We explain how the fundamental concepts of Bloch functions and energy
bands emerge, and present a series of explicit results for these functions
and bands in the case of a 1D sinusoidal lattice, V (z) = Vjsin?(kz). We
then focus on the quantities one can access by ramping up and down the
potential V (r), an operation which is impossible in a real crystal, but easy
with optical lattices. We end this chapter with a first approach to the prop-
agation of wave packets in the lattice, and the notion of effective mass and
group velocity.

1 How to generate an optical lattice

1-1 One-dimensional lattices

In its simplest version, an optical lattice consists of a one-dimensional
standing light wave along an axis = (Figure 1). This wave is formed by
two propagating waves of the same amplitude & travelling in opposite
directions (we neglect here the influence of polarization):

Eo sin(kx — wt + ¢1), Eo sin(kx + wt — o). 1)
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Figure 1. 1D optical lattice formed by a standing laser wave. Left: period \/2;
right: period \/[2sin(0/2)].
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The resulting field is written as £(z,t) = £(x) cos(wt — ¢) with ¢ = (¢1 +
¢2)/2 and

g(ﬂ?) = 250 sin(k’a: — (I)), ¢ = (¢2 — ¢1)/2 (2)

In this chapter, we will choose the origin of coordinates = = 0 such that
® = 0, which corresponds to choosing this origin at a node of the standing
wave. The atoms therefore sit in the periodic potential

d2&?
V(z) = Vysin?(kx), Vo = ;;AO’

where the sign of Vj can be adjusted by changing the detuning of the laser
with respect to the resonant transition of the atom.

®)

If the standing wave is obtained by superimposing two plane waves
of light that have opposite directions, & is equal to the wave vector of the
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light ki, and the spatial period of the lattice is a = A\/2 = x/kr,, where
A = 27 /ky, is the wavelength of the light. If the waves each have an angle
6/2 with respect to the perpendicular to the = axis, k¥ = kg, sin(8/2), the
spatial period is then increased: a = A\/[2sin(6/2)]. We will see later that
we can also choose in (1) a time-depending relative phase ® = ¢ — ¢4,
which allows to displace the periodic potential in the reference frame of
the laboratory with the speed ®/(2k).

1-2 Multi-dimensional lattices

To create a periodic potential in several directions in space, the easiest and
most robust technique is to overlap standing waves of different frequencies
in the desired directions. For example, to make a square array in the xy
plane, we can overlap

E(r) = 2& sin(kyz) cos(wit — ¢1) + 2E9 sin(kay) cos(wat — w2). 4)

If the frequency difference w; — wy between the waves is large compared
to the other frequencies involved in the motion of the center of mass of the
atom, we can neglect the interference between these two standing waves
and consider that the dipole potential

V(r) = Vi sin?(k1x) + Vo sin? (kay) 5)

acts on the atom. In practice, it is enough to take (w; — wz)/27 on the order
of a few MHz (i.e. a relative difference of 10~®) for this approximation to
be valid.

We can also choose the same frequency for all the waves. In this case,
if we want to use the superposition of two standing waves in the zy plane
as in (4), we must control the relative phase ¢1 — @2 of these waves (Hem-
merich & Hénsch 1993). This phase control can be used to vary the lattice
topology, as we will see later for the detection of Dirac points in a hexago-
nal lattice (Tarruell, Greif, et al. 2012).

Note that there is an important exception to this requirement of a phase
control: Grynberg, Lounis, et al. (1993) showed that if we restrict the num-
ber of beams to its minimum value (2 beams for a 1D lattice, 3 beams in
2D, 4 beams in 3D), then the interference pattern giving rise to the po-
tential V() is independent of the phases of the beams. A variation of
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these phases only translates the interference pattern, without changing its
shape!. One can refer to the review article of Grynberg & Robilliard (2001)
to have a complete panorama of the lattice forms that are accessible in the
monochromatic case. Let us also mention that, in this case, one can go
beyond the framework of periodic lattices and build quasi-periodic poten-
tials analogous to those which appear in quasi-crystals (Guidoni, Triché,
etal. 1997).

1-3 Back to 1D: Mathieu’s equation

The study of the quantum motion of an atom of mass m in the periodic
potential of the lattice requires the search for the eigenstates [¢) (or (x) =
(x]v)) of the Hamiltonian

A2
H=L" 1 Vysin2(kz). (6)
2m

The wave number & provides a natural energy scale, which we will call the

recoil energy
h2k?
E, =

)

which allows to write the eigenvalue equation H+) = E 1) in a dimension-
less form

om’

() + 22 [1 - cos(2)] () = B(2), ®

where we have set 7 = kz, Vo = Vp /E, and E=EF /E,. Note that the name
recoil energy for E, is a bit improper; the recoil energy (7) is usually defined
as a characteristic quantity of the atom, where k is the wave number asso-
ciated to the resonant transition. Here, the laser may have a different wave
number k;, than the resonant value, and the wave number of the lattice
may additionally differ from the wave number of the laser if one chooses a
configuration with a § # 7 angle.

Equation (8) is called Mathieu’s equation® and is found in many physical
problems, such as the motion of a classical particle driven by an oscillat-
ing force (Z is then the time variable), for example a Paul trap for charged

I This result is clearly seen in 1D on the expression (2).
2Emile Léonard Mathieu (1835-1890), a French mathematician, wrote this equation in 1865
while studying the vibrations of an elliptical membrane
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particles. For a given initial condition in & = 0 and according to the value
of the pair (Vj, E), the solutions remain bounded or on the contrary di-
verge in & = Fo0. In the case of a particle in a Paul trap, the bounded and
divergent solutions correspond respectively to the stability and instability
zones of the trap. For the quantum motion of an atom in an optical lat-
tice, these solutions correspond to an energy E located in an “allowed” or
"forbidden” (gap) zone.

Since the existence of these allowed or forbidden zones is not restricted
to the case of a sinusoidal potential, but appears for any periodic potential,
we will momentarily leave Mathieu’s equation to address the general prob-
lem of the motion of a particle in a spatially periodic potential. However,
we will later use some specific results related to this Mathieu equation,
such as the asymptotic value of the bandwidths in the limit V;, > E,.

2 Bloch’s theorem

In the following, we consider the motion of a point-like, spinless parti-
cle in a periodic potential V() without any other force (in particular no
magnetic field). More precisely, we suppose that this potential is invariant
when we make the substitution » — r + r;, where r; is one of the nodes
of the lattice

B ={r; = jia1 + joas + jsas, ji, jo2, js € L}. )

Such a lattice, which is stable under addition and subtraction, is called a
Bravais lattice. We have written here the 3D version of the lattice, the vectors
a; being independent. In one dimension, we will use the simpler notation
for the spatial period a; = a. We are interested in finding the eigenstates

of the Hamiltonian )

~ N pf R
H=:-+ V(#) (10)

that describes the motion of the particle. Bloch’s theorem? takes advantage
of the discrete translation symmetry of the problem to search for a basis of
eigenfunctions in a particularly convenient form.

3Felix Bloch proved this theorem while studying the motion of an electron in a periodic
potential (Bloch 1929). The same mathematical result had been previously obtained in other
contexts, including by Floquet (1883).

2-1 Statement of the theorem

Let us start with the following two points:

e the translation operators 7,, defined by
Totb(r) =¢(r—a) ie.

commute one with the other,

Ty =e 'oP/h (11)

e the translational symmetry of V(r) entails that the translation opera-
tors T,, commute with the Hamiltonian.

We can therefore look for a basis of eigenfunctions common to H and the
Ta, . operators. Now the diagonalization of an operator T, is easy; in par-
t1cular since Ty is a unitary operator (T, ' = T_, = T}}), its eigenvalues \
are complex numbers of modulus 1 which can always be written under the
form A\ = e~ 17,

Let us now consider an eigenfunction vy, , 6, of the Hamiltonian H
and of each of the translation operators Ta , with the eigenvalue e 1% for

T . To express the triplet §; in a compact way, it is convenient to introduce
the reciprocal lattice (another Bravais lattice) defined by:

B’ ={Q; = jib1 + jaba + jsbs, j1, jo, js € Z} (12)

where the vectors b; are defined by the identity*

a;: - bl =27 51"2'/. (13)
Let us now pose
> 6,5, (14)
j=1,2,3

which leads to a; - ¢ = 6;. The eigenfunction )y, ¢, ¢,, Wwhich can be noted
in a more compact way 14, thus verifies

Yg(r —a;) = eiiaj'qi/}q(T),

4We have explicitly

j=1,2,3. (15)

a2 X a
bl:gﬂ-A
al ~(a2 ><a3)

and the two other relations are deduced by circular permutations of the indices.

27
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Let us finally set

Yq(r) = el™d ug (7). (16)
By using this relation in (15), it is immediate to check that the function
uq(r) is periodic on the Bravais lattice 5:

ug(r —a;) =uq(r), j=1,2,3. (17)

Bloch’s theorem can be stated as follows (Ashcroft & Mermin 1976; Kit-
tel 1987): the eigenstates of a Hamiltonian corresponding to a spatially
periodic potential V' (r) on the lattice B can be searched under the form
of Bloch waves 1,4 (r), which are products of a plane wave [¢/"9] with a
periodic function on B [ug(r)].

In all that follows, we will assume the periodic potential V' (r) to be
sufficiently regular so that the function uq(r) can be expanded in Fourier
series. We will thus choose in 1D:

ug(z) = Y Cilg)ed™r/e, (18)
JEZ

thatis ,(x) = Y Cj(q)e*@r?mi/e), (19)
JEZ

The form (19) shows that Bloch waves are combs of plane waves with mo-
menta p = fi(qg + 27j/a), with j integer.

Note that in the following, we will apply on the variable q all the usual
operations for continuous variables: derivation (or gradient) with respect
to ¢, integration over g, etc. Writing this variable g as a subscript of 14 () or
uq(r) is a usual convention, but one could also have written these functions

as ¢(r, q) or u(r, ).

Also note that the angles 6, characterizing the eigenvalues e~ % of the
translation operators Ta_j are defined modulo 27. When we write the
arbitrariness of this phase in the definition (14), we see that the quasi-
momentum g and the quasi-momentum g + Q, where Q is a vector of
the reciprocal lattice 5/, lead to the same triplet of eigenvalues for Taj ; we
obtain in this case the same eigenvalue equation for the Hamiltonian A
and the periodic part u4. In order to get rid of this phase arbitrariness, we
will set in all the following

VarQ(r) = Yq(r), QeB. (20)
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2-2  Searching for the eigenstates and the energy bands

In this paragraph, we stay in one dimension to simplify the notations. The
explicit search for the eigenstates 1, of [ is done by injecting (16) into the
eigenvalue equation in order to derive an equation for the periodic part u,
of the Bloch function:

Hper(q)uq(z) = E(q) ug(x) (1)

where H,..(¢) is a Hamiltonian that depends on the parameter g.

: (h + hg)®

Hper(q) = + V(&) (22)

2m

The function u, () satisfies the boundary conditions
uq(0) = ug(a), uy(0) =u(a). (23)

For a given value of g, the solutions of (21-23) can be identified by an in-
dexn =0,1,2,..., the eigenvalues F, (q) being ordered by increasing val-
ues. To the energy E,(q) corresponds the solution w,, ,(x), associated to
the Bloch wave ,, (x):

Hipyg(2) = En(@) Yng(@), Wng(@) = %y q(2). (24)

We have already mentioned in (20) the invariance of the definition of the
eigenfunctions 1, 4(z) in the substitution ¢ — ¢ + 27/a. The same is true
for the eigenvalues®

E,(q+27/a) = E,(q) . (26)

Thanks to the spectral theorem, we know that we can form a basis with
the eigenstates of the Hamiltonian. To choose this basis, it is important not
to double count eigenstates, i.e. to take each eigenfunction once and only

5We also deduce from (16-20) that

uq+27r/a(x) - e—ZWa:/auq(w)’ (25)

which amounts to taking C (¢ + 27/a) = Cj4+1(q) in the expansion (18). The relation (25)
plays an important role in the study of the topology of energy bands associated to a given
potential (Zak 1989).
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once. Thanks to the relation (20), we see that we have to restrict the domain
of ¢ to an interval of length 27 /a, choosing for example the

1st Brillouin zone: —w/a < q < 7/a. (27)
Note that it is often useful to treat ¢ as a variable that can take any value
between —oo and +o00. There is no problem with this, as long as one re-
members the periodicity of the states and their associated energies (20-26).

When ¢ varies continuously in an interval of length 27/a, for exam-
ple (27), each energy E,(q) obviously takes a value contained in the in-
terval I, = [min, F,(q), max, E,(q)], which is called the allowed energy
band. For the basic 1D lattice that we will consider most of the time,
V(z) = Vosin®(kz), Vo # 0, the intervals I,, are disjoint [max, E,(¢q) <
ming E,41(g)].

In the multi-dimensional case, determining the Brillouin zone is not al-
ways as simple as in one dimension. We will see an example for the hexag-
onal lattice of graphene later. For the square or cubic lattices that we will
consider in the meantime, the first Brillouin zone is immediately deduced
from (27):
with —7/a; < q; <m/aj.  (28)

1st Brillouin zone: q = (¢1,q2, g3)

2-3 Role of the symmetries of the Hamiltonian

Time reversal symmetry. For a spinless particle, the time-reversal trans-
formation is described by the anti-unitary operator K defined by (Messiah
2003)

Koip(r) = 9" (r). (29)

This operator leaves r invariant and changes p to —p. The Hamiltonian we
consider here is quadratic in p, since there is no magnetic field and there-
fore no linear term for the momentum of type —p - A. This Hamiltonian is
time-reversal invariant and commutes with K.

This means that if ¢4 (r) = €9 u,(r) is an eigenstate of H with eigen-
value E, then Koythg(z) = 179 uy(r) is also an eigenstate of H with the
same eigenvalue E. Now the function e~ u} (r) verifies all the proper-
ties of a Bloch function associated to the quasi-momentum —q. We deduce
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that if we know how to solve the eigenvalue problem for the Hamilto-
nian for a quasi-momentum g, we also know the solutions for the quasi-
momentum —g by posing:

Y_q(r) < g(r),  E(q) = E(—q). (30)

Even in one dimension, each energy eigenvalue is therefore (at least)
doubly degenerate, since the functions 1, , and 1, _, are independent.
This result generalizes the one for the free particle, where e'?*/" and e~ 'P*/?
are two eigenstates associated to the same energy E, = p*/2m. There are
two exceptions to this double degeneracy®, the cases ¢ = 0 and ¢ = /a,
for which v, 4 and v, _, are identical [cf. (20)].

Parity of the potential V (r).
ity operator P is defined by

For a spinless particle, the (Hermitian) par-

Py(r) = (=) @)

If V (r) is symmetric about 7 = 0, then the Hamiltonian commutes with P.
We deduce that if 14(r) is an eigenstate of H with eigenvalue E(q), then
Pipg(r) is also an eigenstate of H with the same eigenvalue. But Py, (r) =
e ™4y, (—r) verifies all the properties of a Bloch function associated to
the quasi-momentum —q. If we have been able to solve the eigenvalue
problem for the Hamiltonian for the quasi-momentum —q, we can deduce
the solution for the quasi-momentum —gq:

V_q(—T) < Y_g(-T), E(—q) = E(q), . (32)
The equality between E(q) and E(—q) had already been obtained from
the time-reversal invariance in (30), without assuming the parity of the
potential. On the other hand, the relation between ¢ _q(7) and ¥q(—7),
valid only for an even potential, enriches the result (30).

®In the particular case V' = 0, there is still a degeneracy for ¢ = 7/a, because two consec-
utive bands touch each other at this point (see § 3-1).
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3 Energy bands for a sinusoidal potential

Let us now return to the 1D case of the potential V(z) = V; sin?(kx), for
which the eigenvalue equation is the Mathieu equation (8). We first con-
sider the case V; = 0 for which we know the eigenstates, ¢, (z) = elP*/"
and the associated energies E, = p?/2m. The use of Bloch’s theorem to
treat this problem is obviously a complicated way to address an already-
known case, but it has the merit to give explicitly the energies E,,(¢) and
the associated functions u,, (). The result will then be used as a guide to
treat the case of non-zero potentials.

3-1 The case of zero potential, 1, =0

For the zero potential, any period a will do. Let us take a = 7/k to make
the link with the case where V; # 0. A “plane wave” state ¢, (z) = eP*/"
can be written as a Bloch wave

p

- =25k +gq, (33)

dp(x) = %BIFT with h

where j is the closest integer to p/(2hk), and where g belongs to the first
Brillouin zone (—k, k]. We have for the lowest band n = 0:

h2q2
Eo(q) = o up,q(7) =1, (34)
and for the first excited band n = 1:
_ h? 2 __+2ikx
Ei(q) = o (g£2EK)°, uiq(z)=e , (35)

with sign — (resp. +) when ¢ > 0 (resp. < 0). In this very peculiar case,
the functions u,, 4(x) are thus independent of ¢, except for the change of
sign of the exponent in (35) at ¢ = 0. The plot of the functions E,,(q) as a
function of ¢ is given in figure 2; it simply gives back the parabola E(p) =
p?/2m folded on itself since the abscissa g, linearly related to p by (33),
must remain in the first Brillouin zone.
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Figure 2. Left: the dispersion relation for a free particle E = p®/2m. Right: the
folded parabola, giving the energy bands for the same free particle in the Bloch
wave formalism.

3-2 The central equation

We now consider the potential V(z) = Vjsin®(kz), with ¥ > 0. This
potential has a period a = 7/k and we look for the eigenfunctions (Bloch
waves) under the form [cf. (16)-(18)]

Yo(z) = Y Cilq) l@FHDT < g <k (36)
JEL

It amounts to the eigenvalue equation for a real symmetric tri-diagonal
(and infinite) matrix, often called central equation:

2
(+ D) + 52| e €t G =56 @
which can be solved numerically with standard algorithms for a given pair
(q/k,Vo/E;). In practice, in order to determine for example the width of the
lowest band with a relative precision of 107, one can limit the sum (36) to
|71 < 20 if the amplitude of the potential does not itself exceed V;/E, = 50.
The coefficients C; are represented on figure 3 for three values of V;, and
for the lowest energy bands. We see that these coefficients take significant
values only for relatively small values of j, which justifies the truncation
of the system (37) at |j| < 20.
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Fourier coefficients C}(n, q) of Bloch waves v, 4,
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Figure 3. Fourier coefficients C;(n,q) as a function of their index j. These co-
efficients are solutions of the central equation (37) for Vo /E, = 2 (left column),
WVo/E, = 8 (middle column), Vi /E, = 20 (right column). The rows correspond
from top to bottom to (n = 0,q = 0), (n = 0,¢ = 7/a), (n = 1,q = 0),
(n=1,q=7/a).
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Energy bands E,,(q)
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Figure 4. Lowest energy bands E,,(q) (in units of B, = h*k*/2m), as a function
of q/k for a potential V (z) = Vysin®(kx). From left to right, and from top to
bottom: Vy/E, =(0, 0.5, 1); (2, 4, 8); (12,16,20). The shaded rectangle represents
the energy zone below the height of the potential V;.
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Several representations of the same band structure
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Figure 5. Three possible representations of the band structure. On top, the usual
diagram (folded band). In the middle, the unfolded band picture, which allows to
make the link with the case of a free particle. At the bottom, the repeated zone
picture, where each eigenstate 1y, 4 is represented several times; this last repre-
sentation is useful for the study of Bloch oscillations. The plots are drawn for
Vo = 4 E,, and we have subtracted here the mean value Vi, /2 of the potential to
facilitate the comparison with the case Vo = 0. This case is represented with black
dotted lines.
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Bloch functions v, ,(7)
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Figure 6. Bloch functions 1., 4(x) as a function of x/a for Vy/E. = 2 (left col-
umn), Vo/E, = 8 (middle column) and Vo /E, = 20 (right column). The rows
correspond to the band n = 0 (top), n = 1 (middle), n = 2 (bottom). On each
graph, we have represented the quasi-momenta ¢ = 0 (red continuous line) and
q = w/a (blue dotted line).
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The solutions of (37) are sorted as indicated above by increasing energy
and they are labelled with the indexn = 0, 1,2, ... The lowest energy bands
E,.(q) are plotted on figure 4 for several values of V/E,. This plot shows
the transition from the folded parabola obtained for V; = 0 to increas-
ingly flat bands for potentials with V5 > FE.. This flattening corresponds
to the situation where the amplitude of the tunnelling from one potential
minimum to the next minimum becomes negligible, the energy levels then
become close to those of a particle at the bottom of a single potential well,
V(z) ~ Vok?2? for the central well for example. We will come back to this
tight-binding limit in the next lecture.

Note that the folded representation in Figure 4 is not the only one pos-
sible. We have plotted two other representations in Figure 5 that may be
useful, the unfolded representation and the repeated representation.

We have plotted on figure 6 some of the Bloch functions v, 4(z) for
three values of 1/ E;,. These plots have been made by fixing the (arbitrary)
phase of the Bloch function as follows:

e For evenbands (n =0,2,...), ¥, ¢(x = 0) is real positive.

e For the odd bands (n =1,3,...), d’g;’q (x = 0) is real positive.

With this convention, the Bloch functions for the quasi-momenta ¢ = 0 and
q = m/a (the values used for the plots in figure 6) are real.

3-3 The case of the weak lattice

Let us now discuss the case Vy < E, that will be the starting point of
the description of Bragg diffraction later on. In this case, we can treat
perturbatively the effect of the potential V' (x) = Vpsin®(kz) = (V,/2) —
(Vo/4) (e*** + ¢~} the dominant term of the Hamiltonian being the ki-
netic energy Hy = p°/2m. We have already given the expression of the
eigenstates of H, in the form of Bloch waves [cf. (33)], and we have plotted
the eigenenergies E,,(¢) in the form of the folded parabola of figure 4a. Let
us now look at the matrix elements of V() between the eigenstates of Ho.
The constant term V;/2 of the potential plays no role other than an over-
all translation of the energies. The terms in (V;/4)e®2** couple the plane
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Figure 7. The energy bands E,,(q) (unit of E,) as a function of q/k, for a potential
Vo < Ey: (a): Vo = 0 (same thing as in figure 4); (b): Vo = 0.2 E; (c): a zoom on
the band edge g =~ k for the case Vo = 0.2 E,. We see that a gap of width ~ V; /2
is opening.

wave of momentum p to the plane waves p + 2hk:

V(&) by(x) = Ly (x) ~ Lpoomn(x) — Lgpmil@),  G8)

ie. (¢pronk|V]d,) = —Vo/4. In practice, this coupling is important only if
the energy associated to the wave ¢,, for the Hamiltonian Hj, is close to the
energy of ¢,_onk OF Qpionk:

p?  (p=+2hk)?

2~
~

~ Thk. 39
o 2 = pRTF (39)

For the two lowest energy bands, this occurs only at the edge of the first
Brillouin zone, i.e. where the bands touch in the case Vj = 0.

Let us therefore consider the basis formed by the two plane-wave states
{lp = —hk), |p = +hk)} of kinetic energy E,. These two states are coupled
by V(z), and, at order 1 in V}, the energy of the two eigenstates of H is
obtained by diagonalizing the restriction of the Hamiltonian to this basis:

(B Vo2 —Vo/4
H —( Vi B +0v0/2> (40)

The eigenvalues of this matrix are (for V;, > 0)

Vo, Ve

Vo
E=F + -2+
T E

Iv

3Vi
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and the corresponding eigenstates are

Yok (x) o< cos(kz), 1, (x) o sin(kz). 42)

This result is easily understood: the low energy state v j is modulated
so that the probability density oc cos?(kz) is minimal in the zones with a
high potential [V (x) = Vj sin®(kx)]. On the contrary the high energy state
corresponds to a probability density ”in phase” with the modulation of the
potential. At this order of the calculation, the effect of the potential V'(x) is
to open a gap of width V,/2 between the two first bands. The opening of
the gaps between the upper bands involves higher powers of V4.

4 Ramping up and ramping down a lattice

4-1 Extension of Bloch’s theorem

In the following chapters, we will frequently encounter problems which
keep their spatial periodicity, but which depend explicitly on time. In this
paragraph, we consider the Hamiltonian

. P’

H(t) = o T 1t v(r), (43)
where V is spatially periodic on a lattice B and the function f; describes
how the lattice is ramped up or down. One can also take for f; a function
of the type fo + ficos(Qt) where the modulated part, proportional to f;
(< fo), allows to make a spectroscopic study of the states in the lattice [see
for example the articles by Denschlag, Simsarian, et al. (2002) and Kollath,
Tucdi, et al. (2006)].

Let us suppose that the wave function of the particle has initially the
form of a Bloch wave

d(r,t =0) =" u(r,t =0), (44)

where u(r,0) is periodic on 5. We can then show that at a later time ¢, this
Bloch waveform is preserved, with the same quasi-momentum gq:

o(r,t) = el a u(r,t), (45)

34

where u(r, t) is also periodic. The proof is simple: the function ¢(r, ) is ob-
tained by making the evolution operator U(t) act on the initial state ¢(r, 0).
Since [H(t),Tq,] = 0 at any time ¢, we deduce that [U(t), T,,] = 0 and thus

To U(r,0) = UTa, ¢(r,0) = Ta, [UQS(T,O)} — ¢iaia [U¢(r,0)}. (46)

It follows that ¢(r,t) = U¢(r,0) is an eigenstate of Taj with the same
eigenvalue ¢'%°'? as ¢(r,0), hence the writing under the form of a Bloch
wave (45): the quasi-momentum gq is conserved during the evolution.

In the context of optical lattices, this conservation of the quasi-
momentum ¢ when the intensity of an optical lattice is varied in time
has a simple interpretation: the interaction of the atom with light occurs
via processes involving the absorption of a photon from one wave and
the stimulated emission of a photon in the other wave. Such a process
changes the momentum of the atom by 42 Zk: an isolated atom initially
prepared in a state of momentum p will later be in a superposition of states
p + 2nhk, where n is an integer. All these states correspond to the same
quasi-momentum ¢ of the Brillouin zone, ¢ being defined by ¢ = p/k mod-
ulo 27 /a. Two elements can limit the scope of this reasoning:

¢ If the beam is not a plane wave, but has an intensity gradient along
the z axis, then the momentum associated with a light beam is not
exactly equal to k. This means that the intensity gradient causes a
dipolar force on a spatial scale a priori larger than the period A/2 of the
lattice, a force which can modify the atomic momentum by an amount
different from 27ik.

* If we seta lattice in motion by changing the frequency of one travelling
wave with respect to the other, the two wave numbers k. associated
to the two travelling waves are not strictly equal and the change of
momentum A(ky + k_) is not strictly equal to 2hk. In other words,
the spatial period of the lattice changes with time, which invalidates
Bloch’s theorem. In practice, for the lattice velocities that are used,
these deviations are very small.
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4-2 Adiabatic ramp-up and ramp-down

We consider the 1D case to simplify the notations. In the previous para-
graph, we have deduced the conservation of the quasi-momentum ¢ from
the translation invariance. We will now place ourselves in the situation
where the initial state corresponds to one of the eigenstates of the Hamil-
tonian for the initial value of the potential f, V' (z), thatis u(z,0) = uy 4(z).
We will investigate what can be said about the periodic part u(z,t) at a
later time if the coefficient f; varies “slowly”.

The spatially-periodic function u(z, t) is determined by solving the dif-
ferential equation obtained from the time-dependent Schrodinger equa-
tion:

) e g £t 47)

where H'per_ lq, f] is defined by (cf. 22)

(b + hq)”

ﬁper. [qa f] = om

+ fV(a). (48)
For each value of ¢ and f, we know the eigenstates |u5,f 2,) of this Hamil-
tonian. We assume that the initial state |©(0)) is one of these eigenstates

(lu(0)) = |u51f ?1)>) and we have to determine under which condition the

state |u(t)) will be close to \uﬁlf ‘q)> at time ¢.

We start by recalling the general criterion necessary the adiabatic ap-
proximation to be valid (Messiah 2003). We consider a Hamiltonian H (A)
that depends on a parameter ), for which we assume that we have solved
the eigenvalue equation. We suppose for simplicity that the energies €, ()
are non-degenerate and form a discrete set. The associated eigenvectors
are denoted by |¢,,(\)). We are interested in a situation where the param-
eter A\ depends on time. We suppose that the system is prepared at time
t = 0 in an eigenstate |¢,[A(0)]) and we search for the condition under
which the system will be in the state |¢,,[A\(t)]) at time ¢ with a probability
close to 1. We can show that this will be the case if the inequality
vn' #n, (49)

d
B0l g1 < 1B - Bl

is satisfied at each time.
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To concretely apply this criterion to our situation where a lattice is
ramped up and down, let us assume that the atoms are initially prepared
in the zero momentum state |p = 0), with the lattice turned off. This state is
identified with |¢,—¢ g=0). When we ramp up the lattice, we know that the
quasi-momentum will remain ¢ = 0 and the question is to know whether
we leave or not the lowest band n = 0. Let us restrict ourselves to the case
of relatively weak lattices, f:Vy < E, for which we can perturbatively de-
termine the eigenstates |1/, 4—o) (Dahan 1997). At order 1 in V}, the ground
state |1),—0,q=0) is obtained by mixing the zero momentum state |[p = 0)
and the two states [p = +-2hk). The gap between the unperturbed levels is
4E, and the perturbation fVysin®(kz) = —(fVo/4) (e#F® + e~ 2ke) + 1} /2
gives a matrix element — fV;/4, which provides

fVo
16E,

[tn=0,4=0) = |p = 0) + (Ip = 2hk) + |p = —2hk)). (50)

The non-adiabatic coupling will essentially induce a transition to the state

1
om0) A — (|p = 2hk) + |p = —2hk)). 51
[n =0} ~ 5 (Ip )+l ) (51)
The matrix element at play in the left-hand side of (49) is then written
d IV
(U =0l 35 [9n=0,4=0) = ﬁ\/i (52)

and the energy gap of the right-hand side is 4E,. The adiabaticity criterion
is written in this case:

E?
Vo'
Let us take the case where we ramp a potential up to the value Vy = E.
linearly in time, during a duration 7. The above criterion becomes

f < 32v2 (53)

T>» ———. (54)

For sodium atoms illuminated near their resonance wavelength (589 nm),
the time i/ E; ~ 6 us, so that the above condition is written 7 > 0.15 us.
We have shown in figure 8 a result obtained by the NIST group to test this
adiabatic ramping. Note that the maximum value reached, V) = 14 E,, is
outside the scope of our perturbative theory.
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Figure 8. Test for adiabaticity of the loading of atoms in a lattice. Sodium atoms
are initially prepared at =~ zero momentum. A lattice is ramped up, reaching a
maximum depth of Vo = 14 E\, and then ramped down. The fraction of atoms in
the zero momentum state is measured at the end of the process. The continuous
curve is obtained by a direct integration of the Schrodinger equation. This figure
is extracted from the article of Denschlag, Simsarian, et al. (2002).

Note 1. We have considered here the lowest band at ¢ = 0, which is a
favorable case to ramp up a lattice. There are other situations where it is
impossible to guarantee adiabaticity. This is for example the case if we start
from |, =1 q—0) which has the same energy as |¢),—2 q—0) When the lattice
is switched off. This is also the case if we start from the band edge ¢ = *k.
This last case is interesting because it gives rise to Bragg diffraction, which
is used a lot in practice as an atomic beam splitter (see paragraph below).

Note 2. We are interested here in the adiabaticity criterion for a single
particle. In the case where we start from a state with inter-particle correla-
tions, the time scales needed to maintain adiabaticity can be very different,
as the energy gaps between the different N-body states accessible can be
much smaller.
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4-3 Bragg diffraction

Bragg diffraction consists in taking advantage of the periodicity of the lat-
tice to efficiently diffract a wave in a given direction. In the case of an atom
interacting with an optical lattice, we want to create momentum-selective
coherent transitions

p — p+ 2nhk (55)

where n is an integer. In what follows, we will restrict ourselves to the
case of a weak potential (Vo < E;), which guarantees that we populate
significantly only one class of momentum p + 2nfk and not a comb with
many components.

Let us consider here a one-dimensional lattice and atoms prepared in a
given momentum state p, which will interact with the lattice during a time
ting. Since Vy < Ei, only atoms with a quasi-momentum ¢ such that two
energy bands E,(¢) and E,,(q) are close to each other will be affected by
the potential and can be efficiently coupled :

* As we have seen in §3-3, this coupling occurs at order 1 in Vj for
q ~ +k between the bands n = 0 and n = 1: an atom with initial
momentum p = +hk can be resonantly transferred to the momentum
state —hk, in a process where a photon is absorbed in one of the two
traveling waves forming the standing wave, and a photon is stimulat-
edly emitted in the other wave (figure 9).

* More generally, one can directly see on figure 7 that one can also ob-
serve Bragg diffraction at higher orders: (i) at ¢ ~ -k between a band
2n and a band 2n + 1 (coupling term in \/02"+1); (ii) at ¢ =~ 0 between a
band 2n + 1 and a band 2n + 2 (coupling term in V2" +2).

In what follows, we will focus on the coupling at order 1 between the
bands n = 0 and n = 1, using the Bloch state formalism developed above.
The use of this formalism to treat Bragg diffraction was initiated by Cham-
penois, Buchner, et al. (2001) [for earlier approaches based on a different
approach, one can refer to Keller, Schmiedmayer, et al. (1999) and Horne,
Jex, et al. (1999)].

Let us consider the simple situation where the function f; is a square
pulse, equal to 1 for ¢t between 0 and t;,,; and zero elsewhere. Before switch-
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Figure 9. Left: Bragg diffraction seen in terms of a two-photon transition. The
two states p = +hk are coupled in a resonant way by a process with an absorption
in a running wave and a stimulated emission in the other running wave. Right:
Observation of a Bragg transition with atoms of a sodium condensate (figure ex-
tracted from Kozuma, Deng, et al. (1999)). (a) Image before the Bragg pulse. (b)
Image after the Bragg pulse and a time of flight of 10 ms; only a narrow slice of the
velocity distribution has undergone the diffraction phenomenon and has gained
the momentum 2hk. (c) Density profile associated with the image (b).

ing on the lattice, the atom is in the state |p). At time ¢ = 0, when the poten-
tial is switched on, we assume that the state of the atom remains |p): this is
the “sudden approximation”, valid if the actual ramping time is short com-
pared to the inverse of all the characteristic frequencies of the problem. Let
us decompose this state on the eigenstates of the Hamiltonian with the lat-
tice. Since Vj < E,, only the eigenstates of the two lower bands |¢,—¢,4)

~

and |¢p=1 4) With ¢ = p/h are significantly populated:
[W(t = 0)) = [p) ~ cos(0/2) [n=0q) —sin(0/2) [¢n=1,q)- (56)

We have already determined in (42) the relation between |p) and the eigen-
states |¢),—o/1,4) in the particular case p = hk. In the more general case
where p is not strictly equal to %k, the calculation is a bit longer. We have
to take into account in the Hamiltonian (40) the difference in kinetic energy
between the two ground states, p? /2m for the first one, (p — 2hk)?/2m for
the other. After a few lines of calculation, we find the value of the mixing
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angle 6 involved in (56):

cotan @ = [1 — p/(hk)] 85}' (57)
0

The subsequent evolution in the presence of the lattice is a simple Rabi
oscillation and the probability of finding the atom in the momentum state
p — 2hk when the lattice is switched off is written

Ppsp_2nk(t) = sin? 0 sin®(Qt/2). (58)

This oscillation is sometimes called Pendellosung, a term initially intro-
duced to describe the diffraction of X-rays by a crystal. Its frequency is
Q1 = Vu/(2h) since the energy difference between the two levels is ~ V;/2
[cf. (41)] . The prefactor

(Vo/8E)?
[p/(hk) = 1]2 + (Vo /8Ey)?

sin® 0 = (59)
fixes the selectivity in momentum of the Bragg diffraction phenomenon.
For p = hk, the oscillation occurs with an amplitude of 100%; by choosing
Qtine = 7/2, one realizes a 50%—-50% beam splitter, and one obtains a per-
fect Bragg mirror for ¢,y = 7. For Vy < E,, the modulation amplitude
drops rapidly when we deviate from the condition p = %k, the full width
at half-maximum of the resonance curve being

Apia = Vo
hk — 4E,

(60)

A comparison between the prediction of this two-level model and the one
obtained by a complete numerical solution that takes into account a large
number of eigenstates of the Hamiltonian can be found in Champenois,
Buchner, et al. (2001). The differences between the results of the two ap-
proaches are negligible for V; < E,.

Bragg diffraction was first observed in the group of D. Pritchard (Mar-
tin, Oldaker, et al. 1988). In recent years, it has become an essential tool in
matter-wave interferometry and cold atom physics:

¢ By successively imposing three Bragg diffractions corresponding to
Ot = /2,7, 7/2, one realizes a two-path Mach-Zender interferometer
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(see for example Lepoutre, Gauguet, et al. (2012)). A variant of this
Bragg diffraction is often used, in which the 2iik momentum transfer
is accompanied by a change of internal state [Raman transitions be-
tween hyperfine levels (Kasevich & Chu 1991)]. Interferometers using
Raman transitions can also operate in the 7 /2-7—m/2 mode or in the
Ramsey-Bordé scheme, with four interaction zones (see for example
Durfee, Shaham, et al. (2006) and Gauguet, Canuel, et al. (2009)). It is
also possible to sweep in time the frequency of one of the two travel-
ling waves that form the standing wave, in order to induce multiple
Bragg diffraction processes and increase in this way the transferred
momentum. This brings us closer to the problem of Bloch oscillations,
which we will discuss at length in following chapters. An example of
a m/2-m—m /2 interferometer working with 10 ik splitters thanks to an
optimized f; function can be found in Kovachy, Chiow, et al. (2012).

* One can take advantage of the selectivity in velocity (60) to measure
the momentum distribution of a gas of free atoms (Kozuma, Deng, et
al. 1999; Stenger, Inouye, et al. 1999). In practice, to probe the popula-
tion of a class of velocity v, one uses a moving optical lattice formed by
two progressive waves of frequency wy, + k(v — v,) where v, = hk/m
is the recoil velocity. One can choose for example 2t = 7 and mea-
sure the population transferred in the velocity class v — 2v, (see for
example figure 9 extracted from Kozuma, Deng, et al. (1999)). More
generally, Bragg diffraction is also used to probe systems of interact-
ing particles. One can send two laser beams with frequencies w; and
wave vectors k;, j = 1,2, and study the probability that the system
undergoes an absorption-emission transition, which changes its en-
ergy by w = h(wi — w2) and its momentum by k = k; — ky. By
varying the frequency of the lasers and their relative angle, one can
then reconstruct the dynamical structure factor S(k,w) of this system.
This method was used for example by Steinhauer, Ozeri, et al. (2002)
to measure the dispersion relation of Bogoliubov excitations in an in-
teracting condensate.
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2hk

Figure 10. Upper row: figure extracted from Greiner, Bloch, et al. (2001), obtained
with 87Rb bosonic atoms placed in a two-dimensional square lattice. Lower row:
figure extracted from Kohl, Moritz, et al. (2005), obtained with “°K fermionic
atoms (without interaction) placed in a 3D cubic lattice.

4-4 How to observe the band structure?

The notion of adiabatically ramping a lattice also finds an important appli-
cation in the technique of band mapping, where one transfers the contents
of different energy bands in the presence of the lattice to well-defined mo-
mentum states in the absence of the lattice. This requires an adiabatic ramp
to switch off the lattice so that an atom initially in the state of band »n and
quasi-momentum ¢ ends up in the momentum state p = h(q & 2nhk). The
simplest way, at least in 1D, to unambiguously link the initial state 1, , to
the final momentum p is to use the unfolded band diagram shown in figure
5 (middle row).

The pictures shown in figure 10, obtained by the Munich group, consti-
tute one of the first demonstrations of the visualization of the Brillouin
zone allowed by this technique. For the picture on the left, we start
from a deep 2D lattice (12 E,) for which the width of the lowest band
(Wo ~ E,/20) is very small compared to the gap between the band n = 0
and the first excited band n = 1 (A ~ 5E,). A gas of bosons (®"Rb) is
prepared in the lattice, with a temperature which is intermediate between
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these two energy scales: Wy <« kT < Ay. The gas uniformly fills the
states |t)g,4) of the lowest band, but the population of excited bands is neg-
ligible. After an adiabatic ramp-down of the potential, the atoms are free
and their momentum distribution is a square function with non-zero val-
ues only between —hk and hk. To observe this momentum distribution,
one can make a time of flight of duration tgien, sufficiently long so that
the cloud spreads out by a large distance compared to its initial size: we
obtain a segment of atoms (a square in two dimensions, a cube in three
dimensions) of length 2hktgigh: /m.

In the right-hand photo of Figure 10, the upper bands were deliberately
populated by applying an additional pair of laser beams that create a Ra-
man transition between band n and band n + 1. The time of flight then re-
veals the population transferred in these upper bands, with a near-uniform
distribution within each band.

We show on the bottom row of the figure a result obtained for non-
interacting fermions (°K) in a 3D cubic lattice by T. Esslinger’s group
(Kohl, Moritz, et al. 2005). Because of the Pauli principle, these (polar-
ized) fermions gradually fill up all the states of the lowest band when their
number increase (from left to right). On the image "e", the band is full (a
band insulator has been realized) and the square structure of the Brillouin
zone is perfectly visible.

5 Propagation of wave packets

An essential characteristic of an optical lattice is the dispersion relation
E, (q) associated to each band. In this paragraph, we show how to extract
two important physical quantities related to this relation: the group ve-
locity of a wave packet and the effective mass. We end this paragraph by
giving some indications on how the interactions between atoms are modi-
fied when they are placed in the lattice.
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Figure 11. Group velocity vs(q) (in units of the recoil velocity v, = hk/m) in the
lattice V() = Vpsin® (kz) for Vo / E, = 0.4,2,8, as a function of q/k. The dotted
line corresponds to the result in the absence of a lattice: mvgy = hq.

5-1 The group velocity in an optical lattice

Let us suppose that we have prepared a particle in an initial state ¥(x,0)
superposition of Bloch states 1), ,(x) all belonging to the same band n:

(z,0) = / (g) thn o) dg. (61)

Let gy be the center of the distribution ¢(¢) and let us also assume that its
width Aq around ¢ is much smaller than the width 2k of the Brillouin
zone. This assumption allows the expansion

dE,
dq

En(q) = En(qo) + (¢ — qo0) (62)

9=90
Note that the assumption Ag < k leads to the wave packet extending over
several sites, typically k/Aq. We now define

1 dE,
Vgn(qo) = 5 dq

; (63)

9=40

a quantity which has the dimension of a velocity and we will show that it
can be interpreted as the group velocity for the band n around the quasi-
momentum gg.

At time ¢, the wave function of the particle is

P, t) = / ¢(q) P g(z) e~ B @H/h 4, (64)
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which can also be written using the expansion (62)

V(z,t) ~ e_i“")t/c(q) Vn.q(z) e71ntdg, (65)
where we have introduced the frequency

wo = En(qo)/h — qovg,n- (66)

Let us choose the time ¢ such that v, ,t = a. Using the fact that ¢,, 4 (z—a) =
e"19%),, . (z), we deduce that

%

Bt = afvg,) ~ et / ¢(q) Y (& — a)dg

= e Wl gz —a,0). (67)

We see that the wave packet periodically reforms without deformation (at
this order of the calculation) with successive position shifts of a at all the
instants separated by a/vg »,, which corresponds to a propagation with the
group velocity vg .

5-2 The notion of effective mass

In the study we conducted for the sinusoidal potential, we found that the
bands E,(g) are extremal at the points ¢ = 0 and ¢ = +k. At these points,
the group velocity cancels and the band is characterized by its curvature,
from which we define the effective mass m* by

1 _ 1B,
m* - h2 dq2 ’

(68)

a quantity that can be positive or negative. This effective mass at the bot-
tom of the lowest band is plotted on figure 12. Its value is m* ~ m for
shallow lattices and it increases indefinitely as V; increases.

Let us consider a particle prepared in the lowest band, with a dis-
tribution of quasi-momenta centered on ¢ and of width Ag, such that
|q|, Aq < k. We can then write the energy of each Bloch state in the form

2.2

E(q) = Y94 onstant. (69)
2m*
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Figure 12. Effective mass m*/m [cf. (68)] as a function of Vi,/ E, for the lowest
band n = 0 and for the two values ¢ = 0 and q¢ = 7/a of the quasi-momentum.
Note that the sign of m* is negative for ¢ = m/a and that we have therefore plotted
|m*|/m in this case (left: linear coordinates, right: logarithmic coordinates).

We have determined above the velocity dz/dt of the center of a wave
packet that we build by superposing states of this type:

dz 1 dFE, hq
. = . 70
dt h dgq _ o om* (70)

Let us complete this result by another point that we will prove later in this
lecture: if we apply to a particle placed in a periodic potential a force F
that is uniform at the scale of the wave packet, then the evolution of the
quasi-momentum is given by

dz _

h2 —
dt

F. (71)

The combination of the two equations (70-71) corresponds to the motion
of a fictitious particle of mass m* in the force field coming from F'. The
only effect of the lattice on this isolated particle is the renormalization of
the mass m — m*.
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5-3 Interactions in the lattice, a first overview

The study of interactions in an optical lattice is a very vast subject that we
will only briefly mention here. The point we want to show is that a lattice
provides a fairly simple way to increase the effects of interactions between
particles, by localizing their wave function at the vicinity of the potential
minima.

We consider in this paragraph bosonic particles moving along the x
axis. To simplify the notations, we take a system of size L, with periodic
boundary conditions (L is a multiple of the period a of the lattice: L = Na).
Under these conditions, the quasi-momentum is quantized:

N

2 N
7Tj—k;J, jinteger6{—54—1,...,0,...,5}. (72)

L

We assume that these particles interact with a contact interaction g d(x).
Without a lattice potential, the Hamiltonian in second quantization is writ-
ten

2L P1—P3 p2+p3a172a1’1

2
H=> L ata, + L al _ &l (73)
p m P1,P2,P3

where d;, creates an atom in the plane wave of momentum p, ¢, =

eire/h / VL.

In the presence of a lattice, we write the Hamiltonian in second quanti-
zation in the basis of Bloch waves. To simplify the notations, we restrict to
the case where only the lowest band n = 0 is populated and we denote as
b} the operator creating an atom in the state 1y ;. We find

H= ZEO

e 9
bibyt 5 D Clan i) by bl bube  (74)

q1,92,97,95

with
L
Clartontnds) = [ iy (0) Vg (@) V00 (0) Vua(o) o (75)

In the discretized version we have chosen here for the Brillouin zone, a
convenient form for the Bloch waves is

1 .
bo,q(7) = —== €4

\/N ’U’U#I(x)v (76)
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Figure 13. "Amplification factor” ¢'/g of contact interactions as a function of

Vo/Ex [cf. (80)]. This increase is due to the localization of the Bloch functions at
the vicinity of the minima of the potential V. The 2D and 3D values are simply
the square and cube of the 1D value.

where 1), , is normalized on the segment of length L and the periodic part
Up, ¢ 1s normalized on the unit cell of length a:

L
/0 |¢n’q($)|2 dz =1,

The Bloch form immediately imposes the relation (conservation of the mo-
mentum):

/a |un,q(ac)|2 de =1. (77)
0

@i+ a5 =q1 +q2 (modulo 27/a). (78)

Let us assume for simplicity that only the states at the bottom of the

band n = 0 are populated (|q| < k). We can then approximate the Hamil-
tonian (74) by

N ﬁq
HNZQm* qq+
q

where the “renormalized” interaction coefficient ¢’ is given by

Z bl]l Q3b:;2+qz),b b(h (79)

Q1 q2,93

/ a
g _ a/ lug.o(z)|* dz. (80)
g 0

Without a lattice, the periodic part of the Bloch function ug () is constant
and equal to 1/4/a, so that ¢’/g = 1. With the lattice, the function ug g
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is modulated while remaining normalized (; [uoo(z)[* dz = 1), which
leads to ¢" > g¢: localizing the atoms in some regions of space increases
their interactions. The ratio ¢’ /g is plotted as a function of the lattice depth
on figure 13. If we go to 2D or 3D with a square or cubic lattice (potential
inV(z)+V(y) + V(z)), we must take the square or the cube of this ratio to
evaluate the change of the coupling g (see figure 13).

In summary, adding a lattice has two consequences regarding the dy-
namics at the bottom of the band n = 0:

¢ Jtincreases the effective mass and thus decreases the contribution of the
kinetic energy.

¢ It increases the coefficient g and thus increases the contribution of the
interaction energy.

These two effects go in the same direction by favoring the appearance of
strongly correlated states at the expense of mean-field states, like a Bose-
Einstein condensate. The culmination of this effect is the superfluid-Mott
insulator transition. However, before reaching this point, we go through
a domain, for relatively strong lattices, where all the states of the lowest
band acquire a significant population. The Hamiltonian (79) is then no
longer relevant and one has to go back to (74) to describe the dynamics of
the problem. We will present in the next chapter an approach that is easier
to handle in the case of these strong lattices, using the Wannier function
basis.
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Chapter III

Optical lattices in the tight-binding regime

The Bloch waves described in the previous chapter are to the motion in
a periodic potential what plane waves are to the motion of a free particle.
Since they are eigenstates of the Hamiltonian and of the translation opera-
tor, they are delocalized in the entire space. They form an orthogonal basis
of the one-particle Hilbert space, and they can be normalized in the usual
sense of continuous bases by imposing

+o0o
¢:,q(x) Vs g () dT = 0 6(q — q), 1)
— 00
where the first §, referring to the band index n, is a Kronecker symbol and
the second J, referring to the quasi-momentum ¢, is a Dirac distribution.
We have chosen here a one dimension approach to simplify the notation,
but the extension to higher dimensions is immediate.

For many problems, it is useful to introduce a second basis of the
Hilbert space, also orthonormal and consisting of functions localized at
the vicinity of the local minima of the lattice (“sites”), called Wannier func-
tions (Wannier 1937). The one-particle Hamiltonian written in the basis of
the Wannier functions is very intuitive: it corresponds to hopping terms
between sites, whose amplitude depends on the height of the potential
barriers between the wells.

In the tight-binding limit which, for a sinusoidal potential V; sin®(kz),
corresponds to the situation where Vj is large compared to the recoil energy
E,, we can limit ourselves to hopping between neighbouring sites. We
will study this limit, in the case where only one energy band, the lowest
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band for example, contributes significantly to the dynamics. When on-
site interactions are taken into account, we obtain in this way the Hubbard
Hamiltonian, which allows to illustrate many physical phenomena. We will
also give some examples of interesting energy band shapes that appear for
lattices with more complex patterns than the simple sinusoidal case.

1 The Wannier functions

1-1 A new basis

To define the basis of Wannier functions, we start with a series of equidis-
tant points x;, j € Z, distant from each other by a. In the following, we will
choose these points at the minima of the potential V' (z): z; = ja = jA/2.
We then define the Wannier function wj,,, for the band n by:

a\1/2 [tm/a i
wns) = (55) " [ nale)e g @

It is immediate to show from the definition (2) that the Wannier functions
wy, ; can be deduced (for a fixed n) one from the other by translations:

wn,O(x —ja) = Wn,j (). 3)
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It is therefore sufficient to characterize the Wannier functions w;, o(x) to
know them all. The definition (2) can be inverted to give !

/ 3
Unq(z) = (%)1 szn,o(:p — ja) e, )

JEZ

and, for the periodic part u,, , of Bloch waves:

Un,q(x) = ( a )1/2 an’o(m — ja) e—la(z—ja) (6)

o
JEZ

The definition of the Wannier functions depends on the phase given to
each Bloch wave, this phase being arbitrary at this stage. For a potential
with a mirror symmetry [V (z) = V(—z)] and for disjoint energy bands
I,,, Kohn (1959) showed that there is a unique choice for this phase which
guarantees that the Wannier function (i) is real, (ii) is even or odd with
respect to x = 0 or # = a/2, (iii) decays exponentially fast at infinity. For
the lattice sin? (kz), a relevant choice of phase is to take 1, ,(0) real positive
for all ¢ if n is even, and dv,, ,/dz|,_, real positive if n is odd. This leads
to

Pn,q(—2) = w;,q(ﬂﬁ) = n,—q(T). @)
We then check from the definition (2) that the Wannier function wg ¢(z) is
even with respect to z = 0. The Wannier functions associated with site
j = 0 for several values of the potential V| are plotted on figure 1. For a
zero potential, this Wannier function is proportional® to sinc(kz).

Using the fact that the Bloch functions constitute an orthonormal basis
of the space of square-integrable functions of the variable x, we can easily
verify using (2-5) that the set of Wannier functions also forms an orthonor-
mal basis of the space of functions:

/w,w- (LU) ’wn/’j/(w) dx = 5n7n’ 5j’j/. (8)
1For the functions considered here, we use the relation
> = (2r/a) §(q)- )
JEL

where the distribution §(q) is defined up to an element of the reciprocal lattice (the multiples
of 27 /a in 1D).

2t does not decrease exponentially at infinity because W. Kohn's assumption of disjoint
energy bands is not verified in this case.
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Wannier functions for the lowest band

Figure 1. Wannier functions wo o(x) as a function of kx /x for the periodic poten-
tial V(z) = Vi sin®(ka). From left to right, and from top to bottom: Vy/ E, =(0,
0.5,1);(2,4,8);(12,16,20). The dotted lines indicate the Wannier function shifted
by one site (wo,—1(x)).
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Note that each Wannier function w, ;(x) must necessarily take positive and
negative values, to ensure the orthogonality between itself and the Wan-
nier function shifted by a distance a, wy, j+1(z).

1-2 Wannier functions in the reciprocal space

Let us define the Fourier transform @, (k) of the central Wannier function
Wn,o(2):

+oo
Wy (k) = \/%/_ W o(x) e da. )

It is then quite simple to show that this function is directly related to the
expansion of the Bloch function on the plane wave basis. More precisely,
we have

e an q + 2mj/a) elat2mi/a), (10)

jEZ

We can prove this result either by using the definition (2) in the Fourier
transform (9), or by using the Poisson summation formula.

This formula gives a new insight into the Wannier functions: the mod-
ulus square of their Fourier transform gives the weight of the different
components of the momentum comb that forms each Bloch function. Note
that without a lattice, the Bloch functions are known to be plane waves:
only one tooth of the comb is non-zero; for example, for the lowest band,
o.4(z) o €@ for g in the interval | — 7 /a, +7/a] corresponding to the Bril-
louin zone. The Fourier transform () is then a square function, constant
on this interval [equal to (a/27)!/2] and null everywhere else.

1-3 The Hamiltonian in terms of Wannier functions

In the Bloch function basis, the Hamiltonian describing the motion of a
particle is by definition diagonal

+7/a

H= Z/ dq E,(
T/a

0) [0} (gl = / dq Eo(q)dl, jing. (1)

45

where we have adopted a second quantization notation in the right-hand
side, which is more convenient to later treat problems with interaction be-
tween particles. In this notation, the operator a,, , destroys a particle in the
Bloch wave ,, 4.

The change of basis (5), which is written in second quantization
R a \1/2 i
ing = (32) D9 bus, (12)
J

where b, ; destroys a particle in the Wannier function w, ;, leads to the
following expression for the Hamiltonian:

H=>""Ju(j —5) bl jbnjr- (13)
n g5

The interpretation of this Hamiltonian is simple: it describes the jump of
the particle from the site ;; = j'a to the site ; = ja with the ampli-
tude J,,(j — j') which depends on the band n considered and the distance
between the two sites. By construction, J,,(j — j') is equal to the matrix
element of the Hamiltonian between two Wannier functions

3 = [, (L 4V wnale) an (19

and verifies the property

which guarantees that H in (13) is Hermitian. If the Wannier functions can
be chosen real, J,,(j) is also real and J,,(—j) = J.(4).

The matrix element J,,(j) is written in terms of the energies E,,(q):

. a +7/a .
) = - / dq Eo(q) 0949, (16)

27 —m/a

a relation that can be inverted to give

Ea() = Y Ju(h)

JEZL

- QZJ

e~ (17)

cos(j aq), (18)
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where the second line is valid if the Wannier functions can be chosen real.
The energy bands and the hopping amplitudes between (near or distant)
neighbours are thus linked by Fourier-transform-like relations. The coeffi-
cient J,,(0) simply corresponds to the uniform average of the energy E,(q)
over the Brillouin zone.

1-4 The multi-dimensional case

Consider a particle moving in three dimensions placed in the periodic po-
tential
V(r) = Vosin?(kz) + Vy sin®(ky) + V' sin’(kz). (19)

Since the Hamiltonian can be written as the sum H, + fly + H,, we can
look for its eigenstates as products of Bloch waves along each direction:

Ui g (r)= Vg gz () wny,qy (v) Un,,q. (2), (20)

where the quasi-moment q is chosen in the first Brillouin zone, which is in
this case a cube centered on 0 and of side 27 /a.

As for the one-dimensional case, we can define Wannier functions as-
sociated to each site of the cubic lattice ja = (jz, jy, j-)a:

3/2
wn0) = (55)" [ Vg = 5. 0) w5, (0) 0. 2). @D

Similarly, we can define and calculate the matrix elements of the Hamilto-
nian for any pair of Wannier functions:

(Wi g | Hwp j1) = / W 5 (1) (Hy + Hy + H, ) wp o (r)d3r. (22)

As in 1D, these coefficients are non-zero only if n = n’: the "hoppings”
from one site to another can only occur within the same band, which is nat-
ural since these bands correspond to eigen-subspaces of the Hamiltonian.
Another result, more surprising at first sight, appears when we evaluate
(22): the hoppings can only be done along the axes of the lattice. Indeed,
the matrix element (22) is written as the sum of three terms coming from
the contributions of H,, H, v H,. The contribution of H,, for example reads:
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( / Wn, o Hatn, j, dx) 0jy .3t Ojarjt = Jng (Ju = Jz) 5,31, 05 - (23)

The hoppings along the diagonals of the lattice are of course present even-
tually in this description, but they result from combinations of hoppings
along the z,y, 2z axes. This remark indicates that one should be careful
of the apparently very intuitive character of Wannier functions: they are
powerful computational tools, in particular in the case of the strongly-
modulated potentials that we will study below, but they also have some
confusing aspects; we will see another example later when we discuss the
consequences of the phase arbitrariness of Bloch functions.

2 Strongly-modulated sinusoidal potential

Let us now turn to the practically important case of strongly-modulated
potentials Vy > E,. In this limit, the influence of the tunnelling effect,
which allows a particle to jump from one well to a neighbouring well even
if its energy is lower than 1}, is expected to become increasingly weak. If
the tunnelling effect plays a negligible role, the energy levels are expected
to be similar to those of each individual well, at least for energies £ < Vj.
The energy bands must therefore become thinner, to tend towards discrete
energy levels.

2-1 Width of the allowed bands

The quantitative study of the eigenstates and the corresponding energies
confirms this scenario. Let us start by looking at how the width W,, of the
bands varies with V{. This variation is plotted on figure 2 for the first four
energy bands and we see a rapid decrease of W,, with V4. In the limit of
a large V), one can establish an approximate analytical expression for the
width of the first few bands (Campbell 1955). In particular, we obtain for
the lowest band an exponential decrease of the width with (V,/E,)!/?:

Wo 16 (Vo 3/4eX . Vo 1/2
E V7 \E P E,

; (24)
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Figure 2. Solid lines: width W, of the first three energy bands of the sinusoidal
potential as a function of Vy, in linear (left) and logarithmic (right) coordinates.
The dashed curve is the asymptotic value (24) for the width of the lowest band.

a prediction plotted as a dashed line in figure (2). The relative accuracy of
this approximation is better than 20% as soon as Vy > 10E..

2-2 Matrix elements of hopping between neighbours

This reduction in the width of the lowest bands is associated to an increas-
ingly strong localization of the Wannier functions, that appears clearly on
figure 1. This strong localization of the Wannier functions has itself a con-
sequence on the hopping amplitudes J, (j) which characterize the Hamil-
tonian (13). If the Wannier functions wy, o(z) and wy,_ ;(z) do not take sig-
nificant values in the same regions of space, the hopping amplitude .J,,(j)
given in (14) is negligible. More precisely, one can show that the amplitude
Jn(j) decreases exponentially with distance j, with the same characteristic
distance as the Wannier function itself. As V;/E, increases, the amplitudes
Jn(j) (4 = 2) for the "long-range” hoppings of length j therefore decrease
faster than the amplitude J, (1) of the hoppings between nearest neigh-
bours. We have plotted on figure 3 the variation of the matrix elements
associated with the hoppings Jy(j) as well as the ratios Jy(j)/Jo(1) for the
first values of j, limited to the lowest band n = 0. In particular we note that
for Vy, 2 10 E,, all the matrix elements for “distant” hoppings, i.e. j > 1,

~
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Figure 3. Matrix elements associated with hoppings of length j, as a function of
Vo.

are less than 1% of the matrix element for a jump between nearest neigh-
bours (j = 1). If we estimate that in this situation the amplitudes Jy(j)
(j > 2) can be neglected, then we realize the tight-binding regime, where the
dynamics of the atoms in the lattice is governed almost exclusively by the
jumps between nearest neighbours.

When the width of wg ¢(z) becomes very small compared to the period
a of the potential, at most one term of the sum (5) contributes at a given
point z. We deduce that in this asymptotic case, the probability distribution
|90n.q(x)]? does not depend on ¢ and is approximately equal to the sum of
the probability distributions of the Wannier functions.

2-3 Tight-binding spectrum

Let us consider the limiting case of a very large V;, for which the tunnelling
effect between neighbouring sites becomes very weak, at least for the low-
est energy bands. We can then study the spectrum of the motion of a parti-
cle by linearizing the trapping potential at the vicinity of the minimum of
potential, which reads for the well centered at « = 0:

kr <1 = V(r)=Vok?z? (25)
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Figure 4. Left: overlap |(H,,|w,, o) |* between the Wannier functions wy, o(x) and
the Hermite functions H, (z). Right: average energies E,, = J,,(0), compared to
the expected value for a harmonic well (n + 1/2)hw.

In fact, for |kx| = 1/2, this harmonic approximation is valid with a pre-
cision of 10%. We then obtain a harmonic oscillator Hamiltonian of fre-
quency w such that

fw = 27/ Vy Ey, (26)

with the spectrum (n + 1/2)iw. A necessary condition for this harmonic
approximation to be valid for the first levels of the oscillator is that the
extent of the ground state

Qho = (ﬁ/mw)1/2 (27)
verifies the hypothesis of (25), kan, < 1, which can also be written as
kano = (E./Vo)'/* <« 1. (28)
We then have the inequalities:
E, < hw < V. (29)

The (arbitrary) criterion kan, < 1/2 leads to Vy/E, > 16, or w > 8w;.
With this “minimal” constraint, we find two bound states (Fy ~ 4FE,, F =
12 E,) inside each potential well.
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On figure 4 (left) we have plotted the modulus square of the scalar
product between the Wannier function w, ¢(z) and the expected state for
a harmonic potential, the Hermite function H, (z) for n = 1,2. For the
lowest band, this overlap very quickly takes values close to 1 (> 0.97 for
Vo/E, > 3). Figure 4 (right) compares the average energies of the first two
bands E,, = J,,(0), with the prediction (n + 1/2)Aw. The actual average en-
ergies are lower than the harmonic prediction (by an amount ~ E,), which
is well explained by considering the first “sub-harmonic” correction in the
potential sin® (kz).

In the following, we will frequently use the approximate expression
for the Wannier function of the lowest band wg o(z) ~ Hy(z), which is
explicitly written

1 2 2
’LU()70(Z‘) ~ W e ” /(2%‘0). (30)

3 Hubbard Hamiltonian

In the case of a strongly-modulated potential, one can often limit oneself
to considering the states of the lowest band. This considerably reduces the
Hilbert space and allows to greatly simplify the notations and the calcu-
lations. We will detail here the main ingredients of this approach on the
very simple case of the potential V; sin(kz) that we have considered until
now. We will see how to introduce interactions in this formalism and we
will illustrate their role on a remarkable experiment, the demonstration of
bound pairs of atoms, although these atoms interact repulsively.

Note that the sinusoidal potential considered in this paragraph has the
particularity of having only one site in its unit cell, which makes the treat-
ment of the one-particle physics very simple. We will come back later to
this Hubbard model in the slightly more complicated (and richer) case of
two-site unit cells.
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3-1 The one-particle Hamiltonian (no interaction)

Let us then place ourselves in this approximation and additionally assume
that only the matrix elements J,,—¢(j = 0) (on site) and J,—o(j = 1) (be-
tween nearest neighbours) take significant values. The term Ey = Jy(0) is
a constant that represents the on-site energy, which we will shift from now

on to £y, = 0. We define

J=—Ju—0(j =1), Jpositive, (31)
and the Hamiltonian is then very simple
it =~ (T +71) (32)

where T is the operator that translates the particle by one site to the right:

=3 wjin) ). (33)

JEZ

We have noted the Wannier functions w; = wy ; since we limit our state
space to the band n = 0. We will also use the expression of the same
Hamiltonian in second quantization:

H=-J) b, b +hc, (34)
J

where 13; creates a particle at site j with wave function w;(z).

In this one-band Hubbard model, shown schematically in Figure 5, the
only periodic function on the lattice is:

u) = > |wy) (35)
J
and the Bloch states thus have the form
[g) = D €7 wy). (36)
J

If we transfer this form into the eigenvalue equation for the Hamiltonian,
we obtain the very simple equation

—J ("4 e7') = F (37)
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Figure 5. Schematic representation of the 1D Hubbard model described by the
Hamiltonian (34) on the left, and the corresponding spectrum on the right [cf. eq.
(38)1.

ie.
E(q) = —2J cos(aq), (38)

The spectrum Ey(g) = E(q) of the lowest band is sinusoidal in this case,

which was to be expected since we keep only one of its Fourier components
in (17).

The lowest band has width® 4.J. This width can be identified with the
approximate expression (24) obtained in the limit V; >> E,, which provides

the approximate expression of .J
7 IRAANL Vo \ /2
RN (Er) exp | —2 5, . 39)

3-2 The sign of the tunnelling coefficient

We have indicated in the definition of the tunnel matrix element .J of the
tight-binding model [cf. (31)] that this coefficient is always positive. This
leads the Bloch state |1,=(), of energy —2J, to be the ground state of the
particle on the lattice. On the contrary, if J were negative, the ground state
would be [1),—), of energy +2J.

3In the square case in 2D (cubic in 3D), each atom has 4 (6) nearest neighbours, and the
width of this band becomes 8J (12J).
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To prove this property, let us use the Sturm-Liouville theorem. Let us
restrict ourselves to a lattice of finite size L (multiple of a). Since the po-
tential V' (z) is regular, we know that we can classify the eigenstates of the
Hamiltonian by increasing energy according to the number of their nodes:
the ground state has no node, the first excited state has one node, etc. In a
double well for example, the antisymmetric state is always above the sym-
metric state in energy. Now the function 1 (x) at the edge of the band
verifies

vr@) =D _(~wi(@) = dp@ta) = @) (40)
J
This function necessarily cancels between 0 and a. On the segment of
length L = Na, it has at least N nodes and cannot be the ground state.
J cannot therefore be negative. We will see later that this conclusion can
be invalidated if we extend the class of available Hamiltonians by consid-
ering potentials that are explicitly time-dependent.

3-3 Interactions in the Hubbard model

Let us now describe how the interactions between particles are taken into
account in this tight-binding model, when the dynamics is restricted to the
lowest band. We will take the example of spinless bosons, but the for-
malism extends without difficulty to the case of a gas of non-polarized
fermions.

The short-range interaction Hamiltonian (s-wave for bosons) reads, in
the pseudo-potential approximation

Hw =3 [ 01(0) ¥ (@) (2) B () (41)

where the field operator ¥(z) destroys a particle at point z. This operator
is written in terms of Wannier functions

() = anﬂ- () b j. (42)
n,j

When we use this expansion in (41), we obtain a complicated expression,
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involving terms that couple the different bands and sites of the lattice:

f{int = gz Z Z z BLS,jBZ;L47j48n1,j1Bn2,j2

n1,J1 n2,j2 N3,J3 N4,ja

/wn17j1 (l) Wny,ja (iL’) Wnyg,js (l’) Wny,js (Z) dz . (43)

X

However, for a deep lattice (V > E\) and if we exclude the vicinity of
a Feshbach resonance, the interaction energy per atom remains small com-
pared to the gap hw between the lowest band and the first excited band.
This leads to two successive simplifications:

* We can restrict the development of Hijy to the lowest band n = 0, as
we did for the kinetic energy. The sum over ny,ns, n3, ny disappears
from (43) and we keep only the term ny = ny = n3 =ny4 = 0.

* As soon as the depth of the lattice exceeds about ten E,, the over-
lap between two Wannier functions on two different sites, wy ;(x) and
wo,; (), becomes very small (see figure 1). The integral on = appear-
ing in (43) thus takes values significantly different from 0 only if all
the indices j appearing there are equal to each other. The resulting
integral

/ wéd (z) dz (44)

is then independent of j, since the function wy ; is simply the transla-
tion of wy,g by the distance ja.

The development of Hiy; is then considerably simplified. Only the terms
describing on-site interactions remain and the result is written:

Hint ~ ,ﬁ‘j (ﬁ’] - 1) ) (45)

where we have introduced the particle number operator on site j, 7i; = l;j b
and where we have used l;j l;;l;jéj = 3}5]- lA);Bj - B}Bj = 73 — ;. Note that we
have omitted here to write the band index n since we restrict ourselves to
n = 0. The energy U is the energy required to put two atoms on the same
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site; it can be written explicitly as

g
\% 2m Gho ’

where we have used the Gaussian approximation (30) for the Wannier
function of the lowest band.

U= g/wéyo(:ﬂ) do ~ (46)

As we have indicated, the formalism presented here concerns spinless
bosons. Let us indicate without demonstration (it is simple to establish)
how the expression (45) is modified for a gas of fermions with spin 1/2,
still with short-range interactions:

Hu = U i, 47)
J

The operators 7, + and 75| have eigenvalues 0 and 1, since we cannot put

more than one fermion in a given state, in this case the Wannier function
w; with a given spin state.

The above calculations have been carried out for a 1D lattice. They can
directly be transposed to the 3D case for a cubic lattice and we obtain

(3D) 9P
U =, 48
(\/ 27 aho)3 ( )
The coupling ¢g®P) is expressed in terms of the scattering length ay. as
4 hz scC
g(8D) — 2T Gsc (49)
m

and (48) is then written

U (3D) S Vo 3/4
— /S ke ([ 22) . 50
E, T (E) (50)

Let us now discuss the value of this coefficient U. We will conduct
this discussion in the 3D case since we have the explicit expression (50)
at our disposal. Away from a Feshbach resonance, the scattering length
is on the nanometer scale (3nm for ?*Na, 5nm for 8"Rb). Since the light
used for the lattice has a micrometer wavelength A, the product kasc =
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2mas. /A is small, between 1072 and 10~!. The product Vy/E, usually does
not exceed a few tens: beyond this value, the tunnelling effect between
sites becomes completely negligible and the lattice is only a collection of
independent traps. The coefficient U is therefore in general smaller than
the recoil energy. Recall that it is important that Un;(n; — 1)/2 remains
small compared to hiw = 2/VHE, for the restriction to the lowest band to
be valid.

Despite this relatively low value U, the interactions play a consider-
able role and cause the apparition of a strongly correlated ground state
(Jaksch, Bruder, et al. 1998). To understand this point, one must compare
the strength of these interactions, characterized by U, to the kinetic energy,
characterized by the tunnelling coefficient J. The N-body effects become
important when the interactions exceed the kinetic energy, and this can
happen for relatively shallow lattices, because the coefficient J decreases
exponentially with V;/E; [cf. eq. (39)].

In summary, the implementation of an optical lattice allows to cumulate
two effects favouring N-body physics:

¢ [t strongly reduces the kinetic energy term, thanks to the exponential
decrease of J with V;/ E; [cf. eq. (39)].

¢ It moderately increases the interaction term, thanks to the power-law
growth of U with Vy/E; [cf. eq. (50)].

3-4 Illustration : the repulsively bound pairs

This competition between kinetic energy and interaction energy has been
demonstrated in optical lattices many times in the last ten years*. The most
famous manifestation is probably the phase transition between the super-
fluid and the Mott insulator regimes at a critical value of the ratio U/J, for

4This competition also occurs in a uniform gas; for a fluid of density p, corresponding to an
average distance between particles £ = p~ 1/3 we can evaluate a characteristic kinetic energy
h? /(m¢?). This energy must be compared to the interaction energy which is h2ascp/m, up to
a multiplicative factor. The ratio between these two energies scales as (pa2;)'/3. When this
parameter is small compared to 1 (dilute gas), a description in terms of the mean-field Gross—
Pitaevskii equation is a good approximation, whereas the fluid becomes strongly correlated
when this parameter becomes of order unity.
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Figure 6. Left: principle of the experiment of Winkler, Thalhammer, et al. (2006):
atoms in repulsive interaction are prepared on the same site of a lattice. If the
interaction is strong enough, the atoms remain together in spite of the repulsion.
Right: evolution of the number of pairs in the presence of repulsion (scattering
length of 5nm, i.e.100 ag) and in the absence of repulsion (zero scattering length).
Figures extracted from Winkler, Thalhammer, et al. (2006).

a given filling of the lattice, for example one atom per site (Fisher, Weich-
man, et al. 1989; Jaksch, Bruder, et al. 1998; Greiner, Mandel, et al. 2002).
We will describe this phenomenon in detail in a future lecture.

Here, we will illustrate this competition with a phenomenon that is sim-
pler to describe theoretically, which concerns the existence of bound pairs
in the presence of repulsive interactions (cf. figure 6). This phenomenon
has been demonstrated and interpreted by the Innsbruck group (Winkler,
Thalhammer, et al. 2006). We start with a gas of Rb, molecules, prepared
at the vicinity of a Feshbach resonance (at ~ 1000 G). These molecules are
trapped at the minima of a high-intensity cubic optical lattice, with a rela-
tively low filling (~ 0.3). At a given time, we lower the depth of the lattice
along one direction to allow the tunnelling effect along this axis. At the
same time the magnetic field is moved away from the Feshbach resonance,
which has the effect of dissociating the pairs. The interaction between the
two atoms that formed the pair becomes repulsive and is characterized by
the scattering length as. = +5nm (about 100 Bohr radii ap). One would
naively expect that the stronger the repulsion, the faster the pair of atoms
would separate. This is not the case, as can be seen on figure 6. While the
pairs separate quite quickly if the coefficient U is zero, a strong repulsion
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keeps them together!

The explanation of this phenomenon is simple, at least qualitatively.
The bound pair has an energy U; if this energy is large compared to the
bandwidth 4.J (or rather 8.J because each atom of the pair has access to a
band of width 4.J), then this interaction energy cannot be converted into
kinetic energy.

The exact expression of the corresponding bound state can be deter-
mined quite easily (Winkler, Thalhammer, et al. 2006). The Hubbard
Hamiltonian of the two atoms (which we assume here to be distinguish-
able) in the lattice is written

a = -J (T(1) + TT(1)) —J (:ﬁ(z) + TT(Q))
+U Z §j1,j2 |wj1’wj2><wjlij2 |7 (51)
J1:J2

where we define |wj, ,w;,) as the state where atom 1 occupies site w;, and
atom 2 occupies site w;,. The operator T'(«), already introduced above,
shifts particle a by one site to the right.

As always in a two-body problem, it is useful to introduce the variables
of the center of mass and the relative coordinate. Let us define

c:jl +j27 T:jl_j27 ‘C,’I"> = |wj17wj2>? (52)
so that the position of the center of mass is ac/2 (multiple or half-multiple

of a). The Hamiltonian is rewritten in terms of these new variables:
H=—J (T(c) + TT(C)) ® (T(r) + Tf(r)) +UI @R  (53)

where 7'(c) and T'(r) are the jump operators by one site to the right, re-
spectively for the center of mass and for the relative position, and where
P, is the projector on the | = 0) state, corresponding to the case when both
atoms are on the same site:

Po = [r=0)(r=0| (54)

At a fixed r, the motion of the center of mass described by (53) is that of
a free particle on a lattice and its eigenstates are Bloch waves

[W,) = e?|c). (55)

CcEZL
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We will therefore look for the eigenstates of H in the form
Tg) ®[®), with [@) = alr). (56)
rEL

Let us specify the domain in which the quasi-moment ¢ can be chosen for
the motion of the center of mass. Looking at expression (55) in which cis an
integer, the interval —m < ga/2 < 7 (of length 47/a) would seem natural.
In fact, we can reduce this interval by a factor of 2 by noticing that

Wg) @ @) = [Wginrsa) @ |0), with [@) =) (1) a,|r),  (57)

r

this identity coming from (—1)¢ = (—1)1%2 = (-1)71772 = (-1)". To
avoid any double counting, we will restrict the values of ¢ to the interval

Teg<t (58)
a

Let us now use the form (56) in the eigenvalue equation for the Hamil-
tonian (53). For a given value of g, we obtain:

—Jy (T() +T1(1) 1) + UPy @) = E|®), (59)
where we have defined
Jg = 2J cos(qa/2). (60)

This equation is translated in terms of the coefficients «; of the develop-
ment of |P):
j#0
j=0

—Jg (@1 + 1) = Ea

—Jq (041 + (1_1) = (E — U) Q. (61)
This system admits two types of solutions: (i) scattering (unbound) states
for which «; is a trigonometric function of j, (ii) a bound state, for which

a; decreases exponentially with |j]. It is this second type of solution that
interests us here. We can simply check that

a; = ag e Pl (—1) (62)
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is solution of the system (61) if we take

By = (0?4 42)'"?,

B, =W [2J,/(E, ~ U)]. (63)
For each value of the quasi-momentum ¢ of the center of mass, there is
therefore a bound state of the pair of atoms. The energy of this bound state
is as expected on the order of U if we choose U > J. Since this bound state
is an eigenstate of the Hamiltonian, a pair of particles prepared in this state
will remain there indefinitely, even if its energy is higher than that of the
continuum of scattering states (the energy band of width 4.J).

4 The case of a super-lattice

The simplicity of the definition of Wannier functions for the sinusoidal lat-
tice is a bit misleading. For more complicated lattices, for example poten-
tials with several local minima per period q, it is not always obvious to
choose the “good” basis of Wannier functions, corresponding to the intu-
ition of wave functions localized around these local minima.

We will not describe here the general principles to find these maximally
localized Wannier functions. One can refer to the recent review article by
Marzari, Mostofi, et al. (2012) on this subject. In the following, we will only
state the nature of the problem and illustrate it on a simple example.

4-1 The arbitrariness of the phase

The required property for Bloch functions is to form a normalized eigen-
state basis of the Hamiltonian and the translation operator. In the absence
of degeneracy (at least in 1D), they are therefore defined up to a phase:
one can multiply v, ,(z) by a phase factor ¢!’~(9) while still satisfying this

property®.
While this phase arbitrariness has no effect on the spatial variation of
Bloch functions, it can have a considerable influence on the shape of the

SWe have indicated earlier that we required Bloch functions to be periodic in g,
Yn,q+27/a = ¥n,q, which leads 0, (g) to be also periodicin g.
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Figure 7. Left: superlattice V (z)/E, = 15[sin®(kz) + 2 cos?(2kx)]. The shaded
area represents the central unit cell, located between kx/m = —1/2 and kx /7 =
1/2 (ie. between x = —a/2 and x = a/2). Right: band spectrum for this

superlattice. The two lowest bands, almost flat, are well separated from the rest of
the spectrum.

Wannier function

Wpo(T) = (%)1/2 /J:/T:a Yn,q(z) dg. (64)

We can therefore exploit this arbitrariness of phase to construct a basis of
Wannier functions while optimizing a given criterion.

4-2 Mixing different bands

A second subtlety in the construction of the Wannier function basis ap-
pears when the spectrum of the Hamiltonian is composed of several en-
ergy bands close to one another, which are well separated from the rest of
the spectrum. It is then interesting to mix the Wannier functions coming
from these bands to build the best adapted functions for the considered
problem.

Let us illustrate this point on the case of a superlattice, obtained by
superimposing the sinusoidal potential V; sin®(kz) with a potential of half
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Figure 8. Left: Wannier functions wo(z) (red solid line) and w, (x) (blue dashed
line) associated with the two lowest bands of the superlattice in figure 7. Right:
localized Wannier functions w4 and wg, obtained by sum and difference of wy
and wy.

periodicity V3 cos?(2kx). This potential, plotted on figure 7 with V; = 214,
presents two local minima in the period ¢ = 7w/k. The band spectrum
associated with this potential is plotted on figure 7 for V, = 15E,. We
can clearly see that the two lowest bands n = 0 and n = 1 form a narrow
doublet, separated from the upper bands by a large gap.

If we follow the procedure described earlier in this chapter, in partic-
ular equation (64), we will construct a Wannier function for each band, in
particular a Wannier function wy(z) for the band n = 0 and a Wannier
function w; (x) for the band n = 1. These Wannier functions wy and w;
are plotted in figure 8; they are respectively symmetric and antisymmetric,
just like the well-known eigenstates for a single double-well.

In many cases, these symmetric and antisymmetric Wannier functions
are not the best suited to model the problem. If we want to perform a
Hubbard-type treatment for example, we prefer to have basis vectors cor-
responding to an atom located in the left (A) or right (B) well of the unit
cell. For our example, the solution is simple: we can define the correspond-
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ing Wannier functions from the mixture of the bands n = 0 and n = 1:

wa(z) = % (wo(x) —wi(x)), located on the left, (65)
wp(z) = % (wo(x) +w1(z)), located on the right. (66)

These two functions are plotted on the right side of figure 8.

In this particular case, the mixing of the bands is done in a natural way.
In more complicated cases, one has to identify the proper minimizer that
leads to the optimal hybridization regarding the localization of these Wan-
nier functions (Marzari, Mostofi, et al. 2012).

4-3 The tight-binding Hamiltonian for the superlattice

Once the Wannier functions w4 and wpg have been identified, we can look
for the eigenstates of the Hamiltonian in the tight-binding limit, now re-
stricting ourselves to the two lowest bands. As above, we will consider in
the following only jumps between nearest neighbours.

The Hamiltonian is thus written
H=—7Y |wp;)(wa;|—JY  |waj1){ws,|+he (67)
J J

The first term describes the tunnelling rate through the low barrier in fig-
ure 7, and the second term describes the rate through the high barrier. A
schematic representation of this tight-binding model is given in figure 9.

The unit cell of this problem has two sites, A and B, and the relevant
periodic functions therefore have the form

lug) = g | D lway) | + 84 [ D lwsy) | (68)
i i

where o, and S, are for now arbitrary coefficients. Let us write that the
Bloch function

1hq) = Zeijaq (aglwa,z) + Bylws ;) (69)

J
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Figure 9. Left: discretized version of the superlattice shown in figure 7. Right:
band spectrum (71) obtained for J = Jo, J' = Jo/2. The dotted lines represent
the result obtained for J = J' = 3/4 J.

is eigenstate of the Hamiltonian (67). We project the eigenvalue equation
onto the two functions |w, ;) and |wp ;) of any site j, and we obtain an
eigenvalue equation for a 2 x 2 Hermitian matrix #(¢) (Hamiltonian in
reciprocal space)

ﬁ(q) (gz> =F (g:) ) ﬁ(q) = (J + LOI/eiaq 7 + Joelaq> . (70)

The eigenvalues of #(q) are
E(q) =+ |J + J'¢9) = + (J2 + J2 + 2J.] cos(ag)) /> . (71)

Except for the case J = J' where this model in fact corresponds to the
tight-binding model with one site that we have studied in 3, we find two®
subbands separated by a gap 2|J — J’|. The opening of this gap is called
Peierls instability: a 1D crystal with one electron per ion is unstable because
its energy can be lowered by distorting it as in figure 9, so as to form both
strong and weak bonds. This type of Hamiltonian obtained with a super-
lattice has been studied experimentally by several groups, in particular the
Bloch group in Munich (Folling, Trotzky, et al. 2007) [see figure 10] and the
Porto group at NIST (Lee, Anderlini, et al. 2007).

The number of subbands is equal to the dimension of the matrix #(q), which is itself
equal to the number of sites in the unit cell of the lattice.
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Figure 10. Superlattice realized by the Munich group for rubidium atoms. By
controlling the intensity and the relative phase of the two light waves creating the
lattice, one can deform the superlattice into a regular lattice, with the atoms in the
B wells ending up in the lowest band n = 0 of the final lattice, and the atoms
in the A wells spilling out into the band n = 2. The band mapping technique
seen in chapter 2 then allows the counting of the respective populations of these
two types of wells. Figures extracted from Folling, Trotzky, et al. (2007), see also
Sebby-Strabley, Brown, et al. (2007) and Lee, Anderlini, et al. (2007).

4-4 Flat bands

As an illustration, we describe here another remarkable aspect of this
multi-site tight-binding model, which is the emergence of completely flat
energy bands. We stay in one dimension and consider the sawtooth lat-
tice shown in figure 11. This lattice is characterized by three different tun-
nelling coefficients J, J’, J”. The unit cell still contains two sites, and the
Hamiltonian in reciprocal space is written

- 0
H(Q) = (J’ + Jelaq

The diagonalization of this matrix gives two subbands E (¢) which are
roots of trigonometric functions of ga. Their expression simplifies consid-
erably in the case

! 11 ,—iaq
J +J"e ) (72)

2J cos(aq)

J =J"=v2. (73)
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Figure 11. A two-site array featuring a flat lowest band for J' = J" = /2 J.
The energy bands are plotted for J < 0.

and we find

E.(q) =2J, E_(q) = —2J[1 + cos(aq)]. (74)

One of the energy bands is completely flat! The corresponding effective
mass is therefore infinite, which means that an atom prepared in this band
will remain indefinitely where it is, without its wave packet undergoing
any spreading in real space. If we take the usual sign (J > 0) for the tun-
nelling coefficient, the flat band is the first excited band. We will see later
that it is possible to change the sign of J by modulating the lattice tempo-
rally, which allows us to have this flat band as the lowest band.

The physical interpretation of these non-diffusive states is simple. One
can explicitly write localized states which do not evolve, due to an inter-
ference phenomenon. There is such a state” for each lattice cell, and one of
them is represented on figure 12 :

WJ('IOC)) = % (|wA,j—1> +|wa ) — V2 |wB’j>) ' 7)

In order to spread out starting from such a ”V-state”, the particle should go
on one of the two sites |wp ;j+1). But the signs in the expression of the state
(75) and the ratio /2 chosen between the coefficients .J and .J’ = J” make
the transition amplitude from |1p;loc)> to each of these two states vanish.

"The states (75) are not orthogonal to each other, but one can construct an orthogonal basis
of Wannier functions for this problem [see Huber & Altman (2010)].
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Figure 12. Representation of the non-diffusive V-state given in (75). For a lattice
with N sites (i.e. N/2 elementary cells), one can place N/4 atoms in these states
without any spatial overlap between the various occupied states. For a higher
filling and in the presence of interactions, the ground state is a Luttinger liquid
(Huber & Altman 2010).

In addition to the elegant character of this quantum interference effect,
these flat bands are very interesting for the search of strongly correlated
states. We indicated above that the interesting regime of the N-body prob-
lem appears when the interaction energy between particles becomes of the
order of the kinetic energy. In the present model, the kinetic energy (given
by the bandwidth) is zero. The ground state of the system is then governed
only by the interactions, at least as long as the interaction energy remains
smaller than the gap between the flat band and the first (dispersive) excited
band.

A natural question is to determine the ground state of N bosons pre-
pared in such a band. Without interactions, there is no condensation since
all single-particle states have the same energy. With repulsive interactions,
a transition occurs when the density becomes greater than 1/4 atom per
site, in which case there is necessarily an overlap between the V-states ar-
ranged on the lattice. The high density state is a Luttinger liquid phase,
analyzed analytically and numerically in Huber & Altman (2010).

As an exercise, one can study a similar problem (from the point of view
of single-particle physics) in two dimensions. A well suited configuration
is the Kagome lattice represented in figure 13. It is obtained by tiling the
plane with the translation of a unit cell according to a triangular lattice

57

Figure 13. Left: Kagome lattice. The unit cell contains 3 sites A, B, C. All
tunnelling matrix elements between nearest neighbours are equal. The diagonal-
ization of the Hamiltonian in the reciprocal space (77) shows that the lowest band
(for a positive tunnel coefficient) is flat. The corresponding spectrum is shown on
the right for J < 0, a choice for which the flat band is the lowest band. Figures
taken from Huber & Altman (2010).

generated by the vectors

1 3
a; =a Uy, as =a <2u$ + \guy> . (76)

The unit cell has three sites noted A, B, C' coupled by tunnelling. All matrix
elements between nearest neighbours have the same value. The reciprocal
lattice Hamiltonian is

0 1+e i@ 1 4ei@
Hig) = —J [ 1+ 0 1+e7i@ | 77)
1+e@ 1 4el@ 0

where we have defined Q; = g -a;, j = 1,2 and Q3 = Q1 — Q2. The
diagonalization of this 3 x 3 matrix gives a flat band of energy 2J and
two dispersive bands. The analysis of N-body states that can appear at
high density, namely a supersolid-type phase, is done in Huber & Altman
(2010).

This lattice has been realized experimentally in the Berkeley group by
superimposing two commensurate triangular lattices created with light
beams at 532 and 1064 nm (see figure 14). The Kagome structure was iden-
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Figure 14. Left: realization of a Kagome lattice from two triangular lattices. Right:
time-of-flight pattern for a superfluid initially trapped in the Kagome lattice. Fig-
ures taken from Jo, Guzman, et al. (2012).

tified by placing a superfluid in this lattice, abruptly switching off the lat-
tice and observing the Bragg peaks after a time of flight. Note that in this
experiment, the sign of the tunnelling coefficient was the usual sign (—J),
and the flat band is the upper band of the three lowest sub-bands. In ad-
dition to the appearance of flat bands, this Kagome lattice is particularly
interesting in magnetism, with a very rich phase diagram in the presence
of antiferromagnetic interactions.
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Chapter IV

Time-dependent lattices

Among the many possibilities offered by optical lattices, one of the most
important is the control over time of the lattice parameters. We have al-
ready mentioned in Chapter 2 the consequences of a variation of the lattice
amplitude and we have discussed the adiabatic and sudden limits for the
ramping up or down of the periodic potential. In this chapter and the next
one, we will be interested in another type of temporal variation: we will
study the phenomena that appear when the position of the nodes of the
lattice is varied in time, thus replacing the potential V(x) (in 1D) by the
potential V[z — z¢(t)], where x(t) is a controlled function of time.

In this chapter, we will first establish, via unitary transformations, the
equivalence between several Hamiltonians that describe a moving lattice.
We will then study the particular case of a periodic modulation of z((t) and
we will discuss the phenomenon of dynamical localization which can then
appear. The next chapter will be devoted to Bloch oscillations, which occur
when z(t) corresponds to a uniformly accelerated motion. This situation
is equivalent (by change of reference frame) to the case where we add a
spatially-uniform time-independent force to the one created by the lattice.

We will not have enough time here to discuss other — and also very in-
teresting — classes of phenomena related to the temporal variation of some
lattice parameters. Let us mention the spectroscopy of the atoms in the
lattice, which can be performed by time-modulating the amplitude V; of
the periodic potential [see for example the article of Kollath, Iucci, et al.
(2006) and its references]. Another example is the use of a pulsed lattice to
study chaos or Anderson localization phenomena [see the recent article by

59

Lopez, Clément, et al. (2012) and references therein].

1 Some relevant Hamiltonians

The studies that we will carry out in this chapter and the next one deal with
time-dependent Hamiltonians that keep their spatially-periodic structure.
In the 1D case which will interest us first, these Hamiltonians have the

form ) )
H(t) = W + V(&,t), (1)
with
Viz+a,t) =V(x,t). 2)

We will see later on how Bloch’s theorem allows us to deduce general in-
formation about the evolution of systems governed by these Hamiltonians.
In this first paragraph, we will start our study by identifying some Hamil-
tonians which can be reduced to the form (1) via a unitary transformation,
even if the problem they describe is not spatially periodic.

1-1 Unitary transformations

Let us start by recalling the principle of a unitary transformation. We give
ourselves a unitary operator U(t) that possibly depends on time, and we
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consider a system described by a state [¢(t)) evolving under the effect of
the Hamiltonian H (t):

. d A
90 = (o) (o), ®
We perform the transformation

[$(0) = U@)] (1)) 4)

The transformed state |¢)) still follows a hamiltonian evolution:

di)

ih= = H(t) [(t) (5)

and the corresponding Hamiltonian is

5 . AU ()

H(t) =U®)H®UT(t) +ih n Ut(t). (6)

If some technical aspects (e.g. searching for eigenstates) are simpler for H
than for H, it is better to carry out the calculations in the transformed point
of view and then come back to the initial point of view via the inverse
transformation of (4).

In the following we will consider two classes of unitary transforma-
tions:

U1(ﬁ) _ e—ifcz?o(t)/ﬁ’ f]2<t) — e—iam(t)ﬁ/fi7 7)

where z((t) and py(t) can be any functions of time that respectively have
the dimension of a position and a momentum. The position and momen-
tum operators! are transformed as follows:

02U =2, Up0f = p+ po, )

In this chapter, the position and momentum operators are defined by their action on a
function ¥ (z) in the usual way:
dy

pi(z) = —ih—. ®)

2 0() = @ ¥(a), =

The link between these operators and the result of a position or velocity measurement de-
pends on the unitary transformation that has been performed.
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and
Uy iUl =& —z0, UspUd =p. (10)
Let us also indicate the value of the term ii(dU/dt)UT appearing in the
transformed Hamiltonian (6)
AUy ey GdUp oy
IHWUI = T Po, IEJEU; = To P- (11)

1-2 Change of reference frames

Let us start with a system described by the Hamiltonian

N 2
oy = P=AOE |y,

5 V(z+a)=V(z), (12)

with a time-independent spatially-periodic potential V' (z) and a spatially
uniform vector potential A(t). We now look at how the evolution of this
system transforms under the effect of U; or Us for well-chosen functions
Zo and Po-

We start with U by taking

Po (t) = A(t) (13)
We obtain

Hi(t) = » + V(&) - F@t)&  with F(t)= —%ff).

o (14)

The Hamiltonian (14) describes the motion of a particle in the superpo-
sition of the periodic potential V' (x) and a potential corresponding to a
spatially constant force F'(t), that possibly depends on time. This is not a
surprise: In electromagnetism, a time-dependent vector potential is associ-
ated with an electric field £ = — A. The unitary transformation from H, to
H, is exactly the same as the one used in electrodynamics to introduce the
electric dipole Hamiltonian in the long-wavelength approximation (see the
complement Ary of Cohen-Tannoudji, Dupont-Rog, et al. 1989). Note that
the problem (14) which is not periodic, can thus be reduced to the problem
(12) which is periodic.
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Let us now look at the action of U, on the initial Hamiltonian (12), by
choosing?

t
xo(t) = % /O At dt'. (15)
We find
~ ~2 2
Hy(t) = ;’—m + Vg — zo(t)] + ‘427(;). (16)

The last term is an energy which is independent of = and p and which is
added to the Hamiltonian. We can eliminate it by performing a last (and
very simple) unitary transformation generated by

Us = exp (; /0 t A;(:) dt’) (17)

which leaves & and p unchanged. After this operation, we arrive at

Hy(t) = 2 + V[i - wo(t)]. (18)

This form indicates how to practically realize the situations discussed in
this chapter: one must control the phase of the travelling waves forming
the standing wave in order to move the position of its nodes and antinodes
according to the law given by x(¢).

In conclusion, the three Hamiltonians (12)-(14)-(18), which are gathered
in table IV.1, allow to describe the same physical situation and we can
choose one or the other according to the aspects we want to emphasize.
Note that there is a simple interpretation for the series of transformations
generated by U = U, (72T UJ , which makes us go from the Hamiltonian (18),
describing a moving lattice, to the Hamiltonian (14), describing a station-
ary lattice superimposed on a uniform force F'(¢). It is a change of reference
frame, from the laboratory reference frame to the reference frame moving
with the lattice, in which the inertial force F(t) = —mi(t) = —A(t) ap-
pears.

2This transformation is known as the Kramers-Henneberger transformation in quantum
electrodynamics, see for example Cohen-Tannoudji, Dupont-Roc, et al. 1989, §IV.B.4.
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2 The shaken lattice

The situation that we will discuss in the rest of this chapter is that of an
infinite lattice whose position is periodically modulated by taking for ex-
ample:

xo(t) = T cos(wt). (19)

This problem was studied theoretically by Dunlap & Kenkre (1986) and
Holthaus (1992). The goal then was to understand the behaviour of elec-
trons in crystals in the presence of the electric field of an electromagnetic
wave. The phenomenon that appears is called Dynamical localization. The
main conclusion is the existence of a value of the oscillating field for which
the transport disappears: The spreading of an electron wave packet that
would be observed in the absence of the field is completely blocked. In
particular, Holthaus predicted a collapse of the mini-bands expected in a
superlattice with a period of about ten nanometers, when it is illuminated
with far-infrared light.

This question of a shaken lattice was therefore raised long ago, but the
physics of cold atoms has brought it back to the forefront because the mod-
ulation of the lattice allows one to control the amplitude and the sign of
the tunnel coefficient J, and even to make it complex. The control of the
amplitude of the coefficient J can be used to vary the ratio between the
kinetic energy and the interaction energy, which we pointed out in a previ-
ous chapter as being decisive for the emergence of N-body physics. Thus,
Eckardt, Weiss, et al. (2005) proposed to use lattice modulation to induce
the transition between a superfluid and a Mott insulator. The possibil-
ity to make the coefficient J complex is interesting when considering a
two or three dimensional lattice. We can then realize a situation where the
atom accumulates a non-zero phase when it performs a closed loop by tun-
nelling from one site to another. This is exactly what is needed to realize
an artificial gauge field. We will not deal with these artificial gauge fields
in this year’s lecture, but we nevertheless give below some indications on
this possible way of modifying J.
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H1 HO H2
P ) b—AD” . P
o TV@) - F) & 5 T V(@) o T VIE = 20(t)]
o) =an+5 [ FW) A at) = at) =

J

sz(\wﬂg(wjuh.c.)f aF(t)Zj|wj><wj\ fJZ(|wj+1><wj| eiaA(t)/thh'C')

J J

Uy = exp(—i po(t)/h) Us = exp(—izo(t) p/h)

Table IV.1. The three Hamiltonians used in this chapter, the time evolution of the quasi-momentum and the tight-binding version of this Hamiltonian. We go from one to the
other by the unitary transformations indicated on the last line, with py(t) = A(t) = mdio(t) and F(t) = —mdo(t).
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2-1 Hamiltonian in the tight-binding approximation

On the theory side, our starting point will be the Hamiltonian of an atom
in a “shaken” optical lattice

)

H(t) = 5+ Vi — wo(t)), (20)
where z((t) is a time-periodic function of frequency w. We will assume
that the atoms are prepared in a given band of the lattice, the lowest band
for example, and that they remain there during the evolution. We will
therefore restrict the dynamics of the atoms to this band and omit the band
index in the following. The necessary conditions for such an adiabatic fol-
lowing of the initially populated energy band will be discussed in detail in

the next chapter in the context of Bloch oscillations.

Moreover, we will do most of our study in the tight-binding limit,
where only jumps between nearest neighbours play a significant role. In
order to write the corresponding Hamiltonian from (20), it is useful to first
perform the unitary transformations U, and U, to get to the Hamiltonian
H,y

Hi(t) = % + V(&) — F(t) &. (21)

The expression of this Hamiltonian in the tight-binding model is simple.
Its unmodulated part is the Hubbard Hamiltonian that we have already
met: Y

P 5 (7

V(@) — =) (T1 + Tl) 22)

where T} shifts the particle by j sites to the right:
Tp =" |wjpj)(wy| (23)
J'ez

The term related to the inertial force is written as

—Ft)z — *aF(t)Zjl’wy'Mwy‘\ (24)

where we have used the fact that the position operator is diagonal in the
basis of the Wannier functions (see for example Eckardt, Holthaus, et al.
(2009))

(wjl2|wj) = ja éj - (25)
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The Hubbard Hamiltonian of a shaken lattice is therefore

= =7 (T + 7)) + hw €)Y 5 ) (w1, 26)
J

where we have characterized the amplitude of the modulation by the di-
mensionless parameter &(¢)

§() = =4 = T (1), @7)

This coefficient is defined (up to its sign) as the ratio between the work a F’
of the inertial force F' = —mi( over a period of the lattice, and the energy
quantum Aw associated to the shaking.

For a sinusoidal modulation, we define
xo(t) = Zocos(wt), F(t) = —mio(t) = mw’Zo cos(wt), (28)
which leads to

&(t) = &ocos(wt), & = —mawo/h. (29)

From the expression (26) of H; in the tight-binding regime, we can go
back to the ”Hj-version” of the problem. To do ’Ehis, we have to use the
discretized version of the unitary transformation Uy ():

Oi(t) = B71E0e@M 0 — Oi(t)|wy) = e PO M) (30)

which leads to

Hy(t)

St N T N . d(A]I A
Ul (t)Hl (t)Ul(t) + lhEUl

_J (Tl elaro(®/h | 7 e—mpo(t>/h) 31)

with po(t) = mzo(t). In this point of view, the shaking of the lattice is de-
scribed by a periodic modulation of the tunnel coefficients, which become
complex.

Note that, from (31), one can easily take into account hoppings between
more distant neighbours. By noting .J(j) the matrix element for a hopping
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of j sites (cf. chapter 3), the expression (31) is immediately generalized into

H() ZJ (T el apo t)/h —|—TT —1]ap0()/h) (32)

Recall that in all the above we chose J(1) = —J with J > 0. Recall also that
the tunnel matrix elements J(j) are the Fourier components of the energy
E(q) of the considered band:

—22,1

cos(jaq). (33)

2-2 The Pisa experience (Lignier, Sias, et al. 2007)

The first demonstration of the dynamical localization effect with cold
atoms was made by Madison, Fischer, et al. (1998). The lattice was put
in oscillating motion by phase modulating one of the beams that create the
standing wave. By performing the spectroscopy of an energy band in the
lattice, a spectacular narrowing of this band could be observed for a critical
value of the amplitude of the oscillation of the lattice.

We show in figure 1 the results obtained by Lignier, Sias, et al. (2007)
with a condensate of rubidium loaded in a shaken 1D optical lattice:

xo(t) = To cos(wt). (34)

The lattice depths were chosen between 4 and 9 recoil energies E,, which
is a bit low for the tight-binding approximation of the previous paragraph
to be accurate, but it nevertheless gives a good justification of the experi-
mental results, as we will see in the following.

Lignier, Sias, et al. (2007) measured the time-spreading of the spatial
distribution of the atoms in the lattice. To do this, they first trapped the par-
ticles in the vicinity of + = 0 using an additional dipole trap, then turned
off this trap while leaving the lattice on. The results of this experiment are
consistent with the idea that the shaken lattice is essentially equivalent to
a fixed lattice, but with a modified tunnel coefficient J’.

The measurement of the tunnel coefficient J’ has been done for several
lattice depths V;, several modulation frequencies w and several modulation
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Figure 1. Dynamical suppression of tunnelling in a shaken 1D lattice for a con-
densate of "Rb atoms. Left: The absolute value of the tunnel coefficient (normal-
ized by its value in the absence of shaking) is obtained from the spreading of a wave
packet in the lattice. This figure gathers points obtained for different lattice depths
(4 to 9 E.) and different shaking frequencies (0.5 and 1 kHz). The shaking ampli-
tude T is at maximum on the order of 0.5 a and the ratio hw/ J varies between 0.3
and 30. Right: momentum distribution of atoms in the shaken lattice for §, < 2.4
(top) and for &y slightly larger than 2.4 (bottom). In the second case, the presence
of two peaks at p = +hk indicates that the minimum of the band is located at the
edge of the Brillouin zone, corresponding to an effective tunnel coefficient J' < 0.
Figures extracted from Lignier, Sias, et al. (2007).

amplitudes Zy. The experimental results show a remarkable phenomenon:
the ratio J'/J of the tunnel rates with and without modulation depends
only on the parameter {; = —mawZo/h introduced above (29). The dotted
line is the absolute value of the Bessel function Jy(&p), a result that we
will justify later. In particular, one observes a cancellation of the tunnel
coefficient (no spatial diffusion) for {;, ~ 2.4 (the first zero of the Bessel
function is at 2.405).

The study of spatial diffusion does not provide the sign of J’. One can
access it with a time-of-flight experiment, where the momentum distribu-
tion of the atoms is measured. For &, < 2.4, we find that this distribution
is centered on p = 0, indicating that the minimum of the energy band is
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located at ¢ = 0, which means that J’ > 0. On the other hand, for {, > 2.4,
we find a momentum distribution with two peaks of comparable heights
at p = *hk, indicating that the minimum of the band has been shifted to
q = %k, as expected for a tunnel coefficient J' < 0. In the following we
will explain the essence of these results and refer the reader interested in
more detailed theoretical analyses to the papers by Eckardt, Holthaus, et
al. (2009) and Creffield, Sols, et al. (2010).

3 A simple approach to shaken lattices

3-1 Preliminary: a two-site system

To start with, we consider a simpler system than an infinite lattice, limiting
ourselves to a double-well potential in which we identify two states |w;),
J = %, corresponding to a particle located on the right (x = +a/2) or on the
left (x = —a/2) of the center. This problem has been studied theoretically
by Grossmann, Dittrich, et al. (1991) and we refer to Grifoni & Hianggi
(1998) for a review of possible theoretical treatments. We limit ourselves
here to a simple mathematical approach, which nevertheless allows us to
capture the core of the phenomenon.

For a two-site system, the Hamiltonian (26) is replaced by

H(t) = =J (Jwp J(w-| + [w-)(wi]) + %ﬁw £@) (Jwp ) (w| = fw-){w-1)
(35)
which can be written

H=-J6, + %hw £(t) 6. (36)

where the &, are the Pauli matrices in the basis {|w4),|w_)}. Let us write
the state of the particle under the form

() =D ay()]wy)- (37)
j=+
The evolution of the a;’s is then given by:
.. w J .. w J
1a+:§f(t)a+—%a,, 1a,:—§§(t)a,—ﬁa+. (38)
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These two equations can be rewritten as

ihay =—Je"a_,  iha_=—-Je Ma,, (39)
where we have defined
t
a+ = agexp(in/2), n(t) = w/ @y dt’. (40)
0

Consider the situation where the evolution due to the tunnelling be-
tween the two wells, of time scale /i/J, is much slower than the modulation
frequency w giving the evolution of the function £(¢). Let us take the time
average® of equations (39) on a time period T = 27 /w of the fast oscillation
and write, at the lowest order in J/hw:

ihay =—-Ja_, iha = —J"a,, (41)
where we have defined: _
J = J (). (42)

These evolution equations for &4 are the same as those for a double well
without fast modulation, except for a renormalization of the tunnel coeffi-
cient: J — J'.

Let us take the case of a sinusoidal modulation:

g(t) = 50 COS(Wt)v U(t) = 50 Sin(Wt)v (43)
which leads to
J'=J Jo(&), (44)
where Jj is the Bessel function of the first kind defined by
Jo(z) = l/ cos|x sin(7)] dr. (45)
T Jo

Since this function takes positive and negative values according to its ar-
gument, we see that the fast modulation in £(¢) allows to reduce the tunnel
coefficient, or even to cancel it and change its sign.

3We could justify this procedure by using a Fourier development for the known func-
tion 7(t) and the unknown functions @+ (¢) and by solving perturbatively these equations in
powers of the small parameter J/hw. We will not do it here because this procedure is closely
related to the Floquet approach which we will present later.
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3-2 Analogy with a spin 1/2 in an oscillating field

In the case of atoms in an optical potential that creates a double well, the
experimental demonstration of the modification of the tunnel coefficient
has been described by Kierig, Schnorrberger, et al. (2008). The situation
we have studied here is mathematically equivalent to the modification of
the Landé factor of an atom with a spin 1/2 whose magnetic moment is
coupled to a fast oscillating magnetic field:

B(t) = Byuy + Bi(t)u,, By (t) = By cos(wt). (46)
This situation is indeed described by a Hamiltonian that is formally iden-
tical to (36):

N ) fio

H(t) — Oe + 71 cos(wt)d . 47)
We have denoted here respectively as wy and w; the Larmor frequency for
the fields By and B;. In the limit wy < @, the equivalent of the modifica-
tion of the tunnel coefficient J is a modification of the Larmor frequency
wo which becomes

CLJ6 = Wo jg(@l/W). (48)

This change in wy, which can be interpreted as a change in the Landé factor
caused by the fast oscillating field, has been observed by Haroche, Cohen-
Tannoudji, et al. (1970). The main result is shown in figure 2: in particular
we observe a cancellation, then a change of sign of the Landé factor, in
good agreement with the prediction (48).

Note that the theoretical study of this modification of the Landé factor
becomes much simpler to carry out if we consider a square-wave modu-
lation of the field Bj(t) rather than a sinusoidal modulation. For a field
B;(t) = Byu, during one half-period 7 /w and B;(t) = —Bju, during the
other half-period, one can explicitly compute the evolution of the spin 1/2
at order 1 in B,/ B, by considering the following points:

e The Larmor frequency is independent of time and is w;, = (w} +
Oo)V? x~ @

¢ The direction of the magnetic field oscillates between the two direc-
tions n = £ cosf u, + sinf u,, with tan = By/B; < 1.
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Figure 2. Modification of the Landé factor of rubidium and hydrogen atoms, when
they are illuminated by a radiofrequency field H, with frequency w/27 of a few
kHz. Figure extracted from Haroche, Cohen-Tannoudji, et al. (1970).

* The evolution operator during a time ¢ for which the magnetic field
keeps a fixed direction n is

Ut) = e A/ = 1 cos(@yt/2) — i(n - &) sin(wit/2) (49)

We can then calculate the product of the evolution operators on the two
segments* that constitute one oscillation period T = 27 /w and we arrive
at:

~ s owl T
UT)~1- —smc(——) 50
(T) 104 B 2w/’ (50)
which, for wyT < 1, corresponds to the modification of the Larmor fre-
quency
) T Wy
o = wo sinc (— —) 51
Wo = Wo 2w (51)

where the Bessel function of (48) has been replaced by a sinc function.

The cancellation of the Landé factor is particularly simple in this point
of view: it occurs for @17/2 = 2w, which means that the spin makes a

4We can take for example By (t) = By between 0 and T'/4, then B;(t) = —B; between
T/4 and 3T/4, and finally B;(t) = By between 3T /4 and T, to calculate the evolution op-
erator between 0 and 7'. This choice of phase, which is the equivalent for a square lattice
of By cos(wt) for a sinusoidal modulation, will be made in all this chapter. One can consult
the article by Eckardt, Holthaus, et al. (2009) for a discussion on the spurious effects that can
appear with other choices for the phase.
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complete turn during each half-period for which the field B; keeps a con-
stant direction. It is clear that the spin does not evolve “on average”, which
corresponds to a zero Landé factor with respect to the By field.

3-3 The shaken lattice (simple approach)

Our approach is implemented for a lattice in almost the same way as for
the double well. We write the state vector of a particle under the form

[6(8) = > o (8) [wy), (52)

we obtain the evolution of the coefficients a; for the tight-binding Hamil-
tonian H; (t) given in (26)

J
id; = jwl(t)a; — 3 (aj-1 +aji1). (53)

We introduce the variables
a;j = o exp(ijn) (54)
where 7 is defined as in (40) by n = w fot £(t') dt’, and we obtain®
iha; = —J (" aj_1 +e " aj41). (55)

After averaging over one period of the fast oscillation, this equation of mo-
tion is identical to that of a lattice without modulation and a renormalized
tunnel coefficient .J (e*'), where the sign + (resp. —) corresponds to hop-
pings to the right (resp. left). For a sinusoidal modulation, the time average
is expressed in terms of the Bessel function of the first kind

J' = JJo(%0), (56)

a result identical to that of the double well. In particular, we find that we
can cancel the tunnel effect by choosing ¢, equal to the first zero of the
Bessel function (= 2.405) or change the sign of J by choosing &; slightly
higher than this value. This simple approximation thus explains the exper-
imental results described in the previous paragraph.

SNote that we could have written this system of equations directly starting from the Hamil-
tonian Ho (31) instead of H1, and using apo(t)/h = n(t).
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4 Bloch approach for a shaken lattice

We now go beyond the simple approach developed in the previous section
and study in a more rigorous way the evolution of a wave packet in a
shaken lattice. The essential tool is once again Bloch’s theorem, which puts
strong constraints on the possible form of the solutions of the Schrodinger
equation. These constraints are such that the exact solution of the problem
can be written explicitly if we limit the dynamics of the atoms to a single
band. In the case where several bands are simultaneously populated, we
have to resort to the Floquet method, whose broad lines will be presented.

4-1 Bloch theorem in the time-dependent case

The Bloch theorem encountered in chapter 2 provides the eigenstates of a
time-independent Hamiltonian with a spatially periodic potential V'(x)
ﬁ2

H="—4V(),

Y- V(z+a) =V(z). (57)

Bloch theorem indicates that one can search for an eigenstate basis of this
Hamiltonian in the form of Bloch waves 1,(z) = e®%u,(z), where u,(z)
is also spatially periodic and where ¢ is the quasi-momentum chosen by
convention in the first Brillouin zone | — 7/a, 7/a]. Recall that the defining
property of these Bloch waves is the fact that they are eigenstates of the
spatial translation operator 7, with eigenvalue e~1%9,

We also mentioned in chapter 2 the case of spatially periodic and time-
dependent Hamiltonians, and we indicated that the Bloch waveform is
then preserved during the evolution. Let us briefly prove again this point
by considering for example the Hamiltonian

~ 2
= 2 _2‘:@ V(@) (58)
with
Viz+a,t)=V(z,t). (59)

This Hamiltonian commutes at each time with the spatial translation oper-
ator Ty, and this property also holds for the evolution operator between an
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initial time ¢ and a final time ¢;. We deduce that if the initial state v(z, to)
is an eigenstate of 7, with eigenvalue 1% [i.e. ¢)(z, to) = e®9ugy(x, )], it
will also be the case for the final state ¢(x,t1), with the same eigenvalue
[i.e. Y(z,t1) = e®uy(z,t1)].

4-2 Evolution of the quasi-momentum ¢(¢)

Since a Hamiltonian of the form (58) preserves the form of Bloch functions,
an initial state e'”%» y(z,0) with u(z,0) which is spatially periodic keeps
this form during the evolution, with the same quasi-momentum ¢;,. This
property applies to the two Hamiltonians Hy(t) and Hy(t) which indeed
have the form (58), but it does not apply to the Hamiltonian H ()

n2

H(t) =2 +v) -

2m

F(t) & (60)

that describes the motion of the particle in the presence of the spatially
uniform force F'(t), in addition to the periodic potential V'(x).

However, the solutions of the Schrodinger equation for H, (t) are also
very simple. If ¢g(z,t) = %9 u(z,t) is the solution of the Schrodinger
equation for the Hamiltonian fj, then the unitary transformation U; gives
the solution ¢(z, t) for the Hamiltonian H;:

d(x,t) = Upo(x, t) = eI/ (g 1) (61)

with
1 K A !
q(t)ZQin—A(t)/hzqin—i—ﬁ/o F(t") dt'. (62)

The Hamiltonian H,(t) thus preserves the Bloch waveform, but with a
quasi-momentum that depends on time by “integrating” the force F'(¢).

Finally, we need to determine the evolution of the periodic part u(x,t),
no matter if we choose to work with Ho(t), Hy(t) or Ha(t). We already
encountered this kind of questions while studying the ramping of a lattice.
We explained that if the lattice parameters vary slowly, the particle initially
prepared in a Bloch function of the n-th band, associated with the periodic
state |u,, ), follows adiabatically this state |u, 4). In what follows, we will
again make this adiabatic assumption. As we have already mentioned, we
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will detail in the next chapter the conditions that need to be satisfied for
this approximation to be valid when we study Bloch oscillations.

4-3 Localization in the lowest band

To solve the problem of the evolution of a particle in a shaken lattice when
this evolution is restricted to the lowest band, we will use the point of
view of the Hamiltonian H,, for which the calculations are the simplest.
We therefore start from the tight-binding Hamiltonian

Ho(t) = —J (Ty emO/m 4 7 omiam(O/m), 63)

or its more complete version that includes the hoppings between distant
neighbors, but still restricted to the lowest band [with J(1) = —J]:

ZJ

(A , el] "apo(t)/h + TT —ij apo(t)/h> (64)

We assume that the system is initially prepared in a Bloch function ), (we
forget the band index since we restrict ourselves to n = 0). Because of the
single-band approximation, this Bloch function is unique and is written,
up to a global phase:

D eluy). (65)

JEZ

[9(0)) o [thg) =

The periodic function |u,) associated to |¢,) is also unique in this single-
band approximation and it is in fact independent of ¢:

u) =Y |w). (66)

JEL

Let us look for the evolution of |1(t)) under the effect of the Hamiltonian
Hy(t). Since this Hamiltonian is spatially periodic, we know that the Bloch
form will be preserved and the quasi-momentum ¢ will not change over
time. Since we assume that the system remains in the lowest band, the
state vector at time ¢ is necessarily proportional to the state |¢,), since this
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is the only Bloch state available for this quasi-momentum. The state | (t))
can only differ from |¢),) by a phase factor and is therefore written

[W(t)) = e P [yh,). (67)

The determination of the global phase ®,(t) is simple. We only need to
use the expression (67) for [¢(¢)) in the time-dependent Schrédinger equa-
tion. By construction, the state |1/)q> is an eigenstate of the translational
operators 1), with eigenvalues e~ ¢4, It is therefore an eigenstate of the
Hamiltonian Ho(t) at any time ¢.

Ho (1)) = Ela — po(t)/llty), (68)

where we have used the expression of the energy of the lowest band of the
Hamiltonian (63):
E(q) = —2J cos(aq) (69)

and
—QZJ

for the Hamiltonian (64) mcludmg distant hoppings.

cos(j'aq) (70)

The equation to determine the global phase ®,(t) is therefore
by = Elg = po(t)/] @)

which is formally integrated to give
1 ! / /
©q(t) = @q(0) + & | Elg —po(t')/H] dt'. (72)
0

Let us consider the instants 0,7, 2T, ...,nT,..., where T = 27/w is the
shaking period of the lattice. Because of the temporal periodicity of po(t’),
one can immediately show from (72) that

Dy(nT) = Dq(0) = n [Dg(T) — Dq(0)] (73)
where n is an integer: the accumulated phase A®, is proportional to the
elapsed time nT'. This evolution is very similar to the one we would find
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for a time-independent problem, at least if we limit ourselves to a ”strobo-
scopic” observation of this state by looking at its value at integer multiples
nT of the oscillation period 7.

To formalize this analogy, let us introduce the quasi-energy

1 T
o) = 3 [0(1) - 0,0 = 7 [ Ela-m/ia. @9
0
We can then rewrite the previous result in the form

[¥(nT)) = =DM 0)), (75)
which is very similar to the evolution we would have in a time-
independent lattice for a Bloch wave:

[W(t)) = e DV (0)). (76)

In other words, if we limit ourselves to a stroboscopic observation at times
which are multiples of T, the evolution of a Bloch wave (or more gener-
ally of a wave packet formed by Bloch waves of the considered band), is
identical to the case of an unmodulated lattice provided that we make the
substitution

o) — o) =7 [ Pla-potyna 77)

We will see in the next paragraph that this conclusion is a special case of
the consequences of Floquet’s approach, which allows to deal with time-
periodic Hamiltonians. The treatment presented here is particularly simple
because we have limited ourselves to a single band. As soon as we want to
take several bands into account, the Floquet method requires a numerical
treatment. Indeed, the modulation can induce interband transitions (at a
given ¢), which makes the problem much more complex.

Since we have the explicit expression of the energy E(q) as a function
of the tunnel coefficients J(;j’), we can evaluate precisely the integral (74).
Let us consider the sinusoidal motion

xo(t) = ZTgcos(wt), po(t) = —mwiy sin(wt), (78)
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for which the equation (74) providing the quasi-energy ¢, becomes:

2 — T
() =23 I0) [ cos{ilag+ oGt} at, (79)
j'=1 0
where we have defined as previously
£(t) = %io(t) = gocos(wt), & = —mawo/h. (80)
This integral is easily calculated:
e(a) =2 J(j') cos(j'aq) Jo(i'0); (81)

=1

to be compared to the energies without the modulation (§, = 0)

E(g) =2 J(j') cos(j'aq). (82)
i'=1

The expression (81) for quasi-energies allows to describe the phe-
nomenon of dynamical localization in a very simple way. Let us consider
the tight-binding limit where only the hoppings between nearest neigh-
bours, described by the parameter J = —J(1), are significant. We then
have:

E(q) = —2Jcos(aq) —  ¢e(q) = —2J cos(aq) Jo(&o), (83)

where we find the renormalization of the tunnel coefficient J — J' de-
termined in (56). More precisely, the quasi-energies form a band with a
width reduced with respect to the initial band, the reduction coefficient be-
ing Jo(£0) < 1. When the argument of this Bessel function is chosen to be
equal to the first zero of this function (= 2.405), the band is infinitely nar-
row: all quasi-energies €(g) are equal to each other (in this case zero). It is
then immediate to show that the state of the particle will remain the same
at all times 0, T', 2T, etc. It is enough to consider the expansion of this state
on the Bloch states

W) = [C@l)da — D) = [ Cla) e DT ) dg,
(84)
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Figure 3. Width of the quasi-band of lowest energy (in units of E,) as a function
of the modulation index &y for different depths of the lattice; from top to bottom:
Vo/E: = 2, 3, 5, 10. The introduction of terms beyond j = 1 in the sum (81)
results in the bandwidth not exactly cancelling when &g is equal to a zero of the
Bessel function Jo. Figure extracted from Eckardt, Holthaus, et al. (2009).

and to use the fact that all quasi-energies €(q) have the same value. The
vector state |¢)(nT)) is then equal to |¢(0)) and an initial wave packet does
not spread over times that are large compared to 7; more precisely, its
evolution between nT" and (n + 1)T is identical to its evolution between 0
and 7.

If the hoppings between nearest neighbours are not sufficient to de-
scribe the dynamics in the lowest band, we must consider the next terms
J(2), J(3) in the expansion (81). There is then no value of the modulation
amplitude for which the quasi-band is infinitely narrow. This quasi-band
is nevertheless strongly narrowed close to {, = 2.405. We show on figure
3 a result extracted from Eckardt, Holthaus, et al. (2009), which shows the
width of the quasi-band for different values of the potential V. Even for
a relatively small value of V; (Vo = 2E,), the bandwidth in the vicinity
of {; = 2.4 is reduced by more than a factor of 20 compared to its value
without modulation.

Note: We have focused here on a sinusoidal modulation of the position
of the lattice z((t). Eckardt, Holthaus, et al. (2009) show that if one chooses
a scheme such that the force F(t) is a rectangular function (the lattice is
accelerated uniformly to the left, then to the right), then the quasi-band
can have a zero width even if one takes into account the couplings Jz, J3,
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etc. Indeed, the Bessel function of (81) is replaced, as for the case of spin
1/2 studied in (51), by a sinc function:

Jo(jé0) —  sine(mj&o/2) (85)

and this coefficient cancels when & is an even integer, fo any j.

4-4 The Floquet method

In the previous paragraph, we have been able to solve the problem of the
shaken lattice thanks to the one-band approximation which allowed us to
derive in a simple way the notion of quasi-energy. If we wish to go beyond
this approximation, it is necessary to consider the evolution of a system
under the effect of a time-periodic Hamiltonian in a more formal way. The
theoretical method adapted to this problem was developed by Floquet. We
will recall in the following the important points of this approach for the
problem we are interested in, and we will draw the link with the results of
the previous paragraph.

Floquet’s approach is a general method for dealing with the evolution
of a dynamical system governed by

d .
—X=M(t) X 86
SX =) X, (56)
where X is a column vector with d components (real or complex) and M (t)
is a square matrix d x d, explicitly time-dependent and periodic with period
T:

M(t+T) = M(t). (87)
This method is a transposition to the time domain of the Bloch function
method, which exploits the translation invariance in the spatial domain.

Before presenting Floquet’s method, let us first recall the known results
for a time-independent Hamiltonian H. Letus denote {|¢,)} the eigenvec-
tors of H and {E,} the associated energies. The evolution operator from
time 0 to time T, denoted U(T'), is equal to exp(—iHT/h). The states |¢,)
are eigenstates of this operator:

O(T) = e T/ O(T) |ga) = e FT/M |g,). (88)
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Let us now turn to the case of a time-periodic Hamiltonian with the
Floquet method. We are not going to use this method in all its details, but
some of its general results will serve as a guide. Let us specify them here:

e The Schrodinger equation is of the type (86) and the evolution opera-
tor from time 0 to time nT’, where n is an integer, verifies

U(nT) = [0(T)] " (89)

e The operator U(T) is unitary and can be diagonalized, and its eigen-
values have a modulus 1. Let us note these eigenvalues e—icaT/h
where the quantities ¢, are real and have the dimension of an energy.
The ¢, are called quasi-energies, by analogy to the quasi-momentum
¢, and are defined modulo 274/T, just as the quasi-momentum gq is
defined modulo 27 /a. Let us note |¢,,) the associated eigenvectors

U(T)|ga) = e T/ ga). (90)

These vectors form an orthogonal basis of the Hilbert space and we
find for any initial state |1(0)):

(D)) =D Co e mT/Mg,) (1)

where the coefficients C,, are given by C,, = (¢, |1(0)).

* Let us consider the state [1,(t)) obtained by starting from [¢(t)) at
time ¢t = 0 and after an evolution under the effect of H (¢):

[ta(t)) = U(t) |¢a)- 92)
Since |, ) is an eigenstate of U(T'), it is clear that
[a(T)) = 7/ |14 (0)). (93)

Even if the evolution of |t (t)) can be arbitrarily complicated between
0 and T, we see that this vector becomes equal to its initial value after
a period T, up to the phase €,7/h.
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¢ To eliminate this remaining phase ¢,7'/% in the evolution of |, (t)),
let us introduce the state vector |u, (t)) such that
[tha (1)) = e Mua (1)). (94)

It is immediate that |u,(t)) is time-periodic with a period T, which
allows to decompose it in Fourier series:

e () =D ™ Xan), (95)

neE”Z

where the time-independent vectors |x,. ) are for now unknown.

e To simplify the notations, we will assume that 77 (t) can be written as®.

H(t) = Hy 4 'V 4+ e @t V_ (96)

with V_ = Vl When we replace |¢,) by its expression in terms of
|ua) and we use the Fourier expansion of this vector, the Schrédinger
equation ifi|y,) = H(t)|1) becomes

(6a - nhw)|xa,n> = }AIO|Xa,n> + V+|Xa,nfl> + V7|Xa,n+1>' (97)

e The evolution under the periodic Hamiltonian H (t) will be completely
solved once we have explicitly determined the states |x.,) and the
quasi-energies ¢,. For this, let us assume that we can restrict the rele-
vant part of the Hilbert space to a subspace of dimension d. The oper-
ators Hy, V4, V_ are then d x d square matrices and the kets |x,.,,) are
vectors with d components. Let us then form the infinite dimension
vector

=) = (...

obtained by putting all the vectors |xa,,) one below the other. The
system (97) can be rewritten as an eigenvalue equation

s |Xa,n—1>v ‘Xa,n>7 ‘on,n+1>7 .. ) (98)

€ |Z) =HI|Z) (99)

©Tt is not difficult to introduce more harmonics in the Hamiltonian A (¢), but it complicates
the equations a bit, by adding an extra index.
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for the operator H also of infinite dimension, obtained as a band ma-
trix defined by d x d blocks:

A 0 Vi Ho+(n—1)hw Vv o ..
H=|. .. 0 Vi Ho + nhw V_ 0
...... 0 Vi Ho+(n+Dhw V- 0

(100)

Due to the presence of the term nfw on the diagonal, we obtain a

spectrum that extends periodically from —oo to +o0. In a ”Brillouin”

zone of width fiw, we find d eigenvalues. In practice, we truncate this

infinite matrix at |n| < nmax and diagonalize numerically the resulting
square matrix.

Link with the results of the previous paragraph. In the one-band ap-
proximation, the conservation of the quasi-momentum implies that the
Bloch waves are eigenstates of the evolution operator U/(T'). The most del-
icate step of Floquet’s method, namely the search for these eigenstates, is
thus immediately done (|¢)o) = |¥n.q4)), and the quasi-energies ¢, = ¢(q)
are also known. One could extend Floquet’s approach to determine the
periodic functions |u,(t)) at any time ¢, which would allow to specify the
evolution of any initial state between 0 and 7. One could thus evaluate
the breathing of a wave packet between 0 and T in the non-diffusive case
obtained for Jy(&o) = 0.

5 Example of a shaken 2D lattice

The control of the tunnel coefficient by modulating the position of an opti-
cal lattice has been implemented in two dimensions in an experiment con-
ducted in Hamburg. The lattice is formed by three quasi-planar waves
propagating in the zy plane at 120 degrees from each other, with wave

vectors
1 k /-1 k(1
k1=k‘(0>7 k2:2(\/§>’ k3:—2<\/§>. (101)
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Figure 4. (a) Intensity profile for a red-detuned lattice formed by three plane waves
propagating at 120 degrees from each other in the xy plane. The three waves
have the same intensity and are linearly polarized along Oz [Figure taken from
Becker, Soltan-Panahi, et al. 2010]. (b) Triangular lattice with basis vectors a;
and aq, and tunnel coefficients J' and J" that can be controlled independently by
modulating the phases @2 and 3 of two of the laser beams forming the lattice.

The three waves have the same intensity Iy and are all polarized along the
axis Oz, so that the intensity at a point xy is written

I(x,y) = I ik + e—ik(z—\/gy)/Q + e—ik(m+\/§y)/2 2

I ‘e3““"/2 + 2cos(V3ky/2) : (102)
We have chosen by convention that the three beams are in phase at position
x =y = 0. The detuning is chosen negative (on the red side) so that the po-
tential minima are located at the intensity maxima. These maxima, where
I = 91, are distributed according to a triangular lattice, at the vertices of
the Bravais lattice formed by the union of the two sets

(i)  3kx/2=0 (mod.27), V3ky/2=0 (mod.2r),
(ii)  3kx/2=7 (mod.2r), V3ky/2=m (mod.27). (103)
ie.
B = {jlal +j2a27 j17j2 € Z} (104)
with
27 (1 27 (-1
a1_3k<\/§>7 a2_3k<\/§> (105)
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The intensity profile is shown in figure 4a. In the experiment of Struck,
Oelschlaeger, et al. (2011), the intensity Iy is large enough for the dynam-
ics in the lowest band of the lattice to be well approximated by the tight-
binding limit, with a depth of 5.6, and a tunnel coefficient J = 0.002E,.
The confinement along the z direction is much softer, and a triangular lat-
tice of tubes is realized, each containing a few hundred atoms. The gas is
sufficiently cold for each tube to be considered as a micro-condensate, with
a well-defined phase.

If we change the phases @2 and @3 of the two waves that have wave
vectors ko and kg, it is easy to show that the intensity profile I(z,y) is
simply translated in the 2y plane by the quantity

1

Ax ﬁ(ﬁm — 3).

02 + ©3), Ay = (106)

1
= %(
A sinusoidal time modulation of 2 and ¢3 thus induces a shaking of the
lattice.

Struck, Oelschlaeger, et al. (2011) have chosen temporal variations of ¢
and 3 such that Az = x¢ cos(wt), Ay = yp sin(wt), which allows to modify
in a different way the two tunnel coefficients J’ and J” indicated in figure
4; J' corresponds to transitions along a; and as, J” to transitions along
a1 — ay, parallel to the Oz axis. With arguments similar to those of the
simple approach developed above for the case of a 1D lattice, the tunnel
coefficients J' and J” are written

J/:Jj(ff)), J”:Jj( 6’), (107)
with
mw?a mw?a
& = 57 \J 22 + 33, 0= 0. (108)

By controlling separately the values of =y and yo, one can thus adjust in-
dependently the magnitudes and signs of the coefficients J’ and J”. In
particular, one can choose modulations such that J' > 0, J” < 0 (and vice
versa), whereas without the modulation, we have J' = J” > 0.

As in the 1D experiment in Pisa, the sign flip of one of the tunnel coef-
ficients results in a shift of the minima of the lowest band in the space of
quasi-momenta q. These minima are observed directly by time of flight,
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since they correspond to the macroscopically occupied states when a con-
densate is placed in the lattice. Two clearly different time-of-flight pictures
are shown on figure 5, the one on the left being obtained for J’, J” > 0 and
the one on the right for J' < 0, J” > 0.

To account for this change in band structure, let us write the one-particle
Hamiltonian as

H = =7 (Jwj1,5) (W, gl + [wj, jor1) (wj, 5] +hec)
J1,J2
—J" > (i1, 1) (W), j,| + hec) (109)
J1,J2

where the first line corresponds to hoppings along the directions a; and
as, and the second line to hoppings parallel to the Ox axis, along the vector
a, — as. A Bloch state

[tq) = D e ;) (110)
J
is eigenstate of H with eigenvalue
E(q) = —2[J cos(a;y - q) + J' cos(az - q) + J" cos((a1 — a2) - q)]. (111)

Let us first take J', J” > 0. In this case, the ground state is obtained for
g = 0, with a corresponding energy £ = —4J’ — 2J"”. This is indeed the
most populated state on the left image of the figure 5. Let us now choose
J' <0, J"” > 0. The minimum is obtained by taking for example a; - g =
ay - ¢ = m, which corresponds to ¢ = u,/3k/2, with a corresponding
energy E = —4|J'| —2J". This prediction” corresponds to the result visible
on the right image of figure 5.

An original point of view on the physics of atoms in this triangular
lattice is put forward by Struck, Oelschlaeger, et al. (2011); it highlights the
use of the lattice to simulate the classical magnetism of a triangular lattice.
By assigning a phase 6; to the micro-condensate trapped at the site |w;) of
the lattice, one can write the energy of a given configuration {6;} as

E ({9,}) =-N Z Ji7j COS(Q,’ - 93').

(2.3)

(112)

"We can also take a1 - ¢ = 7 and a2 - ¢ = —, which corresponds to ¢ = wu(3k/2) also
visible on the right image of figure 5.
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Figure 5. Time-of-flight figures extracted from Struck, Oelschlaeger, et al. (2011).
Left: figure obtained for J', J" > 0. Right: figure obtained for J' < 0, J"” > 0.

The sum runs over all pairs of nearest neighbours (, j), and we have per-
formed the substitution

1(0:—0;)

|w;)(wj| — e (113)

This substitution is valid if we can describe the state of each micro-
condensate by a classical field \/N; ¢'% and assume that the numbers of
atoms in all these micro-condensates are similar.

The energy functional (112) is formally identical to that of an assembly
of spins S; = [cos(f;),sin(6;)] arranged on the nodes of the lattice B, with
interactions between nearest neighbours:

E({0:})=—-> Ji;S:-S;.

(.9)

(114)

The different structures which appear in time of flight when we vary the
amplitude and the sign of J" and J” thus allow us to find the magnetic
phases of this lattice of interacting spins. The two images shown on figure 5
correspond to the ferromagnetic phase (all the spins aligned, all the phases
0; equal, energy minimum in g = 0) and to the rhombic phase (lines along
the « axis with spins pointing in a given direction, alternating with lines of
opposite spins).

We end this paragraph by mentioning that it is also possible to time-
modulate the lattice in a way that gives a non-zero imaginary part to the
tunnel coefficient (Struck, C)lschléiger, et al. 2012). To do this, one can
choose a function 7(t) such that (') has a non-zero imaginary part. This
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allows to have a particle that travels along the edges of the unit cell of the
lattice accumulating a non-zero phase, which is the basis for the generation
of artificial magnetic fields. We will come back to this point in an upcoming
lecture series.
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Chapter V

Bloch oscillations in an optical lattice

In the previous chapter, we studied the dynamics of atoms placed in an
optical lattice whose periodic potential V(x, t) depends on time. In the case
where this dependence is limited to a displacement of the lattice

V(z,t) =V(z —xo(t)), 1)

we have shown that we can, thanks to a unitary transformation, analyze
the problem in the reference frame of the lattice. We then recover a problem
with a static lattice V'(x) to which we superimpose the inertial force F'(t) =
—m{io (t) .

It is therefore natural at this stage to look further into the question of
the dynamics of a particle placed simultaneously in a periodic potential
independent of time and with a spatially uniform force. The simplest case
is the one of a time-independent force F', and we will consider this case
during most of this chapter. Our Hamiltonian will therefore be

A2

ﬁ:f—m+V(@)—m. ?)

This problem was initially addressed by Zener to model the behavior of
an electron in a crystal lattice, on which an external electric field is applied.
The Hamiltonian (2) describes the motion of the particle in the reference
frame of the laboratory. The same problem is encountered with cold atoms
in a stationary lattice to which we add gravity or the force created by a
magnetic field gradient, like in the Stern and Gerlach experiment.
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Moreover, with the equivalence between a moving lattice (without ad-
ditional force) and a fixed lattice with a force F'(¢), we see that we can
create this potential by starting from a periodic lattice in an uniformly
accelerated motion in the reference frame of the laboratory: if we take
zo(t) = —Ft?/(2m) in the Hamiltonian

Hy(t) = 5~ + V(& — 20(t)), ®)

we recover the Hamiltonian (2) in the uniformly accelerated reference
frame in which the lattice is stationary, thanks to the unitary transforma-
tion given in the previous lecture.

Bloch oscillations of cold atoms in optical lattices have become a power-
ful tool in recent years and are used in many applications: gravity measure-
ment, study of force fields near surfaces, beam splitting for atomic interfer-
ometry. Even if cold atoms are not the first physical system on which oscil-
lations have been observed (see for example the review article of Mendez
& Bastard (1993) for studies on solid superlattices), Bloch oscillations con-
stitute an object of study with plentiful and diverse aspects for cold gases,
thanks to the richness of their applications.
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1 The principle of Bloch oscillations

1-1 The evolution of the quasi-momentum

In the previous chapter, we studied the evolution of a particle under the
effect of a Hamiltonian of type

s . R
H= - +V(@) - F(t) & (4)

where V(z) is periodic with period a. In particular, we have shown that
the Bloch form is preserved during the evolution. An initial state

(@, 0) = e u(x, 0) 5)
will keep this form and be written at time ¢
'l/J(ZL', t) = elva(?) u(x, t)' (6)

The quasi-momentum ¢(t) is given by

o) =an+ [ PE) . 7)

For the case that interests us here, the force F' is independent of time and
q(t) evolves linearly in time

q(t) = g + Ft/h. 8)

A time scale and an energy scale are therefore naturally introduced: the
time

T8 = 2hk/F )
represents the time necessary for ¢(¢) to go through the Brillouin zone,

which has size 2k = 27 /a. To this time is associated the angular frequency
wp = 27 /7 and the energy

hwg =nF/k = Fa. (10)

This energy represents the work of the force F' over a period of the potential
V(x); it is therefore the decrease in energy between two successive local
minima of the potential V' (z) — Fz (cf. figure 1).
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V(z)— Fz

Figure 1. Potential V (x) — Fx giving rise to Bloch oscillations, with V(z) =
Vosin?(rx/a) and hiwg = Fa = Vy/5. The energy difference between the two
horizontal lines is equal to hwg.

At this point, we cannot yet say anything about the spatially-periodic
function u(z, t) which multiplies e*?(*) in (6), except that it is a solution of

i (1)) = Hyerlg(0)] (1)) (1)

where M, [g] is the Hamiltonian for the periodic part of the Bloch func-
tions: ,
: (P + haq)
H er e
per|q] om
It is the adiabatic approximation which, as in the previous chapter in the
case of a sinusoidal force, will allow us to progress.

V(). (12)

1-2 The adiabatic approximation

From now on, we assume that the initial state e!%® u(z, 0) is a Bloch func-
tion, i.e. an eigenstate v, 4, () of the n-th energy band of the Hamiltonian
N ]52
Hy=—+V(z 13
0= 5T (@) (13)

corresponding to the case F' = 0. In other words, the function u(z,0) =
(zlu(t = 0)) coincides (up to a global phase) with the eigenstate w4, ()
of the Hamiltonian He;[gin] for the periodic part (12).
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07 X

E/E,

q/k

Figure 2. The evolution of the quasi-momentum in the repeated band picture. The
Bloch oscillation regime corresponds to the situation where the particle follows
adiabatically the initial energy level (here the red curve) and does not go to another
energy level (here the blue curve). The dangerous zone is located at the points
where q/k is an odd integer, where the red and blue bands are the closest. This
figure is plotted for Vy = E.

The adiabatic approximation consists in assuming that the state |u(t))
solution of (11) remains equal (up to a global phase) to |u,, 4()), that is

Y(x,t) elra(t) U q(t) (7). (14)

Since the quasi-momentum ¢(t) moves at uniform speed and spans the
Brillouin zone in a time 7, the time-evolution of ¢ (x, t) is periodic (up to
a global phase!), with this same period 7. This evolution is represented
on figure 2 in the so-called repeated zone representation.

This periodic evolution of the state of the particle under the effect of
a uniform force (in addition to the potential V(x)) is a remarkable phe-
nomenon, which originates in the structure in energy bands of the spec-
trum of the unperturbed Hamiltonian. The name Bloch oscillations for this
phenomenon is rather paradoxical. Indeed, this effect is not described in
Bloch’s seminal paper on the quantum physics of electrons in crystals. Its
first public appearance seems to be in the paper of Zener (1934). Another
paradox is that the oscillation is not what interested Zener. He was look-
ing for the effect that an electric field could have on an insulator and it was

1We will not consider the phase (Zak 1989) accumulated during an oscillation in this chap-
ter, this will be the topic of a later lecture.
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Fic. 1.—* Potential barrier ” diagram. The shaded regions represent zones of forbidden
energy in the presence of an electric field.

Figure 3. Figure taken from the original paper by Zener (1934), representing the
energy bands tilted by the potential —Fx.

therefore the interband transitions that we will see a little later in this lec-
ture that motivated his study: the aim was to find a force F' large enough
so that the adiabatic following would not take place, while the oscillation
itself was probably considered as trivial by Zener...

It is interesting to look at the first figure in Zener’s paper of 1934, with
which he interprets the oscillation phenomenon (see Figure 3). He makes
a local approximation of the energy bands, by plotting these bands as a
function of position after adding the potential energy —Fz. The forbidden
bands are represented by the hatched areas. The horizontal line represents
a possible energy for an electron. This electron starts from point 4, is ac-
celerated by the force F' until it arrives at point B, and it can then (i) turn
around, which constitutes the oscillation phenomenon, or (ii) go to point C
by tunnelling, at the bottom of the next energy band, and thus contribute
to the electric conduction. We deduce from this image the amplitude of the
oscillations in real space, tg — x4 = AE/F, where AE is the width of the
allowed band that is initially occupied.

The amplitude of the oscillations in real space can be found by con-
sidering a wave packet centered on ¢(t) in momentum space, and whose
dispersion in ¢ remains at each instant small compared to k. In real space,
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we note Z(t) the center of this wave packet; the average velocity of the
wave packet is given by the group velocity

dz 1 dE,,

3 = =5 = , (15)

q=q(t)

which evolves periodically in time. This evolution equation is integrated

to give
1 [tdE 1 919 aE
() —7(0) == | —22dt=— —ma g 16
:'U() .’I:( ) h/o\ dq F qin dq q? ( )

where we have used the relation ¢ = F't/h. We finally arrive at

1

#(t) = 2(0) = & (Buat) = Eng) » (17)

which corresponds to the intuitive relationship suggested by figure 3.

There are several ways to represent the Bloch oscillation phenomenon.
We have so far chosen the one that uses the band structure of the energy
diagram (with no force). Another very useful point of view, directly in-
spired by quantum optics, is represented on figure 4ab. This point of view,
valid for small lattice depths, consists in treating perturbatively the effect
of the lattice in the form of multi-photon transitions that can occur when
a resonance condition is satisfied. First, we plot the dispersion relation
without the lattice E = p?/2m; the presence of the force F will force the
atom to travel across the momentum space according to the law p = F.
When an atom, starting for example from p = 0 arrives at p = ik, a reso-
nant two-photon transition can transfer it to p = —hk (4a). This jump can
also be seen as a total Bragg reflection of the atomic wave of wavelength
27 /k on the lattice of constant 7/k. The acceleration starts again from the
momentum p = —hk and we recover the periodic oscillation, of frequency
F/(2hk) = wp/2m, predicted above. This picture generalizes easily to the
Bloch oscillations in the upper bands. Figure 4b represents for example
the Bloch oscillation in the first excited band, n = 1, in terms of two multi-
photon transitions, one with two photons, and the other with four photons.

The last point of view on these Bloch oscillations that we will mention
here is based on the plane wave expansion of the Bloch functions, which is
expressed in terms of the Fourier transform of the Wannier functions (see
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Figure 4. Representation of Bloch oscillations in the lowest band (n = 0) on the
left and in the first excited band (n = 1) on the right, in terms of multi-photon
transitions. Under the effect of the constant force F, the momentum increases
linearly with time (p = F). When the momentum of the atom is such that a
resonant multi-photon transition, represented by the black dotted lines, can occur
(p/hk non-zero integer), a Bragg reflection occurs and the momentum of the atom
switches from p to —p. The frequency of the oscillation, independent of the band,
is F'//(2hk) = wg/2m.

Chapter 3):
T p— > ibn(q + 2mj/a) a2/, (18)
veia

During the oscillation, this comb of momenta runs at constant speed and
the amplitude of the different components follows the envelope given by
the function @, (x), the Fourier transform of the Wannier function w,, o(x).

2 Experimental observations

2-1 First experiments with cold atoms

In quantum optics, the first Bloch oscillations have been observed in the
groups of Christophe Salomon in Paris and Mark Raizen in Austin (Wilkin-
son, Bharucha, et al. 1996; Niu, Zhao, et al. 1996; Ben Dahan, Peik, et al.
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1996; Peik, Ben Dahan, et al. 1997; Raizen, Salomon, et al. 1997). These ob-
servations were following a demonstration in solid samples, in particular
in superlattices (Mendez & Bastard 1993). In Paris as well as in Austin, the
force F was inertial, F = —mi(, obtained thanks to an accelerated lattice

V(z,t) = Vosin? [k(z — 20(t))] 19)

with zo(t) = vt?/2. Recall that such an acceleration is realized by varying
in time the phases ¢; and ¢, of the two travelling waves e!(**~«=¢1) and
e~i(ke+wité2) forming the lattice. This acceleration a can for example be
obtained by choosing

P1(t) = kvt?/2,  ¢o(t) = —kt?/2, (20)
which corresponds to the “instantaneous frequencies”
_ dor _ dos

w =w+ 1 =w+kyt, wr=w+ & =w — kvt. (21)

The Paris experiment was conducted with cesium atoms (m = 133)
while the Austin experiment used sodium atoms (m = 23). This signifi-
cant factor on the masses, associated with an equally significant factor on
the wavelengths of the used lattices, leads to important qualitative differ-
ences on the accelerations that are compatible with an adiabatic following
(see for example the table V.1). In practice, the typical acceleration of the
Paris experiments was between 1 and a few tens of ms~2, while those used
in Austin went up to several thousand ms=2. In both cases, the lattice
depth V) measured in units of £, was of the order of a few units.

Some results illustrating these oscillations measured in the reference
frame of the lattice (data extracted from Dahan:1996,Peik:1997) are shown
in figure 6. We see in the left column the periodic evolution of the momen-
tum distribution. In the right column, we have represented the evolution
of the average velocity of the wave packet, in good agreement with the
law (15). Note in particular the deformation of this curve when we go
from small V;,/ E; (weak links, top) to large Vi / E; (tight-binding, bottom):

¢ In the case of weak links, we have E, , ~ h%?q?/2m except at the edge
of the zone, and the group velocity is therefore almost everywhere
equal to hg/m, i.e. a linear function of time since ¢(t) = qo + F't/h. The
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Figure 5. Bloch oscillations observed in C. Salomon’s group in 1996-97 in an
accelerated optical lattice (Ben Dahan, Peik, et al. 1996; Peik, Ben Dahan, et al.
1997). The atomic velocities are measured in the reference frame in which the
optical lattice is stationary. The atoms are initially prepared in the lowest band
n = 0. Left: evolution of the velocity distribution for Vo = 2.3E, and v =
0.85ms~2. Right: evolution of the average velocity of the wave packet for different
lattice depths: Vo /E, = 1.4, 2.3, 4.4.

Bragg reflection at the edge of the zone corresponds to a fast variation
of v, hence this sawtooth evolution.

e In the tight-binding limit, we saw in Lecture 3 that the lowest band
is sinusoidal, Ey, ~ —2J cos(ag), and the velocity therefore varies
sinusoidally with time: v(t) o sinfag(t)].

The distributions in figure 5 represent measurements of the velocities in
the accelerated reference frame of the lattice. It is also interesting to repre-
sent these velocities in the reference frame of the laboratory, which is done
in figure 6. We can see that for these parameters which correspond to a
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mean atomic velocity [vg]

0 0.5 1.0 15 2.0
time [tg]

Figure 6. Evolution of the average velocity of the atoms in the laboratory reference
frame for the parameters of figure 5 (left). Figure extracted from Peik, Ben Dahan,
et al. (1997).

limit of weak links, the atoms keep a constant speed most of the time, but
periodically undergo a strong acceleration which increases their speed by
2hk/m. This dynamics has a simple interpretation in terms of two-photon
transitions (cf. figure 7). These transitions are successively resonant at in-
stants ¢; such that the instantaneous frequencies of the laser waves forming
the lattice verify

hlwi (t;) — wa(t;)] = [(2) + 2)* — (2))*] Ex = (8 + 4)Ex, (22)

for the transition p = 2jhk — p = (2j + 2)hk (j is an integer). By taking the
expression (21) of wy 2(t), we see that these accelerations occur for

1
This accelerated lattice device is thus an efficient way to communicate a
given momentum to the atoms. In practice, this momentum can reach sev-
eral hundreds of hk.

2-2 Note: momentum balance in an accelerated lattice

When we consider the point of view of the multi-photon transitions in fig-
ure 7, it is clear that the momentum gain of the atom during the accelera-
tion of a lattice is a multiple of 2 hk. This result is less obvious when the
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Figure 7. Acceleration of atoms by successively resonant multiphoton transitions.

analysis is performed in the accelerated frame of reference; we propose to
show it explicitly in the following paragraphs (see also Browaeys, Haffner,
et al. (2005)).

Let us start with an atom that has a well-determined momentum p;,.
Let us take |p;n| < hk, so that this momentum is in the first Brillouin zone?.
Let us first adiabatically ramp up the stationary lattice. The state of the
atom follows the Bloch function v,,—¢ ¢, With ¢, = pin/A. Once the lattice
has reached its full power, we put it in motion with an acceleration %y (t). In
the reference frame of the lattice, the inertial force F'(t) = —mao(t) creates

the running of the quasi-momentum

1 K / ’ m.,
0

while the atom remains in the lowest band n = 0.

We then stop the acceleration of the lattice at time 7', and then decrease
its depth adiabatically until it is completely extinguished. In the reference

frame of the lattice, this method of band-mapping will bring the atom into
(lattice)

end » associated to the lowest band,

a well-defined momentum state p
lattice

thus between —hk and k. More precisely pgnd ) is equal to fg(t), modulo

2The following reasoning is valid even if the momentum distribution is not a delta peak,
the important assumption is that this distribution lies entirely in the Brillouin zone.
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2ms 24 ms 3.2ms 3.6 ms 4ms 4.4 ms 5.6 ms

2.8 ms 4.8 ms 5.2ms

Figure 8. Bloch oscillations of *°K atoms (fermions) under gravity, observed with
a potential Vo = 2 Ey, A = 873 nm [figure taken from Roati, Mirandes, et al.
(2004)]. The absence of interaction between the polarized fermions allows the ob-
servation of these oscillations with a good contrast for a long time (more than
100 1g).

a vector of the reciprocal lattice:

pUAHCe) — po(T) + 2N Rk (25)

end
where N is the integer closest to —q(T")/(2k).

If we return to the reference frame of the laboratory at this time, the
atomic momentum is

pgﬂ) _ pilrzli(‘;tice) + mv(lattice) (T)
_ (()ljéticc)_’_mio(T)
= hq(T) + 2Nk + mio(T)
= pin + 2NhE, (26)

which indeed corresponds to the expected result. The only case where this

. . 7 latti PR . . e e
demonstration is not valid is when p{*1"“®) s in the immediate vicinity of

the band edge, i.e. ¢(T') = k modulo 2k, because the adiabatic ramping of
the lattice is then not possible: the atom finds itself in a linear superposition
of gin +2N Rk and gin + (2N +2)hik; this case corresponds to an interruption
of the acceleration at the precise instant when the two-photon transition
sketched in figure 7 occurs.

2-3 Oscillations due to gravity

One of the main difficulties in observing Bloch oscillations lies in the neces-
sity to prepare an assembly of atoms with an initial momentum dispersion
small compared to #ik. This difficulty is almost automatically overcome if
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Figure 9. Bloch oscillations of 88Sr atoms (bosons) under the effect of gravity
in a lattice of period a = 266 nm and depth Vi, ~ 3 E, [figure extracted from
Poli, Wang, et al. (2011)]. The Bloch period is wg/2m = 574 Hz and the Bloch
oscillations can be observed for nearly 20 seconds. The images correspond to the
oscillation No. 1, 2900, 7500 and 9800. The extremely low value of the scattering
length for 88Sr atoms allows to minimize the phase shift of the oscillations due to
interactions. From these oscillations, we can deduce the value of g within 6 x 106,
The accuracy of this measurement of g is significantly improved if one uses instead
— on the same experimental setup — Wannier—Stark spectroscopy (see § 5).

one has a Bose-Einstein condensate or a degenerate Fermi gas at hand. We
cannot describe or even mention all the Bloch oscillation experiments that
followed the arrival of these degenerate gases in the laboratories. Let us
simply mention a class of experiments that are substantially different from
those of Paris and Austin, in which the force F is not inertial, but exists in
the reference frame of the laboratory. The simplest way is to choose gravity,
by arranging the optical lattice along the vertical axis. We have reproduced
on the figures 8 and 9 results obtained in the groups of M. Inguscio (Roati,
Mirandes, et al. 2004) and G. Tino (Poli, Wang, et al. 2011) where atoms are
”in suspension” in an optical lattice. The measurement of the oscillation
frequency gives in principle a direct access to the value of gravity at the
point where the atoms are. In fact, to optimize the determination of g with
atoms confined in a lattice, it seems preferable to use the spectroscopy of
Wannier-Stark states, which we will discuss later (Poli, Wang, et al. 2011;
Pelle, Hilico, et al. 2013). Poli, Wang, et al. (2011) indeed indicate signifi-
cantly larger fluctuations when directly observing Bloch oscillations, due
to the residual instability of the initial position of the atoms and to a greater
sensitivity to the timing of the experiment.
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Li Na K Rb Cs

mass (amu) 7 23 39 87 | 133
Ao (nm) 671 589 770 | 780 | 852
E./(27h) (kHz) 63.0 25.9 859 | 3.75 | 2.06
wp /27 (kHz) 0.058 0.17 037 084 | 14

hwg /E,
F./m for Vy = E, (ms™—2)

0.0009 | 0.0067 | 0.043 | 0.22 | 0.68
3300 450 70 | 135 | 44

Table V.1. Recoil energy and frequency of Bloch oscillations under the effect of
gravity for alkali atoms (F/m = 9.81ms~?2). The optical lattice is assumed to
be at the resonant frequency of the atom wy = 2mwc/No and its spatial period is
a = Xo/2. The ratio fuwp / E; is crucial to evaluate the adiabaticity of the motion
in the band n = 0 (cf. figure 10). The last line gives the critical acceleration
appearing in the Landau—Zener formula (38), for a lattice depth chosen equal to
the recoil energy.

3 The adiabatic approximation and beyond

3-1 Validity of the adiabatic approximation

We will now discuss the validity of the adiabatic approximation at the basis
of the Bloch oscillation phenomenon. We have already given in a previous
chapter the general criterion characterizing this approximation (Messiah
2003). Let us recall it briefly: We consider a Hamiltonian H()) that de-
pends on a parameter ), for which we have solved the eigenvalue equa-
tion. We assume for simplicity that the energies ¢, () are non-degenerate
and form a discrete set. The associated eigenvectors are denoted |¢,())).
We are interested in a problem where the parameter )\ depends on time. We
suppose that the system is prepared at time ¢ = 0 in an eigenstate |¢,,[A(0)])
and we search for the condition under which the system will be at time ¢ in
the state |¢,,[A(t)]) with probability close to 1. We can show that this will
be the case if the inequality

d
h‘<¢n’|dt|¢n> < |En’ - En| ) vn' 7é n, (27)

is satisfied at each time (the parameter A(¢) is implicit).
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For the case we are interested in here, the quasi-momentum ¢ plays the
role of the parameter A and the quantum number n is the band index. The
Hamiltonian is H'pcr l¢] given in (12), which determines the periodic part
of the Bloch functions, and the states |¢,,(\)) are the periodic parts |u,, 4).
Using the fact that ¢ = F/h, the adiabaticity criterion is therefore

F |<un/,q|8qun,q>\ < |En’ (Q) - En(Q)| ) (28)
where we have noted d
|0qtun.q) = d*q|un,q>~ (29)

The scalar product (un 4|04un,q) can be rewritten in a convenient form,
involving the matrix element of the momentum operator p. This relation
is established by differentiating with respect to ¢ the eigenvalue equation
for the Hamiltonian H,.,, and projecting the resulting equation onto |t ,)
(Ashcroft & Mermin 1976). We find

h .
[En(q) — En ()] <u7L’,q|aqumq> = E<u’n’,q‘p|un,q>v (30)

which allows us to rewrite the adiabaticity condition in the form

Fh

ﬁ | ﬁlunq>| < [En(Q) - En' (Q)]2' (31)

(Un g

First, let us consider the weak-binding regime and apply this result to
the most critical point for the adiabatic following, ¢ = k, where the lowest
band n = 0 is closest to the first excited band n’ = 1. The gap between
the levels is V5/2 and the functions u, ,(z) are equal to 1 + e*?*® (see
Chapter 2). The matrix element of p is therefore ~ 7k and the condition
(31) becomes

Fh 1% Vi hog 7 (Vo)

Let us now turn to the opposite tight-binding regime. One can find in
the thesis of M.Dahan (1997) a (not very constraining) adiabaticity condi-
tion deduced from (31). We give here another one which consists in im-
posing that the energy shift aF" = hwg between two successive wells (cf.
fig. 1) remains lower than the energy difference 7w ~ 2/Vj E; between the



CHAPTER V. BLOCH OSCILLATIONS IN AN OPTICAL LATTICE

§ 3. The adiabatic approximation and beyond

T T T T T
10}
210ty
jsa} = ]
3 I i
i L B
10° 8 E
1071 | Lol L
10° 10t 102
Vo/Ex

Figure 10. Zones of validity of the adiabatic approximation (it is necessary to be
located under the corresponding lines for the approximation to be valid). Blue:
weak-binding case (32); red: tight-binding case (33). The black line gives the
limit (34) for the force F, above which the potential V (x) — F'x has no more local
minimum.

two lowest bands. This prevents a resonant tunnelling from the vibrational
state n = 0 of the well located at ja to the vibrational state n = 1 of the well
located at (5 + 1)a. This condition is written in the limit Vj > E,:

hwg Vo \ /2
E <2<Er> . (33)

We have drawn in figure 10 the different zones of interest in the plane
(Vo, wn). We have added the zone delimited by the condition

fws wﬁ, (34)

F<k
<kVy, < . o

which corresponds to imposing that the tilted potential of figure 1 has local
minima. The adiabaticity conditions given in (32-33) are well within this
domain.
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3-2 Landau-Zener transitions

The validity of the adiabatic approximation in the weak-binding case can
be more quantitatively assessed by modelling the avoided crossing be-
tween the two lowest bands by a Landau-Zener type approach.

Let us first recall the main results of this approach. We consider a two-
level system modelled by a spin 1/2 and we suppose that this spin evolves
under the effect of the explicitly time-dependent Hamiltonian

H(t) = até, + 64, (35)

where the &; are the Pauli matrix.
+ (a?t? + ﬁ2)1/2. Let us consider a spin prepared in the state |+) at a neg-
ative time ¢; such that |¢;| > S/a. At a time t; positive and > (/a, the
spin will have followed adiabatically the corresponding energy level with
a probability

The instantaneous eigenvalues are

P=1—e /) (36)

In the case of interest, the intersecting energy levels are E = h%¢?/2m
and E = h?(q — 2k)?/2m at the quasi-momentum ¢ = k. Since ¢ = F/h,
the coefficient « is & = fikF/m. The coefficient 5, which characterizes the
coupling between the two levels, is 5 = V[ /4. The probability of adiabatic
following can be written as

P=1-—e /P 37)
where we introduced the critical force
T V2
= 33?0 . (38)

The condition of adiabatic following, P ~ 1 and thus F' < F, gives again
the result found in (32).

The verification of this law for an atom in an optical lattice was per-
formed during the first experiments in Paris and Austin in the years 1996-
97. We show on figure 11 a more recent result obtained in Pisa (Zenesini,
Lignier, et al. 2009) where we see the successive decreases of the band oc-
cupation n = 0 each time the atom’s momentum passes at the edge of the
Brillouin zone.
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Figure 11. Result from Zenesini, Lignier, et al. (2009), showing the decay of
the occupation probability of the band n = 0 in a Bloch oscillation experiment
conducted with rubidium atoms. The lattice has a depth Vo = E,. The lattice, of
period a = 421 nm, is uniformly accelerated and provides an inertial force such
that hwp ~ 0.4E,. The solid line corresponds to the numerical integration of the
time-dependent Schrodinger equation, which essentially gives back the Landau—
Zener prediction. The dashed curve corresponds to an exponential approximation.

As we have stated above, this question of interband transitions was cen-
tral to Zener’s original paper in 1934. After deriving the transition prob-
ability at each edge of the Brillouin zone, Zener ends his analysis with a
reasoning similar to the one of Gamow to determine the lifetime of a nu-
cleus in a radioactive process «.. The atom (or the electron for Zener) "takes
its chance" wg /27 times per unit of time, and each time it has the proba-
bility P to stay in the band n = 0. If we multiply these probabilities for
the j = t/7p trials which take place during a duration ¢, we deduce the
probability II(t) for the particle to be still in the band n = 0 at the instant ¢

TI(t) ~ P! = exp {j In (1 — e_FC/F)} ~ exp(—t/T) (39)
where the decay time 7 is given by

T =g el/F, (40)

3-3 Beyond Landau-Zener

In the treatment that leads to the exponential rate law (40), one incoher-
ently adds up the different probability amplitudes corresponding to the
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Figure 12. Observation of Stiickelberg oscillations, with an optical lattice for ru-
bidium atoms, Vo = 1.4 E, and hwg = 1.2 E, (a = 421 nm). The atoms are
placed in the lowest band n = 0 at ¢ = 0. They are accelerated to cross the edge of
the first Brillouin zone and reach a momentum genq such that 0.5 < gena/k < 1.5.
The force is then reversed to bring the atoms back to ¢ = 0. Finally, one measures
the population of the lowest band. The dashed line is a prediction made by as-
suming an initial momentum width Aq/k = 0.03 (figures taken from Zenesini,
Ciampini, et al. (2010)).

successive diabatic transitions when the atom passes over the edge of the
Brillouin zone. In reality, these transitions are coherent processes and it is
possible to observe significant deviations from the simple Landau-Zener
law due to the interference between these processes. A first analysis, the-
oretical and experimental, of these deviations was made in Austin at the
end of the 1990s (Wilkinson, Bharucha, et al. 1997; Niu & Raizen 1998). A
detailed theoretical treatment is presented by Holthaus (2000). Recently, an
experiment conducted in Pisa in the group of E. Arimondo has very con-
vincingly demonstrated the Stiickelberg interference between two successive
Landau-Zener processes (Zenesini, Ciampini, et al. 2010). The principle of
the experiment and its result are shown in figure 12. Similar results have
been obtained in Bonn in the group of M. Weitz (Kling, Salger, et al. 2010).
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3-4 A beam splitter

Thanks to Bloch oscillations, it is possible to coherently transfer a con-
trolled (and important) momentum to atoms by placing them in an accel-
erated lattice. The fact that the probability of transferring or not this mo-
mentum depends strongly on the band n occupied by the atoms allows to
realize coherent beam splitters. The principle, implemented by Denschlag,
Simsarian, et al. (2002), then taken up again by Cladé, Guellati-Khélifa, et
al. (2009) and Miiller, Chiow, et al. (2009) is simple:

e Starting from atoms of momentum pq such that [pg| < ik, we apply to
these atoms a Bragg pulse which places each atom in a superposition
of po and py + 2hk, or even py and py + 47ik in the case of Denschlag,
Simsarian, et al. (2002).

* An optical lattice is adiabatically ramped up to a depth Vj so that the
atoms are placed in a coherent superposition of states |n = 0, ¢o) and
|n = 2, qo), where qo = po/h. Note that it is better to choose py # 0 to
avoid being bothered by the quasi-degeneracy of the bands n = 1 and
n = 2 when the lattice still has a very low intensity, which prevents a
good adiabaticity .

The optical lattice is accelerated. The pair acceleration—depth is chosen
in order to (i) have an excellent adiabatic following for the n = 0 band,
(i) have almost no adiabatic following for the n = 2 band. Thanks to
this choice, the component |n = 0, ¢) is accelerated with the lattice and
acquires a large momentum in the laboratory reference frame. On the
contrary, the component |n = 2, ¢) undergoes diabatic transitions, and
the atom is transferred to the higher bandsn =2 -+ n =3 — ...in the
accelerated reference frame. More simply, this means that for this part
of the vector state, the atoms remain stationary in the reference frame
of the laboratory. One can verify on the figure 13, extracted from the
article of Cladé, Guellati-Khélifa, et al. (2009), that there is indeed an
appreciable range of values of V; for which these two ”antagonistic”
conditions are simultaneously satisfied.

At the end of this acceleration of duration ¢, N = ¢/ Bloch oscilla-
tions have occurred and the atom is in the state

[n = 0,po + 2NRE) + €®|n = 2, po + 2hk). (41)
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Figure 13. Probability P, to adiabatically follow the band n for 87 Rb atoms placed
in an optical lattice accelerated at ~ 100ms™2, as a function of the lattice depth
Up = W/(8E,). The blue (resp. red) curve corresponds ton = 0 (resp. n =
2). The beam splitter will be efficient if Py ~ 1 and Py ~ 0. The black curve
Po(1 — Py) is a measure of the overall efficiency, which is optimal for Uy ~ 1, so
Vo =~ 8 E, (Figure taken from Cladé, Guellati-Khélifa, et al. (2009)).

The coherence of this superposition can be tested by constructing a
Mach-Zender type interferometer, where the two arms undergo this ac-
celeration at different times (Denschlag, Simsarian, et al. 2002).

If one wants to use this beam splitter for atomic interferometry and pre-
cision measurements, an important difficulty comes from the differential
light shift between the two arms. The part of the wave function corre-
sponding to an accelerated atom (in the band n = 0) does not have the
same spatial location in the lattice as the part of the wave function of a
non-accelerated atom (in the band n = 2). For example, if the lattice is
blue-detuned with respect to the atomic resonance, the atoms in the band
n = 0 will remain localized in the vicinity of the nodes of the standing
wave, whereas the atoms in the band n = 2 will successively explore the
nodes and the anti-nodes of this standing wave. The light shift is therefore
not the same in both cases, which leads to a phase shift between the two
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arms that is difficult to control. More complicated interferometric schemes
are needed to restore a sufficient symmetry between these arms [Cladé,
Guellati-Khélifa, et al. (2009), Miiller, Chiow, et al. (2009)].

4 Bloch oscillations in the tight-binding regime

Considering the practical importance of the Bloch oscillation phenomenon,
it is useful to see it from several angles, in particular in the tight-binding
regime. In this limit, we have simple analytical expressions for the different
quantities involved, which are useful to get an intuition of the problem.

4-1 The oscillating wave function

In the tight-binding limit, we assume that the dynamics of the particle is
restricted to the lowest band. We will therefore omit the band index n = 0
in this section. We only take into account the hopping between nearest
neighbours, and write the initial Hamiltonian (2) as:

H=—J (T+TT) —Fay " jlw){wl, (42)
J

where |w;) represents the state where the particle is localized at site j and
T is the translation operator by one site to the right:

T =2 |wj1){wl. (43)
i

Recall that the Bloch functions |1),), their periodic part |u,) and the associ-
ated energy F(q) are written

gy = > e w;),  Jug) = |wy), E(q) = —2Jcos(aq),  (44)
J j

and |uy) is independent of ¢ in this particular case.

We can already introduce a dimensionless number which will be use-
ful to characterize the influence of the force F' on the particle placed in the
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lattice. Consider the picture of Zener (Figure 3), which shows a character-

istic length for the oscillation, L = AE/F, where AE is the bandwidth. In

the case of tight-binding, we simply have AE = 4J. We denote by v the

number of sites that are located within this distance L
4] AE

We expect that this dimensionless number v will play a role in the charac-
terization of the amplitude of the oscillations.

We start with a particle prepared in the Bloch function [, ). The gen-
eral results obtained in the previous chapter can be written in this limit

(1)) = 7O R SO uy), (46)
J

where ¢(t) = ¢in + Ft/h as in (8) and where the phase ® corresponds to the
dynamic phase:

B(t) = 90)+ 1 [ Ela¢))at' = § {sinlog(t)) —sinfogi ]} @7)

It is quite clear that in this tight-binding limit, we have neglected all the in-
terband transitions studied above. The assumption of adiabatic following
is therefore implicit in this section.

4-2 Evolution operator and oscillations in real space

In the tight-binding approximation, the form of the evolution operator is
remarkably simple, both in the basis of Bloch functions and in the basis of
Wannier functions. The calculations are detailed in the article of Hartmann,
Keck, et al. (2004), and we simply give here the essential results.

In the Bloch functions basis, the evolution operator is immediately de-
duced from (46):

(W [U)|1hg) = 8(¢' — q — Ft/h) e~ vlin(ad)—sinaa)l/2, (48)

In the Wannier function basis, the calculation is a little longer but does not
present any serious difficulty. Expressing the Wannier functions in terms
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of the Bloch waves, we arrive at
(wy |U () wy) = 0HB12 7, [wsin(wit /2)]. (49)

The periodicity of the Bloch oscillations is obvious for both expressions.

We can take advantage of the explicit expression (49) to study the mo-
tion of a wave packet in real space. We will review the two limiting cases
of a very localized initial wave packet and of a wave packet spreading over
many sites.

In the case of an initial state occupying only one site, for example the
state |wy), the motion corresponds to a breathing of the wave packet, sym-
metrically with respect to the starting point. The probability P(j) to find
the particle on the site |w;) at time ¢ is obtained directly from (49):

P(j) = |J;[vsin(wst/2)]|” (50)

The extension of the wave packet is maximal after half an oscillation
(sin(wgt/2) = £1) and it is typically of the order of Aj ~ v sites.

Let us now take the case of an initial wave packet of large extension, and
choose a Gaussian distribution for the occupation probability amplitude of
site |w;):

(w;|T(0)) x e /4" o> 1 (51)

We can then show that the extension of the wave packet remains approxi-
mately constant in time, and that its center j.(t) evolves periodically

[(w; [ W ()] oc e F=3eMI/25% (1) = b sin® (wpt/2). (52)

The total amplitude (peak to peak) of the oscillation is thus v sites, as we
had foreseen when defining v from Zener’s argument. We show on figure
14 two numerical results obtained by Hartmann, Keck, et al. (2004) in these
two limiting cases.
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Figure 14. Bloch oscillations in the tight-binding limit. Left and middle: evolution
in real space of a wave packet during two Bloch periods for v = —31.6 (negative
force). For the left figure, the initial state is the Wannier function j = 0. The
motion is then a breathing motion symmetric with respect to j = 0. In the central
figure, the initial state is a Gaussian packet of width o = 5 and the subsequent
evolution is essentially an oscillation of the center of the wave packet, with no
noticeable deformation. The figure on the right shows the real part of (w,|¥ (1)),
at t = 0 (blue points) and at t = 7/wg in red [figures taken from Hartmann,
Keck, et al. (2004)].

5 Wannier-Stark ladders

Insofar as the Hamiltonian considered in this chapter is time-independent,
at least in the version (2) that we give here:

52
ﬁ:é’—m+V(;ﬁ)—F@, (53)
a natural approach to the problem of Bloch oscillations is to look for the
eigenstates of this Hamiltonian, in order to deduce the different aspects
of the dynamics (Wannier 1960). We immediately note that if ¢(x) is an
eigenstate with energy E, then ¢)(z+a) is an eigenstate for energy E+Fa =
E + hwg. To each eigenstate is thus associated a ladder of energies, called
Wannier-Stark ladder, and the rungs of this ladder have a spacing of 7uwg.

This search for eigenstates has non-trivial mathematical aspects: (i) The
spectrum of the Hamiltonian is a continuum extending from —oo to +oo,
since for any energy E, one can find an asymptotically free state for z — oc.
The Wannier-Stark ladders are in this context resonances which appear as
poles of a scattering matrix (Gluck, Kolovsky, et al. 2002). (ii) However,
restricting the search to a single band (or a finite number of bands) radi-
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cally changes the nature of this spectrum, which becomes entirely discrete
(Avron, Zak, et al. 1977; Nenciu 1991).

It is this second point of view that we will adopt in the following.
Strictly speaking, the Wannier-Stark states we will find have a finite life-
time, which is related to the width of the resonances of the exact problem.
This finite lifetime is itself the signature of the Landau-Zener transitions,
which cause a leakage of the Bloch oscillation due to transitions to higher
bands. But it can be neglected if the validity criteria of the adiabatic ap-
proximation are verified.

Let us restrict ourselves to the one-band tight-binding model, with the
Hamiltonian given in (42). It is immediate to verify® that the state

@) = > Tjr—i(v/2) |wy) (55)

=/

is an eigenstate of H with eigenvalue —j Fa (Gluck, Kolovsky, et al. 2002;
Hartmann, Keck, et al. 2004). This state |®;) is centered on site j and it
spreads on both sides over a number of sites ~ v/2. Indeed, if [n| > z, the
Bessel function 7, () decreases as (z/2)"/n! . The spread of the Wannier—
Stark state thus roughly determines the extent of the Bloch oscillation. We
can see on this simple example the particular mathematical character of
this problem: a force F, even infinitesimal, radically changes the spectrum
of the Hamiltonian: it goes from a bounded continuum between —2.J and
2J to a completely discrete set, extending from —oo to +oo.

Wannier-Stark state spectroscopy is done by applying on the atoms a
time-dependent perturbation with frequency w: W (z, ) = W) (z) e =9t 4
c.c.. This probe induces a transition from |®;) to |®;/), a resonance occur-
ring each time w = (j’ — j)wg, provided of course that the matrix element
(@, |[W &) (2)|®;) is nonzero. We obtain an a priori symmetric spectrum,
since the Wannier—Stark scales extend to positive as well as negative ener-
gies. One can refer to the article by Mendez & Bastard (1993) to find exam-
ples of Wannier—Stark scale spectroscopy for electrons in superlattices.

3We recall that the Bessel functions verify the relation

T (Tnt1(x) + Tn-1(x)) = 2n Tn(z). (54)
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Figure 15. Raman spectroscopy of Wannier—Stark states of rubidium atoms in
an optical lattice in the presence of gravity. We observe transitions |®;) — |®})
up to |j' — j| = 6 for this value of the lattice depth. The frequency of the Bloch
oscillations is wg/(2mw) = 569 Hz for the wavelength of the light chosen for the
lattice (532 nm) [fiqure extracted from Beaufils, Tackmann, et al. (2011)].

This spectroscopic method is another way of looking at the same phys-
ical phenomenon: Bloch oscillations like those in figure 1 are the impulse
response of the system placed out of equilibrium, whereas this Wannier—
Stark spectroscopy studies the response of the system at equilibrium when
driven by a low-amplitude probe. During the first demonstrations of Bloch
oscillations with cold atoms, Christophe Salomon’s group at ENS favored
the impulse method while Mark Raizen’s group in Austin emphasized the
spectroscopic approach (Niu, Zhao, et al. 1996; Wilkinson, Bharucha, et al.
1996).

We show in Figure 15 a result obtained by Beaufils, Tackmann, et al.
(2011) at SYRTE [see also Tackmann, Pelle, et al. (2011), Pelle, Hilico,
et al. (2013)]. This result is obtained for rubidium 87 atoms in a verti-
cal lattice, and the force F' is gravity. The lattice is formed by a stand-
ing wave with wavelength 532nm, corresponding to a Bloch frequency
wr/(2m) = 569Hz. The depth of the lattice is about 4 E,, which corre-
sponds to a bandwidth of 0.5 £, ~ 4kHz. The parameter v characterizing
the number of sites visited during an oscillation as well as the extension of
each Wannier—Stark state is v ~ 7. The Wannier-Stark ladder is measured
by inducing a Raman transition between two internal states of the rubid-
ium atom |g1, ®;) — |g2, ®j/), with |gr) = |F,mpr = 0), separated by the
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hyperfine splitting ~ 6.8 GHz.

Recently the SYRTE group used this type of transitions to build a Ram-
sey interferometer and obtain an accurate measurement of wg, hence of g.
The relative precision is 0.9 x 1075 in one second (Pelle, Hilico, et al. 2013),
a value comparable to that obtained in Florence (1.5 x 10~7 in one hour),
also with Wannier-Stark scale spectroscopy (Poli, Wang, et al. 2011). For
comparison, the combination of Bloch oscillations and a Ramsey—-Bordé in-
terferometer allowed a team at ONERA to obtain a better accuracy (2x 10~7
in only 300s) (Charriere, Cadoret, et al. 2012), and a pure Ramsey—Bordé
interferometer at SYRTE provided a sensitivity of 0.6 x 107 g in 3000s
(Louchet-Chauvet, Farah, et al. 2011), but at the cost of a fall of atoms of
0.8 mm in the first case and of about ten cm in the second. In the Wannier—
Stark spectroscopy method, the atoms remain trapped and the distance
they explore is on the order of a few microns only: this method is thus
well adapted to the measurement of local forces, such as those of Casimir—
Polder type.

6 Perspectives and applications

Bloch oscillations have become an important tool in quantum optics and
atomic physics, used in multiple applications ranging from metrology to
the study of collective phenomena. To conclude this chapter, we will
briefly discuss two of them.

Measurement of h/m. The first application discussed here concerns the
measurement of the constant »/m, where m is the mass of an atom of a
given species. This constant is the “weak link” in the determination of
the fine structure constant « by a method that does not rely on quantum
electrodynamics (independent of g — 2 of the electron for example):

o2 = M 1 1 (56)

c Mmem

where R is the Rydberg constant and m, is the mass of the electron, the
precision on the other terms (R /c and m/m.) being notably better than
1077,
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The method used by Biraben’s group at LKB to measure h/m takes
advantage of Bloch oscillations to transfer a momentum 2N Ak to some
atoms, where N is a very large integer (between 500 and 1000). The ini-
tial momentum of the atoms is almost zero, and defined with a precision
much better than k. The velocity of the atoms is measured by a Raman
transition which transfers the atoms from a hyperfine state g; to another
hyperfine state g3, by a process “absorption of a photon of wave number
k1 — emission of a photon of wave number ky”. If the atoms have a mo-
mentum p before the Raman transfer, the transition will be resonant if the
energy difference fiw between the two beams creating the Raman transition
verifies:
p+h(ks + B2)]* p*

2m 2m’

hw(p) = AEns + (57)
where all momenta are supposed to be collinear and k;, k2 have opposite
directions. The difference between fiw(pinit) and Aw(panal), with pana =
Pinit + 2N hk leads to:

hk(k1 + k
W (pfinal) — W(Pinit) = 2N % (58)

or by inverting this relation

I w(panal) — W(Pinit)
m - oNk(e k) &9

In the first version of this experiment, the transferred momentum was hor-
izontal and N ~ 50 (Battesti, Cladé, et al. 2004). The LKB group then
switched to a vertical geometry that allows larger values of N, by elimi-
nating the effect of gravity by equating the upward and downward accel-
eration (Cladé, Mirandes, et al. 2006). Moreover, for a better accuracy on
the determination of the initial and final momenta, the Bloch oscillation
has been placed between two pairs of 7/2 pulses linking g; and g», thus
realizing a Ramsey—Bordé interferometer (Cadoret, Mirandes, et al. 2008;
Bouchendira, Cladé, et al. 2011). The precision obtained on h/m is now
~ 1079 (systematic + statistical), at a level comparable to that of the other
factors entering the expression (56) for a.

Note that these measurements are made with extremely deep lattices,
Vo ~ 100 E;, for which the measured efficiency of the Bloch oscillation
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reaches 99.97% per period. At this lattice depth, tunnelling between ad-
jacent sites is completely negligible: the asymptotic formula seen in chap-
ter 3 gives a bandwidth of 1079 E,, ie. a tunnelling time of several hun-
dred seconds. For the acceleration used in the experiment, of the order of
2000 ms~2, the parameter v = 4.J/Fa is of the order of 10~8. The Wannier—
Stark states are then almost identical to the Wannier functions in each well.
The atoms are trapped at the bottom of the potential wells created by the
standing wave and they follow adiabatically these wells when the lattice is
set in motion.

Measurement of weak forces. Bloch oscillations allows one to directly
link the force felt by the atoms to a frequency. This point led several
authors to propose to use this phenomenon to measure weak forces, the
Casimir—Polder force in the vicinity of a surface for example, or even to
search for more exotic forces corresponding to a modification of gravity at
short distances. A first experiment in this direction is presented by Sor-
rentino, Alberti, et al. (2009). Moreover, the study of Bloch oscillations in
a Fabry-Perot cavity has also been studied in depth (Prasanna Venkatesh,
Trupke, et al. 2009).

We briefly discuss here the results obtained by Carusotto, Pitaevskii, et
al. (2005), who studied the value of wg in the vicinity of a surface, and com-
pared it to the value it would take for a vertical lattice in free space. Caru-
sotto, Pitaevskii, et al. (2005) propose to use a gas of polarized fermions,
thus without interaction, to observe only one-particle effects. By a simple
analytical study, they show that the relative shift of the Bloch frequency is

AwB 0.17

on ﬁ(#m)47 (60)

where D is the distance between the atom and the surface. For D =
10 microns, the Casimir force (including thermal effects at 300 K) is about
10° times weaker than gravity, which should be detectable since we have
seen that the accuracy on the measurement of g with Bloch oscillations
could reach 10~7 after one hour of integration. In the article by Carusotto,
Pitaevskii, et al. (2005), a more thorough numerical study takes into ac-
count the averaging of the potential due to the initial extension of the cloud
and the region explored during the oscillation (of the order of a micron),
but the corrections are minor. Note that the damping of the oscillations
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due to the inhomogeneity of wg is small and should not compromise this
approach.

Wolf, Lemonde, et al. (2007) have proposed a slightly different approach
from that of Carusotto, Pitaevskii, et al. (2005), by imagining an interferom-
eter based on the Wannier—Stark states located j, j & 1,...sites away from
the wall, in two different internal states g; and g,. The expected sensitivity
for this type of experiment is a shift of 10~% Hz between two neighbouring
sites, whereas gravity creates a typical kHz shift for strontium atoms and
a lattice wavelength around 700 nm. A discussion of the possibilities of
this device for the search of forces corresponding to a deviation from New-
ton’s law, both in terms of intensity and range of this hypothetic force, can
be found in Wolf, Lemonde, et al. (2007). The conclusion is that there is a
rather large range of parameters that this type of experiment could address
in a more precise way than existing devices.



Chapter VI

Topology in a lattice: the example of Dirac points

Dirac points play a central role in many phenomena of condensed mat-
ter. They can be found in graphene, where they give ultra-relativistic prop-
erties to the motion of the conduction electrons. They also appear in topo-
logical insulators, where they are the origin of the conducting edge states.

A Dirac point is characterized by a contact between two bands with
a linear dispersion relation, which allows to illustrate several well-known
features of the Dirac equation for massless particles, such as the Klein para-
dox or the Zitterbewegung. This dispersion relation, which is very different
from the minimum of a usual band (where E  ¢2), also manifests itself
when a magnetic field is added and gives rise to an “anomalous” integer
quantum Hall effect.

The existence of Dirac points is a consequence of the geometry, or rather
the topology (in the sense defined below) of the band structure. The flex-
ibility of optical lattices has led several authors to imagine configurations
of light beams that allow to obtain such points in the band structure (Zhu,
Wang, et al. 2007; Wunsch, Guinea, et al. 2008; Lee, Grémaud, et al. 2009).
In this chapter, we will first identify the characteristics of a periodic lattice
that lead to Dirac points. We will then describe the first demonstration of
these Dirac points with cold atoms, made in the group of T. Esslinger in
Zirich (Tarruell, Greif, et al. 2012).
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1 Dirac points in a Brillouin zone

1-1 Linear dispersion relation

In general, a Dirac point is defined as a point g, in the Brillouin zone where
two bands touch in a linear way (figure 1). In the particular case where
the two bands touch isotropically, the dispersion relation in the neighbour-
hood of g, is written

E(q) = *+hc|lq — qp| + o, (1)

where c has the dimension of a velocity and ¢ is the energy at the point of
contact.

E(g)4

€0

/ow N

Figure 1. A Dirac point
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Figure 2. Brick wall lattice. (a) Square lattice of side a. (b) The brick wall lat-
tice is obtained by deleting every second link along the horizontal direction. (c)
Reciprocal space and Brillouin zone.

In graphene, the chemical potential is equal to €y so that the behaviour
of the conduction electrons simulates the quantum electrodynamics of
massless fermions. The group velocity c at the Dirac points is about 1/300
of the speed of light.

The dispersion relation (1) can already be found in dimension 1. How-
ever, the two-dimensional aspect of graphene adds a second essential fea-
ture, the chirality of these Dirac points, which we will now describe.

1-2 Chirality of Dirac points

To give an intuition of the origin of this chirality, let us consider a lattice in
a tight-binding model, such that the unit cell of the lattice has two sites A
and B. Let us further assume that a particle on a site A (resp. B) can only
jump to a site of type B (resp. A), and this site belongs either to the same
cell, or to an adjacent cell (see figures 2 and 4).

If the on-site energy is the same for A and B (E4 = Ep = ), we kr}ow
(see Chapter 3) that the Hubbard Hamiltonian in the reciprocal space 7(q)
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isa 2 x 2 matrix of the type :

whose eigenenergies are

Ei(q) =co = |f(q)] 3)

We will determine later the explicit value of the function f(g) for two types
of lattices, the brick wall lattice and the hexagonal lattice of graphene.

We consider the two dimensional case, so that g is a vector (g;, q,). A
Dirac point g, is a point in the Brillouin zone for which

f(qD) =0, 4)

so that both eigenenergies (3) are degenerate. We define in the vicinity of
dp
0q =q—qp = 0q(cosp uy +sing uy) ®)

and we suppose that close to the Dirac point, we have the expansion
f(q) = he(3q, +i8q,) = hedge™?, (6)

We will see later that this expansion in the vicinity of a zero is, with a very
simple generalization, natural for the complex function f(gs,q,). In the
neighborhood of gp, the Hamiltonian (2) is thus written

H(q) = €0l + heé -dq, ?)
H(q) = ol + hc o -8q", (8)

f(q) = he(dqy, +1dgy) -
f(q) = he(6g, — idgy) -

where 6, (j = x,y) are the Pauli matrices

n=(10) »=(7) g

The Hamiltonian (7-8) is formally identical to that of a spin 1/2 particle
in the vicinity of the zero of a magnetic field. In the basis |+)., |—). of .,
i.e. the basis of the Wannier functions |w,), |wg) centered on sites A and
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B, the eigenstates |y+) of (7-8) associated with the energies E. (q) given
in (3) are :

fla) = melda+ion): e = (b)) a0

W= (L)

The chirality due to the term e*'¥ appears clearly on these expressions.
More precisely, if we consider a circle centered on the Dirac point and if we
adiabatically follow one of the two eigenstates |x+) on this circle, the accu-
mulated geometric phase is =, corresponding to the well-known change
of sign of a spin 1/2 when it performs a 27 rotation.

fl@) = he(dg. —idgy) :

2 The brick wall lattice

Before presenting the case of graphene, with its regular hexagonal lattice,
let us consider the brick wall lattice represented on figure 2b, which is
slightly simpler to deal with mathematically and which was implemented
by the Zurich group. This lattice is obtained by starting from a square
lattice of constant a (fig. 2a), deleting every second horizontal link, and
keeping all the vertical links'. Note that we can go from this brick wall to
graphene by a continuous deformation.

2-1 Hubbard Hamiltonian

The unit cell of this lattice, represented in grey on figure 2b, has two sites
noted A and B. We generate the lattice by copying the unit cell according
to the square Bravais lattice

B= {’I"j = j1a1 + joas9, j1,j2 € Z} (12)

with the two vectors in the Cartesian basis u,, u,:

a) = a G) . as—a (11) . (13)

1A bricklayer would tell us that for a real brick wall, one would have to swap horizontal
and vertical lines, but we take here the convention used by Tarruell, Greif, et al. (2012).
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The Bravais lattice of the reciprocal space is also a square, generated by the

two vectors
T (1 s 1
-2 () mer(). "

The vectors by, by verify the general relation
a; - bj =27 5i,j~ (15)

The corresponding Brillouin zone is represented in grey on figure 2c.

We consider the tight-binding regime and note —J,,, —J,, the matrix ele-
ments along the horizontal and vertical directions of figure 2b. Let us recall
the rules to write the Hubbard Hamiltonian, already seen in Chapter 4. We
know in general that the eigenfunctions of the Hamiltonian are the Bloch
functions ¢4 (r) = €'?"u4(r). The vector g can be chosen in the Brillouin
zone and uq4(r) is a periodic function on the lattice. In the tight-binding
limit restricted to the lowest band, the set of periodic functions on the lat-
tice is a vector space of dimension 2, each function being characterized by
two coefficients (a, 3):

ug) = ag | Y lwag) | + Bq | D lwsy) | . (16)
J 3

where |w,,p ;) are the Wannier functions centered on the A/B site of the
J cell. The corresponding Bloch function is written as

q) =Y "9 (aglwaz) + Bqlws 3)) , (17)

J

and our goal is to find the values (aq, 84) so that |1)4) is an eigenstate of the
Hubbard Hamiltonian.

Let us write explicitly this Hamiltonian. The energies of the particle on
a site A and on a site B are equal, and noted E,. The Hubbard Hamil-
tonian contains by hypothesis only the hopping terms between nearest
neighbours. When a particle is on a B site, it can only hop to an A site,
which can belong to the same cell (5, horizontal jump) or to one of the two
adjacent cells (j + a1 or j + as, vertical jumps). It is the same for a particle
on site A of the cell j, which canjump to (B, j), (B,j —a1) and (B, j — a2).
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Let us assume that |14) defined by (17) is an eigenstate of this Hub-
bard Hamiltonian with eigenvalue E(q), and let us project this eigenvalue
equation onto a given cell j. We obtain the 2 x 2 system for the coefficients

(0rg: Ba):
H(q) (g:) = E(q) (gz) , (18)

where the Hubbard Hamiltonian in the reciprocal space has the structure
proposed in (2). In particular the coefficient f(gq) corresponds to the cou-
pling of a given site B (j, j,) with its three neighbours of type A: one of
its neighbours belongs to the same unit cell (horizontal link .J;), the second
to the cell (j; + 1, j,) and the third to the cell (j,, j, + 1) (vertical links J,,).
So we have

fl@) = —Jp — Jy (€9 +€%9) = —J, — 2J, "% cos(agy). (19)

The Dirac points, if they exist, correspond to the zeros of this function and
are thus obtained for

sin(ag;) =0 = ¢z =0 mod. 7/a (20)

Iz

cos(aqy) cos(agy) = ~57 (21)
y

2-2 Pairs of Dirac points

The existence of possible solutions to the system of equations (20-21) de-
pends on the value of the ratio J, /(2J,):

o If J, > 2J,, this system has no solution. The function f(gq) does not
cancel in the Brillouin zone and there are no Dirac points. The two
sub-bands Ej + |f(q)| are separated by a non zero gap.

o If J, = 2J,, the function f(g) cancels at the four corners of the Bril-
louin zone. This is a second-order zero in the y direction, so it is not
strictly speaking a Dirac point.

e If J, < 2J,, the function f(q) cancels at two Dirac points located sym-
metrically on the vertical axis ¢, = 0, at points such that cos(ag,) =
—Jz/(2J,) (figure 3). When J, becomes very small compared to J,,,
these points approach ¢, = £7/(2a).
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—r/a+

Figure 3. Positions of the two Dirac points for the brick wall lattice, in the case
Jr < 2Jy.

We consider the case J, < 2J, and expand the function f(g) in the
neighbourhood of a Dirac point gqp,. We find:

f(q) ~iaJ, [6g, +1dqy tan(agp y)], (22)

which is close to the particular form assumed in (6). More precisely, since
tan(agp ) does not have the same sign for the two Dirac points (it is neg-
ative for the point located in the upper part of the Brillouin zone, positive
for the other), the two Dirac points have an opposite chirality. We note that
the function f(q) is generally not isotropic around the Dirac points, unless
tan(agp,y) = 1, which is obtained for J, = \@Jy.

The fact that the Dirac points appear in pairs is a direct consequence
of the time reversal invariance of the considered problem. We have seen
in Chapter 2 that this invariance implies that if ¢4 is an eigenstate for the
eigenvalue E(q), then ¢4 o 9 is an eigenstate for the same eigenvalue.
We deduce that if qg ) is a Dirac point associated to a certain chirality, then
qg ) = —q](j1 ) is also a Dirac point, with an opposite chirality because of the
complex conjugation involved in the relation ¢4 o< 9.

When we continuously decrease the parameter J,/J, and cross the
value 2, the Dirac points are superimposed in a corner of the Brillouin zone,
which is still compatible with qg ) = —q](D1 ), since q(D2) and qg) then differ

by one vector of the reciprocal lattice (Montambaux, Piéchon, et al. 2009).
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3 The graphene lattice

The study of the Dirac points in graphene is done in a very similar way
to what we have done above for the brick wall lattice, and we will there-
fore limit ourselves to presenting the main lines of the approach providing
these points.

3-1 Unit cell and reciprocal lattice

Graphene is obtained by placing one carbon atom per site of a hexagonal
structure of side a. The unit cell of this structure has two sites, noted A
and B on figure 4. We generate the hexagonal lattice by copying this unit
cell (represented in grey on the figure) on all the nodes of the triangular
Bravais lattice

B = {r; = jia1 + j2a2, j1,j2 € L} (23)

where the vectors a4, a; are defined by:

V3a (Jﬁ) . _ﬁ(ﬁ) ”

“= 279 1

The reciprocal lattice B’ = {Qj = j1b1 + jabo, 71,72 € Z} is generated
by the vectors

by = % (;g) R - % <_1/§> . (25)

The reciprocal lattice is therefore triangular.

Brillouin zone. Recall that the Bloch functions |¢/4) are eigenstates of the
Hamiltonian and of the translation operators Ty, and T,, that leave the
lattice invariant. The eigenvalues associated to the translation operations
are noted el = ¢1@1°9 and €2 = ¢!2'9. The Brillouin zone is a domain?
centered at ¢ = 0, in which one and only one vector g corresponds to a pair
(61,62). It is a hexagon of side 47/(3+/3a), whose orientation is rotated by
30° with respect to the hexagons of the lattice in real space (figure 4).

ZMore precisely, it is defined as the Wigner-Seitz cell centered at g = 0 of the reciprocal
lattice
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bo

Figure 4. Left: hexagonal structure of graphene. This structure is composed of a
unit cell with two sites A and B, which is repeated by placing it on the nodes of
a triangular lattice jia1 + jaas, ji,j2 € Z. A unit cell is represented in grey.
Right: reciprocal lattice for graphene, j1by + jaba, j1,j2 € Z. The Brillouin zone
is hexagonal and the Dirac points are the corners of this hexagon.

3-2 Dirac points for graphene

With the same reasoning as for the brick wall lattice, we find that the Hub-
bard Hamiltonian in reciprocal space has the form anticipated in (2) (Wal-
lace 1947)

o Eoo f*(a)
wao=( 5o '5): )
with the function f(q) defined by
fl@) = —J (1+coe 4 ooz, (27)

Let us look for the zeros of f(k), by cancelling both the real part f, and the
imaginary part f;:
Cancellation of f.(q) : 1+ cos(q-ai)+ cos(q-az) =0,

Cancellation of f;(q) : sin(q - a1) +sin(q - az) = 0. (28)
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Two types of zeros appear. The first one corresponds to

1
cos(q-a1) = cos(q-az)= —5
sin(q-a;) = -—sin(q-az) = —? (29)
ie. 4 9
qg-a = % mod 27, qg-ax= ?ﬁ mod 27. (30)
The second type of zero is given by
2 4
qg-a = % mod 27, qg-as = % mod 27. (31)

By writing the solution g under the form g = a1b; + a2by, we immedi-
ately deduce the coordinates (a1, a2) of these Dirac points in the reciprocal
space. There are two Dirac points (one of each chirality) in the Brillouin
zone, and these points are located in

O Liop b= 2T (3 32
ap) = 5 (b +b2) = e (VB ) (32)
) 1 2m

— (b1 +2by) = —— (VBu, —u, ). 33
dp 3(1+ 2) 3\/§a(\[u uy) (33)

These points are located at the edge of the Brillouin zone, at the vertices of
the hexagon limiting this zone (figure 4). Note that each of the six vertices
of the hexagonal Brillouin zone is a Dirac point. However, one must be
careful with double counting. A vector g and a vector ¢’ that differ by a
vector of the reciprocal lattice correspond to the same Bloch state. This is
the case for the four other vertices of the hexagonal Brillouin zone: they
are deduced from the two marked on the figure by subtracting b;, b and
b1 + by. Moreover, we can verify that the function f(q) is at first order
isotropic around these two zeros, with

fla) ~ 120 (5g + 16g,). 39

which corresponds (up to the global factor i) to the form announced in (6).
The velocity c is given here by ¢ = 3 Ja/2 and it is of the order of 10°m/s
for graphene (Castro Neto, Guinea, et al. 2009).
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3-3 Additional comments

The chirality of the zeros of f(g). We have seen in the previous examples
that the search for Dirac points is similar to the search for the zeros of a
function f(q) with two real variables, ¢, and ¢,, with values in the complex
plane. The zeros of such a function generally have a vortex structure, with
a positive or negative phase winding. This is the phase winding that gives
its chirality to a Dirac point.

Let us specify the origin of this winding in a very qualitative way. De-
pending on the value of g, the real part f,.(q) of f(g) can be positive or
negative. The domains of the plane (g, ¢,) corresponding to a positive
value of f, and those corresponding to a negative value of f, are separated
by lines (open or closed) along which f, cancels. The same is true for the
imaginary part f;, which cancels along other lines of the plane (g, ¢,). A
zero qp of the complex function f(q) corresponds to a point where two
lines of zeros, one for f,, the other for f;, intersect. This crossing gener-
ally defines® four quadrants that correspond to the four possible choices
for the signs of the pair (f,, fi): (+,+), (+,—), (—,—), (—,+). Depend-
ing on whether we find this order by turning around the zero clockwise or
anti-clockwise, we have one chirality or its opposite for the Dirac point.

Anomalous quantum Hall effect. The chirality of Dirac points has im-
portant consequences. Let us mention only one of them here. When such
a material is placed in a magnetic field, the energy levels (Landau levels)
are labelled with an integer n and vary as F,, « y/n. In particular, there is
a zero energy level, which is very different from the ordinary case where
we find E,, « (n + 1/2). The appearance of this zero energy state can be
interpreted semi-classically by evaluating the action on a cyclotron orbit in
the reciprocal space encircling the Dirac point. In addition to the usual ac-
tion, the Berry phase associated to the chirality of the Dirac point replaces
n+1/2byn+1/2 +1/2 (Mikitik & Sharlai 1999); this allows in particular
the appearance of a zero-energy state, which plays an important role in the
anomalous quantum Hall effect observed on graphene (Zhang, Tan, et al.
2005; Novoselov, Geim, et al. 2005).

30ne can imagine more exotic solutions where the zero of f, or f; is of order 2, but we
describe here only the “standard” situation.
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Robustness of the Dirac points. Suppose that the lattice parameters are
chosen such that the function f(q) has 2 (or 4, 6,...) zeros in the Brillouin
zone. When the lattice parameters are modified while keeping the same en-
ergy for both sites, only the function f(g) changes. But the zeros of f(q) are
topologically protected by their chirality: in other words, the two curves
defining f,(g) = 0 and f;(g) = 0 will continue to cross each other (at an-
other location) if we slightly modify these curves. The only way to make
the crossings disappear in this context is to merge two zeros, one of positive
chirality and the other of negative chirality, by realizing a situation where
the two curves f,(q) = 0 and f;(¢) = 0 become tangent one to the other.
For a graphene-like state filling, this particular case of two Dirac points
merging corresponds to a topological transition between a semi-metallic
phase and a band insulator, and it is studied in detail by Montambaux,
Piéchon, et al. (2009).

On-site energies. While the Dirac points can stand a (slight) modifica-
tion of the function f(k), it is not the same with respect to a dissymmetry
between the two sites A and B. If we modify the Hubbard Hamiltonian
by giving an energy Ey + A (resp. Ey — A) to sites A (resp. B), then the
eigenvalues of

. _(Eo+A  f*(q)
wa = (% £ &5
become , 12
E1(q) = Eo + [|f(q)]* + A?] (36)

and we find two ordinary sub-bands, separated by a gap 2 A and without
any remarkable topological property. While such a dissymmetry is difficult
to create on real graphene (see for example Montambaux, Piéchon, et al.
(2009) and the references therein), it is on the other hand easy in optical
lattices, as we will see below.

4 The cold atoms version of graphene

The Zurich group has recently realized an optical lattice of the brick wall
type, in which they were able to highlight Dirac points and show that their
positions were controllable with the parameter J,/J,. The existence of
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these Dirac points was shown thanks to Bloch oscillations: the particles are
transferred with a high probability from the lower band to the upper band
when they pass in the vicinity of these contact points.

4-1 Realization of the brick wall lattice

The light potential that was used results from the superposition of several
standing light waves. The most intense wave is a standing wave in the «

direction creating the potential
Vi(r) = —Vx cos?(kx + 6/2) (37)

where § is a parameter that can be adjusted by slightly varying the fre-
quency of this wave. We superimpose an optical lattice in the zy plane
formed by two standing light waves along the = and y directions, phase-
locked to each other*:

Va(r) = —Vy cos®(ky) — 2v/VxVy cos(kx) cos(ky) — Vx cos?(kz). (38)
The intensities of these waves are chosen such that
Vx </ VxVy < Vy < Vx.

In practice, only the three terms with the largest amplitudes are relevant
to the formation of the desired lattice and we will neglect the fourth term,
—Vx cos?(kz), in our discussion.

(39)

Let us start with § = 7, so that V;(r) = —Vy sin?(kz); this parameter
will be varied later, in particular to obtain the results of figure 8. With only
the terms V; and V2(“) = —Vy cos?(ky), we make a square lattice whose
sites are the points

kx = w/2 [mod. ], ky = 0 [mod. =]. (40)

Note that the tunnel effect is weaker along « than along y since Vg > V4.

The term in Vz(b) (r) = —2y/VxVy cos(kz) cos(ky) modulates some tun-
nelling coefficients (figure 5):

4In the article by Tarruell, Greif, et al. (2012), the term in \/Vx Vy is reduced by a mul-
tiplicative factor a ~ 0.9 which characterizes the visibility of the interference between the
standing wave along y and that along 2. We will omit this coefficient here as it does not play
a role in our semi-quantitative description.
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ky

Figure 5. Construction of a brick wall lattice (Tarruell, Greif, et al. 2012). Left:
square lattice obtained by superimposing Vi(r) = —Vy sin®(kx) and Vz(a) =
—Vy cos?(ky). Right: increase or decrease of the horizontal tunneling coefficients
with the term VQ(b) (r) = —2y/VxVy cos(kz) cos(ky). Typical values are (in
units of E,): Vx = 4.0, Vy = 2.0, Vx = 0.3.

¢ The vertical links are centered on points such that kz = 7/2 modulo ©
and ky = w/2 modulo 7. The tunneling matrix elements of these links

are little affected by VQ(b) since VQ(b) (r) o cos(kz) is zero along these
links.

¢ The horizontal links are centered on points such that kz = 0 modulo =
and ky = 0 modulo 7. At the center of these links, we have cos(kz) =
+1 and cos(ky) = £1. The potential VQ(b) takes a significant value there
and modifies the tunneling matrix elements. Two cases are possible:

o A horizontal link centered on a point such that cos(kz) and

cos(ky) have the same sign (equal to 1) corresponds to a neg-
ative value of VQ(b) which lowers the tunnel barrier between the
two sites concerned by this link: the tunnel effect between these

two sites is increased.

o A horizontal link centered on a point such that cos(kz) and
cos(ky) have opposite sign corresponds to a positive value of Vz(b)

and the corresponding tunnel effect (already weak without Vz(b))
is further decreased.

In the end, the brick wall lattice is effectively realized.
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4-2 Bloch oscillations and Dirac points

To probe the position of the Dirac points, the Zurich group observed the re-
sult of Bloch oscillations. These oscillations occur in the x direction under
the effect of a constant force caused by a magnetic field gradient. When
the trajectory in q space passes in the vicinity of a Dirac point, the atom
can be transferred with a high probability to the upper band (for a detailed
study of this transition, see Lim, Fuchs, et al. (2012)). The transition to
the excited band can then be detected by the band mapping technique pre-
sented in chapter 2 of this lecture: one adiabatically ramps down the lattice
(duration 0.5ms) so that an atom remains in the band it occupied at the be-
ginning of the ramp, and then performs a time-of-flight which thus reveals
the population of each band.

The atomic gas that is used is an ensemble of polarized fermions with-
out interactions (°K). The atoms initially occupy the center of the Brillouin
zone and do not meet the Dirac points which are located close to the edge
of the band (figure 3). On the other hand, the second part of the Bloch os-
cillation (after Bragg reflection at the boundary of the Brillouin zone) can
bring them to the vicinity of the Dirac points and the transition can then
occur (figure 6).

The position of the peaks that have been transferred to the upper band
provides direct information on the position of the Dirac points. We recall
that this position is a function of the ratio J,/J,, and the points disappear
when this ratio becomes too high. The Zurich group studied the position of
the Dirac points by varying the potential V;. The result, shown on figure
7, is in good agreement with the predictions. Note that the tight-binding
model is not quantitatively valid in this parameter domain and that a nu-
merical diagonalization of the lattice Hamiltonian must be used to deter-
mine precisely the position of the Dirac points.

It is also possible in this experiment to break the symmetry between the
two sites A and B of the lattice. For that, one can take a value of § in (37)
different from 7. We have seen in (36) that this amounts to opening a gap
between the two sub-bands; the Bloch oscillation should then no longer
cause a transition between these two sub-bands, at least if the force is not
too large. This reduction is indeed observed experimentally (figure 8).



CHAPTER VI. TOPOLOGY IN A LATTICE: THE EXAMPLE OF DIRAC POINTS

§4. The cold atoms version of graphene

Figure 6. Left: Bloch oscillations along the x axis. Middle: initial distribution in
q space. Right: distribution in q space after a Bloch oscillation (period ). One
can clearly distinguish the atoms which passed in the vicinity of a Dirac point
during the oscillation and which were then transferred to the upper band [figure
extracted from Tarruell, Greif, et al. (2012)].
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Figure 7. Variation of the position of Dirac points on the axis g, = 0 as a function
of the potential depth V. For this figure, Vy = 1.8 and Vx = 0.28. The two
Dirac points are expected to merge in the corner of the Brillouin zone for Vg =
3.4, which is in good agreement with the observations [figure taken from Tarruell,
Greif, et al. (2012)].

101

0.90n 0.951 1.00x 1.051 1.10n

0.4}

i D4
»
u ~
. A

5 oaf W’ .
5 -7 A/h =390 Hz
5
o
qu_’ 0.2
12}
C
@©
=

0.1t

$

340 350 360 370 380 390 400 410 420 430
Detuning, 6 (MHz)

Figure 8. Disappearance of the Dirac points when the symmetry between the A
and B sites is broken. Transition probability to the upper band as a function of
the angle 0 entering the definition of V1 (r) (37). This angle is indicated on the
upper horizontal scale and is controlled by the detuning of the beam creating the
standing wave (lower horizontal scale) [figure extracted from Tarruell, Greif, et al.
(2012)].

4-3 Perspectives

The Zurich experiment has thus demonstrated the existence of Dirac points
in an optical lattice. The flexibility offered by these lattices is illustrated on
figure 7, where one can control the position of these points, make them
merge and then disappear. This experiment is probably only a starting
point in this cold atom simulation of graphene. Many aspects of the ultra-
relativistic physics encountered in the vicinity of Dirac points could be ad-
dressed with these systems, such as Klein’s paradox, i.e. the quasi-total
transmission of a wave packet through a very high barrier (Katsnelson,
Novoselov, et al. 2006). Let us recall that this paradox plays an important
role in real graphene because it prevents the backscattering of conduction
electrons; Dirac electrons are insensitive to the localization effects observed
for ordinary electrons and thus propagate ballistically over long distances
(micrometers). Moreover, the implementation of artificial magnetic fields
on this lattice should allow the study of the anomalous quantum Hall effect
with cold atoms.
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