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Introduction

Laser cooling and laser trapping of particles are arguably two of the
major advances in atomic physics and quantum optics over the last three
decades. In particular, laser light can be used to create ”potential land-
scapes”, thereby controlling the motion of already cooled atoms. These
atoms can remain trapped in such light cages for long periods of time and
undergo a large variety of dynamical process, depending on the nature of
the designed landscape.

A particularly interesting type of trap is obtained with a standing light
wave, which realizes a periodic potential called an ”optical lattice”. The
motion of atoms in an optical lattice has a deep analogy with the motion
of electrons in a crystal, which makes it an important tool for quantum
simulations of condensed matter phenomena using cold atoms.

This year’s lecture series is devoted to the presentation of the basic prin-
ciples governing the motion of atoms in these optical lattices. We will also
describe several recent experiments exploiting this very particular dynam-
ics. We will encounter aspects related to metrology as well as illustrations
of condensed matter phenomena. The lecture series will be composed of
the following six chapters:

Chapter 1. The dipolar potential. We will show how to describe the force
F (r) created by a monochromatic light beam in terms of its intensity profile
I(r). We will first evaluate this dipole force with the simple model of a two-
level atom, then for a more realistic model of an atomic transition. We will
show that this force derives from a potential V (r), called dipole (or dipolar)
potential, which is proportional to I(r) in the limit of low intensities. We
will finally evaluate the role of spontaneous emission processes, which can
lead to undesired heating on the trapped atoms.

Chapter 2. Optical lattices: the basic principles. We will focus on the
case of the periodic dipolar potential created by a 1D standing wave,
V (x) = V0 sin2(kx), where k is the wave number of the light beam creating
the standing wave. We will see that such a problem can be handled with
the tools and concepts developed in solid state physics to study the motion
of electrons in the periodic potential of a crystal lattice. We will see that the
natural energy scale is given by the recoil energy Er = ~2k2/(2m) where m
is the mass of the atom. We will present Bloch’s theorem, the notion of Bril-
louin zone and we will describe the shallow lattice limit V0 � Er, which is
used in particular in many Bragg diffraction experiments.

Chapter 3. Optical lattices in the tight-binding regime. In this lecture,
we will continue to transfer concepts from solid state physics to optical lat-
tices, this time focusing on the tight-binding limit V0 � Er and introducing
the concept of Wannier functions. In this tight-binding limit, the tunnelling
of a low-energy atom from one site to another is only possible if these two
sites are contiguous. The dynamics of the particles in the lattice can then
be described by a very simple Hamiltonian, whose main properties will be
described. We will discuss the role played by interactions in a lattice by
looking at the stabilization of dimers occupying the same site, even if the
atoms composing this dimer repel each other.

Chapter 4. Time-dependent lattices. The possibility to vary in time the
parameters of the laser creating the standing wave opens many perspec-
tives. For example, we can realize moving lattices V (x, t) = V0 sin2[k(x −
x0(t))], where x0(t) is a controlled function of time. In this course, we will
establish the equivalence of several Hamiltonians that can describe this
problem by using unitary transformations, each Hamiltonian being useful
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to address a given phenomenon. We will focus on the phenomenon of dy-
namic localization, obtained by periodically modulating the position x0(t).
We will see that this modulation can have spectacular consequences, such
as the almost complete suppression of the tunnelling effect. We will de-
scribe the experimental demonstration and the use of this effect for lattices
in one and two dimensions.

Chapter 5. Bloch oscillations in an optical lattice. When a constant force
is added to the periodic force created by a lattice, a surprising phenomenon
appears: the particles oscillate. Cold atoms trapped in optical lattices have
allowed to study this phenomenon in great detail and we will present sev-
eral experimental demonstrations. We will also discuss the metrological in-
terest of these Bloch oscillations, both to determine fundamental constants
such as the ratio ~/m and to measure forces such as gravity.

Chapter 6. Topology in a lattice : the example of Dirac points. Optical
lattices allow the realization of more complex potentials than sinusoidal
sin2(kx) potentials. In particular, one can produce two-dimensional lat-
tices analogous to graphene, for which some singular points of the Bril-
louin zone, called Dirac points, appear. In the vicinity of these points, the
behaviour of the particles is similar to that of ultra-relativistic particles,
with a quasi-linear dispersion relation. We will see how the control of the
lattice parameters allows one to move the Dirac points inside the Brillouin
zone, or even to make them disappear. We will describe a recent experi-
ment which allowed to reveal these points and to exploit the control one
can have on the topology of the Brillouin zone.

Due to time limitations, these lectures only partially cover the current
and extremely intense research activity on optical lattices. Thus, we will
address the effects of interactions between particles only a few times, sav-
ing for the lectures of an upcoming year important phenomena such as the
transition between the superfluid state and the Mott insulator. We will not
deal with artificial magnetism in lattices this year either: it will also be the
subject of a future series of lectures. Nevertheless, we hope that the tools
provided in the following chapters and the description of the experiments
will allow the interested reader to approach more easily the numerous re-
search topics related to these "crystals made with light".
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Chapter I

The dipolar potential

The starting point of this year’s lectures is the fact that light can create a
potential V (r) on atoms. We will restrict ourselves here to monochromatic
light of angular frequency ω and we will show that, in a perturbative limit
to be defined, this potential is proportional to the light intensity. The ability
to shape the light intensity profile I(r) thus allows one to realize a fully
controllable potential landscape.

The goal of this first lecture is to establish the relation between V (r) and
I(r). We will start our study with a simple semi-classical approach before
going to a quantum treatment. For a review of the dipole force and optical
traps, one can refer to the very detailed article by Grimm, Weidemüller,
et al. (2000).

To describe the action of light on an atom, we will start by considering a
hypothetical atomic species that would have only one valence electron (as
the alkali atoms), this electron having no spin (there will thus be no atomic
fine structure), and the spin of the atomic nucleus being zero. Moreover,
we will start by considering the case where only one atomic transition is in-
volved, linking the ground state of zero angular momentum to an excited
state of angular momentum 1. We will then gradually enrich this descrip-
tion of the atom to reach the case where the ground state has a non-zero
spin (electronic and/or nuclear), and where the potential V (r) depends on
the spin of the occupied state.

1 The Optical Bloch equations

1-1 The two-level atom approximation

Our starting point in this paragraph is as stated in the introduction

• A laser wave with linear polarization ε, whose electric field is written

E(r, t) = ε E(r) cos [ωt− ϕ(r)] . (1)

The amplitude E of the field and its phase ϕ both depend, a priori, on
the position.

• An atomic transition that we model by a ground state of zero angular
momentum |g〉 and an excited level of unit angular momentum, with
its basis {|e,mz〉, mz = −1, 0,+1}, where we have chosen the quanti-
zation axis for the angular momentum basis parallel to ε. The energy
difference between |g〉 and |e〉 is denoted by ~ω0.

The interaction between the atom and the electromagnetic wave is
treated within the electric dipole approximation, from which follows that
the |g〉 state is coupled to the |e,m = 0〉 state, that will be written more
simply as |e〉 in the following. This electric dipole coupling has the form

V̂e.d.(r̂, t) = −D̂ · E(r̂, t)

= −d0E(r̂) (σ̂+ + σ̂−) cos [ωt− ϕ(r̂)] (2)

9



CHAPTER I. THE DIPOLAR POTENTIAL § 1. The Optical Bloch equations

|e, mz = �1i |e, mz = 0i |e, mz = +1i

|gi
Jg = 0

Je = 1

|g, ni

|e, n� 1i |g, ni

|e, n� 1i

� = ! � !0 < 0 � = ! � !0 > 0

Vdip

Vdip

~|�| ~|�|

~!0

Figure 1. Transition modelling a two-level atom: the ground state of zero angular
momentum is coupled to an excited level of unit angular momentum. The elec-
tromagnetic field is assumed to be linearly polarized and the quantization axis of
the angular momentum is chosen to be parallel to this polarization. The atom-field
coupling then only involves the |g〉 ↔ |e,mz = 0〉 transition.

where d0 is the reduced atomic dipole, characteristic of the considered
atomic transition, where r̂ represents the operator associated to the position
of the center-of-mass of the atom, and where we have introduced the raising
and lowering operators:

σ̂+ = |e〉〈g|, σ̂− = |g〉〈e|. (3)

Note that the possibility to restrict the problem to a two-level transition
remains valid if the polarization of the light wave is arbitrary. One should
then define |e〉 as the linear combination of the three states |e,m〉 that is
coupled to |g〉. For example, if the wave is circularly polarized, we will
take for |e〉 one of the two states |e,m = ±1〉.

We also define the force operator

F̂ = −∇rV̂e.d.(r̂, t)

= d0 (σ̂+ + σ̂−)∇r {E(r̂) cos [ωt− ϕ(r̂)]} (4)

which involves both the gradients of the amplitude E and the phase ϕ of
the electromagnetic field.

1-2 The semi-classical approach

The semi-classical approach consists in describing in a classical way the
motion of the center-of-mass of the atom, while taking into account the
quantum nature of its internal dynamics. For a static atom at position r,
we can then evaluate the average force acting on the atom from the steady-
state value of the following matrix elements of the density operator ρ̂ of
the atom:

ρeg = Tr (σ̂−ρ̂) , ρge = Tr (σ̂+ρ̂) . (5)

This steady-state value is calculated with the optical Bloch equations,
which are the superposition of the semi-classical Hamiltonian evolution
of the density operator

dρ̂

dt
=

1

i~
[Ĥs.c., ρ̂] (6)

and irreversible evolution due to spontaneous emission processes, includ-
ing

dρeg
dt

∣∣∣∣
sp.

= −Γ

2
ρeg,

dρge
dt

∣∣∣∣
sp.

= −Γ

2
ρge. (7)

In (6), the semi-classical Hamiltonian Ĥs.c. is the sum of the electric dipole
coupling and of the Hamiltonian for the internal variables of an isolated
atom:

Ĥs.c. = V̂e.d. + ~ω0|e〉〈e|. (8)

In (7), the coefficient Γ represents the natural linewidth of the excited state
|e〉, whose lifetime is thus Γ−1. In the framework of this two-level model,
the coefficient Γ is expressed as a function of the reduced dipole d0

Γ =
d2

0ω
3
0

3πε0~c3
. (9)

1-3 Dipole force and dipole potential

The evolution equation for ρeg can be explicitly written from the optical
Bloch equations (Cohen-Tannoudji, Dupont-Roc, et al. 1992):

dρeg
dt

= −
(

iω0 +
Γ

2

)
ρeg − iΩ cos(ωt− ϕ) (ρgg − ρee), (10)
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CHAPTER I. THE DIPOLAR POTENTIAL § 1. The Optical Bloch equations

where we have introduced the Rabi frequency Ω:

~Ω(r) = −d0E(r). (11)

In most laser trapping experiments, one chooses a combination of laser
intensity and detuning from the atomic resonance ω−ω0 so that the steady-
state population of the excited state is very small compared to 1, the atom
thus essentially occupy the ground state. We can then approximate ρgg ≈
1, ρee ≈ 0 in (10), which provides the driven steady-state solution

ρeg(t) =
Ω

2

[
e−i(ωt−ϕ)

ω − ω0 + iΓ/2
− ei(ωt−ϕ)

ω + ω0 − iΓ/2

]
, (12)

and the value for ρge is deduced by complex conjugation. In all the appli-
cations that we will consider in the following, the detuning

∆ = ω − ω0 (13)

is very large (in absolute value) compared to the natural width Γ (and a
fortiori we have ω + ω0 � Γ). One can thus take at the lowest order of the
calculation

ρeg(t) =
Ω

2

[
e−i(ωt−ϕ)

ω − ω0
− ei(ωt−ϕ)

ω + ω0

]
. (14)

We deduce the average atomic dipole in the steady state

d(t) = Tr
[
D̂ ρ̂(t)

]
= εd0

Ω

∆̄
cos(ωt− ϕ) = − d2

0

~∆̄
E(r, t), (15)

where we have defined

1

∆̄
=

1

ω − ω0
− 1

ω + ω0
. (16)

Depending on the sign of ∆̄, which is itself given by the sign of the detun-
ing ∆, the dipole is in phase (if ∆ < 0) or out-of-phase (if ∆ > 0) with the
electric field.

It is then simple to calculate the average value f of the force operator F̂
defined in (4):

f = (ε · d)∇ [E cos(ωt− ϕ)] . (17)

Using the expression (15) for the mean dipole, we can immediately see that
two types of terms will appear: time-independent terms and terms oscil-
lating as e±2iωt. The frequency ω being very large (optical frequency), the
micro-motion of the center-of-mass of the atom induced by these oscillat-
ing terms is negligible and we can limit ourselves to the time-independent
terms. We can then notice that the term related to the phase gradient ∇ϕ
has a zero contribution, and only the term in ∇E , related to the intensity
gradient of the light wave, remains.

We thus find the expression of the dipole force fdip, deriving from the
potential V :

fdip = −∇V with V (r) =
~Ω2(r)

4∆̄
=
d2

0E2(r)

4~∆̄
. (18)

In the approach we have taken here, the physical interpretation of this
potential is very simple. The light beam illuminating the atom induces
a dipole d = α(ω)E , where the polarizability α(ω) can be deduced from
(15):

α(ω) = − d2
0

~∆̄
. (19)

The induced dipole then interacts with the incoming field and the corre-
sponding interaction energy is written1 −(1/2)d · E , whose time-average
gives back (18). Note that our perturbative treatment leading to the ex-
pression

V (r) = −α(ω)

4
E2(r) (20)

for the dipole potential can be effortlessly generalized to the case where
several excited levels e1, e2, . . . have a non-negligible contribution. The to-
tal polarizability is obtained by summing over these levels the different
terms d2

i , i = 1, 2 . . ., with the energy denominators chosen as ω ± ωi.
The crucial point that can be read on (18) or (20) is the following: the

light creates on the atoms a potential V (r) proportional to the local light
intensity I(r) ∝ E2(r). Depending on the sign of the detuning ω − ω0, this
potential attracts (ω < ω0, red detuning) or repels (ω > ω0, blue detuning)
the atoms in/from the regions of high light intensity. In the case of an
optical lattice, on which we will focus in the following lectures, we will

1Don’t forget the 1/2 factor due to the fact that this dipole is induced!
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CHAPTER I. THE DIPOLAR POTENTIAL § 2. The dressed atom picture

choose a periodically-varying Rabi frequency by taking for example in one
dimension

Ω(x) = Ω0 sin(kx). (21)

This variation is obtained by creating a standing light wave. The atoms
will then accumulate in the vicinity of the nodes (∆ > 0) or of the antinodes
(∆ < 0) of the wave.

What about the radiation pressure force? We do not find any force re-
lated to the gradient of the phase at this order of the calculation. Thus, if
the laser wave is a travelling plane wave, E(r) = E0, ϕ(r) = k · r, we find
no force acting on the atom while we would expect to find a non-zero ra-
diation pressure. This is related to the approximation made between (12)
and (14) which imposes that the induced dipole is exactly in-phase or out-
of-phase with the electric field. In this case, the term related to the phase
gradient in the expression (17) of the average force

Radiation pressure: f r.p. = −(ε · d) E∇ϕ sin(ωt− ϕ) (22)

has a zero time-average. To find a non-zero mean value for this term, one
must (at least) push the calculation one step further in powers of Γ/∆ and
approximate (12) by:

1

ω − ω0 + iΓ/2
≈ 1

ω − ω0
− i

Γ/2

(ω − ω0)2
. (23)

The mean dipole then acquires a component in quadrature [sin(ωt − ϕ)]
with the incident field, which leads to a non-zero time average of (22). In
practice, we will not need to look at these correction terms in the present
lectures.

1-4 Rotating wave approximation.

Note that our treatment does not resort to the rotating wave approximation
(RWA). This approximation requires the additional assumption (Cohen-
Tannoudji, Dupont-Roc, et al. 1992)

rotating wave approximation: |∆| � ω0, ∆̄ ≈ ∆. (24)

The main interest of this approximation is to allow analytical calculations
with Bloch’s equations even if the laser excitation is non-perturbative, i.e.
even if we cannot make the approximation ρgg ≈ 1, ρee ≈ 0 in (10). It
simplifies the calculations from the start by replacing the electric dipole
coupling by

V̂ rwa
e.d. =

~Ω

2

[
σ̂+e−i(ωt−ϕ) + σ̂−e+i(ωt−ϕ)

]
. (25)

However, this approximation can be marginal in some cold atom trapping
experiments. For example, if rubidium atoms, with λ0 = 780 nm, are ma-
nipulated with a laser at λ = 1064 nm, the non-resonant term increases the
dipole potential by 15%. On the contrary, for a laser detuned on the blue
side of the resonance at a typical value of λ = 532 nm, the non-resonant
term reduces the RWA potential by 19%.

2 The dressed atom picture

The dressed atom picture is a convenient alternative to the calculation of
the dipole potential from the optical Bloch equations that we have per-
formed above (Dalibard & Cohen-Tannoudji 1985). It is particularly sim-
ple in the case where the rotating wave approximation is valid. This
point of view consists in studying the energy levels of the system atom
+ laser mode. We start from a basis of this system without a coupling
{|g,N〉, |e,N〉, N ∈ N}, whereN represents the number of photons present
in the laser mode. We immediately see that if |∆| � ω0, these levels group
by multiplicities of dimension 2 (cf. figure 2):

|g,N〉 : energy N~ω, |e,N − 1〉 : energy (N − 1)~ω + ~ω0, (26)

the difference between these two levels being ~|∆|. In the RWA approxi-
mation, the atom-laser interaction (25) is written in this picture

V̂ rwa
e.d. =

~Ω1(r)

2

[
σ̂+â+ σ̂−â

†] (27)

where â and â† destroy and create a photon in the laser mode, whose pro-
file is described by Ω1(r). This quantity Ω1 can be understood as the Rabi

12
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|e, mz = �1i |e, mz = 0i |e, mz = +1i

|gi
Jg = 0

Je = 1

� = ! � !0 < 0 � = ! � !0 > 0

Vdip

Vdip

~|�| ~|�|

~!0

|g, Ni

|e, N � 1i

|e, N � 1i

|g, Ni
|1(N)i |1(N)i

|2(N)i |2(N)i

Figure 2. Levels of the dressed atom, without and with a coupling between the
atom and the electromagnetic field, and for the two possible signs of the detuning
∆. The dipole potential Vdip is interpreted as the light shift of the ground state |g〉.
This shift occurs downwards or upwards, depending whether the detuning ∆ is
negative or positive.

frequency at position r when there is only one photon in the considered
mode to excite the atom.

The interaction (27) couples only the two levels of the same multiplicity
of the dressed atom:

〈e,N − 1|V̂ rwa
e.d. |g,N〉 =

~Ω1(r)

2

√
N. (28)

At this stage, the value of Ω1 and the number of photons N are undeter-
mined. When we consider a problem of cavity electrodynamics, the value
of Ω1 is imposed by the volume of the cavity itself. For an atom in free
space, the only thing that matters is the value of the product Ω1

√
N which

is taken to be equal to the Rabi frequency Ω. To simplify the notations, we
will assume that the phase of the laser ϕ(r) is zero. This phase anyway
does not appear in the expression of the energy of the dressed states [see
for example (34)] and we will reinsert it in a natural way in the expression
of the dressed states (38).

It is then very simple to find the eigenenergies for an atom located at
position r. The Hamiltonian for the multiplicity {|g,N〉, |e,N − 1〉} is writ-
ten

Ĥ =
~
2

(
∆ Ω
Ω −∆

)
+ εN (29)

where we have set

εN =

(
N − 1

2

)
~ω +

1

2
~ω0. (30)

It is useful to introduce the mixing angle θ defined by

cos[2θ(r)] =
∆√

∆2 + Ω2(r)
, sin[2θ(r)] =

Ω(r)√
∆2 + Ω2(r)

, (31)

to write the Hamiltonian in the form:

Ĥ =
~
2

√
∆2 + Ω2

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
+ εN . (32)

The eigenvectors are written

|1(N)〉 = cos θ |g,N〉+ sin θ |e,N − 1〉
|2(N)〉 = sin θ |g,N〉 − cos θ |e,N − 1〉 (33)

and the corresponding energies are

EN,± = εN ±
~
2

√
∆2 + Ω2, (34)

with sign + for |1(N)〉 and − for |2(N)〉.
In the perturbative limit that we are considering here, the inequality

|Ω| � |∆| holds and we obtain the approximate expression for the energy
levels that ”repel each other” due to the coupling:

N~ω +
~Ω2

4∆
, (N − 1)~ω + ~ω0 −

~Ω2

4∆
. (35)

The first energy corresponds to the level stemming from |g,N〉, which is
the populated level that interests us here. The second energy corresponds
to the level from |e,N − 1〉 which has a negligible population. The dipole
potential ~Ω2/4∆ [cf. (18)] can therefore be interpreted as an energy shift
of the state |g, n〉 due to the coupling with the laser. This shift can be
downward or upward, depending whether the "repelling" level |e,N − 1〉
is above or below |g,N〉 (cf. figure 2).

13



CHAPTER I. THE DIPOLAR POTENTIAL § 3. The case of alkali-metal atoms

For ∆ > 0, the angle 2θ defined in (31) can be chosen close to 0, and the
eigenstate linked to g is written

∆ > 0 : |g,N〉 = |1(N)〉 ≈ |g,N〉+
Ω

2∆
|e,N − 1〉 (36)

For ∆ < 0, the angle 2θ can be chosen close to π, so that

∆ < 0 : |g,N〉 = |2(N)〉 ≈ |g,N〉 − Ω

2|∆| |e,N − 1〉. (37)

In both cases we can reintroduce the explicit position dependence and rein-
sert, if relevant, the phase ϕ(r) of the laser [cf. (25)], by defining:

|g,N〉(r) ≈ |g,N〉+
Ω(r)

2∆
eiϕ(r) |e,N − 1〉. (38)

The expression (38) is very convenient because it allows one to compute
the steady-state values of the matrix elements of the density operator at
order two in Ω. Indeed at this order, one can show that the steady-state
population of the other dressed state of (33) is zero (it is at least of order
4 in Ω/∆, see for example Dalibard & Cohen-Tannoudji (1985)). We can
therefore deduce from (38) the matrix element ρeg already given in (14)

ρeg = 〈e,N − 1|
(
|g,N〉 〈g,N |

)
|g,N〉 =

Ω eiϕ

2∆
, (39)

the difference with (14) being due to the RWA approximation. In addition,
the explicit time evolution e−iωt of (14) is here implicitly contained in the
difference between the numbers of photons on the left and the right. We
also deduce from (38) the population Πe of the excited state at this order of
the calculation

Πe = 〈e,N − 1|
(
|g,N〉 〈g,N |

)
|e,N − 1〉 =

Ω2

4∆2
, (40)

an expression that allows one to estimate the rate of spontaneous emission
γ = ΓΠe.

3 The case of alkali-metal atoms

The model of a Jg = 0 ↔ Je = 1 transition applies well to alkaline earth
atoms (at least if their nuclear spin is zero), but it cannot be used as such

Jg = 1/2

Je = 1/2

Je = 3/2

D1D2

np1/2

np3/2

ns

Figure 3. Modelling the resonant transition of an alkali-metal atom. The effect of
the hyperfine interaction with the nuclear spin and the degeneracy linked to this
spin have been neglected.

for alkali atoms. Because of their practical relevance, we will give some
indications on how the previous results can be adapted. To simplify the
notations, we will use here the rotating wave approximation.

We first consider the case of a simplified alkali atom for which the nu-
clear spin is zero (figure 3). The ground state, a ns state, is then doubly
degenerate because of the spin of the valence electron, and its angular mo-
mentum is Jg = 1/2. The resonant transition couples it to the np state
which, due to the fine structure interaction, is split into two sublevels of
angular momentum 1/2 and 3/2 noted np1/2 and np3/2. The two reso-
nances ns ↔ np1/2 and ns ↔ np3/2 correspond to the D1 and D2 lines of
angular frequency ω1 and ω2.

3-1 Linearly polarized light

If the polarization of the light beam is linear, the symmetry of the problem
implies that the light shift of the two sublevels |g,mz = ±1/2〉 are identi-
cal2. In this case, the light-shift operator is proportional to the identity in
the subspace |g,m = ±1/2〉. Using the algebra of the angular momentum
operators and the Clebsch–Gordan coefficients shown in figure 4, one can

2To see this easily, it is better to choose as before the quantization axis along the direction
of the polarization.
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Figure 4. Amplitude of the couplings for the two transitions D1 and D2 of the
resonance line of an alkali-metal atom, starting from the ground statemz = +1/2.
The spin of the nucleus is assumed to be zero. The amplitudes of the couplings from
the ground state mz = −1/2 have values symmetrical to the ones shown here.

prove that this light shift is

V̂ =
~Ω2

4∆
1̂ with

1

∆
=

1

3

(
1

∆1
+

2

∆2

)
, (41)

where ∆1 = ω − ω1 and ∆2 = ω − ω2 are the detunings of the laser with
respect to the resonant D1 and D2 transitions. It is therefore sufficient to
take a weighted average of the two detunings to recover the result of the
0 ↔ 1 transition. This result remains valid when the hyperfine structure
of the atom is taken into account, provided that the detunings ∆1 and ∆2

are large compared to the hyperfine structure of the excited levels np1/2

and np3/2, which will in practice always be the case during the rest of this
lecture.

When ∆1,2 is large compared to the fine structure splitting ω2−ω1, then
∆1 ≈ ∆2 and the fine structure has no particular effect. On the other hand,
when the detuning is on the same order as the fine structure splitting, the
result is notably modified. In particular, we see that there is a particular
value of ∆, such that ∆2 = −2∆1 for which V̂ cancels. For a rubidium
atom, the wavelengths of the D1 and D2 lines are λ1 = 795 nm and λ2 =
780 nm; this particular detuning is thus obtained by choosing a laser of
wavelength λ = 790 nm. For this value of λ, the dipole potential felt by
the atoms is null; the atoms continue to see the light beam and to scatter
photons (it is not a dark state), but they do not feel any dipole force.

3-2 Light with an arbitrary polarization

The situation becomes more complicated if the polarization of the laser is
not linear, but elliptical or circular. In this case, the light-shift operator is no
longer proportional to the identity in the subspace |g,m = ±1/2〉, which
allows to generate potentials that depend on the spin S associated to this
level. Let us write the laser field in the form

E(r, t) =
1

2
ε E(r) ei(ωt−ϕ) + c.c. (42)

where the polarization vector ε is now complex. Let us introduce the Rabi
frequency vector Ω whose three complex components Ωα, α = x, y, z char-
acterize the atom-laser coupling

~Ωα = −d0E(r)(ε · uα) (43)

in the Cartesian basis uα. We can also introduce the coordinates of the
vector Ω in the standard basis

Ω± =
1√
2

(∓Ωx + iΩy) , Ω0 = Ωz. (44)

From this vector Ω, we can write the light-shift operator in the form

V̂ =
~|Ω|2
4∆

1̂ +B · Ŝ, (45)

where the effective magnetic field is

B =
i

6

(
1

∆2
− 1

∆1

)
Ω×Ω∗. (46)

The light-shift operator (45) thus involves both a scalar part and a vector
part.

The origin of this result is clear; let us consider for example a circular
light polarization σ− close to the D1 transition (we here forget the D2 tran-
sition). One can immediately see on figure 4 (left) that the ground state
|g,mz = −1/2〉 is not coupled to the light, while the level |g,mz = +1/2〉
is coupled to the light with a Clebsch–Gordan coefficient equal to −

√
2/3.

The differential light shift between these two levels is described by this ef-
fective magnetic fieldB. More precisely, the combination of the scalar term
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and the vector term of (45) accounts for the fact that |g,mz = −1/2〉 feels
no potential while |g,mz = +1/2〉 is displaced twice as much as if the light
had a linear polarization of the same intensity.

The vector part of the light shift (Cohen-Tannoudji & Dupont-Roc 1972;
Deutsch & Jessen 1998), proportional to B, is comparable to, and possibly
larger than the scalar part if the detuning is chosen of the same order as
the fine structure. In particular, this vector part remains non-zero when
we choose the detuning ∆2 = −2∆1 that cancels the scalar part. On the
other hand, this vector part decreases as 1/∆2 if we choose the detuning
to be large compared to the fine structure. In this case, it is thus negligi-
ble compared to the scalar part, which only decreases as 1/∆. This last
point makes sense: if the detuning is large compared to the fine structure,
the latter is negligible during the characteristic time ∆−1 associated to the
atom-light interaction. If we can neglect the fine structure, we recover the
Jg = 0 ↔ Je = 1 transition that we have studied in the first part, since
the electronic spin plays no role in the coupling Hamiltonian between the
atom and the light. The degeneracy between the two spin sublevels ±1/2
therefore cannot be lifted by the atom-light interaction.

Let us look at two special cases of the general expression (46):

• For a linear polarization, for example Ω = Ωuz , then the cross product
uz×uz is zero, as is the effective magnetic field. The vector part of the
light-shift operator vanishes, as mentioned above.

• For a circular polarization, for example a light beam propagating
along the z axis such that Ω = Ω(ux + iuy)/

√
2, then the vector prod-

uct (ux + iuy) × (ux − iuy) = −2iuz and the effective magnetic field
is aligned along z:

B =
|Ω|2

6

(
1

∆2
− 1

∆1

)
uz. (47)

Note that unlike a magnetic field generated with external coils, this effec-
tive B can have spatial variations on the scale of the optical wavelength:
this happens for example for a standing wave resulting from the overlap
of two running waves with opposite directions and non-parallel linear po-
larizations.

We now only need to add the effect of the hyperfine structure of the
ground state. If the nucleus has a spin I , this manifold is split into two
sublevels of angular momentum F = I ± 1/2. The Wigner-Eckart theorem
indicates that the light-shift operator can be written in this case

V̂ =
~|Ω|2
4∆

1̂ +B′ · F̂ , (48)

with, for the level F = I ± 1/2:

B′ = ± B

2I + 1
. (49)

The effective magnetic fields are thus opposite for the two hyperfine lev-
els. The previous remarks on the relative values of the scalar and vector
components of this light-shift operator are unchanged.

4 Quantum approach

The semi-classical approach has provided us with the value of the dipole
potential, but it is useful to validate this result with an approach that treats
the motion of the atom in a quantum manner. Most applications of opti-
cal lattices concerns aspects that are directly related to the quantum nature
of this motion: energy bands, geometric phases, topological states of mat-
ter, ... Fortunately, the structure of the semi-classical treatment that has
allowed us to compute the dipole potential can be transposed almost word
for word; we will only have to add a few elements to obtain the fully quan-
tum Hamiltonian describing the motion of the center-of-mass. In order
to minimize the technical aspects of this study, we will restrict ourselves to
the case of a two-level atom, as considered in § 1-1. The case of a multilevel
atom is treated in detail by Gerbier & Dalibard (2010).

4-1 Slow and fast variables

The problem we deal with consists in eliminating fast variables to obtain
the dynamics of slow ones. The fast variables relate to the internal dy-
namics of the atom, the slow variables to the center-of-mass motion. The
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evolution of all these variables is described by the Hamiltonian

Ĥ =
p̂2

2m
+ V̂e.d. + ~ω0|e〉〈e|, (50)

where the atom-light coupling in the electric dipole approximation was
given in (2). We have to add to the reversible evolution described by this
Hamiltonian the irreversible evolution due to spontaneous emission pro-
cesses. This evolution has been given in (7) for the matrix elements of the
density operator between |g〉 and |e〉. We will not need here the explicit
expression for the terms describing the evolution of ρ̂ee and ρ̂gg ; they are
given in Gerbier & Dalibard (2010).

Let us consider the evolution of the total density operator of the atom
ρ̂, which contains both the internal and external degrees of freedom. Let us
first consider the evolution of ρ̂eg = 〈e|ρ̂|g〉 which is an operator with re-
spect to the external variables only. The corresponding evolution equation
is deduced from the one written in the semi-classical picture (10):

dρ̂eg
dt

=
1

i~

[
p̂2

2m
, ρ̂eg

]
− (iω0 +

Γ

2
)ρ̂eg − iΩ cos(ωt− ϕ) (ρ̂gg − ρ̂ee). (51)

We will make two approximations at this stage, similar to what we did in
the semi-classical case. On the one hand we will neglect the fraction of
atoms in the excited state, and thus omit the ρ̂ee term in the above equa-
tion. On the other hand we will assume that the evolution of ρ̂eg due to
internal variables, with characteristic frequencies ∆ and Γ, is much faster
than the one due to external variables, coming for example from the kinetic
energy Hamiltonian p̂2/2m. Under these conditions, one can (i) omit the
first commutator of the right-hand side of (51), (ii) neglect the variation of
ρ̂gg over a time ∼ Γ−1, (iii) formally integrate (51) in the limit |∆| � Γ to
finally obtain, in a very similar way to (14) :

ρ̂eg(t) =
Ω

2

[
e−i(ωt−ϕ)

ω − ω0
− ei(ωt−ϕ)

ω + ω0

]
ρ̂gg(t). (52)

This result means that the density operators corresponding to the ”optical
coherences” ρeg and ρge follow adiabatically the much slower evolution of
the density operator restricted to the ground state |g〉.

4-2 Effective Hamiltonian for the center-of-mass

The result (52) is then transferred into the evolution equation of ρ̂gg to ob-
tain:

dρ̂gg
dt

=
dρ̂gg
dt

∣∣∣∣
sp.

+
1

i~

[
p̂2

2m
, ρ̂gg

]
± iΩ cos(ωt− ϕ) (ρ̂eg − ρ̂ge) ,

≈ 1

i~

[
p̂2

2m
+ V (r̂), ρ̂gg

]
. (53)

Note that we restricted here to the lowest non-zero order in 1/∆ and omit-
ted the terms oscillating as e±2iωt, as we did in the semi-classical approx-
imation. Note also that the term describing the evolution of ρgg due to
spontaneous emission is ∝ Γρee; it does not contribute at this order of the
calculation and is only relevant at a higher order in Γ/∆ [see e.g. Gerbier
& Dalibard (2010)].

The result (53) corresponds to what we are looking for. This Hamil-
tonian evolution equation describes the motion of a particle of mass m
without internal structure in the dipole potential V (r) given in (18). The
Hamiltonian

Ĥ =
p̂2

2m
+ V (r̂) (54)

will serve as a starting point for the following lectures, possibly with the
modifications related to electronic and nuclear spins mentioned in 3.

5 Red vs. blue lattices

5-1 The ”paradox” of Gordon & Ashkin (1980)

In this set of lectures, we will consider traps made of light, in particular pe-
riodic optical lattices, in a regime where spontaneous emission phenomena
are negligible. In this context, spontaneous emission is indeed a nuisance3:
its random character is a source of heating for the atoms, which must be

3The situation is very different for the original use of optical lattices, where optimal ways
to cool an assembly of atoms were investigated.
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reduced as much as possible. This non-dissipative regime is obtained by
minimizing the excited state population (40):

Πe =
Ω2

4∆2
, (55)

for a given value of the optical potential

V =
~Ω2

4∆
. (56)

This leads to the choice of the largest possible detuning and intensity:
when keeping Ω2/∆ constant, the quantity Ω2/∆2 → 0 if Ω,∆ become
very large.

More precisely, consider an optical lattice generated by a one-
dimensional standing wave, Ω(x) = Ω0 sin(kx), leading to the potential

V (x) = V0 sin2 kx, V0 =
~Ω2

0

4∆
. (57)

The spontaneous emission rate can be minimized by a proper choice of the
sign of the detuning ∆, for a given lattice depth V0. For ∆ > 0 (blue),
the atoms are trapped in the vicinity of the nodes of the standing wave
that forms the lattice. On the contrary, for ∆ < 0 (red), the potential is
minimal at the antinodes of the standing wave. One could naively think
that, regarding the heating due to spontaneous emission phenomena, the
situation is more favorable for a blue detuning than for a red one, since the
intensity is smaller at the location of the atoms.

This naive reasoning was invalidated by Gordon & Ashkin (1980), who
calculated the momentum diffusion coefficient of an atom in a standing
wave. They showed that at a given V0, this diffusion coefficient is the
same at all points of the standing wave and does not depend on the sign
of ∆. However, they did not give any physical interpretation of this re-
sult which thus remained somewhat mysterious. It has been analyzed by
Cohen-Tannoudji (1992), then taken up recently in a more general frame-
work by Gerbier & Dalibard (2010). The transposition of this problem to
the case of atoms in cavities has been studied by Murr, Maunz, et al. (2006).

In the appendix of this chapter, we summarize the original argument
of Gordon & Ashkin (1980) and its transposition to the formalism devel-
oped in paragraph 4, including in particular the approach of Gerbier &

Dalibard (2010). In the following, we explain the surprising result of Gor-
don & Ashkin (1980) by using the dressed atom formalism.

5-2 Raman transitions in a deep lattice

To explain the paradoxical result of Gordon & Ashkin (1980), we consider
a lattice with a large depth V0 so that the motion of an atom is restricted
to the bottom of a potential well; the tunnelling to neighbouring wells is
assumed to be negligible.

In the case of a blue-detuned lattice, we take as in (57) a 1D lattice with
a Rabi frequency Ω(x) = Ω0 sin(kx) and we assume that the extent of the
spatial motion of the atom is small compared to k−1 = λ/(2π) so that we
can approximate sin(kx) ≈ kx. The atom then undergoes a harmonic mo-
tion in the potential

V (x) ≈ ~Ω2
0k

2

4∆
x2 =

1

2
mω2x2, with ω =

√
~Ω2

0k
2

2m∆
. (58)

The eigenstates describing the motion in this potential are the Hermite
functions Hn(x/aho), where the characteristic size of the ground state is

aho =
√
~/mω, (59)

and the corresponding energies are (n+ 1/2)~ω.

In the case of a red-detuned lattice, we will take Ω = Ω0 cos(kx) to
keep a well centered on x = 0. The expressions for the frequency ω at the
bottom of the well, the size of the ground state aho and the energy spectrum
(n+ 1/2)~ω are unchanged (up to the change ∆→ −∆).

Spontaneous emission phenomena will cause transitions between the
energy levels of this well by inducing Raman transitions (figure 5): the
atom, initially in the electronic ground state g and a vibrational state n
for its center-of-mass, can be transfered to an excited electronic state e by
absorbing a photon from the laser beam creating the standing wave, and
then fall back into the electronic ground state by emitting a fluorescence
photon. During this second step, the atom can reach another vibrational
state n′: the Raman scattering thus induces a random walk for the state of
the center-of-mass, which corresponds to heating.
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Figure 5. Left: Raman transition that can cause a change in the vibrational state
n of the atom. Right: the same transitions in the dressed atom picture correspond
to a ”radiative cascade”.

The formalism of the dressed atom is very convenient to visualize this
random walk. The Raman transition we have just described corresponds
to a transition from the {|g,N + 1〉, |e,N〉} multiplicity to the next lower
multiplicity {|g,N〉, |e,N − 1〉} (figure 5). More precisely, at the lowest
non-zero order in Ω, the only significant transition is

|g,N + 1〉 −→ |g,N〉. (60)

The state |g,N + 1〉 has a non-zero (weak) overlap with |e,N〉 and is there-
fore unstable from the point of view of spontaneous emission. When de-
exciting, it emits a photon and falls to the state |g,N〉, which itself has a
non-zero (strong) overlap with |g,N〉.

5-3 The transition rates n→ n′

We now evaluate the rates of n → n′ transitions using the Fermi Golden
Rule (FGR). The coupling V̂vac between the atom and the empty modes of
the electromagnetic field (here considered in a 1D model) responsible for
the spontaneous emission is written

V̂vac =
∑

k′

Vk′ eik′x â†k′ σ̂− + h.c. (61)

where â†k′ creates a photon of wave vector k′ along the x axis. The natural
width of the excited atomic state |e〉 is in this model

Γ =
2π

~

∣∣∣〈g ; k′|V̂vac|e ; vac〉
∣∣∣
2

ρ(~ck′ = ~ωA), (62)

where ρ(E) represents the density of states for a final energy ~c |k′| equal
to the initial energy of an excited atom ~ωA (i.e. k′ = ±ωA/c).

The initial state corresponds to the vacuum state of the radiation and
the atom in the state |Ψ(N+1)

n 〉, which represents the n-th vibrational level,
and the internal dressed state |g,N + 1〉:

〈x|Ψ(N+1)
n 〉 = Hn(x) {cos[θ(x)] |g,N + 1〉 + sin[θ(x)] |e,N〉} . (63)

The final state corresponds to an emitted photon k′ and the atomic state
|Ψ(N)
n′ 〉. The rate γn→n′ we are looking for is then written using the FGR

γnn′(k′) ∝ |〈Ψ(N)
n′ ; k′|eik′x â†k′ σ̂−|Ψ(N+1)

n ; vac〉|2

∝ |〈Ψ(N)
n′ |eik′x σ̂−|Ψ(N+1)

n 〉|2 (64)

By transferring the expression (63) in the matrix element to be calculated,
we get to

γn→n′(k′) ∝
∣∣∣∣
∫
Hn′(x) Hn(x) eik′x sin[θ(x)] cos[θ(x)] dx

∣∣∣∣
2

∝
∣∣∣∣

1

2∆

∫
Hn′(x) Hn(x) eik′x Ω(x) dx

∣∣∣∣
2

, (65)

where we have used the approximation sin(2θ) ≈ Ω/∆ [cf. (31)]. With
this result, we are now able to compare what happens for an atom trapped
at the vicinity of a node (blue lattice) or an antinode (red lattice) of the
standing wave.

Blue lattice. Assuming a spatial extension of the atom wavefunction
small compared to 1/k, we can make the approximation Ω(x) ≈ Ω0 kx,
eik′x ≈ 1 in the integral (65). The latter then simply reduced to

γn→n′ ∝ Ω2
0

4∆2
|〈Hn′ |kx̂|Hn〉|2 , (66)
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or, by restoring the so-far-omitted proportionality coefficients:

γn→n′ =
γ0

2
(kaho)2 [(n+ 1) δn′,n+1 + n δn′,n−1] , (67)

where we have introduced the ”typical” diffusion rate γ0 for a Rabi fre-
quency Ω0:

γ0 = Γ
Ω2

0

4∆2
. (68)

The expression (67) calls for two important remarks.

• The localization of the atom in the vicinity of a node of the standing
wave leads to a strong reduction of the photon emission rate com-
pared to the typical rate γ0, by a factor (kaho)2 = ~k2/(mω) � 1 for
the lowest vibrational level n = 0. This effect logically follows the fact
that the atom experiences a reduced light intensity along the extent of
its wave function, which is on the order of aho.

• We see on (67) that the emission of a photon is necessarily accompa-
nied by a level change of one unit, with a rate ∝ (n+ 1) for the transi-
tion n→ n+1, corresponding to the energy gain ~ω, and a rate∝ n for
the transition n → n − 1, corresponding to the energy loss ~ω (figure
6). The energy gain per unit of time for an atom prepared in the n-th
band is thus:

dĒ

dt
=
γ0

2
(kaho)2 [(n+ 1)~ω − n~ω] = γ0Er (69)

where we have introduced the recoil energy

Er =
~2k2

2m
. (70)

Red lattice. In this case, to evaluate the integral (65), we can make the
approximation that the Rabi frequency is constant along the extent of the
atomic wave function: Ω(x) = Ω0 cos(kx) ≈ Ω0. We develop the exponen-
tial eik′x at first order in x and we obtain

γn→n′(k′) ∝ Ω2
0

4∆2
|〈Hn′ |1 + ik′x̂|Hn〉|2 (71)

|g, N + 1i

|g, Ni

� < 0 � > 0

Figure 6. The main transitions in the dressed atom picture (Lamb–Dicke regime).
For a laser detuned on the red side of the atomic transition (∆ < 0), the fluores-
cence rate is high: most of the photons are emitted on the recoil-less line n→ n and
the rest corresponds to n→ n± 1 transitions. For a blue-detuned beam (∆ > 0),
the photons are only emitted on the n→ n± 1 lines. The heating rate is the same
in both cases, for fixed Ω0 and |∆|.

leading to

γn→n′ = γ0

{
δn,n′ +

(kaho)2

2
[(n+ 1) δn′,n+1 + n δn′,n−1]

}
(72)

where we have taken k′ ≈ k. The dominant term is this time γ0 δn,n′ , i.e.
a spontaneous emission of photons without change of vibration level (fig-
ure 6). The corresponding rate is high, as expected at the antinodes of a
standing wave, but this process does not correspond to a change in the en-
ergy of the atom: this photon emission without a recoil is the equivalent of
the Mossbauer effect in nuclear physics, and is frequently encountered in
trapped ion physics (Lamb-Dicke effect). The energy change comes from
the second term of (72) which involves jumps from a vibrational state n to
a neighboring state n ± 1. These jumps are much rarer than the previous
ones, and they lead to an energy gain per unit time identical to the one
found for a blue lattice [equation (69)].

To conclude, we recover with this simple analysis the result of Gor-
don & Ashkin (1980): the heating rate is indeed the same at the nodes and
at the antinodes of a standing wave. However, the mechanisms leading
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to this rate are very different. For a blue lattice and atoms located at the
nodes, the photon scattering rate is very small but each photon emission
is accompanied by an energy change ~ω. For a red lattice and atoms local-
ized at the antinodes, the spontaneous emission rate is much higher, but
the average energy gained during a spontaneous emission process is much
lower because most of the emissions are recoil-free.

Here, we limited ourselves to the case where the tunnelling effect be-
tween the different wells of the lattice is negligible. When this tunnelling
becomes significant, the discrete vibrational levels n are replaced by en-
ergy bands and a significant difference between the blue and red lattices
may appear. In addition, one should consider the decoherence associated
to the spontaneous emission processes: each process localizes the atom
with a resolution of λ. A wave packet initially extending over several sites
will thus lose its coherence much faster in the case of a red lattice than in
the case of a blue lattice, even if the heating rates dĒ/dt are similar. This
difference is studied in detail by Gerbier & Dalibard (2010).

6 Appendix: the Gordon-Ashkin paradox

We start with the Hamiltonian of a two-level atom with a resonance fre-
quency ωA = (Ee − Eg)/~, illuminated by a monochromatic laser field of
frequency ωL, the strength of the coupling being characterized by the (pos-
sibly complex) Rabi frequency Ω(x). In the framework of the rotating wave
approximation, this Hamiltonian is written

ĤAL =
p̂2

2m
− ~∆P̂e +

~Ω(x̂)

2
σ̂+ +

~Ω∗(x̂)

2
σ̂− (73)

where P̂α denotes the projector on the state |α〉 (α = |g〉, |e〉), and where
σ̂± are defined in (3). In addition to the Hamiltonian dynamics described
by Ĥ , we take into account the irreversible evolution due to spontaneous
emission phenomena, characterized by the natural width Γ of the excited
state |e〉.

The reasoning of Gordon & Ashkin (1980) starts from the limit of an
infinite mass m, so that the atom has zero velocity and remains stationary
at position x. The momentum can however be non-zero, and we define the

average force f(x) as
f(x) = 〈F̂ (x)〉 (74)

and the diffusion coefficient in momentum space Dp(x)

Dp(x) =

∫ ∞

0

[
1

2
〈F̂ (x, 0)F̂ (x, t) + F̂ (x, t)F̂ (x, 0)〉 −

(
〈F̂ (x)〉

)2
]
. (75)

We have introduced here the force operator:

F̂ (x) = −dĤ

dx
= − d

dx

(
~Ω(x)

2

)
σ̂+ + c.c. (76)

The average values of (74-75) are calculated assuming steady state for the
internal variables of the atom, taking into account the dissipation induced
by the spontaneous emission phenomena. In the definition (75), the quan-
tity F (x̂, t) represents the force operator in the Heisenberg representation.

The explicit calculation of the diffusion coefficient is rather technical,
and requires the use of the quantum regression theorem. We will only give
here the result of Gordon & Ashkin (1980), which we will derive in the next
paragraph with a slightly easier method. Let us concentrate on the case of
a standing wave

Ω(x) = Ω0 sin(kx), Ω0 real positive, (77)

and on the limit of large detunings

Ω0 � |∆|. (78)

The average force is the dipole force

f(x) = −dV (x)

dx
, V (x) = −Ω2

0

4∆
sin2(kx). (79)

As for the diffusion coefficient, it is expressed as4

Dp = ~2k2Γ
Ω2

0

8∆2
. (80)

4We have slightly adapted the result of Gordon & Ashkin (1980) to the case where the
photons emitted spontaneously by the atom propagate along the x axis.
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This diffusion coefficient is independent of the position x considered: no
matter whether the atom is placed around a node of the standing wave
(x = 0, mod π) or around an antinode (x = π/2, mod π), the momentum
diffusion and thus the heating related to the spontaneous emission pro-
cesses are the same!

We now switch to a quantum description of the center-of-mass motion
and we follow the approach proposed by Gerbier & Dalibard (2010) to re-
cover the result of Gordon & Ashkin (1980). We found in § 4 that, when the
heating related to spontaneous emission processes can be neglected, the
dynamics of the atom is described by the Hamiltonian

Ĥ =
p̂2

2m
+ V (x̂), V (x) = V0 sin2(kx), V0 =

Ω2
0

4∆
. (81)

We now calculate the time evolution of the average energy

Ē(t) = 〈H〉t = Tr(Ĥρ(t)), (82)

where ρ̂(t) represents the density operator of the atom, acting in the space
of both internal and external variables. In the absence of spontaneous emis-
sion phenomena, this mean value would be constant, but this is not the
case if these phenomena are taken into account.

We start with the equation of motion for ρ̂:

dρ̂

dt
=

dρ̂

dt

∣∣∣∣
sp.

+
1

i~
[ĤAL, ρ̂], (83)

where the first term of this master equation describes the evolution due to
the spontaneous emission. From this we obtain

dĒ(t)

dt
= Tr

(
Ĥ

dρ̂

dt

∣∣∣∣
sp.

)
+

1

i~
〈[Ĥ, ĤAL]〉t. (84)

Evolution due to spontaneous emission. In (83) the evolution term re-
lated to spontaneous emission is written as

dρ̂

dt

∣∣∣∣
sp.

= −Γ

2

(
P̂eρ̂+ ρ̂P̂e

)

+Γ

∫
N (k′)σ̂−eik′x̂ρ̂ e−ik′x̂σ̂+ dk′. (85)

The first line of this equation gives the decay of the matrix elements of ρ̂
that involve the excited state:

dρ̂ee
dt

∣∣∣∣
sp.

= −Γρ̂ee,
ρ̂eg

dt

∣∣∣∣
sp.

= −Γ

2
ρeg,

dρ̂ge
dt

∣∣∣∣
sp.

= −Γ

2
ρ̂ge, (86)

and the second line describes the population growth of the ground state
ρ̂gg due to the decay of the excited state. Note that these matrix elements
ρ̂αβ (with α, β = e, g) remain operators with respect to the external vari-
ables x and p describing the motion of the center-of-mass of the atom. The
function N (k′) describes the distribution of the projection on the x axis of
the wave vector of the spontaneously emitted photon. Since we take here a
1D model, we assume that these photons propagate along the x axis, with
an equal probability to be emitted in the positive and in the negative direc-
tion, which amounts to take

N (k′) =
1

2
[δ(k − k′) + δ(k + k′)] . (87)

Let us now evaluate the contribution of the first term of (84). The Hamil-
tonian Ĥ which intervenes in this term has itself two contributions, p̂2/2m
and V (x̂). Let us start with p̂2/2m and write

Tr

(
p̂2

2m

dρ̂

dt

∣∣∣∣
sp.

)
=

∫
p2

2m

(
〈p| dρ̂ee

dt

∣∣∣∣
sp.

|p〉+ 〈p| dρ̂gg
dt

∣∣∣∣
sp.

|p〉
)

dp. (88)

We use (85- 87) and obtain

〈p| dρ̂gg
dt

∣∣∣∣
sp.

|p〉 =
Γ

2
(〈p+ ~k|ρ̂ee|p+ ~k〉+ 〈p− ~k|ρ̂ee|p− ~k〉) . (89)

By transferring this result into (88), we get to

Tr

(
p̂2

2m

dρ̂

dt

∣∣∣∣
sp.

)
= − Γ

2m

∫
p2〈p|ρ̂ee|p〉dp

+
Γ

4m

∫ [
(p+ ~k)2 + (p− ~k)2

]
〈p|ρee|p〉 dp

= ΓΠe
~2k2

2m
, (90)
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where Πe represents the total population of the excited state:

Πe =

∫
〈p|ρ̂ee|p〉 dp. (91)

One can check with a similar calculation that the contribution of V (x) (via
Ĥ) to the first term of (84) is null. We thus arrive at

Tr

(
Ĥ

dρ̂

dt

∣∣∣∣
sp.

)
= ΓΠeEr, (92)

an expression that can easily be interpreted: ΓΠe corresponds to the photon
scattering rate by the atom. Each spontaneously emitted photon gives a
random kick of ±~k to the atom, thus an average energy increase Er =
~2k2/2m. At order two in Rabi frequency, the value of Πe is [cf. (40)]

Πe ≈
〈Ω∗(x̂)Ω(x̂)〉

4∆2
, (93)

which gives for the standing wave

Tr

(
Ĥ

dρ̂

dt

∣∣∣∣
sp.

)
= ΓEr

Ω2
0

4∆2
〈sin2(kx)〉. (94)

For an atom located at the vicinity of a node of the standing wave, sin2(kx)
goes to 0, the photon scattering rate also goes to 0, as does the correspond-
ing energy increase.

Second term of (84). The commutator [Ĥ, ĤAL] is easily calculated:

1

i~
[Ĥ, ĤAL] = − ~kΩ0

4m
(σ̂+ + σ̂−) (p̂ cos(kx̂) + cos(kx̂)p̂)

+
~kΩ2

0

8m∆
(p̂ sin(2kx̂) + sin(2kx̂)p̂) . (95)

We are looking for a result at order 2 in Ω0/∆. We then start by evaluating
the matrix elements of σ̂±ρ̂ at the desired order to get the average value of
the first row of (95). The master equation (83) gives

dρ̂eg
dt
≈
(

i∆− Γ

2

)
ρ̂eg − i

Ω(x̂)

2
ρ̂gg, (96)

where we have neglected the contribution of ρ̂ee. In the (realistic) hypoth-
esis where the characteristic time of evolution of the external variables is
long compared to Γ−1, we can consider that the internal dynamics of the
atom follows adiabatically the external dynamics and solve (10) as5

ρ̂eg =
Ω(x̂)

2∆ + iΓ
ρ̂gg, and similarly ρ̂ge = ρ̂gg

Ω∗(x̂)

2∆− iΓ
. (99)

To evaluate the first line of (95), we start by taking the trace on the internal
variables. At the desired order in Ω0/∆, we find:

Trint [(σ̂+ + σ̂−)ρ̂] =
Ω0

2∆
[sin(kx̂)ρ̂gg + ρ̂gg sin(kx̂)]

+ i
ΓΩ0

4 ∆2
[ρ̂gg sin(kx̂)− sin(kx̂)ρ̂gg] . (100)

Let us finally transfer this result into the trace of (95). We see that the
contribution of the second line of (95) exactly cancels the one coming from
the first line of (100). Finally, there remains only the contribution coming
from the second line of (100) which after a simple calculation gives

1

i~
〈[Ĥ, ĤAL]〉t = ΓEr

Ω2
0

4∆2
〈cos2(kx)〉. (101)

This term is all the more important as the atom is located at the vicinity of
the nodes of the standing wave.

In total, when we sum the two contributions (94) and (101), we get the
result

dĒ

dt
= ΓEr

Ω2
0

4∆2
, (102)

which is independent of the spatial state of the atom in the standing wave
and also independent of the sign of the detuning of this wave: this is the
result initially found by Gordon & Ashkin (1980).

5We can then push the calculation one step further to obtain the expression of ρ̂ee at the
lowest order. Starting from

dρ̂ee

dt
= −Γρ̂ee +

i

2
ρ̂egΩ∗(x̂)−

i

2
Ω(x̂)ρ̂ge, (97)

and using (99), we obtain the ”steady-state” value for the internal variables

ρ̂ee =
1

4∆2
Ω(x̂) ρ̂gg Ω∗(x̂), (98)

which allows in particular to recover (93).
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Chapter II

The basics of optical lattices

The goal of this chapter is to present the basic concepts of optical lattice
physics. We start by recalling Bloch’s theorem, which is the central tool
to address the motion of individual particles in a periodic potential V (r).
We explain how the fundamental concepts of Bloch functions and energy
bands emerge, and present a series of explicit results for these functions
and bands in the case of a 1D sinusoidal lattice, V (x) = V0 sin2(kx). We
then focus on the quantities one can access by ramping up and down the
potential V (r), an operation which is impossible in a real crystal, but easy
with optical lattices. We end this chapter with a first approach to the prop-
agation of wave packets in the lattice, and the notion of effective mass and
group velocity.

1 How to generate an optical lattice

1-1 One-dimensional lattices

In its simplest version, an optical lattice consists of a one-dimensional
standing light wave along an axis x (Figure 1). This wave is formed by
two propagating waves of the same amplitude E0 travelling in opposite
directions (we neglect here the influence of polarization):

E0 sin(kx− ωt+ φ1), E0 sin(kx+ ωt− φ2). (1)

2✓

✓

Figure 1. 1D optical lattice formed by a standing laser wave. Left: period λ/2;
right: period λ/[2 sin(θ/2)].

The resulting field is written as E(x, t) = E(x) cos(ωt − ϕ) with ϕ = (φ1 +
φ2)/2 and

E(x) = 2E0 sin(kx− Φ), Φ = (φ2 − φ1)/2. (2)

In this chapter, we will choose the origin of coordinates x = 0 such that
Φ = 0, which corresponds to choosing this origin at a node of the standing
wave. The atoms therefore sit in the periodic potential

V (x) = V0 sin2(kx), V0 =
d2

0E2
0

~∆̄
, (3)

where the sign of V0 can be adjusted by changing the detuning of the laser
with respect to the resonant transition of the atom.

If the standing wave is obtained by superimposing two plane waves
of light that have opposite directions, k is equal to the wave vector of the
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light kL and the spatial period of the lattice is a = λ/2 = π/kL, where
λ = 2π/kL is the wavelength of the light. If the waves each have an angle
θ/2 with respect to the perpendicular to the x axis, k = kL sin(θ/2), the
spatial period is then increased: a = λ/[2 sin(θ/2)]. We will see later that
we can also choose in (1) a time-depending relative phase Φ = φ2 − φ1,
which allows to displace the periodic potential in the reference frame of
the laboratory with the speed Φ̇/(2k).

1-2 Multi-dimensional lattices

To create a periodic potential in several directions in space, the easiest and
most robust technique is to overlap standing waves of different frequencies
in the desired directions. For example, to make a square array in the xy
plane, we can overlap

E(r) = 2E1 sin(k1x) cos(ω1t− ϕ1) + 2E2 sin(k2y) cos(ω2t− ϕ2). (4)

If the frequency difference ω1 − ω2 between the waves is large compared
to the other frequencies involved in the motion of the center of mass of the
atom, we can neglect the interference between these two standing waves
and consider that the dipole potential

V (r) = V1 sin2(k1x) + V2 sin2(k2y) (5)

acts on the atom. In practice, it is enough to take (ω1−ω2)/2π on the order
of a few MHz (i.e. a relative difference of 10−8) for this approximation to
be valid.

We can also choose the same frequency for all the waves. In this case,
if we want to use the superposition of two standing waves in the xy plane
as in (4), we must control the relative phase ϕ1 − ϕ2 of these waves (Hem-
merich & Hänsch 1993). This phase control can be used to vary the lattice
topology, as we will see later for the detection of Dirac points in a hexago-
nal lattice (Tarruell, Greif, et al. 2012).

Note that there is an important exception to this requirement of a phase
control: Grynberg, Lounis, et al. (1993) showed that if we restrict the num-
ber of beams to its minimum value (2 beams for a 1D lattice, 3 beams in
2D, 4 beams in 3D), then the interference pattern giving rise to the po-
tential V (r) is independent of the phases of the beams. A variation of

these phases only translates the interference pattern, without changing its
shape1. One can refer to the review article of Grynberg & Robilliard (2001)
to have a complete panorama of the lattice forms that are accessible in the
monochromatic case. Let us also mention that, in this case, one can go
beyond the framework of periodic lattices and build quasi-periodic poten-
tials analogous to those which appear in quasi-crystals (Guidoni, Triché,
et al. 1997).

1-3 Back to 1D: Mathieu’s equation

The study of the quantum motion of an atom of mass m in the periodic
potential of the lattice requires the search for the eigenstates |ψ〉 (or ψ(x) =
〈x|ψ〉) of the Hamiltonian

Ĥ =
p̂2

2m
+ V0 sin2(kx̂). (6)

The wave number k provides a natural energy scale, which we will call the
recoil energy

Er =
~2k2

2m
, (7)

which allows to write the eigenvalue equation Ĥψ = E ψ in a dimension-
less form

−ψ′′(x̃) +
Ṽ0

2
[1− cos(2x̃)]ψ(x̃) = Ẽ ψ(x̃), (8)

where we have set x̃ = kx, Ṽ0 = V0/Er and Ẽ = E/Er. Note that the name
recoil energy for Er is a bit improper; the recoil energy (7) is usually defined
as a characteristic quantity of the atom, where k is the wave number asso-
ciated to the resonant transition. Here, the laser may have a different wave
number kL than the resonant value, and the wave number of the lattice
may additionally differ from the wave number of the laser if one chooses a
configuration with a θ 6= π angle.

Equation (8) is called Mathieu’s equation2 and is found in many physical
problems, such as the motion of a classical particle driven by an oscillat-
ing force (x̃ is then the time variable), for example a Paul trap for charged

1This result is clearly seen in 1D on the expression (2).
2Émile Léonard Mathieu (1835-1890), a French mathematician, wrote this equation in 1865

while studying the vibrations of an elliptical membrane

26



CHAPTER II. THE BASICS OF OPTICAL LATTICES § 2. Bloch’s theorem

particles. For a given initial condition in x̃ = 0 and according to the value
of the pair (Ṽ0, Ẽ), the solutions remain bounded or on the contrary di-
verge in x̃ = ±∞. In the case of a particle in a Paul trap, the bounded and
divergent solutions correspond respectively to the stability and instability
zones of the trap. For the quantum motion of an atom in an optical lat-
tice, these solutions correspond to an energy E located in an ”allowed” or
”forbidden” (gap) zone.

Since the existence of these allowed or forbidden zones is not restricted
to the case of a sinusoidal potential, but appears for any periodic potential,
we will momentarily leave Mathieu’s equation to address the general prob-
lem of the motion of a particle in a spatially periodic potential. However,
we will later use some specific results related to this Mathieu equation,
such as the asymptotic value of the bandwidths in the limit V0 � Er.

2 Bloch’s theorem

In the following, we consider the motion of a point-like, spinless parti-
cle in a periodic potential V (r) without any other force (in particular no
magnetic field). More precisely, we suppose that this potential is invariant
when we make the substitution r → r + rj , where rj is one of the nodes
of the lattice

B = {rj = j1a1 + j2a2 + j3a3, j1, j2, j3 ∈ Z}. (9)

Such a lattice, which is stable under addition and subtraction, is called a
Bravais lattice. We have written here the 3D version of the lattice, the vectors
ai being independent. In one dimension, we will use the simpler notation
for the spatial period a1 ≡ a. We are interested in finding the eigenstates
of the Hamiltonian

Ĥ =
p̂2

2m
+ V (r̂) (10)

that describes the motion of the particle. Bloch’s theorem3 takes advantage
of the discrete translation symmetry of the problem to search for a basis of
eigenfunctions in a particularly convenient form.

3Felix Bloch proved this theorem while studying the motion of an electron in a periodic
potential (Bloch 1929). The same mathematical result had been previously obtained in other
contexts, including by Floquet (1883).

2-1 Statement of the theorem

Let us start with the following two points:

• the translation operators T̂a defined by

T̂a ψ(r) = ψ(r − a) i.e. T̂a = e−ia·p̂/~ , (11)

commute one with the other,

• the translational symmetry of V (r) entails that the translation opera-
tors T̂ai commute with the Hamiltonian.

We can therefore look for a basis of eigenfunctions common to Ĥ and the
T̂ai operators. Now the diagonalization of an operator T̂a is easy; in par-
ticular, since T̂a is a unitary operator (T̂−1

a = T̂−a = T̂ †a), its eigenvalues λ
are complex numbers of modulus 1 which can always be written under the
form λ = e−iθ.

Let us now consider an eigenfunction ψθ1,θ2,θ3 of the Hamiltonian Ĥ
and of each of the translation operators T̂aj , with the eigenvalue e−iθj for
T̂aj . To express the triplet θj in a compact way, it is convenient to introduce
the reciprocal lattice (another Bravais lattice) defined by:

B′ = {Qj = j1b1 + j2b2 + j3b3, j1, j2, j3 ∈ Z} (12)

where the vectors bi are defined by the identity4

ai′ · bi = 2π δi,i′ . (13)

Let us now pose

q =
1

2π

∑

j=1,2,3

θjbj , (14)

which leads to ai · q = θi. The eigenfunction ψθ1,θ2,θ3 , which can be noted
in a more compact way ψq , thus verifies

ψq(r − aj) = e−iaj ·qψq(r), j = 1, 2, 3 . (15)
4We have explicitly

b1 = 2π
a2 × a3

a1 · (a2 × a3)

and the two other relations are deduced by circular permutations of the indices.
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Let us finally set
ψq(r) = eir·q uq(r). (16)

By using this relation in (15), it is immediate to check that the function
uq(r) is periodic on the Bravais lattice B:

uq(r − aj) = uq(r), j = 1, 2, 3. (17)

Bloch’s theorem can be stated as follows (Ashcroft & Mermin 1976; Kit-
tel 1987): the eigenstates of a Hamiltonian corresponding to a spatially
periodic potential V (r) on the lattice B can be searched under the form
of Bloch waves ψq(r), which are products of a plane wave [eir·q] with a
periodic function on B [uq(r)].

In all that follows, we will assume the periodic potential V (r) to be
sufficiently regular so that the function uq(r) can be expanded in Fourier
series. We will thus choose in 1D:

uq(x) =
∑

j∈Z
Cj(q) e2iπjx/a, (18)

that is ψq(x) =
∑

j∈Z
Cj(q) eix(q+2πj/a). (19)

The form (19) shows that Bloch waves are combs of plane waves with mo-
menta p = ~(q + 2πj/a), with j integer.

Note that in the following, we will apply on the variable q all the usual
operations for continuous variables: derivation (or gradient) with respect
to q, integration over q, etc. Writing this variable q as a subscript of ψq(r) or
uq(r) is a usual convention, but one could also have written these functions
as ψ(r, q) or u(r, q).

Also note that the angles θj characterizing the eigenvalues e−iθj of the
translation operators T̂aj are defined modulo 2π. When we write the
arbitrariness of this phase in the definition (14), we see that the quasi-
momentum q and the quasi-momentum q + Q, where Q is a vector of
the reciprocal lattice B′, lead to the same triplet of eigenvalues for T̂aj ; we
obtain in this case the same eigenvalue equation for the Hamiltonian Ĥ
and the periodic part uq . In order to get rid of this phase arbitrariness, we
will set in all the following

ψq+Q(r) = ψq(r), Q ∈ B′. (20)

2-2 Searching for the eigenstates and the energy bands

In this paragraph, we stay in one dimension to simplify the notations. The
explicit search for the eigenstates ψq of Ĥ is done by injecting (16) into the
eigenvalue equation in order to derive an equation for the periodic part uq
of the Bloch function:

Ĥper(q)uq(x) = E(q)uq(x) (21)

where Ĥper(q) is a Hamiltonian that depends on the parameter q.

Ĥper(q) =
(p̂+ ~q)2

2m
+ V (x̂). (22)

The function uq(x) satisfies the boundary conditions

uq(0) = uq(a), u′q(0) = u′q(a). (23)

For a given value of q, the solutions of (21-23) can be identified by an in-
dex n = 0, 1, 2, . . ., the eigenvalues En(q) being ordered by increasing val-
ues. To the energy En(q) corresponds the solution un,q(x), associated to
the Bloch wave ψn,q(x):

Ĥψn,q(x) = En(q) ψn,q(x), ψn,q(x) = eiqxun,q(x). (24)

We have already mentioned in (20) the invariance of the definition of the
eigenfunctions ψn,q(x) in the substitution q → q + 2π/a. The same is true
for the eigenvalues5

En(q + 2π/a) = En(q) . (26)

Thanks to the spectral theorem, we know that we can form a basis with
the eigenstates of the Hamiltonian. To choose this basis, it is important not
to double count eigenstates, i.e. to take each eigenfunction once and only

5We also deduce from (16-20) that

uq+2π/a(x) = e−2πx/auq(x), (25)

which amounts to taking Cj(q + 2π/a) = Cj+1(q) in the expansion (18). The relation (25)
plays an important role in the study of the topology of energy bands associated to a given
potential (Zak 1989).
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once. Thanks to the relation (20), we see that we have to restrict the domain
of q to an interval of length 2π/a, choosing for example the

1st Brillouin zone : − π/a < q ≤ π/a. (27)

Note that it is often useful to treat q as a variable that can take any value
between −∞ and +∞. There is no problem with this, as long as one re-
members the periodicity of the states and their associated energies (20-26).

When q varies continuously in an interval of length 2π/a, for exam-
ple (27), each energy En(q) obviously takes a value contained in the in-
terval In = [minq En(q),maxq En(q)], which is called the allowed energy
band. For the basic 1D lattice that we will consider most of the time,
V (x) = V0 sin2(kx), V0 6= 0, the intervals In are disjoint [maxq En(q) <
minq En+1(q)].

In the multi-dimensional case, determining the Brillouin zone is not al-
ways as simple as in one dimension. We will see an example for the hexag-
onal lattice of graphene later. For the square or cubic lattices that we will
consider in the meantime, the first Brillouin zone is immediately deduced
from (27):

1st Brillouin zone: q = (q1, q2, q3) with− π/aj < qj ≤ π/aj . (28)

2-3 Role of the symmetries of the Hamiltonian

Time reversal symmetry. For a spinless particle, the time-reversal trans-
formation is described by the anti-unitary operator K̂0 defined by (Messiah
2003)

K̂0ψ(r) = ψ∗(r). (29)

This operator leaves r invariant and changes p to−p. The Hamiltonian we
consider here is quadratic in p, since there is no magnetic field and there-
fore no linear term for the momentum of type −p ·A. This Hamiltonian is
time-reversal invariant and commutes with K̂0.

This means that if ψq(r) = eir·q uq(r) is an eigenstate of Ĥ with eigen-
value E, then K̂0ψq(x) = e−ir·q u∗q(r) is also an eigenstate of Ĥ with the
same eigenvalue E. Now the function e−ir·q u∗q(r) verifies all the proper-
ties of a Bloch function associated to the quasi-momentum −q. We deduce

that if we know how to solve the eigenvalue problem for the Hamilto-
nian for a quasi-momentum q, we also know the solutions for the quasi-
momentum −q by posing:

ψ−q(r) ∝ ψ∗q(r), E(q) = E(−q). (30)

Even in one dimension, each energy eigenvalue is therefore (at least)
doubly degenerate, since the functions ψn,q and ψn,−q are independent.
This result generalizes the one for the free particle, where eipx/~ and e−ipx/~

are two eigenstates associated to the same energy Ep = p2/2m. There are
two exceptions to this double degeneracy6, the cases q = 0 and q = π/a,
for which ψn,q and ψn,−q are identical [cf. (20)].

Parity of the potential V (r). For a spinless particle, the (Hermitian) par-
ity operator P̂ is defined by

P̂ψ(r) = ψ(−r). (31)

If V (r) is symmetric about r = 0, then the Hamiltonian commutes with P̂ .
We deduce that if ψq(r) is an eigenstate of Ĥ with eigenvalue E(q), then
P̂ψq(r) is also an eigenstate of Ĥ with the same eigenvalue. But P̂ψq(r) =
e−ir·quq(−r) verifies all the properties of a Bloch function associated to
the quasi-momentum −q. If we have been able to solve the eigenvalue
problem for the Hamiltonian for the quasi-momentum −q, we can deduce
the solution for the quasi-momentum −q:

ψ−q(−r) ∝ ψ−q(−r), E(−q) = E(q), . (32)

The equality between E(q) and E(−q) had already been obtained from
the time-reversal invariance in (30), without assuming the parity of the
potential. On the other hand, the relation between ψ−q(r) and ψq(−r),
valid only for an even potential, enriches the result (30).

6In the particular case V = 0, there is still a degeneracy for q = π/a, because two consec-
utive bands touch each other at this point (see § 3-1).
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3 Energy bands for a sinusoidal potential

Let us now return to the 1D case of the potential V (x) = V0 sin2(kx), for
which the eigenvalue equation is the Mathieu equation (8). We first con-
sider the case V0 = 0 for which we know the eigenstates, φp(x) = eipx/~

and the associated energies Ep = p2/2m. The use of Bloch’s theorem to
treat this problem is obviously a complicated way to address an already-
known case, but it has the merit to give explicitly the energies En(q) and
the associated functions un,q(x). The result will then be used as a guide to
treat the case of non-zero potentials.

3-1 The case of zero potential, V0 = 0

For the zero potential, any period a will do. Let us take a = π/k to make
the link with the case where V0 6= 0. A ”plane wave” state φp(x) = eipx/~

can be written as a Bloch wave

φp(x) = eiqxe2ijkx with
p

~
= 2jk + q, (33)

where j is the closest integer to p/(2~k), and where q belongs to the first
Brillouin zone (−k, k]. We have for the lowest band n = 0:

E0(q) =
~2q2

2m
, u0,q(x) = 1, (34)

and for the first excited band n = 1:

E1(q) =
~2

2m
(q ± 2k)

2
, u1,q(x) = e±2ikx, (35)

with sign − (resp. +) when q ≥ 0 (resp. < 0). In this very peculiar case,
the functions un,q(x) are thus independent of q, except for the change of
sign of the exponent in (35) at q = 0. The plot of the functions En(q) as a
function of q is given in figure 2; it simply gives back the parabola E(p) =
p2/2m folded on itself since the abscissa q, linearly related to p by (33),
must remain in the first Brillouin zone.
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q/k

Figure 2. Left: the dispersion relation for a free particle E = p2/2m. Right: the
folded parabola, giving the energy bands for the same free particle in the Bloch
wave formalism.

3-2 The central equation

We now consider the potential V (x) = V0 sin2(kx), with V0 > 0. This
potential has a period a = π/k and we look for the eigenfunctions (Bloch
waves) under the form [cf. (16)-(18)]

ψq(x) =
∑

j∈Z
Cj(q) ei(2jk+q)x, −k < q ≤ k. (36)

It amounts to the eigenvalue equation for a real symmetric tri-diagonal
(and infinite) matrix, often called central equation:

[(
2j +

q

k

)2

+
V0

2Er

]
Cj −

V0

4Er
(Cj−1 + Cj+1) =

E

Er
Cj , (37)

which can be solved numerically with standard algorithms for a given pair
(q/k, V0/Er). In practice, in order to determine for example the width of the
lowest band with a relative precision of 10−6, one can limit the sum (36) to
|j| ≤ 20 if the amplitude of the potential does not itself exceed V0/Er = 50.
The coefficients Cj are represented on figure 3 for three values of V0 and
for the lowest energy bands. We see that these coefficients take significant
values only for relatively small values of j, which justifies the truncation
of the system (37) at |j| ≤ 20.
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Fourier coefficients Cj(n, q) of Bloch waves ψn,q(x)
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Figure 3. Fourier coefficients Cj(n, q) as a function of their index j. These co-
efficients are solutions of the central equation (37) for V0/Er = 2 (left column),
V0/Er = 8 (middle column), V0/Er = 20 (right column). The rows correspond
from top to bottom to (n = 0, q = 0), (n = 0, q = π/a), (n = 1, q = 0),
(n = 1, q = π/a).
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Figure 4. Lowest energy bands En(q) (in units of Er = ~2k2/2m), as a function
of q/k for a potential V (x) = V0 sin2(kx). From left to right, and from top to
bottom: V0/Er =(0, 0.5, 1); (2, 4, 8); (12,16,20). The shaded rectangle represents
the energy zone below the height of the potential V0.
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Several representations of the same band structure
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Figure 5. Three possible representations of the band structure. On top, the usual
diagram (folded band). In the middle, the unfolded band picture, which allows to
make the link with the case of a free particle. At the bottom, the repeated zone
picture, where each eigenstate ψn,q is represented several times; this last repre-
sentation is useful for the study of Bloch oscillations. The plots are drawn for
V0 = 4Er, and we have subtracted here the mean value V0/2 of the potential to
facilitate the comparison with the case V0 = 0. This case is represented with black
dotted lines.

Bloch functions ψn,q(x)

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

−1 0 1
−1
−0.5

0

0.5

1

Figure 6. Bloch functions ψn,q(x) as a function of x/a for V0/Er = 2 (left col-
umn), V0/Er = 8 (middle column) and V0/Er = 20 (right column). The rows
correspond to the band n = 0 (top), n = 1 (middle), n = 2 (bottom). On each
graph, we have represented the quasi-momenta q = 0 (red continuous line) and
q = π/a (blue dotted line).
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The solutions of (37) are sorted as indicated above by increasing energy
and they are labelled with the index n = 0, 1, 2, . . . The lowest energy bands
En(q) are plotted on figure 4 for several values of V0/Er. This plot shows
the transition from the folded parabola obtained for V0 = 0 to increas-
ingly flat bands for potentials with V0 � Er. This flattening corresponds
to the situation where the amplitude of the tunnelling from one potential
minimum to the next minimum becomes negligible, the energy levels then
become close to those of a particle at the bottom of a single potential well,
V (x) ≈ V0k

2x2 for the central well for example. We will come back to this
tight-binding limit in the next lecture.

Note that the folded representation in Figure 4 is not the only one pos-
sible. We have plotted two other representations in Figure 5 that may be
useful, the unfolded representation and the repeated representation.

We have plotted on figure 6 some of the Bloch functions ψn,q(x) for
three values of V0/Er. These plots have been made by fixing the (arbitrary)
phase of the Bloch function as follows:

• For even bands (n = 0, 2, . . .), ψn,q(x = 0) is real positive.

• For the odd bands (n = 1, 3, . . .), dψn,q
dx (x = 0) is real positive.

With this convention, the Bloch functions for the quasi-momenta q = 0 and
q = π/a (the values used for the plots in figure 6) are real.

3-3 The case of the weak lattice

Let us now discuss the case V0 . Er that will be the starting point of
the description of Bragg diffraction later on. In this case, we can treat
perturbatively the effect of the potential V (x) = V0 sin2(kx) = (V0/2) −
(V0/4)

(
e2ikx + e−2ikx

)
, the dominant term of the Hamiltonian being the ki-

netic energy Ĥ0 = p̂2/2m. We have already given the expression of the
eigenstates of Ĥ0 in the form of Bloch waves [cf. (33)], and we have plotted
the eigenenergies En(q) in the form of the folded parabola of figure 4a. Let
us now look at the matrix elements of V (x) between the eigenstates of Ĥ0.
The constant term V0/2 of the potential plays no role other than an over-
all translation of the energies. The terms in (V0/4)e±2ikx couple the plane
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Figure 7. The energy bandsEn(q) (unit ofEr) as a function of q/k, for a potential
V0 � Er: (a): V0 = 0 (same thing as in figure 4); (b): V0 = 0.2Er; (c): a zoom on
the band edge q ≈ k for the case V0 = 0.2Er. We see that a gap of width ≈ V0/2
is opening.

wave of momentum p to the plane waves p± 2~k:

V̂ (x) φp(x) =
V0

2
φp(x)− V0

4
φp−2~k(x)− V0

4
φp+2~k(x), (38)

i.e. 〈φp±2~k|V̂ |φp〉 = −V0/4. In practice, this coupling is important only if
the energy associated to the wave φp for the Hamiltonian H0 is close to the
energy of φp−2~k or φp+2~k:

p2

2m
≈ (p± 2~k)2

2m
⇒ p ≈ ∓~k. (39)

For the two lowest energy bands, this occurs only at the edge of the first
Brillouin zone, i.e. where the bands touch in the case V0 = 0.

Let us therefore consider the basis formed by the two plane-wave states
{|p = −~k〉, |p = +~k〉} of kinetic energy Er. These two states are coupled
by V (x), and, at order 1 in V0, the energy of the two eigenstates of Ĥ is
obtained by diagonalizing the restriction of the Hamiltonian to this basis:

Ĥ =

(
Er + V0/2 −V0/4
−V0/4 Er + V0/2

)
(40)

The eigenvalues of this matrix are (for V0 > 0)

E = Er +
V0

2
± V0

4
⇒ E0(k) = Er +

V0

4
, E1(k) = Er +

3V0

4
, (41)
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and the corresponding eigenstates are

ψ0,k(x) ∝ cos(kx), ψ1,k(x) ∝ sin(kx). (42)

This result is easily understood: the low energy state ψ0,k is modulated
so that the probability density ∝ cos2(kx) is minimal in the zones with a
high potential [V (x) = V0 sin2(kx)]. On the contrary the high energy state
corresponds to a probability density ”in phase” with the modulation of the
potential. At this order of the calculation, the effect of the potential V (x) is
to open a gap of width V0/2 between the two first bands. The opening of
the gaps between the upper bands involves higher powers of V0.

4 Ramping up and ramping down a lattice

4-1 Extension of Bloch’s theorem

In the following chapters, we will frequently encounter problems which
keep their spatial periodicity, but which depend explicitly on time. In this
paragraph, we consider the Hamiltonian

Ĥ(t) =
p̂2

2m
+ ft V (r̂), (43)

where V is spatially periodic on a lattice B and the function ft describes
how the lattice is ramped up or down. One can also take for ft a function
of the type f0 + f1 cos(Ωt) where the modulated part, proportional to f1

(� f0), allows to make a spectroscopic study of the states in the lattice [see
for example the articles by Denschlag, Simsarian, et al. (2002) and Kollath,
Iucci, et al. (2006)].

Let us suppose that the wave function of the particle has initially the
form of a Bloch wave

φ(r, t = 0) = eir·q u(r, t = 0), (44)

where u(r, 0) is periodic on B. We can then show that at a later time t, this
Bloch waveform is preserved, with the same quasi-momentum q:

φ(r, t) = eir·q u(r, t), (45)

where u(r, t) is also periodic. The proof is simple: the function φ(r, t) is ob-
tained by making the evolution operator Û(t) act on the initial state φ(r, 0).
Since [Ĥ(t), T̂aj ] = 0 at any time t, we deduce that [Û(t), T̂aj ] = 0 and thus

T̂aj Ûφ(r, 0) = Û T̂ajφ(r, 0) ⇒ T̂aj

[
Ûφ(r, 0)

]
= eiaj ·q

[
Ûφ(r, 0)

]
. (46)

It follows that φ(r, t) = Ûφ(r, 0) is an eigenstate of T̂aj with the same
eigenvalue eiaj ·q as φ(r, 0), hence the writing under the form of a Bloch
wave (45): the quasi-momentum q is conserved during the evolution.

In the context of optical lattices, this conservation of the quasi-
momentum q when the intensity of an optical lattice is varied in time
has a simple interpretation: the interaction of the atom with light occurs
via processes involving the absorption of a photon from one wave and
the stimulated emission of a photon in the other wave. Such a process
changes the momentum of the atom by ±2 ~k: an isolated atom initially
prepared in a state of momentum pwill later be in a superposition of states
p + 2n~k, where n is an integer. All these states correspond to the same
quasi-momentum q of the Brillouin zone, q being defined by q = p/~ mod-
ulo 2π/a. Two elements can limit the scope of this reasoning:

• If the beam is not a plane wave, but has an intensity gradient along
the x axis, then the momentum associated with a light beam is not
exactly equal to ~k. This means that the intensity gradient causes a
dipolar force on a spatial scale a priori larger than the period λ/2 of the
lattice, a force which can modify the atomic momentum by an amount
different from 2~k.

• If we set a lattice in motion by changing the frequency of one travelling
wave with respect to the other, the two wave numbers k± associated
to the two travelling waves are not strictly equal and the change of
momentum ~(k+ + k−) is not strictly equal to 2~k. In other words,
the spatial period of the lattice changes with time, which invalidates
Bloch’s theorem. In practice, for the lattice velocities that are used,
these deviations are very small.
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4-2 Adiabatic ramp-up and ramp-down

We consider the 1D case to simplify the notations. In the previous para-
graph, we have deduced the conservation of the quasi-momentum q from
the translation invariance. We will now place ourselves in the situation
where the initial state corresponds to one of the eigenstates of the Hamil-
tonian for the initial value of the potential f0 V (x), that is u(x, 0) = un,q(x).
We will investigate what can be said about the periodic part u(x, t) at a
later time if the coefficient ft varies ”slowly”.

The spatially-periodic function u(x, t) is determined by solving the dif-
ferential equation obtained from the time-dependent Schrödinger equa-
tion:

i~
∂|u(t)〉
∂t

= Ĥper.[q, ft]|u(t)〉 (47)

where Ĥper.[q, f ] is defined by (cf. 22)

Ĥper.[q, f ] =
(p̂+ ~q)2

2m
+ fV (x̂). (48)

For each value of q and f , we know the eigenstates |u(f)
n,q〉 of this Hamil-

tonian. We assume that the initial state |u(0)〉 is one of these eigenstates
(|u(0)〉 = |u(f0)

n,q 〉) and we have to determine under which condition the
state |u(t)〉will be close to |u(ft)

n,q 〉 at time t.

We start by recalling the general criterion necessary the adiabatic ap-
proximation to be valid (Messiah 2003). We consider a Hamiltonian Ĥ(λ)
that depends on a parameter λ, for which we assume that we have solved
the eigenvalue equation. We suppose for simplicity that the energies εn(λ)
are non-degenerate and form a discrete set. The associated eigenvectors
are denoted by |φn(λ)〉. We are interested in a situation where the param-
eter λ depends on time. We suppose that the system is prepared at time
t = 0 in an eigenstate |φn[λ(0)]〉 and we search for the condition under
which the system will be in the state |φn[λ(t)]〉 at time t with a probability
close to 1. We can show that this will be the case if the inequality

~
∣∣∣∣〈φn′ | d

dt
|φn〉

∣∣∣∣� |En′ − En| , ∀n′ 6= n, (49)

is satisfied at each time.

To concretely apply this criterion to our situation where a lattice is
ramped up and down, let us assume that the atoms are initially prepared
in the zero momentum state |p = 0〉, with the lattice turned off. This state is
identified with |ψn=0,q=0〉. When we ramp up the lattice, we know that the
quasi-momentum will remain q = 0 and the question is to know whether
we leave or not the lowest band n = 0. Let us restrict ourselves to the case
of relatively weak lattices, ftV0 . Er, for which we can perturbatively de-
termine the eigenstates |ψn,q=0〉 (Dahan 1997). At order 1 in V0, the ground
state |ψn=0,q=0〉 is obtained by mixing the zero momentum state |p = 0〉
and the two states |p = ±2~k〉. The gap between the unperturbed levels is
4Er and the perturbation fV0 sin2(kx) = −(fV0/4)

(
e2ikx + e−2ikx

)
+fV0/2

gives a matrix element −fV0/4, which provides

|ψn=0,q=0〉 ≈ |p = 0〉+
fV0

16Er
(|p = 2~k〉+ |p = −2~k〉) . (50)

The non-adiabatic coupling will essentially induce a transition to the state

|ψn′,q=0〉 ≈
1√
2

(|p = 2~k〉+ |p = −2~k〉) . (51)

The matrix element at play in the left-hand side of (49) is then written

〈ψn′,q=0|
d

dt
|φn=0,q=0〉 =

ḟV0

16Er

√
2 (52)

and the energy gap of the right-hand side is 4Er. The adiabaticity criterion
is written in this case:

ḟ � 32
√

2
E2

r

~V0
. (53)

Let us take the case where we ramp a potential up to the value V0 = Er

linearly in time, during a duration τ . The above criterion becomes

τ � 1

32
√

2

~
Er
. (54)

For sodium atoms illuminated near their resonance wavelength (589 nm),
the time ~/Er ≈ 6µs, so that the above condition is written τ � 0.15µs.
We have shown in figure 8 a result obtained by the NIST group to test this
adiabatic ramping. Note that the maximum value reached, V0 = 14Er, is
outside the scope of our perturbative theory.
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Figure 7. Testing the adiabaticity of a linear intensity ramp with a double ramp. Perfect adiabaticity
would leave all the atoms in the 0h̄k state. If the ramp is not fully adiabatic other momenta are
populated. The observed oscillations in the 0h̄k component are due to interference effects similar
to the ones described in section 3. The full curve is a theoretical model obtained through direct
integration of the Hamiltonian. It has been rescaled by about 10% in the time direction to match
the data.

populated bands (as seen in the previous section) can lead to all the population being in the 0h̄k

state even though the process is far from adiabatic. Because of this, the signal oscillates and
the adiabaticity of a single ramp time can only be determined by interpolating the envelope of
the curve.

In order to directly measure the adiabaticity, i.e. the efficiency of transfer into the lattice
ground state, we perform experiments similar to those described in the previous section.
Starting from a condensate at rest we ramp up the intensity of a stationary lattice8. We
hold the BEC in the lattice for a time τ , typically between 0 and 10 µs, before suddenly
switching off the light. We then study the oscillations in the plane-wave decomposition of the
lattice wavefunction as a function of τ . Figure 8 shows an example of such oscillations for
the 0h̄k component at q = 0 after a ramp time of 20 µs. This beating signal has a very small
amplitude compared to the beating signal of figure 3 for a lattice that was abruptly switched
on. This indicates that most of the population is in band 0. If we had populated only the
ground state, there would have been no beating at all. If we ignore the small oscillations,
the measured momentum decomposition (60% 0h̄k; 20% +2h̄k; 20% −2h̄k) is close to the
theoretical decomposition of the lattice ground state (section 2).

From the amplitude of the oscillations we can infer the population in the lattice ground
state. To do this, we assume that only bands 0 and 2 are populated (since bands 1 and 3 cannot
be excited at q = 0). Let p be the fraction of the population in band 0 after loading into the
lattice. Then the population in band 2 is 1 − p. For a lattice with a height of 14ER band 0 has
a calculated 0h̄k momentum component of 65% whereas band 2 has one of 34% (see figure 2).
The fraction of population in the 0h̄k momentum component after evolving for a time τ is

P(τ ) =
∣∣∣
√

0.65p + ei(ωτ+θ)
√

0.34(1 − p)
∣∣∣
2

(8)

where ω is the frequency difference between bands 0 and 2 and θ is a phase that is dependent
on the details of the ramp. The amplitude of the beating is

$P = 2
√

0.65p × 0.34(1 − p). (9)
8 While we apply a linear voltage ramp, non-linearities in the response of the AOM smooth the ends (≈10% of the
ramp time).

Figure 8. Test for adiabaticity of the loading of atoms in a lattice. Sodium atoms
are initially prepared at ≈ zero momentum. A lattice is ramped up, reaching a
maximum depth of V0 = 14Er, and then ramped down. The fraction of atoms in
the zero momentum state is measured at the end of the process. The continuous
curve is obtained by a direct integration of the Schrödinger equation. This figure
is extracted from the article of Denschlag, Simsarian, et al. (2002).

Note 1. We have considered here the lowest band at q = 0, which is a
favorable case to ramp up a lattice. There are other situations where it is
impossible to guarantee adiabaticity. This is for example the case if we start
from |ψn=1,q=0〉 which has the same energy as |ψn=2,q=0〉 when the lattice
is switched off. This is also the case if we start from the band edge q = ±k.
This last case is interesting because it gives rise to Bragg diffraction, which
is used a lot in practice as an atomic beam splitter (see paragraph below).

Note 2. We are interested here in the adiabaticity criterion for a single
particle. In the case where we start from a state with inter-particle correla-
tions, the time scales needed to maintain adiabaticity can be very different,
as the energy gaps between the different N -body states accessible can be
much smaller.

4-3 Bragg diffraction

Bragg diffraction consists in taking advantage of the periodicity of the lat-
tice to efficiently diffract a wave in a given direction. In the case of an atom
interacting with an optical lattice, we want to create momentum-selective
coherent transitions

p −→ p+ 2n~k (55)

where n is an integer. In what follows, we will restrict ourselves to the
case of a weak potential (V0 . Er), which guarantees that we populate
significantly only one class of momentum p + 2n~k and not a comb with
many components.

Let us consider here a one-dimensional lattice and atoms prepared in a
given momentum state p, which will interact with the lattice during a time
tint. Since V0 . Er, only atoms with a quasi-momentum q such that two
energy bands En(q) and En′(q) are close to each other will be affected by
the potential and can be efficiently coupled :

• As we have seen in § 3-3, this coupling occurs at order 1 in V0 for
q ≈ ±k between the bands n = 0 and n = 1: an atom with initial
momentum p = +~k can be resonantly transferred to the momentum
state −~k, in a process where a photon is absorbed in one of the two
traveling waves forming the standing wave, and a photon is stimulat-
edly emitted in the other wave (figure 9).

• More generally, one can directly see on figure 7 that one can also ob-
serve Bragg diffraction at higher orders: (i) at q ≈ ±k between a band
2n and a band 2n+ 1 (coupling term in V 2n+1

0 ); (ii) at q ≈ 0 between a
band 2n+ 1 and a band 2n+ 2 (coupling term in V 2n+2

0 ).

In what follows, we will focus on the coupling at order 1 between the
bands n = 0 and n = 1, using the Bloch state formalism developed above.
The use of this formalism to treat Bragg diffraction was initiated by Cham-
penois, Buchner, et al. (2001) [for earlier approaches based on a different
approach, one can refer to Keller, Schmiedmayer, et al. (1999) and Horne,
Jex, et al. (1999)].

Let us consider the simple situation where the function ft is a square
pulse, equal to 1 for t between 0 and tint and zero elsewhere. Before switch-
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snPrecoild2

2M

≠ nh̄d
n

, (1)

where Precoil ≠ 2h̄k sinsuy2d is the recoil momentum
from a two-photon Raman process, k ≠ 2pyl; l is the
wavelength of the light, M is the atomic mass, and d

n

is the frequency difference between the two lasers. For
our conditions first-order Bragg diffraction is resonant at
d1y2p ≠ 98 kHz and higher orders at d

n

≠ nd1.
In our experiment, we produce a BEC as described in

detail elsewhere [17]. Briefly, about 1010 Na atoms are
optically cooled and trapped in a dark magneto-optical
trap [18]. They are transferred into a magnetic quadrupole
field where atoms in the 3S1y2 F ≠ 1, m

F

≠ 21 state
are trapped, compressed, and then cooled by rf-induced
evaporation. Before the atoms are lost in the zero field
region in the center of the trap, a time-averaged orbiting
potential (TOP) [19] trap is created by suddenly turning
on a rotating bias field. The bias field rotates in the
x-z plane, where x is the quadrupole axis and z is
vertical along the direction of gravity. Our TOP trap
differs from the design of [19] in that our bias field
rotates in a plane that includes the quadrupole symmetry

FIG. 1. Experimental arrangement of the laser beams (a) and
partial transition diagram (b) for nth order Bragg diffraction.
The parabolas correspond to the P

2y2M kinetic energy.

axis. The ratio between spring constants along the x, y,
and z directions is K

x

:K
y

:K
z

≠ 4:2:1. The atoms are
compressed in the TOP trap and cooled by evaporation
to form a BEC. We obtain a condensate with about 106

sodium atoms having no discernible uncondensed fraction
in a trap with harmonic frequencies of v

x

y2p ≠ 360 Hz,
v

y

y2p ≠ 250 Hz, v
z

y2p ≠ 180 Hz.
Our first experiments were performed on Bose-

condensed atoms released suddenly from the TOP
trap. The trap is turned off in 50 ms and the BEC
undergoes expansion driven by the mean-field repulsion
between the atoms. After a few characteristic times t ≠
sv

x

v
y

v
z

d21y3, the mean field is negligible and the cloud
expands ballistically [20]. During this ballistic expansion
the condensate is exposed to a moving, periodic optical
potential generated by two nearly counterpropagating
su ≠ 166±d laser beams with parallel linear polarizations
but slightly different frequencies [Fig. 1(a)]. These
(phase coherent) laser beams are derived from a single
laser sl ≠ 589 nmd using acousto-optic modulators. The
intensity of each beam is 23 mWycm2, and the common
detuning with respect to the 3S1y2, F ≠ 1 ! 3P3y2,
F

0 ≠ 2 transition is Dy2p ≠ 21.85 GHz. To transfer
all the atoms to the desired momentum state, we empiri-
cally choose laser intensities and pulse durations to give a
p pulse for the effective two-level system. We use two
pulses with frequencies v and v 1 d that overlap for
55 ms [21]. The probability of spontaneous emission is
less than 0.05.
Figure 2(a) is an image taken just before the Bragg

pulse is applied. The atoms are first optically pumped
into the 3S1y2 F ≠ 2 ground state. They are then absorp-
tion imaged [5] with probe light on the F ≠ 2 ! F

0 ≠ 3

FIG. 2. Optical absorption image of a Bragg diffracted con-
densate. (a) An image taken just before the moving standing
wave pulse is applied. (b) is taken after a time of flight of
10 ms. (c) is a line profile taken through the center of the
expanding clouds.

872

Figure 9. Left: Bragg diffraction seen in terms of a two-photon transition. The
two states p = ±~k are coupled in a resonant way by a process with an absorption
in a running wave and a stimulated emission in the other running wave. Right:
Observation of a Bragg transition with atoms of a sodium condensate (figure ex-
tracted from Kozuma, Deng, et al. (1999)). (a) Image before the Bragg pulse. (b)
Image after the Bragg pulse and a time of flight of 10 ms; only a narrow slice of the
velocity distribution has undergone the diffraction phenomenon and has gained
the momentum 2~k. (c) Density profile associated with the image (b).

ing on the lattice, the atom is in the state |p〉. At time t = 0, when the poten-
tial is switched on, we assume that the state of the atom remains |p〉: this is
the ”sudden approximation”, valid if the actual ramping time is short com-
pared to the inverse of all the characteristic frequencies of the problem. Let
us decompose this state on the eigenstates of the Hamiltonian with the lat-
tice. Since V0 . Er, only the eigenstates of the two lower bands |ψn=0,q〉
and |ψn=1,q〉with q = p/~ are significantly populated:

|Ψ(t = 0)〉 = |p〉 ≈ cos(θ/2) |ψn=0,q〉 − sin(θ/2) |ψn=1,q〉. (56)

We have already determined in (42) the relation between |p〉 and the eigen-
states |ψn=0/1,q〉 in the particular case p = ~k. In the more general case
where p is not strictly equal to ~k, the calculation is a bit longer. We have
to take into account in the Hamiltonian (40) the difference in kinetic energy
between the two ground states, p2/2m for the first one, (p − 2~k)2/2m for
the other. After a few lines of calculation, we find the value of the mixing

angle θ involved in (56):

cotan θ = [1− p/(~k)]
8Er

V0
. (57)

The subsequent evolution in the presence of the lattice is a simple Rabi
oscillation and the probability of finding the atom in the momentum state
p− 2~k when the lattice is switched off is written

Pp→p−2~k(t) = sin2 θ sin2(Ωt/2). (58)

This oscillation is sometimes called Pendellösung, a term initially intro-
duced to describe the diffraction of X-rays by a crystal. Its frequency is
Ω ≈ V0/(2~) since the energy difference between the two levels is ≈ V0/2
[cf. (41)] . The prefactor

sin2 θ =
(V0/8Er)

2

[p/(~k)− 1]2 + (V0/8Er)2
(59)

fixes the selectivity in momentum of the Bragg diffraction phenomenon.
For p = ~k, the oscillation occurs with an amplitude of 100%; by choosing
Ωtint = π/2, one realizes a 50%–50% beam splitter, and one obtains a per-
fect Bragg mirror for Ωtint = π. For V0 � Er, the modulation amplitude
drops rapidly when we deviate from the condition p = ~k, the full width
at half-maximum of the resonance curve being

∆p1/2

~k
=

V0

4Er
. (60)

A comparison between the prediction of this two-level model and the one
obtained by a complete numerical solution that takes into account a large
number of eigenstates of the Hamiltonian can be found in Champenois,
Buchner, et al. (2001). The differences between the results of the two ap-
proaches are negligible for V0 . Er.

Bragg diffraction was first observed in the group of D. Pritchard (Mar-
tin, Oldaker, et al. 1988). In recent years, it has become an essential tool in
matter-wave interferometry and cold atom physics:

• By successively imposing three Bragg diffractions corresponding to
Ωt = π/2, π, π/2, one realizes a two-path Mach-Zender interferometer
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(see for example Lepoutre, Gauguet, et al. (2012)). A variant of this
Bragg diffraction is often used, in which the 2~k momentum transfer
is accompanied by a change of internal state [Raman transitions be-
tween hyperfine levels (Kasevich & Chu 1991)]. Interferometers using
Raman transitions can also operate in the π/2–π–π/2 mode or in the
Ramsey-Bordé scheme, with four interaction zones (see for example
Durfee, Shaham, et al. (2006) and Gauguet, Canuel, et al. (2009)). It is
also possible to sweep in time the frequency of one of the two travel-
ling waves that form the standing wave, in order to induce multiple
Bragg diffraction processes and increase in this way the transferred
momentum. This brings us closer to the problem of Bloch oscillations,
which we will discuss at length in following chapters. An example of
a π/2–π–π/2 interferometer working with 10 ~k splitters thanks to an
optimized ft function can be found in Kovachy, Chiow, et al. (2012).

• One can take advantage of the selectivity in velocity (60) to measure
the momentum distribution of a gas of free atoms (Kozuma, Deng, et
al. 1999; Stenger, Inouye, et al. 1999). In practice, to probe the popula-
tion of a class of velocity v, one uses a moving optical lattice formed by
two progressive waves of frequency ωL ± k(v − vr) where vr = ~k/m
is the recoil velocity. One can choose for example Ωt = π and mea-
sure the population transferred in the velocity class v − 2vr (see for
example figure 9 extracted from Kozuma, Deng, et al. (1999)). More
generally, Bragg diffraction is also used to probe systems of interact-
ing particles. One can send two laser beams with frequencies ωj and
wave vectors kj , j = 1, 2, and study the probability that the system
undergoes an absorption-emission transition, which changes its en-
ergy by ~ω = ~(ω1 − ω2) and its momentum by k = k1 − k2. By
varying the frequency of the lasers and their relative angle, one can
then reconstruct the dynamical structure factor S(k, ω) of this system.
This method was used for example by Steinhauer, Ozeri, et al. (2002)
to measure the dispersion relation of Bogoliubov excitations in an in-
teracting condensate.
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FIG. 6 (color). (a) Reciprocal lattice and Brillouin zones for
the two-dimensional Bravais lattice of Fig. 4(a). (b) False color
image of the experimentally measured band population of a
dephased Bose-Einstein condensate in a 12Er deep optical lattice
where phase coherence between neighboring lattice sites has
been lost.
scattering, the measurement of the interference pattern is
less suitable to quantitatively analyze the coherent fraction
of atoms in the lattice.

The dephasing of the condensate wave function in the
optical lattice becomes clearly visible when we introduce
an external perturbation by switching off the magnetic
trapping field and thereby exposing the atoms to the linear
gravitational potential. For a 12Er deep optical lattice and
2 ms after switching off the magnetic field we can no longer
observe an interference pattern in the density distribution
of the released atoms. This indicates that phase coherence
of the atoms across the lattice has been lost. To experimen-
tally determine which energy bands are populated by the
dephased Bose-Einstein condensate, we ramp down the op-
tical potential in 2 ms, after the 2 ms hold time in the pure
optical potential. This ramp speed ensures that we are adi-
abatic with respect to the atomic motion in a single lattice
site and preserve the band population. The momentum
distribution of the atomic cloud is obtained by imaging the
atoms after 12 ms of ballistic expansion. Atoms originat-
ing from the lowest energy band are then expected to ob-
tain momenta that lie within the first Brillouin zone of the
lattice [17]. The Brillouin zones of a two-dimensional Bra-
vais lattice are displayed in Fig. 6(a). The experimentally
measured momentum distribution shown in Fig. 6(b) ex-
hibits a pronounced squarelike momentum distribution of
width 2h̄k coinciding with the first Brillouin zone of the
Bravais lattices. This proves that the atoms from the de-
phased condensate populate only the lowest energy band of
the lattice and remain in the radial ground state of a single
lattice tube even if the phase coherence between neighbor-
ing lattice sites has vanished.

Employing the same method we have measured the band
population in the combined potential of the magnetic trap
and the optical lattice. For a 12Er deep lattice and after
a storage time of 1 s we find that 60% of the initial num-
ber of atoms are still present and that all of these atoms
remain confined to the first energy band. For the same pa-
rameters no significant condensate fraction was measured
(see Fig. 5). So far, we cannot identify whether axial ex-
citations are present in a single lattice tube.

In conclusion, we have created an experimental system
which now enables us to study the physics of ultracold 1D
quantum gases (see also [18]). A variety of fundamental
questions of the physics in reduced dimensions can now
be addressed in the experiment. The correlation properties
of 1D quantum gases are intrinsically different from those
encountered in 3D. It is expected that in a 1D gas the de-
crease of temperature leads to a continuous transformation
of the correlation properties from the ideal gas case to the
regime which is dominated by quantum statistics and in-
teractions [4]. In the extreme limit of low atomic densities
or large interactions even the character of the bosonic par-
ticles changes and the gas acquires Fermi properties [1–5].

By adding a further standing wave laser field we can
extend the geometry of the lattice to three dimensions.
This should pave the way towards the observation of a
quantum phase transition in a dilute gas of atoms from
a superfluid to a Mott insulator phase [19]. We believe
that straightforward modification of our experiment should
allow us to reach this regime.
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3 Superfluid Bose-Einstein condensates in optical lattice potentials

directions.
The measurement of the band population demonstrates that it is possible to homogenously

populate the lowest energy band while having no population in higher bands. In a tight
binding picture this corresponds to a situation where in each lattice site only the vibrational
ground state is occupied by the condensate, but the phase correlation between the sites is
lost.

Populating higher energy bands

We can populate higher energy bands in the lattice by using stimulated Raman transitions,
where states in different energy bands are connected by a stimulated two-photon process
[80, 81]. In order to drive the transition we apply two Raman beams to the atoms in the lattice
(Figure 3.21b). The frequency difference δωr = δE/h̄ between the beams corresponds to
the energy difference δE between the Bloch states. The Raman beams are detuned by ∆r

with respect to an atomic transition. By changing the angle between the two beams the
momentum transfer δq of the Raman beams can be arbitrarily chosen between 0h̄kr and
2h̄kr, where kr denotes the norm of the k-vector of the Raman beams. Therefore Bloch
states in all bands and with arbitrary quasi momenta can be populated.

In a tight binding picture the Raman beams induce transitions between vibrational levels
of each potential well (see 3.21a) and the change of the quasimomentum δq corresponds to
the simultaneous change of the relative macroscopic phase between lattice sites.

(a) (b) (c)

Figure 3.21: Population of higher energy bands. (a) Higher vibrational levels on each lattice
site can be populated by stimulated Raman transitions. (b) In a Bloch picture this corre-
sponds to Raman transitions between different energy bands. (c) Measured band population
of a dephased BEC in a 2D lattice, where higher energy bands have been populated by stim-
ulated Raman transitions. Therefore population of the corresponding higher Brillouin zones
is visible.
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sequence of two radio-frequency pulses. By lowering the
depth of the optical trap on a time scale of 2 s we further
evaporatively cool the potassium gas. This is done at a bias
magnetic field of B ! 227 G, which is well above the
magnetic Feshbach resonance centered at B0 ! 202:1 G
[1], and the s-wave scattering length between the two
fermionic spin states is a ! 118a0 (a0 is the Bohr radius).
At the end of the evaporation we reach temperatures be-
tween T=TF ! 0:2 and 0.25 with 5" 104 to 2" 105 par-
ticles, respectively.

Prior to loading the atoms into the optical lattice we tune
the magnetic field to B ! #210$ 0:1% G, such that the
s-wave scattering length between the two states vanishes.
Then the standing wave laser field along the vertical z axis
is turned on. Subsequently, the optical dipole trap along the
y axis is turned off and a standing wave laser field along the
same axis is turned on, followed by the same procedure
along the x axis. In order to keep the loading of the atoms
into the lattice as adiabatic as possible the intensities of the
lasers are slowly increased (decreased) using exponential
ramps with time constants of 10 ms (25 ms) and durations
of 20 ms (50 ms), respectively.

In its final configuration the optical lattice is formed by
three orthogonal standing waves with mutually orthogonal
polarizations and 1=e2 radii of 50 !m (x axis) and 70 !m
(y axis and z axis), which are derived from the same lasers
as for the optical dipole trap. The laser fields of the three
beams have a linewidth of the order of 10 kHz and their
frequencies are offset with respect to each other by be-
tween 15 and 150 MHz. The resulting optical potential
depth Vx;y;z is proportional to the laser intensity and is
conveniently expressed in terms of the recoil energy Er !
!h2k2=#2m%, with k ! 2"=# and m being the atomic mass.
The lattice depth was calibrated by modulating the laser
intensity and studying the parametric heating. The calibra-
tion error is estimated to be <10%.

The potential created by the optical lattice results in a
simple cubic crystal structure and the Gaussian intensity
profiles of the lattice beams give rise to an additional
confining potential which varies with the laser intensity.
As a result, the sharp edges characterizing the T ! 0
distribution function for the quasimomentum in the homo-
geneous case [19] are expected to be rounded off. A
quantitative picture can be obtained by considering a
tight-binding Hamiltonian to describe noninteracting fer-
mions in an optical lattice with an additional harmonic
confinement [20]. At T ! 0 the inhomogeneous system
is characterized by the total atom number N and by the
characteristic length $ over which the potential shift due to
the harmonic confinement equals the tunnel coupling ma-
trix element J. One finds $% !

!!!!!!!!!!!!!!!!!!!

2J=m!2
%

p

, with the fre-
quencies of the external harmonic confinement given by
!% (% ! x; y; z). The density distribution scaled by $% and
the momentum distribution of the atoms in the lattice
depend only on the characteristic density &c ! Nd3

$x$y$z
,

where d is the lattice spacing [7]. For a three-dimensional

lattice with 20" 20" 20 sites we have numerically calcu-
lated the characteristic density for the onset of a band
insulator to be &c ’ 60. For this value of &c the occupation
number at the center of the trap is larger than 0.99. It has
been pointed out that a fermionic band insulator in an
optical lattice with confining potential constitutes a high
fidelity quantum register [21].

In the experiment we probe the population within the
first Brillouin zones by ramping down the optical lattice
slowly enough for the atoms to stay adiabatically in the
lowest band while quasimomentum is approximately con-
served [22]. We lower the lattice potential to zero over a
time scale of 1 ms. After 1 ms we switch off the homoge-
neous magnetic field and allow for a total of 9 ms of
ballistic expansion before we take an absorption image of
the expanded atom cloud. The momentum distribution
obtained from these time of flight images, shown in
Fig. 1, reproduces the quasimomentum distributions of
the atoms inside the lattice. With increasing characteristic
density the initially circular shape of the Fermi surface
develops extensions pointing towards the Bragg planes and
finally transforms into a square shape completely filling the
first Brillouin zone deeply in the band insulator. We have
observed population of higher bands if more atoms are
filled into the lattice initially. In Fig. 2 the experimental
data for momentum distributions along the line with qua-
simomentum qy ! 0 are compared to the results of nu-
merical simulations using the same characteristic densities.

When imaging the cloud along the x direction we find a
homogeneous filling of the band in the vertical (z) direc-
tion, probably due to the change in the harmonic confine-
ment while loading the lattice combined with the presence
of gravity. This asymmetry between the horizontal x, y, and
the vertical z directions vanishes when the gas approaches
the band insulating regime. We have examined the level of
adiabaticity of our loading scheme into the optical lattice
by transferring the atoms from the band insulator back into
the crossed beam dipole trap. There we find a temperature
of 0:35TF when the initial temperature prior to loading into
the lattice was 0:2TF.

We have studied the dynamic response of the noninter-
acting Fermi gas to a change in the characteristic density

a cb d

OD

0

0.04e

x

y

2 hk

FIG. 1. Observing the Fermi surface. Time of flight images
obtained after adiabatically ramping down the optical lattice.
The characteristic density increases from left to right. (a) Image
of 3500 atoms per spin state and a potential depth of the optical
lattice of 5Er. Images (b)–(e) were obtained with 15 000 atoms
per spin state. The potential depths of the optical lattices were
(b) 5Er, (c) 6Er, (d) 8Er, and (e) 12Er. The images show the
optical density (OD) integrated along the vertically oriented z
axis after 9 ms of ballistic expansion.
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Figure 10. Upper row: figure extracted from Greiner, Bloch, et al. (2001), obtained
with 87Rb bosonic atoms placed in a two-dimensional square lattice. Lower row:
figure extracted from Köhl, Moritz, et al. (2005), obtained with 40K fermionic
atoms (without interaction) placed in a 3D cubic lattice.

4-4 How to observe the band structure?

The notion of adiabatically ramping a lattice also finds an important appli-
cation in the technique of band mapping, where one transfers the contents
of different energy bands in the presence of the lattice to well-defined mo-
mentum states in the absence of the lattice. This requires an adiabatic ramp
to switch off the lattice so that an atom initially in the state of band n and
quasi-momentum q ends up in the momentum state p = ~(q ± 2n~k). The
simplest way, at least in 1D, to unambiguously link the initial state ψn,q to
the final momentum p is to use the unfolded band diagram shown in figure
5 (middle row).

The pictures shown in figure 10, obtained by the Munich group, consti-
tute one of the first demonstrations of the visualization of the Brillouin
zone allowed by this technique. For the picture on the left, we start
from a deep 2D lattice (12Er) for which the width of the lowest band
(W0 ∼ Er/20) is very small compared to the gap between the band n = 0
and the first excited band n = 1 (∆0 ∼ 5Er). A gas of bosons (87Rb) is
prepared in the lattice, with a temperature which is intermediate between
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CHAPTER II. THE BASICS OF OPTICAL LATTICES § 5. Propagation of wave packets

these two energy scales: W0 � kBT � ∆0. The gas uniformly fills the
states |ψ0,q〉 of the lowest band, but the population of excited bands is neg-
ligible. After an adiabatic ramp-down of the potential, the atoms are free
and their momentum distribution is a square function with non-zero val-
ues only between −~k and ~k. To observe this momentum distribution,
one can make a time of flight of duration tflight sufficiently long so that
the cloud spreads out by a large distance compared to its initial size: we
obtain a segment of atoms (a square in two dimensions, a cube in three
dimensions) of length 2~ktflight/m.

In the right-hand photo of Figure 10, the upper bands were deliberately
populated by applying an additional pair of laser beams that create a Ra-
man transition between band n and band n+ 1. The time of flight then re-
veals the population transferred in these upper bands, with a near-uniform
distribution within each band.

We show on the bottom row of the figure a result obtained for non-
interacting fermions (40K) in a 3D cubic lattice by T. Esslinger’s group
(Köhl, Moritz, et al. 2005). Because of the Pauli principle, these (polar-
ized) fermions gradually fill up all the states of the lowest band when their
number increase (from left to right). On the image "e", the band is full (a
band insulator has been realized) and the square structure of the Brillouin
zone is perfectly visible.

5 Propagation of wave packets

An essential characteristic of an optical lattice is the dispersion relation
En(q) associated to each band. In this paragraph, we show how to extract
two important physical quantities related to this relation: the group ve-
locity of a wave packet and the effective mass. We end this paragraph by
giving some indications on how the interactions between atoms are modi-
fied when they are placed in the lattice.
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Figure 11. Group velocity vg(q) (in units of the recoil velocity vr = ~k/m) in the
lattice V (x) = V0 sin2(kx) for V0/Er = 0.4, 2, 8, as a function of q/k. The dotted
line corresponds to the result in the absence of a lattice: mvg = ~q.

5-1 The group velocity in an optical lattice

Let us suppose that we have prepared a particle in an initial state ψ(x, 0)
superposition of Bloch states ψn,q(x) all belonging to the same band n:

ψ(x, 0) =

∫
c(q)ψn,q(x) dq. (61)

Let q0 be the center of the distribution c(q) and let us also assume that its
width ∆q around q0 is much smaller than the width 2k of the Brillouin
zone. This assumption allows the expansion

En(q) = En(q0) + (q − q0)
dEn
dq

∣∣∣∣
q=q0

. (62)

Note that the assumption ∆q � k leads to the wave packet extending over
several sites, typically k/∆q. We now define

vg,n(q0) =
1

~
dEn
dq

∣∣∣∣
q=q0

, (63)

a quantity which has the dimension of a velocity and we will show that it
can be interpreted as the group velocity for the band n around the quasi-
momentum q0.

At time t, the wave function of the particle is

ψ(x, t) =

∫
c(q)ψn,q(x) e−iEn(q)t/~ dq, (64)
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which can also be written using the expansion (62)

ψ(x, t) ≈ e−iω0t

∫
c(q)ψn,q(x) e−iqvg,ntdq, (65)

where we have introduced the frequency

ω0 = En(q0)/~ − q0vg,n. (66)

Let us choose the time t such that vg,nt = a. Using the fact that ψn,q(x−a) =
e−iqaψn,q(x), we deduce that

ψ(x, t = a/vg,n) ≈ e−iω0t

∫
c(q)ψn,q(x− a)dq

= e−iω0t ψ(x− a, 0). (67)

We see that the wave packet periodically reforms without deformation (at
this order of the calculation) with successive position shifts of a at all the
instants separated by a/vg,n, which corresponds to a propagation with the
group velocity vg,n.

5-2 The notion of effective mass

In the study we conducted for the sinusoidal potential, we found that the
bands En(q) are extremal at the points q = 0 and q = ±k. At these points,
the group velocity cancels and the band is characterized by its curvature,
from which we define the effective mass m∗ by

1

m∗
=

1

~2

d2En
dq2

, (68)

a quantity that can be positive or negative. This effective mass at the bot-
tom of the lowest band is plotted on figure 12. Its value is m∗ ≈ m for
shallow lattices and it increases indefinitely as V0 increases.

Let us consider a particle prepared in the lowest band, with a dis-
tribution of quasi-momenta centered on q̄ and of width ∆q, such that
|q̄|,∆q � k. We can then write the energy of each Bloch state in the form

E(q) =
~2q2

2m∗
+ constant. (69)
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Figure 12. Effective mass m∗/m [cf. (68)] as a function of V0/Er for the lowest
band n = 0 and for the two values q = 0 and q = π/a of the quasi-momentum.
Note that the sign ofm∗ is negative for q = π/a and that we have therefore plotted
|m∗|/m in this case (left: linear coordinates, right: logarithmic coordinates).

We have determined above the velocity dx̄/dt of the center of a wave
packet that we build by superposing states of this type:

dx̄

dt
=

1

~
dEn
dq

∣∣∣∣
q=q̄

=
~q̄
m∗

. (70)

Let us complete this result by another point that we will prove later in this
lecture: if we apply to a particle placed in a periodic potential a force F
that is uniform at the scale of the wave packet, then the evolution of the
quasi-momentum is given by

~
dq̄

dt
= F. (71)

The combination of the two equations (70-71) corresponds to the motion
of a fictitious particle of mass m∗ in the force field coming from F . The
only effect of the lattice on this isolated particle is the renormalization of
the mass m→ m∗.
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5-3 Interactions in the lattice, a first overview

The study of interactions in an optical lattice is a very vast subject that we
will only briefly mention here. The point we want to show is that a lattice
provides a fairly simple way to increase the effects of interactions between
particles, by localizing their wave function at the vicinity of the potential
minima.

We consider in this paragraph bosonic particles moving along the x
axis. To simplify the notations, we take a system of size L, with periodic
boundary conditions (L is a multiple of the period a of the lattice: L = Na).
Under these conditions, the quasi-momentum is quantized:

q =
2π

L
j = k

2j

N
, j integer ∈ {−N

2
+ 1, . . . , 0, . . . ,

N

2
}. (72)

We assume that these particles interact with a contact interaction g δ(x).
Without a lattice potential, the Hamiltonian in second quantization is writ-
ten

Ĥ =
∑

p

p2

2m
â†pâp +

g

2L

∑

p1,p2,p3

â†p1−p3 â
†
p2+p3 âp2 âp1 (73)

where â†p creates an atom in the plane wave of momentum p, ψp =

eipx/~/
√
L.

In the presence of a lattice, we write the Hamiltonian in second quanti-
zation in the basis of Bloch waves. To simplify the notations, we restrict to
the case where only the lowest band n = 0 is populated and we denote as
b̂†q the operator creating an atom in the state ψ0,q . We find

Ĥ =
∑

q

E0(q) b̂†q b̂q +
g

2

∑

q1,q2,q′1,q
′
2

C(q1, q2, q
′
1, q
′
2) b†q′1

b†q′2
bq2bq1 (74)

with

C(q1, q2, q
′
1, q
′
2) =

∫ L

0

ψ∗0,q′1(x) ψ∗0,q′2(x) ψ0,q1(x) ψ0,q2(x) dx. (75)

In the discretized version we have chosen here for the Brillouin zone, a
convenient form for the Bloch waves is

ψ0,q(x) =
1√
N

eiqx u0,q(x), (76)
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Figure 13. "Amplification factor" g′/g of contact interactions as a function of
V0/Er [cf. (80)]. This increase is due to the localization of the Bloch functions at
the vicinity of the minima of the potential V . The 2D and 3D values are simply
the square and cube of the 1D value.

where ψn,q is normalized on the segment of length L and the periodic part
un,q is normalized on the unit cell of length a:

∫ L

0

|ψn,q(x)|2 dx = 1,

∫ a

0

|un,q(x)|2 dx = 1. (77)

The Bloch form immediately imposes the relation (conservation of the mo-
mentum):

q′1 + q′2 = q1 + q2 (modulo 2π/a). (78)

Let us assume for simplicity that only the states at the bottom of the
band n = 0 are populated (|q| � k). We can then approximate the Hamil-
tonian (74) by

Ĥ ≈
∑

q

~2q2

2m∗
b̂†q b̂q +

g′

2L

∑

q1,q2,q3

b†q1−q3b
†
q2+q3bq2bq1 (79)

where the ”renormalized” interaction coefficient g′ is given by

g′

g
= a

∫ a

0

|u0,0(x)|4 dx. (80)

Without a lattice, the periodic part of the Bloch function u0,0(x) is constant
and equal to 1/

√
a, so that g′/g = 1. With the lattice, the function u0,0
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is modulated while remaining normalized (
∫ a

0
|u0,0(x)|2 dx = 1), which

leads to g′ > g: localizing the atoms in some regions of space increases
their interactions. The ratio g′/g is plotted as a function of the lattice depth
on figure 13. If we go to 2D or 3D with a square or cubic lattice (potential
in V (x) +V (y) +V (z)), we must take the square or the cube of this ratio to
evaluate the change of the coupling g (see figure 13).

In summary, adding a lattice has two consequences regarding the dy-
namics at the bottom of the band n = 0:

• It increases the effective mass and thus decreases the contribution of the
kinetic energy.

• It increases the coefficient g and thus increases the contribution of the
interaction energy.

These two effects go in the same direction by favoring the appearance of
strongly correlated states at the expense of mean-field states, like a Bose-
Einstein condensate. The culmination of this effect is the superfluid-Mott
insulator transition. However, before reaching this point, we go through
a domain, for relatively strong lattices, where all the states of the lowest
band acquire a significant population. The Hamiltonian (79) is then no
longer relevant and one has to go back to (74) to describe the dynamics of
the problem. We will present in the next chapter an approach that is easier
to handle in the case of these strong lattices, using the Wannier function
basis.
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Chapter III

Optical lattices in the tight-binding regime

The Bloch waves described in the previous chapter are to the motion in
a periodic potential what plane waves are to the motion of a free particle.
Since they are eigenstates of the Hamiltonian and of the translation opera-
tor, they are delocalized in the entire space. They form an orthogonal basis
of the one-particle Hilbert space, and they can be normalized in the usual
sense of continuous bases by imposing

∫ +∞

−∞
ψ∗n,q(x)ψn′,q′(x) dx = δn,n′ δ(q − q′), (1)

where the first δ, referring to the band index n, is a Kronecker symbol and
the second δ, referring to the quasi-momentum q, is a Dirac distribution.
We have chosen here a one dimension approach to simplify the notation,
but the extension to higher dimensions is immediate.

For many problems, it is useful to introduce a second basis of the
Hilbert space, also orthonormal and consisting of functions localized at
the vicinity of the local minima of the lattice (”sites”), called Wannier func-
tions (Wannier 1937). The one-particle Hamiltonian written in the basis of
the Wannier functions is very intuitive: it corresponds to hopping terms
between sites, whose amplitude depends on the height of the potential
barriers between the wells.

In the tight-binding limit which, for a sinusoidal potential V0 sin2(kx),
corresponds to the situation where V0 is large compared to the recoil energy
Er, we can limit ourselves to hopping between neighbouring sites. We
will study this limit, in the case where only one energy band, the lowest

band for example, contributes significantly to the dynamics. When on-
site interactions are taken into account, we obtain in this way the Hubbard
Hamiltonian, which allows to illustrate many physical phenomena. We will
also give some examples of interesting energy band shapes that appear for
lattices with more complex patterns than the simple sinusoidal case.

1 The Wannier functions

1-1 A new basis

To define the basis of Wannier functions, we start with a series of equidis-
tant points xj , j ∈ Z, distant from each other by a. In the following, we will
choose these points at the minima of the potential V (x): xj = ja = jλ/2.
We then define the Wannier function wj,n for the band n by:

wn,j(x) =
( a

2π

)1/2
∫ +π/a

−π/a
ψn,q(x) e−ijaq dq. (2)

It is immediate to show from the definition (2) that the Wannier functions
wn,j can be deduced (for a fixed n) one from the other by translations:

wn,0(x− ja) = wn,j(x). (3)

43



CHAPTER III. OPTICAL LATTICES IN THE TIGHT-BINDING REGIME § 1. The Wannier functions

It is therefore sufficient to characterize the Wannier functions wn,0(x) to
know them all. The definition (2) can be inverted to give 1

ψn,q(x) =
( a

2π

)1/2∑

j∈Z
wn,0(x− ja) eijaq, (5)

and, for the periodic part un,q of Bloch waves:

un,q(x) =
( a

2π

)1/2∑

j∈Z
wn,0(x− ja) e−iq(x−ja). (6)

The definition of the Wannier functions depends on the phase given to
each Bloch wave, this phase being arbitrary at this stage. For a potential
with a mirror symmetry [V (x) = V (−x)] and for disjoint energy bands
In, Kohn (1959) showed that there is a unique choice for this phase which
guarantees that the Wannier function (i) is real, (ii) is even or odd with
respect to x = 0 or x = a/2, (iii) decays exponentially fast at infinity. For
the lattice sin2(kx), a relevant choice of phase is to take ψn,q(0) real positive
for all q if n is even, and dψn,q/dx|x=0 real positive if n is odd. This leads
to

ψn,q(−x) = ψ∗n,q(x) = ψn,−q(x). (7)

We then check from the definition (2) that the Wannier function w0,0(x) is
even with respect to x = 0. The Wannier functions associated with site
j = 0 for several values of the potential V0 are plotted on figure 1. For a
zero potential, this Wannier function is proportional2 to sinc(kx).

Using the fact that the Bloch functions constitute an orthonormal basis
of the space of square-integrable functions of the variable x, we can easily
verify using (2-5) that the set of Wannier functions also forms an orthonor-
mal basis of the space of functions:

∫
wn,j(x)wn′,j′(x) dx = δn,n′ δj,j′ . (8)

1For the functions considered here, we use the relation∑
j∈Z

eiqja = (2π/a) δ(q). (4)

where the distribution δ(q) is defined up to an element of the reciprocal lattice (the multiples
of 2π/a in 1D).

2It does not decrease exponentially at infinity because W. Kohn’s assumption of disjoint
energy bands is not verified in this case.

Wannier functions for the lowest band
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Figure 1. Wannier functions w0,0(x) as a function of kx/π for the periodic poten-
tial V (x) = V0 sin2(kx). From left to right, and from top to bottom: V0/Er =(0,
0.5, 1); (2, 4, 8); (12,16,20). The dotted lines indicate the Wannier function shifted
by one site (w0,−1(x)).
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Note that each Wannier functionwn,j(x) must necessarily take positive and
negative values, to ensure the orthogonality between itself and the Wan-
nier function shifted by a distance a, wn,j±1(x).

1-2 Wannier functions in the reciprocal space

Let us define the Fourier transform w̃n(κ) of the central Wannier function
wn,0(x):

w̃n(κ) =
1√
2π

∫ +∞

−∞
wn,0(x) e−ixκ dx. (9)

It is then quite simple to show that this function is directly related to the
expansion of the Bloch function on the plane wave basis. More precisely,
we have

ψn,q(x) =
1√
a

∑

j∈Z
w̃n(q + 2πj/a) eix(q+2πj/a). (10)

We can prove this result either by using the definition (2) in the Fourier
transform (9), or by using the Poisson summation formula.

This formula gives a new insight into the Wannier functions: the mod-
ulus square of their Fourier transform gives the weight of the different
components of the momentum comb that forms each Bloch function. Note
that without a lattice, the Bloch functions are known to be plane waves:
only one tooth of the comb is non-zero; for example, for the lowest band,
ψ0,q(x) ∝ eixq for q in the interval ]− π/a,+π/a] corresponding to the Bril-
louin zone. The Fourier transform w̃0(κ) is then a square function, constant
on this interval [equal to (a/2π)1/2] and null everywhere else.

1-3 The Hamiltonian in terms of Wannier functions

In the Bloch function basis, the Hamiltonian describing the motion of a
particle is by definition diagonal

H =
∑

n

∫ +π/a

−π/a
dq En(q) |ψn,q〉〈ψn,q| =

∑

n

∫
dq En(q) â†n,qân,q, (11)

where we have adopted a second quantization notation in the right-hand
side, which is more convenient to later treat problems with interaction be-
tween particles. In this notation, the operator ân,q destroys a particle in the
Bloch wave ψn,q .

The change of basis (5), which is written in second quantization

ân,q =
( a

2π

)1/2∑

j

eijaq b̂n,j , (12)

where b̂n,j destroys a particle in the Wannier function wn,j , leads to the
following expression for the Hamiltonian:

Ĥ =
∑

n

∑

j,j′

Jn(j − j′) b̂†n,j b̂n,j′ . (13)

The interpretation of this Hamiltonian is simple: it describes the jump of
the particle from the site xj′ = j′a to the site xj = ja with the ampli-
tude Jn(j − j′) which depends on the band n considered and the distance
between the two sites. By construction, Jn(j − j′) is equal to the matrix
element of the Hamiltonian between two Wannier functions

Jn(j) =

∫
w∗n,j(x)

(
p̂2

2m
+ V (x)

)
wn,0(x) dx, (14)

and verifies the property

Jn(−j) = J∗n(j), (15)

which guarantees that Ĥ in (13) is Hermitian. If the Wannier functions can
be chosen real, Jn(j) is also real and Jn(−j) = Jn(j).

The matrix element Jn(j) is written in terms of the energies En(q):

Jn(j) =
a

2π

∫ +π/a

−π/a
dq En(q) eijaq, (16)

a relation that can be inverted to give

En(q) =
∑

j∈Z
Jn(j) e−ijaq, (17)

= 2

∞∑

j=1

Jn(j) cos(j aq), (18)
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where the second line is valid if the Wannier functions can be chosen real.
The energy bands and the hopping amplitudes between (near or distant)
neighbours are thus linked by Fourier-transform-like relations. The coeffi-
cient Jn(0) simply corresponds to the uniform average of the energy En(q)
over the Brillouin zone.

1-4 The multi-dimensional case

Consider a particle moving in three dimensions placed in the periodic po-
tential

V (r) = V0 sin2(kx) + V ′0 sin2(ky) + V ′′0 sin2(kz). (19)

Since the Hamiltonian can be written as the sum Ĥx + Ĥy + Ĥz , we can
look for its eigenstates as products of Bloch waves along each direction:

Ψn,q(r) = ψnx,qx(x) ψny,qy (y) ψnz,qz (z), (20)

where the quasi-moment q is chosen in the first Brillouin zone, which is in
this case a cube centered on 0 and of side 2π/a.

As for the one-dimensional case, we can define Wannier functions as-
sociated to each site of the cubic lattice ja = (jx, jy, jz)a :

wn,j(r) =
( a

2π

)3/2
∫

B.Z.

Ψn,q(r)d3q = wnx,jx(x) wny,jy (y) wnz,jz (z). (21)

Similarly, we can define and calculate the matrix elements of the Hamilto-
nian for any pair of Wannier functions:

〈wn,j |Ĥ|wn′,j′〉 =

∫
wn,j(r)(Ĥx + Ĥy + Ĥz)wn′,j′(r)d3r. (22)

As in 1D, these coefficients are non-zero only if n = n′: the ”hoppings”
from one site to another can only occur within the same band, which is nat-
ural since these bands correspond to eigen-subspaces of the Hamiltonian.
Another result, more surprising at first sight, appears when we evaluate
(22): the hoppings can only be done along the axes of the lattice. Indeed,
the matrix element (22) is written as the sum of three terms coming from
the contributions of Ĥx, Ĥy , Ĥz . The contribution of Ĥx for example reads:

(∫
wnx,jxĤxwnx,j′x dx

)
δjy,j′y δjz,j′z = Jnx(jx − j′x) δjy,j′y δjz,j′z . (23)

The hoppings along the diagonals of the lattice are of course present even-
tually in this description, but they result from combinations of hoppings
along the x, y, z axes. This remark indicates that one should be careful
of the apparently very intuitive character of Wannier functions: they are
powerful computational tools, in particular in the case of the strongly-
modulated potentials that we will study below, but they also have some
confusing aspects; we will see another example later when we discuss the
consequences of the phase arbitrariness of Bloch functions.

2 Strongly-modulated sinusoidal potential

Let us now turn to the practically important case of strongly-modulated
potentials V0 � Er. In this limit, the influence of the tunnelling effect,
which allows a particle to jump from one well to a neighbouring well even
if its energy is lower than V0, is expected to become increasingly weak. If
the tunnelling effect plays a negligible role, the energy levels are expected
to be similar to those of each individual well, at least for energies E � V0.
The energy bands must therefore become thinner, to tend towards discrete
energy levels.

2-1 Width of the allowed bands

The quantitative study of the eigenstates and the corresponding energies
confirms this scenario. Let us start by looking at how the width Wn of the
bands varies with V0. This variation is plotted on figure 2 for the first four
energy bands and we see a rapid decrease of Wn with V0. In the limit of
a large V0, one can establish an approximate analytical expression for the
width of the first few bands (Campbell 1955). In particular, we obtain for
the lowest band an exponential decrease of the width with (V0/Er)

1/2:

W0

Er
≈ 16√

π

(
V0

Er

)3/4

exp

[
−2

(
V0

Er

)1/2
]
, (24)
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Figure 2. Solid lines: width Wn of the first three energy bands of the sinusoidal
potential as a function of V0, in linear (left) and logarithmic (right) coordinates.
The dashed curve is the asymptotic value (24) for the width of the lowest band.

a prediction plotted as a dashed line in figure (2). The relative accuracy of
this approximation is better than 20% as soon as V0 > 10Er.

2-2 Matrix elements of hopping between neighbours

This reduction in the width of the lowest bands is associated to an increas-
ingly strong localization of the Wannier functions, that appears clearly on
figure 1. This strong localization of the Wannier functions has itself a con-
sequence on the hopping amplitudes Jn(j) which characterize the Hamil-
tonian (13). If the Wannier functions wn,0(x) and wn,j(x) do not take sig-
nificant values in the same regions of space, the hopping amplitude Jn(j)
given in (14) is negligible. More precisely, one can show that the amplitude
Jn(j) decreases exponentially with distance j, with the same characteristic
distance as the Wannier function itself. As V0/Er increases, the amplitudes
Jn(j) (j ≥ 2) for the ”long-range” hoppings of length j therefore decrease
faster than the amplitude Jn(1) of the hoppings between nearest neigh-
bours. We have plotted on figure 3 the variation of the matrix elements
associated with the hoppings J0(j) as well as the ratios J0(j)/J0(1) for the
first values of j, limited to the lowest band n = 0. In particular we note that
for V0 & 10Er, all the matrix elements for ”distant” hoppings, i.e. j > 1,
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Figure 3. Matrix elements associated with hoppings of length j, as a function of
V0.

are less than 1% of the matrix element for a jump between nearest neigh-
bours (j = 1). If we estimate that in this situation the amplitudes J0(j)
(j ≥ 2) can be neglected, then we realize the tight-binding regime, where the
dynamics of the atoms in the lattice is governed almost exclusively by the
jumps between nearest neighbours.

When the width of w0,0(x) becomes very small compared to the period
a of the potential, at most one term of the sum (5) contributes at a given
point x. We deduce that in this asymptotic case, the probability distribution
|ψn,q(x)|2 does not depend on q and is approximately equal to the sum of
the probability distributions of the Wannier functions.

2-3 Tight-binding spectrum

Let us consider the limiting case of a very large V0, for which the tunnelling
effect between neighbouring sites becomes very weak, at least for the low-
est energy bands. We can then study the spectrum of the motion of a parti-
cle by linearizing the trapping potential at the vicinity of the minimum of
potential, which reads for the well centered at x = 0:

kx� 1 ⇒ V (x) ≈ V0k
2x2. (25)
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Figure 4. Left: overlap |〈Hn|wn,0〉|2 between the Wannier functions wn,0(x) and
the Hermite functions Hn(x). Right: average energies Ēn = Jn(0), compared to
the expected value for a harmonic well (n+ 1/2)~ω.

In fact, for |kx| = 1/2, this harmonic approximation is valid with a pre-
cision of 10%. We then obtain a harmonic oscillator Hamiltonian of fre-
quency ω such that

~ω = 2
√
V0Er, (26)

with the spectrum (n + 1/2)~ω. A necessary condition for this harmonic
approximation to be valid for the first levels of the oscillator is that the
extent of the ground state

aho = (~/mω)
1/2 (27)

verifies the hypothesis of (25), kaho � 1, which can also be written as

kaho = (Er/V0)
1/4 � 1. (28)

We then have the inequalities:

Er � ~ω � V0. (29)

The (arbitrary) criterion kaho ≤ 1/2 leads to V0/Er ≥ 16, or ω ≥ 8ωr.
With this ”minimal” constraint, we find two bound states (E0 ≈ 4Er, E1 ≈
12Er) inside each potential well.

On figure 4 (left) we have plotted the modulus square of the scalar
product between the Wannier function wn,0(x) and the expected state for
a harmonic potential, the Hermite function Hn(x) for n = 1, 2. For the
lowest band, this overlap very quickly takes values close to 1 (> 0.97 for
V0/Er > 3). Figure 4 (right) compares the average energies of the first two
bands Ēn = Jn(0), with the prediction (n+ 1/2)~ω. The actual average en-
ergies are lower than the harmonic prediction (by an amount ∼ Er), which
is well explained by considering the first ”sub-harmonic” correction in the
potential sin2(kx).

In the following, we will frequently use the approximate expression
for the Wannier function of the lowest band w0,0(x) ≈ H0(x), which is
explicitly written

w0,0(x) ≈ 1

(πa2
ho)1/4

e−x
2/(2 a2ho). (30)

3 Hubbard Hamiltonian

In the case of a strongly-modulated potential, one can often limit oneself
to considering the states of the lowest band. This considerably reduces the
Hilbert space and allows to greatly simplify the notations and the calcu-
lations. We will detail here the main ingredients of this approach on the
very simple case of the potential V0 sin2(kx) that we have considered until
now. We will see how to introduce interactions in this formalism and we
will illustrate their role on a remarkable experiment, the demonstration of
bound pairs of atoms, although these atoms interact repulsively.

Note that the sinusoidal potential considered in this paragraph has the
particularity of having only one site in its unit cell, which makes the treat-
ment of the one-particle physics very simple. We will come back later to
this Hubbard model in the slightly more complicated (and richer) case of
two-site unit cells.
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3-1 The one-particle Hamiltonian (no interaction)

Let us then place ourselves in this approximation and additionally assume
that only the matrix elements Jn=0(j = 0) (on site) and Jn=0(j = 1) (be-
tween nearest neighbours) take significant values. The term Ē0 = J0(0) is
a constant that represents the on-site energy, which we will shift from now
on to Ē0 = 0. We define

J = −Jn=0(j = 1), J positive, (31)

and the Hamiltonian is then very simple

Ĥ = −J
(
T̂ + T̂ †

)
(32)

where T̂ is the operator that translates the particle by one site to the right:

T̂ =
∑

j∈Z
|wj+1〉〈wj |. (33)

We have noted the Wannier functions wj ≡ w0,j since we limit our state
space to the band n = 0. We will also use the expression of the same
Hamiltonian in second quantization:

Ĥ = −J
∑

j

b̂†j+1b̂j + h.c., (34)

where b̂†j creates a particle at site j with wave function wj(x).

In this one-band Hubbard model, shown schematically in Figure 5, the
only periodic function on the lattice is:

|u〉 =
∑

j

|wj〉 (35)

and the Bloch states thus have the form

|ψq〉 =
∑

j

eijaq|wj〉. (36)

If we transfer this form into the eigenvalue equation for the Hamiltonian,
we obtain the very simple equation

−J
(
eiaq + e−iaq

)
= E (37)
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Je = 3/2
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Figure 5. Schematic representation of the 1D Hubbard model described by the
Hamiltonian (34) on the left, and the corresponding spectrum on the right [cf. eq.
(38)].

i.e.
E(q) = −2J cos(aq), (38)

The spectrum E0(q) ≡ E(q) of the lowest band is sinusoidal in this case,
which was to be expected since we keep only one of its Fourier components
in (17).

The lowest band has width3 4J . This width can be identified with the
approximate expression (24) obtained in the limit V0 � Er, which provides
the approximate expression of J

J

Er
≈ 4√

π

(
V0

Er

)3/4

exp

[
−2

(
V0

Er

)1/2
]
. (39)

3-2 The sign of the tunnelling coefficient

We have indicated in the definition of the tunnel matrix element J of the
tight-binding model [cf. (31)] that this coefficient is always positive. This
leads the Bloch state |ψq=0〉, of energy −2J , to be the ground state of the
particle on the lattice. On the contrary, if J were negative, the ground state
would be |ψq=k〉, of energy +2J .

3In the square case in 2D (cubic in 3D), each atom has 4 (6) nearest neighbours, and the
width of this band becomes 8J (12J).
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To prove this property, let us use the Sturm–Liouville theorem. Let us
restrict ourselves to a lattice of finite size L (multiple of a). Since the po-
tential V (x) is regular, we know that we can classify the eigenstates of the
Hamiltonian by increasing energy according to the number of their nodes:
the ground state has no node, the first excited state has one node, etc. In a
double well for example, the antisymmetric state is always above the sym-
metric state in energy. Now the function ψk(x) at the edge of the band
verifies

ψk(x) =
∑

j

(−1)jwj(x) ⇒ ψk(x+ a) = −ψk(x). (40)

This function necessarily cancels between 0 and a. On the segment of
length L = Na, it has at least N nodes and cannot be the ground state.
J cannot therefore be negative. We will see later that this conclusion can
be invalidated if we extend the class of available Hamiltonians by consid-
ering potentials that are explicitly time-dependent.

3-3 Interactions in the Hubbard model

Let us now describe how the interactions between particles are taken into
account in this tight-binding model, when the dynamics is restricted to the
lowest band. We will take the example of spinless bosons, but the for-
malism extends without difficulty to the case of a gas of non-polarized
fermions.

The short-range interaction Hamiltonian (s-wave for bosons) reads, in
the pseudo-potential approximation

Ĥint =
g

2

∫
Ψ̂†(x) Ψ̂†(x) Ψ̂(x) Ψ̂(x)dx, (41)

where the field operator Ψ̂(x) destroys a particle at point x. This operator
is written in terms of Wannier functions

Ψ̂(x) =
∑

n,j

wn,j(x) b̂n,j . (42)

When we use this expansion in (41), we obtain a complicated expression,

involving terms that couple the different bands and sites of the lattice:

Ĥint =
g

2

∑

n1,j1

∑

n2,j2

∑

n3,j3

∑

n4,j4

b̂†n3,j3
b̂†n4,j4

b̂n1,j1 b̂n2,j2

×
∫
wn1,j1(x) wn2,j2(x) wn3,j3(x) wn4,j4(x) dx . (43)

However, for a deep lattice (V0 � Er) and if we exclude the vicinity of
a Feshbach resonance, the interaction energy per atom remains small com-
pared to the gap ~ω between the lowest band and the first excited band.
This leads to two successive simplifications:

• We can restrict the development of Hint to the lowest band n = 0, as
we did for the kinetic energy. The sum over n1, n2, n3, n4 disappears
from (43) and we keep only the term n1 = n2 = n3 = n4 = 0.

• As soon as the depth of the lattice exceeds about ten Er, the over-
lap between two Wannier functions on two different sites, w0,j(x) and
w0,j′(x), becomes very small (see figure 1). The integral on x appear-
ing in (43) thus takes values significantly different from 0 only if all
the indices j appearing there are equal to each other. The resulting
integral ∫

w4
0,j(x) dx (44)

is then independent of j, since the function w0,j is simply the transla-
tion of w0,0 by the distance ja.

The development of Ĥint is then considerably simplified. Only the terms
describing on-site interactions remain and the result is written:

Ĥint ≈
U

2

∑

j

n̂j (n̂j − 1) , (45)

where we have introduced the particle number operator on site j, n̂j = b̂†j b̂j
and where we have used b̂†j b̂

†
j b̂j b̂j = b̂†j b̂j b̂

†
j b̂j− b̂†j b̂j = n̂2

j − n̂j . Note that we
have omitted here to write the band index n since we restrict ourselves to
n = 0. The energy U is the energy required to put two atoms on the same
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site; it can be written explicitly as

U = g

∫
w4

0,0(x) dx ≈ g√
2π aho

, (46)

where we have used the Gaussian approximation (30) for the Wannier
function of the lowest band.

As we have indicated, the formalism presented here concerns spinless
bosons. Let us indicate without demonstration (it is simple to establish)
how the expression (45) is modified for a gas of fermions with spin 1/2,
still with short-range interactions:

Ĥint ≈ U
∑

j

n̂j,↑n̂j,↓. (47)

The operators n̂j,↑ and n̂j,↓ have eigenvalues 0 and 1, since we cannot put
more than one fermion in a given state, in this case the Wannier function
wj with a given spin state.

The above calculations have been carried out for a 1D lattice. They can
directly be transposed to the 3D case for a cubic lattice and we obtain

U (3D) =
g(3D)

(
√

2π aho)3
. (48)

The coupling g(3D) is expressed in terms of the scattering length asc as

g(3D) =
4π~2asc

m
, (49)

and (48) is then written

U (3D)

Er
=

√
8

π
kasc

(
V0

Er

)3/4

. (50)

Let us now discuss the value of this coefficient U . We will conduct
this discussion in the 3D case since we have the explicit expression (50)
at our disposal. Away from a Feshbach resonance, the scattering length
is on the nanometer scale (3 nm for 23Na, 5 nm for 87Rb). Since the light
used for the lattice has a micrometer wavelength λ, the product kasc =

2πasc/λ is small, between 10−2 and 10−1. The product V0/Er usually does
not exceed a few tens: beyond this value, the tunnelling effect between
sites becomes completely negligible and the lattice is only a collection of
independent traps. The coefficient U is therefore in general smaller than
the recoil energy. Recall that it is important that Unj(nj − 1)/2 remains
small compared to ~ω = 2

√
V0Er for the restriction to the lowest band to

be valid.

Despite this relatively low value U , the interactions play a consider-
able role and cause the apparition of a strongly correlated ground state
(Jaksch, Bruder, et al. 1998). To understand this point, one must compare
the strength of these interactions, characterized by U , to the kinetic energy,
characterized by the tunnelling coefficient J . The N -body effects become
important when the interactions exceed the kinetic energy, and this can
happen for relatively shallow lattices, because the coefficient J decreases
exponentially with V0/Er [cf. eq. (39)].

In summary, the implementation of an optical lattice allows to cumulate
two effects favouring N -body physics:

• It strongly reduces the kinetic energy term, thanks to the exponential
decrease of J with V0/Er [cf. eq. (39)].

• It moderately increases the interaction term, thanks to the power-law
growth of U with V0/Er [cf. eq. (50)].

3-4 Illustration : the repulsively bound pairs

This competition between kinetic energy and interaction energy has been
demonstrated in optical lattices many times in the last ten years4. The most
famous manifestation is probably the phase transition between the super-
fluid and the Mott insulator regimes at a critical value of the ratio U/J , for

4This competition also occurs in a uniform gas; for a fluid of density ρ, corresponding to an
average distance between particles ` = ρ−1/3, we can evaluate a characteristic kinetic energy
~2/(m`2). This energy must be compared to the interaction energy which is ~2ascρ/m, up to
a multiplicative factor. The ratio between these two energies scales as (ρa3sc)1/3. When this
parameter is small compared to 1 (dilute gas), a description in terms of the mean-field Gross–
Pitaevskii equation is a good approximation, whereas the fluid becomes strongly correlated
when this parameter becomes of order unity.
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Throughout physics, stable composite objects are usually formed
by way of attractive forces, which allow the constituents to lower
their energy by binding together. Repulsive forces separate par-
ticles in free space. However, in a structured environment such as a
periodic potential and in the absence of dissipation, stable com-
posite objects can exist even for repulsive interactions. Here we
report the observation of such an exotic bound state, which
comprises a pair of ultracold rubidium atoms in an optical lattice.
Consistent with our theoretical analysis, these repulsively bound
pairs exhibit long lifetimes, even under conditions when they
collide with one another. Signatures of the pairs are also recog-
nized in the characteristic momentum distribution and through
spectroscopic measurements. There is no analogue in traditional
condensed matter systems of such repulsively bound pairs, owing
to the presence of strong decay channels. Our results exemplify the
strong correspondence between the optical lattice physics of
ultracold bosonic atoms and the Bose–Hubbard model1,2—a link
that is vital for future applications of these systems to the study of
strongly correlated condensed matter and to quantum
information.
Cold atoms loaded into a three-dimensional (3D) optical lattice

provide a realization of a quantum lattice gas1,2. An optical lattice can
be generated by pairs of counterpropagating laser beams, where the
resulting standing wave intensity pattern forms a periodic array of
microtraps for the cold atoms, with period a given by half the
wavelength of the light, l/2. The periodicity of the potential gives
rise to a band structure for the atom dynamics with Bloch bands
separated by bandgaps, which can be controlled by the laser param-
eters and beam configuration. The dynamics of ultracold atoms
loaded into the lowest band of a sufficiently deep optical lattice is well
described by the Bose–Hubbard model with hamiltonian1,3:

Ĥ¼2J
ki;jl

X
b̂
†

i b̂j þ
U

2 i

X
n̂iðn̂i 2 1Þþ

i

X
1in̂i ð1Þ

Here b̂i (b̂i
†) are destruction (creation) operators for the bosonic

atoms at site i, and n̂i ¼ b̂i
† b̂i is the corresponding number operator.

J/" denotes the nearest-neighbour tunnelling rate, U the on-site
collisional energy shift, and 1i the background potential. The high
degree of control available over the parameters in this system—for
example, changing the relative values ofU and J by varying the lattice
depth, V0—has led to seminal experiments on strongly correlated
gases in optical lattices. These experiments include the study of
the superfluid–Mott insulator transition4, the realization of one-
dimensional (1D) quantum liquids with atomic gases5,6 (see also refs
7 and 8), and the investigation of disordered systems9. 3D optical
lattices have also opened new avenues in cold collision physics and
chemistry10–13.
A striking prediction of the Bose–Hubbard hamiltonian (equation

(1)) is the existence of stable repulsively bound atom pairs. These are
most intuitively understood for strong repulsive interaction

jUj .. J, U . 0, where an example of such a pair is a state of two
atoms occupying a single site, j2il ; ðb̂†2i jvaclÞ=

ffiffiffi
2

p
, where jvacl is the

vacuum state. This state has a potential energy offset U with respect
to states where the atoms are separated (Fig. 1a). The pair is unable to
decay by converting the potential energy into kinetic energy, as the
Bloch band allows a maximum kinetic energy for two atoms given by
8J, twice its width. The pair can move around the lattice, with both
atoms tunnelling to a neighbouring site (Fig. 1b), but the atoms
cannot move independently. The stability of repulsively bound pairs
is intimately connected with the absence of dissipation, in contrast to
solid state lattices, for example, where interactions with phonons
typically lead to rapid relaxation.
We obtain experimental evidence for repulsively bound pairs with

a sample of ultracold 87Rb atoms in a cubic 3D optical lattice with
lattice period a ¼ 415.22 nm. The key tool used to prepare and
observe the pairs is their adiabatic conversion into chemically

LETTERS

Figure 1 | Atom pairs in an optical lattice. a, Repulsive interaction
(scattering length a . 0) between two atoms sharing a lattice site in the
lowest band (n ¼ 0) gives rise to an interaction energyU. Breaking up of the
pair is suppressed owing to the lattice band structure and energy
conservation. b, The pair is a composite object that can tunnel through the
lattice. c, Long lifetime of repulsively bound atom pairs that are held in a 3D
optical lattice. The potential depth is (10 ^ 0.5)E r in one direction and
(35 ^ 1.5)E r in the perpendicular directions. Shown is the remaining
fraction of pairs for a scattering length of 100a0 (open diamonds; a0 is the
Bohr radius) and a scattering length of about (0 ^ 10)a0 (filled circles) as a
function of the hold time. The lines are fitted curves of an exponential
(dashed line) and the sum of two exponentials (solid line).
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† b̂i is the corresponding number operator.

J/" denotes the nearest-neighbour tunnelling rate, U the on-site
collisional energy shift, and 1i the background potential. The high
degree of control available over the parameters in this system—for
example, changing the relative values ofU and J by varying the lattice
depth, V0—has led to seminal experiments on strongly correlated
gases in optical lattices. These experiments include the study of
the superfluid–Mott insulator transition4, the realization of one-
dimensional (1D) quantum liquids with atomic gases5,6 (see also refs
7 and 8), and the investigation of disordered systems9. 3D optical
lattices have also opened new avenues in cold collision physics and
chemistry10–13.
A striking prediction of the Bose–Hubbard hamiltonian (equation

(1)) is the existence of stable repulsively bound atom pairs. These are
most intuitively understood for strong repulsive interaction

jUj .. J, U . 0, where an example of such a pair is a state of two
atoms occupying a single site, j2il ; ðb̂†2i jvaclÞ=

ffiffiffi
2

p
, where jvacl is the

vacuum state. This state has a potential energy offset U with respect
to states where the atoms are separated (Fig. 1a). The pair is unable to
decay by converting the potential energy into kinetic energy, as the
Bloch band allows a maximum kinetic energy for two atoms given by
8J, twice its width. The pair can move around the lattice, with both
atoms tunnelling to a neighbouring site (Fig. 1b), but the atoms
cannot move independently. The stability of repulsively bound pairs
is intimately connected with the absence of dissipation, in contrast to
solid state lattices, for example, where interactions with phonons
typically lead to rapid relaxation.
We obtain experimental evidence for repulsively bound pairs with

a sample of ultracold 87Rb atoms in a cubic 3D optical lattice with
lattice period a ¼ 415.22 nm. The key tool used to prepare and
observe the pairs is their adiabatic conversion into chemically
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Figure 1 | Atom pairs in an optical lattice. a, Repulsive interaction
(scattering length a . 0) between two atoms sharing a lattice site in the
lowest band (n ¼ 0) gives rise to an interaction energyU. Breaking up of the
pair is suppressed owing to the lattice band structure and energy
conservation. b, The pair is a composite object that can tunnel through the
lattice. c, Long lifetime of repulsively bound atom pairs that are held in a 3D
optical lattice. The potential depth is (10 ^ 0.5)E r in one direction and
(35 ^ 1.5)E r in the perpendicular directions. Shown is the remaining
fraction of pairs for a scattering length of 100a0 (open diamonds; a0 is the
Bohr radius) and a scattering length of about (0 ^ 10)a0 (filled circles) as a
function of the hold time. The lines are fitted curves of an exponential
(dashed line) and the sum of two exponentials (solid line).

1Institute for Experimental Physics, 2Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria. 3Institute for Quantum Optics and Quantum
Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria.
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Figure 6. Left: principle of the experiment of Winkler, Thalhammer, et al. (2006):
atoms in repulsive interaction are prepared on the same site of a lattice. If the
interaction is strong enough, the atoms remain together in spite of the repulsion.
Right: evolution of the number of pairs in the presence of repulsion (scattering
length of 5 nm, i.e.100 a0) and in the absence of repulsion (zero scattering length).
Figures extracted from Winkler, Thalhammer, et al. (2006).

a given filling of the lattice, for example one atom per site (Fisher, Weich-
man, et al. 1989; Jaksch, Bruder, et al. 1998; Greiner, Mandel, et al. 2002).
We will describe this phenomenon in detail in a future lecture.

Here, we will illustrate this competition with a phenomenon that is sim-
pler to describe theoretically, which concerns the existence of bound pairs
in the presence of repulsive interactions (cf. figure 6). This phenomenon
has been demonstrated and interpreted by the Innsbruck group (Winkler,
Thalhammer, et al. 2006). We start with a gas of Rb2 molecules, prepared
at the vicinity of a Feshbach resonance (at ∼ 1000 G). These molecules are
trapped at the minima of a high-intensity cubic optical lattice, with a rela-
tively low filling (∼ 0.3). At a given time, we lower the depth of the lattice
along one direction to allow the tunnelling effect along this axis. At the
same time the magnetic field is moved away from the Feshbach resonance,
which has the effect of dissociating the pairs. The interaction between the
two atoms that formed the pair becomes repulsive and is characterized by
the scattering length asc = +5 nm (about 100 Bohr radii a0). One would
naively expect that the stronger the repulsion, the faster the pair of atoms
would separate. This is not the case, as can be seen on figure 6. While the
pairs separate quite quickly if the coefficient U is zero, a strong repulsion

keeps them together!

The explanation of this phenomenon is simple, at least qualitatively.
The bound pair has an energy U ; if this energy is large compared to the
bandwidth 4J (or rather 8J because each atom of the pair has access to a
band of width 4J), then this interaction energy cannot be converted into
kinetic energy.

The exact expression of the corresponding bound state can be deter-
mined quite easily (Winkler, Thalhammer, et al. 2006). The Hubbard
Hamiltonian of the two atoms (which we assume here to be distinguish-
able) in the lattice is written

Ĥ = −J
(
T̂ (1) + T̂ †(1)

)
− J

(
T̂ (2) + T̂ †(2)

)

+U
∑

j1,j2

δj1,j2 |wj1 , wj2〉〈wj1 , wj2 |, (51)

where we define |wj1 , wj2〉 as the state where atom 1 occupies site wj1 and
atom 2 occupies site wj2 . The operator T̂ (α), already introduced above,
shifts particle α by one site to the right.

As always in a two-body problem, it is useful to introduce the variables
of the center of mass and the relative coordinate. Let us define

c = j1 + j2, r = j1 − j2, |c, r〉 ≡ |wj1 , wj2〉, (52)

so that the position of the center of mass is ac/2 (multiple or half-multiple
of a). The Hamiltonian is rewritten in terms of these new variables:

Ĥ = −J
(
T̂ (c) + T̂ †(c)

)
⊗
(
T̂ (r) + T̂ †(r)

)
+ U 1̂c ⊗ P̂0. (53)

where T̂ (c) and T̂ (r) are the jump operators by one site to the right, re-
spectively for the center of mass and for the relative position, and where
P̂0 is the projector on the |r = 0〉 state, corresponding to the case when both
atoms are on the same site:

P̂0 = |r = 0〉〈r = 0|. (54)

At a fixed r, the motion of the center of mass described by (53) is that of
a free particle on a lattice and its eigenstates are Bloch waves

|Ψq〉 =
∑

c∈Z
eicaq/2|c〉. (55)

52



CHAPTER III. OPTICAL LATTICES IN THE TIGHT-BINDING REGIME § 4. The case of a super-lattice

We will therefore look for the eigenstates of Ĥ in the form

|Ψq〉 ⊗ |Φ〉, with |Φ〉 =
∑

r∈Z
αr|r〉. (56)

Let us specify the domain in which the quasi-moment q can be chosen for
the motion of the center of mass. Looking at expression (55) in which c is an
integer, the interval −π < qa/2 ≤ π (of length 4π/a) would seem natural.
In fact, we can reduce this interval by a factor of 2 by noticing that

|Ψq〉 ⊗ |Φ〉 = |Ψq±2π/a〉 ⊗ |Φ̃〉, with |Φ̃〉 =
∑

r

(−1)r αr |r〉, (57)

this identity coming from (−1)c = (−1)j1+j2 = (−1)j1−j2 = (−1)r. To
avoid any double counting, we will restrict the values of q to the interval

−π
a
< q ≤ π

a
. (58)

Let us now use the form (56) in the eigenvalue equation for the Hamil-
tonian (53). For a given value of q, we obtain:

−Jq
(
T̂ (r) + T̂ †(r)

)
|Φ〉+ U P̂0|Φ〉 = E |Φ〉, (59)

where we have defined

Jq = 2J cos(qa/2). (60)

This equation is translated in terms of the coefficients αj of the develop-
ment of |Φ〉:

j 6= 0 −Jq (αj+1 + αj−1) = E αj

j = 0 −Jq (α1 + α−1) = (E − U) α0. (61)

This system admits two types of solutions: (i) scattering (unbound) states
for which αj is a trigonometric function of j, (ii) a bound state, for which
αj decreases exponentially with |j|. It is this second type of solution that
interests us here. We can simply check that

αj = α0 e−β|j| (−1)j (62)

is solution of the system (61) if we take

Eq =
[
U2 + 4J2

q

]1/2
, βq = ln [2Jq/(Eq − U)] . (63)

For each value of the quasi-momentum q of the center of mass, there is
therefore a bound state of the pair of atoms. The energy of this bound state
is as expected on the order of U if we choose U � J . Since this bound state
is an eigenstate of the Hamiltonian, a pair of particles prepared in this state
will remain there indefinitely, even if its energy is higher than that of the
continuum of scattering states (the energy band of width 4J).

4 The case of a super-lattice

The simplicity of the definition of Wannier functions for the sinusoidal lat-
tice is a bit misleading. For more complicated lattices, for example poten-
tials with several local minima per period a, it is not always obvious to
choose the ”good” basis of Wannier functions, corresponding to the intu-
ition of wave functions localized around these local minima.

We will not describe here the general principles to find these maximally
localized Wannier functions. One can refer to the recent review article by
Marzari, Mostofi, et al. (2012) on this subject. In the following, we will only
state the nature of the problem and illustrate it on a simple example.

4-1 The arbitrariness of the phase

The required property for Bloch functions is to form a normalized eigen-
state basis of the Hamiltonian and the translation operator. In the absence
of degeneracy (at least in 1D), they are therefore defined up to a phase:
one can multiply ψn,q(x) by a phase factor eiθn(q) while still satisfying this
property5.

While this phase arbitrariness has no effect on the spatial variation of
Bloch functions, it can have a considerable influence on the shape of the

5We have indicated earlier that we required Bloch functions to be periodic in q,
ψn,q+2π/a = ψn,q , which leads θn(q) to be also periodic in q.
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Figure 7. Left: superlattice V (x)/Er = 15[sin2(kx) + 2 cos2(2kx)]. The shaded
area represents the central unit cell, located between kx/π = −1/2 and kx/π =
1/2 (i.e. between x = −a/2 and x = a/2). Right: band spectrum for this
superlattice. The two lowest bands, almost flat, are well separated from the rest of
the spectrum.

Wannier function

wn,0(x) =
( a

2π

)1/2
∫ +π/a

−π/a
ψn,q(x) dq. (64)

We can therefore exploit this arbitrariness of phase to construct a basis of
Wannier functions while optimizing a given criterion.

4-2 Mixing different bands

A second subtlety in the construction of the Wannier function basis ap-
pears when the spectrum of the Hamiltonian is composed of several en-
ergy bands close to one another, which are well separated from the rest of
the spectrum. It is then interesting to mix the Wannier functions coming
from these bands to build the best adapted functions for the considered
problem.

Let us illustrate this point on the case of a superlattice, obtained by
superimposing the sinusoidal potential V0 sin2(kx) with a potential of half

−1 0 1
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Figure 8. Left: Wannier functions w0(x) (red solid line) and w1(x) (blue dashed
line) associated with the two lowest bands of the superlattice in figure 7. Right:
localized Wannier functions wA and wB , obtained by sum and difference of w0

and w1.

periodicity V1 cos2(2kx). This potential, plotted on figure 7 with V1 = 2V0,
presents two local minima in the period a = π/k. The band spectrum
associated with this potential is plotted on figure 7 for V0 = 15Er. We
can clearly see that the two lowest bands n = 0 and n = 1 form a narrow
doublet, separated from the upper bands by a large gap.

If we follow the procedure described earlier in this chapter, in partic-
ular equation (64), we will construct a Wannier function for each band, in
particular a Wannier function w0(x) for the band n = 0 and a Wannier
function w1(x) for the band n = 1. These Wannier functions w0 and w1

are plotted in figure 8; they are respectively symmetric and antisymmetric,
just like the well-known eigenstates for a single double-well.

In many cases, these symmetric and antisymmetric Wannier functions
are not the best suited to model the problem. If we want to perform a
Hubbard-type treatment for example, we prefer to have basis vectors cor-
responding to an atom located in the left (A) or right (B) well of the unit
cell. For our example, the solution is simple: we can define the correspond-
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ing Wannier functions from the mixture of the bands n = 0 and n = 1:

wA(x) =
1√
2

(w0(x)− w1(x)) , located on the left, (65)

wB(x) =
1√
2

(w0(x) + w1(x)) , located on the right. (66)

These two functions are plotted on the right side of figure 8.

In this particular case, the mixing of the bands is done in a natural way.
In more complicated cases, one has to identify the proper minimizer that
leads to the optimal hybridization regarding the localization of these Wan-
nier functions (Marzari, Mostofi, et al. 2012).

4-3 The tight-binding Hamiltonian for the superlattice

Once the Wannier functions wA and wB have been identified, we can look
for the eigenstates of the Hamiltonian in the tight-binding limit, now re-
stricting ourselves to the two lowest bands. As above, we will consider in
the following only jumps between nearest neighbours.

The Hamiltonian is thus written

Ĥ = −J
∑

j

|wB,j〉〈wA,j | − J ′
∑

j

|wA,j+1〉〈wB,j |+ h.c. (67)

The first term describes the tunnelling rate through the low barrier in fig-
ure 7, and the second term describes the rate through the high barrier. A
schematic representation of this tight-binding model is given in figure 9.

The unit cell of this problem has two sites, A and B, and the relevant
periodic functions therefore have the form

|uq〉 = αq


∑

j

|wA,j〉


+ βq


∑

j

|wB,j〉


 , (68)

where αq and βq are for now arbitrary coefficients. Let us write that the
Bloch function

|ψq〉 =
∑

j

eijaq (αq|wA,j〉+ βq|wB,j〉) (69)
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Figure 9. Left: discretized version of the superlattice shown in figure 7. Right:
band spectrum (71) obtained for J = J0, J ′ = J0/2. The dotted lines represent
the result obtained for J = J ′ = 3/4 J0.

is eigenstate of the Hamiltonian (67). We project the eigenvalue equation
onto the two functions |wA,j〉 and |wB,j〉 of any site j, and we obtain an
eigenvalue equation for a 2 × 2 Hermitian matrix Ĥ(q) (Hamiltonian in
reciprocal space)

Ĥ(q)

(
αq
βq

)
= E

(
αq
βq

)
, Ĥ(q) = −

(
0 J + J ′e−iaq

J + J ′eiaq 0

)
. (70)

The eigenvalues of Ĥ(q) are

E(q) = ±
∣∣J + J ′eiaq

∣∣ = ±
(
J2 + J ′2 + 2JJ ′ cos(aq)

)1/2
. (71)

Except for the case J = J ′ where this model in fact corresponds to the
tight-binding model with one site that we have studied in 3, we find two6

subbands separated by a gap 2|J − J ′|. The opening of this gap is called
Peierls instability: a 1D crystal with one electron per ion is unstable because
its energy can be lowered by distorting it as in figure 9, so as to form both
strong and weak bonds. This type of Hamiltonian obtained with a super-
lattice has been studied experimentally by several groups, in particular the
Bloch group in Munich (Fölling, Trotzky, et al. 2007) [see figure 10] and the
Porto group at NIST (Lee, Anderlini, et al. 2007).

6The number of subbands is equal to the dimension of the matrix Ĥ(q), which is itself
equal to the number of sites in the unit cell of the lattice.
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Direct observation of second-order atom tunnelling
S. Fölling1, S. Trotzky1, P. Cheinet1, M. Feld1, R. Saers2, A. Widera1,3, T. Müller1,4 & I. Bloch1

Tunnelling of material particles through a classically impenetrable
barrier constitutes one of the hallmark effects of quantum physics.
When interactions between the particles compete with their
mobility through a tunnel junction, intriguing dynamical beha-
viour can arise because the particles do not tunnel independently.
In single-electron or Bloch transistors, for example, the tunnelling
of an electron or Cooper pair can be enabled or suppressed by the
presence of a second charge carrier due to Coulomb blockade1,2.
Here we report direct, time-resolved observations of the correlated
tunnelling of two interacting ultracold atoms through a barrier in
a double-well potential. For the regime in which the interactions
between the atoms are weak and tunnel coupling dominates, indi-
vidual atoms can tunnel independently, similar to the case of a
normal Josephson junction. However, when strong repulsive
interactions are present, two atoms located on one side of the
barrier cannot separate3, but are observed to tunnel together as
a pair in a second-order co-tunnelling process. By recording both
the atom position and phase coherence over time, we fully char-
acterize the tunnelling process for a single atom as well as the
correlated dynamics of a pair of atoms for weak and strong inter-
actions. In addition, we identify a conditional tunnelling regime in
which a single atom can only tunnel in the presence of a second
particle, acting as a single atom switch. Such second-order tunnel-
ling events, which are the dominating dynamical effect in the
strongly interacting regime, have not been previously observed
with ultracold atoms. Similar second-order processes form the
basis of superexchange interactions between atoms on neighbour-
ing lattice sites of a periodic potential, a central component of
proposals for realizing quantum magnetism4–7.

For the description and observation of quantum mechanical tun-
nelling, a double-well-type potential, where two localized spatial
modes are separated by a barrier, is among the conceptually simplest
set-ups. When a particle is initially prepared on one side of this
barrier, it will tunnel back and forth between the two sides with a
well-defined frequency. For macroscopic quantum systems, such as
superconductors or atomic Bose–Einstein condensates, this tunnel
coupling can lead to a Josephson-type tunnelling dynamics8–10. When
interactions between individual particles are much stronger than
the tunnel coupling in the system, quantized Josephson dynamics
arises—in which, for example, the charge carriers in superconducting
devices tunnel individually across barriers11,12.

In the case of coupled mesoscopic quantum dots, a co-tunnelling
regime can be achieved, where separate electrons only tunnel in a
correlated way13,14. For ensembles of ultracold atoms in periodic
potentials, strong interactions fundamentally alter the properties of
the many-body system, leading to strongly correlated phases such as
the Mott insulating state15–19. In such cases, where direct first-order
tunnelling of single atoms is highly suppressed, second-order corre-
lated tunnelling processes can be the dominant dynamical effects.
Despite the absence of direct long-range interaction mechanisms
between particles, second-order ‘‘superexchange’’-type processes

can provide effective spin-dependent interactions between particles
at separate positions4–7.

The dynamics of interacting bosonic atoms in a double well with
tight confinement is described by a quantized Josephson or a two-
mode Bose–Hubbard hamiltonian11,12
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Figure 1 | Schematics of double-well generation, loading and detection
sequences. a, Superimposing two optical lattice potentials differing in
period by a factor of two creates an array of double-well potentials.
b, Preparation sequence. An initially large well is split into a biased double-
well potential such that each left well is populated. The bias is then removed
and the central barrier lowered to initiate the tunnelling dynamics (d denotes
the well separation). c, Position measurement. The atom number on each
side can be recorded by ‘dumping’ the population of the left well into an
excited vibrational state of the right well21. Subsequent band-mapping
projects both states into separate Brillouin zones in free space30 (marked red
and blue in the inset). d, Interferometric detection. After sudden release
from the double-well potential and a period of free expansion, the double-slit
interference pattern is recorded. Particles localized to one well exhibit no
interference; for delocalized atoms the pattern yields the relative single-
particle phase (2p/2 in the case shown).
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Figure 10. Superlattice realized by the Munich group for rubidium atoms. By
controlling the intensity and the relative phase of the two light waves creating the
lattice, one can deform the superlattice into a regular lattice, with the atoms in the
B wells ending up in the lowest band n = 0 of the final lattice, and the atoms
in the A wells spilling out into the band n = 2. The band mapping technique
seen in chapter 2 then allows the counting of the respective populations of these
two types of wells. Figures extracted from Fölling, Trotzky, et al. (2007), see also
Sebby-Strabley, Brown, et al. (2007) and Lee, Anderlini, et al. (2007).

4-4 Flat bands

As an illustration, we describe here another remarkable aspect of this
multi-site tight-binding model, which is the emergence of completely flat
energy bands. We stay in one dimension and consider the sawtooth lat-
tice shown in figure 11. This lattice is characterized by three different tun-
nelling coefficients J, J ′, J ′′. The unit cell still contains two sites, and the
Hamiltonian in reciprocal space is written

Ĥ(q) = −
(

0 J ′ + J ′′e−iaq

J ′ + J ′′eiaq 2J cos(aq)

)
. (72)

The diagonalization of this matrix gives two subbands E±(q) which are
roots of trigonometric functions of qa. Their expression simplifies consid-
erably in the case

J ′ = J ′′ =
√

2 J. (73)
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Figure 11. A two-site array featuring a flat lowest band for J ′ = J ′′ =
√

2 J .
The energy bands are plotted for J < 0.

and we find

E+(q) = 2J, E−(q) = −2J [1 + cos(aq)] . (74)

One of the energy bands is completely flat! The corresponding effective
mass is therefore infinite, which means that an atom prepared in this band
will remain indefinitely where it is, without its wave packet undergoing
any spreading in real space. If we take the usual sign (J > 0) for the tun-
nelling coefficient, the flat band is the first excited band. We will see later
that it is possible to change the sign of J by modulating the lattice tempo-
rally, which allows us to have this flat band as the lowest band.

The physical interpretation of these non-diffusive states is simple. One
can explicitly write localized states which do not evolve, due to an inter-
ference phenomenon. There is such a state7 for each lattice cell, and one of
them is represented on figure 12 :

|ψ(loc)
j 〉 =

1

2

(
|wA,j−1〉+ |wA,j〉 −

√
2 |wB,j〉

)
. (75)

In order to spread out starting from such a ”V-state”, the particle should go
on one of the two sites |wB,j±1〉. But the signs in the expression of the state
(75) and the ratio

√
2 chosen between the coefficients J and J ′ = J ′′ make

the transition amplitude from |ψ(loc)
j 〉 to each of these two states vanish.

7The states (75) are not orthogonal to each other, but one can construct an orthogonal basis
of Wannier functions for this problem [see Huber & Altman (2010)].
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Figure 12. Representation of the non-diffusive V-state given in (75). For a lattice
with N sites (i.e. N/2 elementary cells), one can place N/4 atoms in these states
without any spatial overlap between the various occupied states. For a higher
filling and in the presence of interactions, the ground state is a Luttinger liquid
(Huber & Altman 2010).

In addition to the elegant character of this quantum interference effect,
these flat bands are very interesting for the search of strongly correlated
states. We indicated above that the interesting regime of the N -body prob-
lem appears when the interaction energy between particles becomes of the
order of the kinetic energy. In the present model, the kinetic energy (given
by the bandwidth) is zero. The ground state of the system is then governed
only by the interactions, at least as long as the interaction energy remains
smaller than the gap between the flat band and the first (dispersive) excited
band.

A natural question is to determine the ground state of N bosons pre-
pared in such a band. Without interactions, there is no condensation since
all single-particle states have the same energy. With repulsive interactions,
a transition occurs when the density becomes greater than 1/4 atom per
site, in which case there is necessarily an overlap between the V-states ar-
ranged on the lattice. The high density state is a Luttinger liquid phase,
analyzed analytically and numerically in Huber & Altman (2010).

As an exercise, one can study a similar problem (from the point of view
of single-particle physics) in two dimensions. A well suited configuration
is the Kagome lattice represented in figure 13. It is obtained by tiling the
plane with the translation of a unit cell according to a triangular lattice
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I. INTRODUCTION

Strong geometric frustration can prevent straightforward
ordering and thus lead to the emergence of novel highly cor-
related ground states. The best known examples of this phe-
nomenon are from spin systems. Frustration of the magnetic
exchange interactions on certain lattices gives rise to exten-
sive degeneracy of classically ordered states,1–9 invalidating
a direct semiclassical spin-wave analysis. This picture has
close analogy in the physics of the fractional quantum hall
effect, where the huge degeneracy of a partially filled Landau
level invalidates perturbative analysis in the interactions. In
both cases the true ground state, which could be a Laughlin
state, a spin liquid or some unexpected broken symmetry
state, emerges from the degenerate manifold in a highly non-
trivial way.

In this paper we address a related question concerning the
ground states of weakly interacting bosons in a lattice which
fully frustrates the bosons’ kinetic energy. The usual expec-
tation is that weakly interacting bosons will form a conden-
sate in the lowest-energy single-particle state, or in other
words, the lowest eigenstate of the kinetic-energy operator.
However, if the hopping matrix elements on the lattice are
sufficiently frustrated, the lowest Bloch band becomes flat,
thus providing a huge degeneracy of single-particle states to
which the bosons may condense. The nature of the ground
state is now fully determined by the interactions acting
within the hugely degenerate manifold. Under these condi-
tions a straight forward perturbative treatment in the interac-
tion is of no use. The problem is inherently strongly corre-
lated and provides an interesting route for understanding and
perhaps even realizing novel phases of matter.

We shall specifically consider a Hamiltonian of the form

H = #
$ij%

&tij&'bi
†bj + H.c.( +

U

2 #
i

bi
†bi

†bibi, !1"

where bi are bosonic operators defined on the sites of the
two-dimensional kagome lattice. This model gives a flat

lower Bloch band in the single-particle spectrum.10–12 We
shall also consider a related one-dimensional model defined
on the sawtooth lattice. Both models and the band structure
they give rise to are depicted in Fig. 1.

Such models of bosons with flat bands are of direct rel-
evance to real physical systems. Recently a number of pro-
posals were put forward for realization of models with frus-
trated hopping using ultracold atoms in optical lattices.13,14

Another natural realization involves frustrated spin-1 mag-
nets. If the Curie-Weiss temperature is sufficiently low, as in
m-MPYNN·BF4 !Refs. 15 and 16" !$CW)3 K", the spins
can be fully polarized, or nearly so, by external magnetic
fields. The dilute population of magnons, or depolarized
spins, in the highly polarized regime is well described by
Hamiltonian !1".

The presence of a flat band implies the existence of local-
ized eigenstates of the kinetic energy, as illustrated in Figs.
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FIG. 1. !Color online" !a" Single-particle dispersion on the
kagome lattice along high-symmetry lines in the Brillouin zone
!gray". !b" The kagome geometry with its lattice vectors a1/2 and the
basis sites A, B, and C in each unit cell !gray". !c" Single-particle
dispersion on the sawtooth lattice as a function of momentum k for
t!=*2t. !d" The sawtooth geometry with couplings t and t! and the
basis sites A and B in the unit cell !gray".
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effect, where the huge degeneracy of a partially filled Landau
level invalidates perturbative analysis in the interactions. In
both cases the true ground state, which could be a Laughlin
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state, emerges from the degenerate manifold in a highly non-
trivial way.
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ground states of weakly interacting bosons in a lattice which
fully frustrates the bosons’ kinetic energy. The usual expec-
tation is that weakly interacting bosons will form a conden-
sate in the lowest-energy single-particle state, or in other
words, the lowest eigenstate of the kinetic-energy operator.
However, if the hopping matrix elements on the lattice are
sufficiently frustrated, the lowest Bloch band becomes flat,
thus providing a huge degeneracy of single-particle states to
which the bosons may condense. The nature of the ground
state is now fully determined by the interactions acting
within the hugely degenerate manifold. Under these condi-
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they give rise to are depicted in Fig. 1.

Such models of bosons with flat bands are of direct rel-
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Another natural realization involves frustrated spin-1 mag-
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Figure 13. Left: Kagome lattice. The unit cell contains 3 sites A, B, C. All
tunnelling matrix elements between nearest neighbours are equal. The diagonal-
ization of the Hamiltonian in the reciprocal space (77) shows that the lowest band
(for a positive tunnel coefficient) is flat. The corresponding spectrum is shown on
the right for J < 0, a choice for which the flat band is the lowest band. Figures
taken from Huber & Altman (2010).

generated by the vectors

a1 = a ux, a2 = a

(
1

2
ux +

√
3

2
uy

)
. (76)

The unit cell has three sites notedA,B,C coupled by tunnelling. All matrix
elements between nearest neighbours have the same value. The reciprocal
lattice Hamiltonian is

Ĥ(q) = −J




0 1 + e−iQ1 1 + e−iQ2

1 + eiQ1 0 1 + e−iQ3

1 + eiQ2 1 + eiQ3 0


 , (77)

where we have defined Qj = q · aj , j = 1, 2 and Q3 = Q1 − Q2. The
diagonalization of this 3 × 3 matrix gives a flat band of energy 2J and
two dispersive bands. The analysis of N -body states that can appear at
high density, namely a supersolid-type phase, is done in Huber & Altman
(2010).

This lattice has been realized experimentally in the Berkeley group by
superimposing two commensurate triangular lattices created with light
beams at 532 and 1064 nm (see figure 14). The Kagome structure was iden-
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Compared with previous proposals [19,20], our simpler
approach to creating a kagome lattice allows one to tune
the lattice geometry, thereby controlling its degree of
frustration. Aligning the LW potential maxima with the
SW-lattice saddle points disfavors population in two sites
of the four-site unit cell (e.g., VB;C < VA;D) producing a
one-dimensional (1D) stripe lattice [Fig. 1(c) or Fig. 3(a)].
Aligning the LW potential maxima with the SW potential
maxima disfavors population in three sites of the unit cell
(e.g., VA;B;D > VC), producing a decorated triangular lat-
tice with lowest-energy sites forming a triangular lattice
while the remaining sites form a kagome lattice of local
potential minima.

Experiments were conducted with scalar Bose-Einstein
condensates of!3" 105 87Rb atoms produced at tempera-
tures of 80 nK in a red-detuned crossed optical dipole
trap with trap frequencies of ð!x;!y;!zÞ ¼ 2!"
ð60; 30; 350Þ Hz, with !z applying vertically. The large
!100 "m beam-waist diameters of the lattice beams en-
sured that the lattice potential modified the trapping fre-
quencies by less than 10%. Laser alignments and relative
intensities were tuned to produce sixfold symmetric dif-
fraction patterns of condensates released from LW- and
SW-only lattices. The relative displacement of the LWand
SW lattices was measured using two two-color Mach-
Zehnder interferometers, one for beams 1 and 2 and the
other for beams 1 and 3, and stabilized using piezo-
actuated mirrors in the optical paths [27]. A tilted glass
plate within each interferometer introduced a relative shift
between the two lattice colors that, following stabilization,
was imparted onto the optical lattice.

We employed atom optics to characterize the lattice as it
is tuned between various geometries. The atom-optical
tools presented in this work may be useful for the charac-
terization of other superlattices and for superlattice-based
atom interferometry. The first of these tools is Kapitza-
Dirac diffraction [28,29], for which the lattice potential is
suddenly pulsed on for a duration #, after which the con-

densate is imaged after a time of flight. Neglecting kinetic
energy during the brief pulse, the condensate wavefunction
acquires an imprinted phase &VðrÞ#=@ proportional to the
potential VðrÞ.
The corresponding momentum-space distribution is sen-

sitive to the relative displacement of the LW and SW
lattices. To exhibit this sensitivity we blocked one of the
incident bichromatic lattice beams and examined the re-
sulting one-dimensional superlattice, with potential energy
given as VðxÞ ¼ VLW sin2½qðxþ $xÞ=2) & VSW sin2ðqxÞ
where 2!=q ¼ 614 nm is the 1D LW-lattice spacing, and
$x is the distance between the LW and SW intensity
minima. The atomic populations at wave vectors *q are
given as

P*q / j* iJLW*1 J
SW
0 þ JLW+1 J

SW
*1 e

+i2q$xj2; (1)

where Jn is the nth-order Bessel function evaluated at
%LW;SW ¼ VLW;SW#=2@, and where we consider terms up
to second order in%LW;SW. The lack of inversion symmetry
of the lattice produced by an incommensurate value of $x
appears as a left/right momentum asymmetry in the dif-
fracted matter wave (Fig. 2).
A second method to characterize the optical superlattice

is the momentum-space analysis of a superfluid occupying
the ground state of the lattice potential. Here, the optical
lattice potential depth was ramped up from zero over 90ms,
held constant for 100 ms, and then suddenly switched off to
allow for time-of-flight expansion of the trapped gas. For
the momentum-space analysis, the maximum SW potential
depth was kept constant at VSW=h ¼ 40 kHzð¼ 8:8ERÞ,
where ER is the recoil energy of the SW triangular lattice.
We observed no significant decay of the diffraction peak
holding up to 150 ms in the optical superlattices.
Varying the relative position of the two lattices we

identify the three high-symmetry lattice configurations
[Fig. 3(a)]. Given that the scalar condensate occupies the
ground state of the lattice potential, its wave function
can be taken as real and positive; thus, its momentum

FIG. 1 (color). Three bichromatic light beams intersecting at 120, form a kagome optical lattice for ultracold 87Rb atoms, with the
two-dimensional potential VðrÞ shown in (a). Profiles of the potential of the SW, LW, and combined lattices are shown in (b). SitesD of
the SW lattice are emptied as !V exceeds the chemical potential, so that the remaining sites A, B and C form the kagome geometry.
(c) Different lattice geometries are created for intermediate LW-lattice depths (VLW < 9VSW) by displacing the potential maxima of the
SW lattice to the high-symmetry points X, Y or Z within the unit cell. For higher LW-lattice depths, a honeycomb geometry prevails.
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distribution is symmetric under inversion. Expansion from
both the kagome and the decorated triangular lattices
shows the threefold rotational symmetry of the optical
superlattice. In the 1D stripe geometry, one expects equally
weak occupation of two sites (e.g., A and D), and equally
strong occupation of the other two sites (B and C) of the
superlattice unit cell. Such a distribution is (nearly) invari-
ant under displacements of a=2 along the A-D axis, and
condensate diffraction along that axis should reflect the
shorter periodicity of the SW lattice. The momentum
distribution should also be symmetric under reflection
about the A-D axis. Both traits are observed
experimentally.

The Bloch-state momentum distributions allow one to
quantify the ground-state wave function within a unit
cell of the superlattice, which we express as c ðrÞ ¼P

!c !w!ðr$ s!Þ, where w!ðrÞ is the normalized
Wannier state wave function, s! the position, and jc !j2
the fractional atomic population of site ! 2 fA; B;C;Dg of
the unit cell. At low VLW=VSW, we approximatew! ¼ w as
cylindrically symmetric, Gaussian, and identical for all !.
From the momentum-space populations PGi

(i 2 f1; 2; 3g)
in the three first-order diffraction peaks of the LW lattice
[30]—corresponding to the inner hexagon of peaks in time-
of-flight images—and that at zero wave vector P0, one
determines the distinct quantities

~P i ¼
PGi

þ P$Gi

2P0

j ~wð0Þj2
j ~wðGiÞj2

¼ jc " þ c # $ c $ $ c %j2
jP! c !j2

;

(2)

where ~wð0Þ and ~wðGiÞ are now Fourier components of the
Wannier function, and ", #, $ and % label the four sites

so that Gi & ðs" $ s#Þ ¼ 0. The Wannier state Fourier
components in Eq. (2) are determined from the second-
order diffraction populations as j ~wð0Þj2=j ~wðGiÞj2 ¼
½2P0=ðP2Gi

þ P$2Gi
Þ(1=4. Together with the normalizationP

!jc !j2 ¼ 1 these quantities determine the atomic distri-
bution in the unit cell [31].
We measured the population ratios ~Pi as the superlattice

geometry was gradually tuned. Translating the relative
position of the two lattices [Fig. 3(b)], one advances
from the kagome geometry, with equal population in the
three ratios, to the 1D stripe geometry, with two identically
small ratios, and then to another kagome-geometry lattice.
Our data agree with a calculation of the single-particle
ground-state for the known lattice depths.

FIG. 2 (color). Atom diffraction patterns, formed by a & ¼
8 's pulse of the lattice potential (with VSW=h) 80 kHz and
VLW=h) 50 kHz) followed by 26 ms time of flight, exhibit left/
right momentum asymmetry [defined as ðPþq $ P$qÞ=
ðPþq þ P$qÞ] that varies with the displacement $x between
the LW- and SW-lattice intensity minima, in close agreement
with the predicted behavior (solid line).

FIG. 3 (color). The real- and momentum-space composition of
a superfluid for various lattices. (a) The kagome and decorated
triangular lattices maintain threefold rotational symmetry in
configuration and momentum space, while the symmetry of
the 1D stripe lattice is reduced to a parity symmetry (left-right
in the images). For each setting, a schematic distinguishes
between sites of high (green) and low (red) atomic population.
The expected momentum distribution for measured values of
VSW=h ¼ 40 kHz and !V=h ¼ 14 kHz is shown with the area
of the black dot reflecting the fractional population.
(b) Translating the LW-lattice potential maxima (marked as a
star in the schematic) along the A-D axis tunes the lattice
between kagome and 1D stripe geometries, as revealed by the
population ratios ~Pi identified according to the inset. The data
(averages of 4–5 measurements) agree with calculations of the
single-particle ground state (solid lines) with the lattice depth
used in the experiment. Interaction effects are neglected since
!V was higher than the chemical potential ') h* 3:5 kHz of
the condensate in the SW-only lattice.
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Figure 14. Left: realization of a Kagome lattice from two triangular lattices. Right:
time-of-flight pattern for a superfluid initially trapped in the Kagome lattice. Fig-
ures taken from Jo, Guzman, et al. (2012).

tified by placing a superfluid in this lattice, abruptly switching off the lat-
tice and observing the Bragg peaks after a time of flight. Note that in this
experiment, the sign of the tunnelling coefficient was the usual sign (−J),
and the flat band is the upper band of the three lowest sub-bands. In ad-
dition to the appearance of flat bands, this Kagome lattice is particularly
interesting in magnetism, with a very rich phase diagram in the presence
of antiferromagnetic interactions.
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Chapter IV

Time-dependent lattices

Among the many possibilities offered by optical lattices, one of the most
important is the control over time of the lattice parameters. We have al-
ready mentioned in Chapter 2 the consequences of a variation of the lattice
amplitude and we have discussed the adiabatic and sudden limits for the
ramping up or down of the periodic potential. In this chapter and the next
one, we will be interested in another type of temporal variation: we will
study the phenomena that appear when the position of the nodes of the
lattice is varied in time, thus replacing the potential V (x) (in 1D) by the
potential V [x− x0(t)], where x0(t) is a controlled function of time.

In this chapter, we will first establish, via unitary transformations, the
equivalence between several Hamiltonians that describe a moving lattice.
We will then study the particular case of a periodic modulation of x0(t) and
we will discuss the phenomenon of dynamical localization which can then
appear. The next chapter will be devoted to Bloch oscillations, which occur
when x0(t) corresponds to a uniformly accelerated motion. This situation
is equivalent (by change of reference frame) to the case where we add a
spatially-uniform time-independent force to the one created by the lattice.

We will not have enough time here to discuss other – and also very in-
teresting – classes of phenomena related to the temporal variation of some
lattice parameters. Let us mention the spectroscopy of the atoms in the
lattice, which can be performed by time-modulating the amplitude V0 of
the periodic potential [see for example the article of Kollath, Iucci, et al.
(2006) and its references]. Another example is the use of a pulsed lattice to
study chaos or Anderson localization phenomena [see the recent article by

Lopez, Clément, et al. (2012) and references therein].

1 Some relevant Hamiltonians

The studies that we will carry out in this chapter and the next one deal with
time-dependent Hamiltonians that keep their spatially-periodic structure.
In the 1D case which will interest us first, these Hamiltonians have the
form

Ĥ(t) =
(p̂−A(t))

2

2m
+ V (x̂, t), (1)

with
V (x+ a, t) = V (x, t). (2)

We will see later on how Bloch’s theorem allows us to deduce general in-
formation about the evolution of systems governed by these Hamiltonians.
In this first paragraph, we will start our study by identifying some Hamil-
tonians which can be reduced to the form (1) via a unitary transformation,
even if the problem they describe is not spatially periodic.

1-1 Unitary transformations

Let us start by recalling the principle of a unitary transformation. We give
ourselves a unitary operator Û(t) that possibly depends on time, and we
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consider a system described by a state |ψ(t)〉 evolving under the effect of
the Hamiltonian Ĥ(t):

i~
d|ψ〉
dt

= Ĥ(t) |ψ(t)〉. (3)

We perform the transformation

|ψ̃(t)〉 = Û(t)|ψ(t)〉. (4)

The transformed state |ψ̃〉 still follows a hamiltonian evolution:

i~
d|ψ̃〉
dt

= ˆ̃H(t) |ψ̃(t)〉 (5)

and the corresponding Hamiltonian is

ˆ̃H(t) = Û(t)Ĥ(t)Û†(t) + i~
dÛ(t)

dt
Û†(t). (6)

If some technical aspects (e.g. searching for eigenstates) are simpler for ˆ̃H
than for Ĥ , it is better to carry out the calculations in the transformed point
of view and then come back to the initial point of view via the inverse
transformation of (4).

In the following we will consider two classes of unitary transforma-
tions:

Û1(t) = e−i x̂ p0(t)/~, Û2(t) = e−i x0(t) p̂/~, (7)

where x0(t) and p0(t) can be any functions of time that respectively have
the dimension of a position and a momentum. The position and momen-
tum operators1 are transformed as follows:

Û1 x̂ Û
†
1 = x̂, Û1 p̂ Û

†
1 = p̂+ p0, (9)

1In this chapter, the position and momentum operators are defined by their action on a
function ψ(x) in the usual way:

x̂ ψ(x) = x ψ(x), p̂ ψ(x) = −i~
dψ

dx
. (8)

The link between these operators and the result of a position or velocity measurement de-
pends on the unitary transformation that has been performed.

and
Û2 x̂ Û

†
2 = x̂− x0, Û2 p̂ Û

†
2 = p̂. (10)

Let us also indicate the value of the term i~(dÛ/dt)Û† appearing in the
transformed Hamiltonian (6)

i~
dÛ1

dt
Û†1 = x̂ ṗ0, i~

dÛ2

dt
Û†2 = ẋ0 p̂. (11)

1-2 Change of reference frames

Let us start with a system described by the Hamiltonian

Ĥ0(t) =
[p̂−A(t)]

2

2m
+ V (x̂), V (x+ a) = V (x), (12)

with a time-independent spatially-periodic potential V (x) and a spatially
uniform vector potential A(t). We now look at how the evolution of this
system transforms under the effect of Û1 or Û2 for well-chosen functions
x0 and p0.

We start with Û1 by taking

p0(t) = A(t). (13)

We obtain

Ĥ1(t) =
p̂2

2m
+ V (x̂)− F (t) x̂ with F (t) = −dA(t)

dt
. (14)

The Hamiltonian (14) describes the motion of a particle in the superpo-
sition of the periodic potential V (x) and a potential corresponding to a
spatially constant force F (t), that possibly depends on time. This is not a
surprise: In electromagnetism, a time-dependent vector potential is associ-
ated with an electric field E = −Ȧ. The unitary transformation from Ĥ0 to
Ĥ1 is exactly the same as the one used in electrodynamics to introduce the
electric dipole Hamiltonian in the long-wavelength approximation (see the
complement AIV of Cohen-Tannoudji, Dupont-Roc, et al. 1989). Note that
the problem (14) which is not periodic, can thus be reduced to the problem
(12) which is periodic.
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Let us now look at the action of Û2 on the initial Hamiltonian (12), by
choosing2

x0(t) =
1

m

∫ t

0

A(t′) dt′. (15)

We find

ˆ̃H2(t) =
p̂2

2m
+ V [x̂− x0(t)] +

A2(t)

2m
. (16)

The last term is an energy which is independent of x and p and which is
added to the Hamiltonian. We can eliminate it by performing a last (and
very simple) unitary transformation generated by

Û3 = exp

(
i

~

∫ t

0

A2(t′)
2m

dt′
)

(17)

which leaves x̂ and p̂ unchanged. After this operation, we arrive at

Ĥ2(t) =
p̂2

2m
+ V [x̂− x0(t)]. (18)

This form indicates how to practically realize the situations discussed in
this chapter: one must control the phase of the travelling waves forming
the standing wave in order to move the position of its nodes and antinodes
according to the law given by x0(t).

In conclusion, the three Hamiltonians (12)-(14)-(18), which are gathered
in table IV.1, allow to describe the same physical situation and we can
choose one or the other according to the aspects we want to emphasize.
Note that there is a simple interpretation for the series of transformations
generated by Û = Û1Û

†
2 Û
†
3 , which makes us go from the Hamiltonian (18),

describing a moving lattice, to the Hamiltonian (14), describing a station-
ary lattice superimposed on a uniform force F (t). It is a change of reference
frame, from the laboratory reference frame to the reference frame moving
with the lattice, in which the inertial force F (t) = −mẍ0(t) = −Ȧ(t) ap-
pears.

2This transformation is known as the Kramers–Henneberger transformation in quantum
electrodynamics, see for example Cohen-Tannoudji, Dupont-Roc, et al. 1989, §IV.B.4.

2 The shaken lattice

The situation that we will discuss in the rest of this chapter is that of an
infinite lattice whose position is periodically modulated by taking for ex-
ample:

Ĥ2(t) =
p̂2

2m
+ V [x̂− x0(t)], x0(t) = x̄0 cos(ωt). (19)

This problem was studied theoretically by Dunlap & Kenkre (1986) and
Holthaus (1992). The goal then was to understand the behaviour of elec-
trons in crystals in the presence of the electric field of an electromagnetic
wave. The phenomenon that appears is called Dynamical localization. The
main conclusion is the existence of a value of the oscillating field for which
the transport disappears: The spreading of an electron wave packet that
would be observed in the absence of the field is completely blocked. In
particular, Holthaus predicted a collapse of the mini-bands expected in a
superlattice with a period of about ten nanometers, when it is illuminated
with far-infrared light.

This question of a shaken lattice was therefore raised long ago, but the
physics of cold atoms has brought it back to the forefront because the mod-
ulation of the lattice allows one to control the amplitude and the sign of
the tunnel coefficient J , and even to make it complex. The control of the
amplitude of the coefficient J can be used to vary the ratio between the
kinetic energy and the interaction energy, which we pointed out in a previ-
ous chapter as being decisive for the emergence of N -body physics. Thus,
Eckardt, Weiss, et al. (2005) proposed to use lattice modulation to induce
the transition between a superfluid and a Mott insulator. The possibil-
ity to make the coefficient J complex is interesting when considering a
two or three dimensional lattice. We can then realize a situation where the
atom accumulates a non-zero phase when it performs a closed loop by tun-
nelling from one site to another. This is exactly what is needed to realize
an artificial gauge field. We will not deal with these artificial gauge fields
in this year’s lecture, but we nevertheless give below some indications on
this possible way of modifying J .
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Ĥ1 Ĥ0 Ĥ2

p̂2

2m
+ V (x̂)− F (t) x̂

[p̂−A(t)]
2

2m
+ V (x̂)

p̂2

2m
+ V [x̂− x0(t)]

q(t) = qin +
1

~

∫ t

0

F (t′) dt′ q(t) = qin q(t) = qin

−J
∑

j

(|wj+1〉〈wj |+ h.c.)− a F (t)
∑

j

j|wj〉〈wj | −J
∑

j

(
|wj+1〉〈wj | ei aA(t)/~ + h.c.

)

←−−−−−−−−−−−−−−−−
Û1 = exp(−ix̂ p0(t)/~)

−−−−−−−−−−−−−−−−→
Û2 = exp(−ix0(t) p̂/~)

Table IV.1. The three Hamiltonians used in this chapter, the time evolution of the quasi-momentum and the tight-binding version of this Hamiltonian. We go from one to the
other by the unitary transformations indicated on the last line, with p0(t) = A(t) = mẋ0(t) and F (t) = −mẍ0(t).
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2-1 Hamiltonian in the tight-binding approximation

On the theory side, our starting point will be the Hamiltonian of an atom
in a ”shaken” optical lattice

Ĥ2(t) =
p̂2

2m
+ V [x̂− x0(t)], (20)

where x0(t) is a time-periodic function of frequency ω. We will assume
that the atoms are prepared in a given band of the lattice, the lowest band
for example, and that they remain there during the evolution. We will
therefore restrict the dynamics of the atoms to this band and omit the band
index in the following. The necessary conditions for such an adiabatic fol-
lowing of the initially populated energy band will be discussed in detail in
the next chapter in the context of Bloch oscillations.

Moreover, we will do most of our study in the tight-binding limit,
where only jumps between nearest neighbours play a significant role. In
order to write the corresponding Hamiltonian from (20), it is useful to first
perform the unitary transformations Û1 and Û2 to get to the Hamiltonian
Ĥ1

Ĥ1(t) =
p̂2

2m
+ V (x̂)− F (t) x̂. (21)

The expression of this Hamiltonian in the tight-binding model is simple.
Its unmodulated part is the Hubbard Hamiltonian that we have already
met:

p̂2

2m
+ V (x̂) −→ −J

(
T̂1 + T̂ †1

)
(22)

where T̂j shifts the particle by j sites to the right:

T̂j =
∑

j′∈Z
|wj+j′〉〈wj′ | (23)

The term related to the inertial force is written as

−F (t) x̂ −→ −aF (t)
∑

j

j |wj〉〈wj | (24)

where we have used the fact that the position operator is diagonal in the
basis of the Wannier functions (see for example Eckardt, Holthaus, et al.
(2009))

〈wj |x̂|wj′〉 = ja δj,j′ . (25)

The Hubbard Hamiltonian of a shaken lattice is therefore

Ĥ1 = −J
(
T̂1 + T̂ †1

)
+ ~ω ξ(t)

∑

j

j |wj〉〈wj |, (26)

where we have characterized the amplitude of the modulation by the di-
mensionless parameter ξ(t)

ξ(t) = −aF (t)

~ω
=
ma

~ω
ẍ0(t). (27)

This coefficient is defined (up to its sign) as the ratio between the work aF
of the inertial force F = −mẍ0 over a period of the lattice, and the energy
quantum ~ω associated to the shaking.

For a sinusoidal modulation, we define

x0(t) = x̄0 cos(ωt), F (t) = −mẍ0(t) = mω2x̄0 cos(ωt), (28)

which leads to

ξ(t) = ξ0 cos(ωt), ξ0 = −maωx̄0/~. (29)

From the expression (26) of Ĥ1 in the tight-binding regime, we can go
back to the ”Ĥ0-version” of the problem. To do this, we have to use the
discretized version of the unitary transformation Û1(t):

Û1(t) = E−i x̂ p0(t)/~ −→ Û1(t)|wj〉 = e−i jap0(t)/~|wj〉 (30)

which leads to

Ĥ0(t) = Û†1 (t)Ĥ1(t)Û1(t) + i~
dÛ†1
dt

Û1

= −J
(
T̂1 ei ap0(t)/~ + T̂ †1 e−i ap0(t)/~

)
(31)

with p0(t) = mẋ0(t). In this point of view, the shaking of the lattice is de-
scribed by a periodic modulation of the tunnel coefficients, which become
complex.

Note that, from (31), one can easily take into account hoppings between
more distant neighbours. By noting J(j) the matrix element for a hopping
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of j sites (cf. chapter 3), the expression (31) is immediately generalized into

Ĥ0 =

+∞∑

j=1

J(j)
(
T̂j ei j ap0(t)/~ + T̂ †j e−i j ap0(t)/~

)
. (32)

Recall that in all the above we chose J(1) = −J with J > 0. Recall also that
the tunnel matrix elements J(j) are the Fourier components of the energy
E(q) of the considered band:

E(q) = 2

+∞∑

j=1

J(j) cos(jaq). (33)

2-2 The Pisa experience (Lignier, Sias, et al. 2007)

The first demonstration of the dynamical localization effect with cold
atoms was made by Madison, Fischer, et al. (1998). The lattice was put
in oscillating motion by phase modulating one of the beams that create the
standing wave. By performing the spectroscopy of an energy band in the
lattice, a spectacular narrowing of this band could be observed for a critical
value of the amplitude of the oscillation of the lattice.

We show in figure 1 the results obtained by Lignier, Sias, et al. (2007)
with a condensate of rubidium loaded in a shaken 1D optical lattice:

x0(t) = x̄0 cos(ωt). (34)

The lattice depths were chosen between 4 and 9 recoil energies Er, which
is a bit low for the tight-binding approximation of the previous paragraph
to be accurate, but it nevertheless gives a good justification of the experi-
mental results, as we will see in the following.

Lignier, Sias, et al. (2007) measured the time-spreading of the spatial
distribution of the atoms in the lattice. To do this, they first trapped the par-
ticles in the vicinity of x = 0 using an additional dipole trap, then turned
off this trap while leaving the lattice on. The results of this experiment are
consistent with the idea that the shaken lattice is essentially equivalent to
a fixed lattice, but with a modified tunnel coefficient J ′.

The measurement of the tunnel coefficient J ′ has been done for several
lattice depths V0, several modulation frequencies ω and several modulation

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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p/~k

J 0 > 0

J 0 < 0

Figure 1. Dynamical suppression of tunnelling in a shaken 1D lattice for a con-
densate of 87Rb atoms. Left: The absolute value of the tunnel coefficient (normal-
ized by its value in the absence of shaking) is obtained from the spreading of a wave
packet in the lattice. This figure gathers points obtained for different lattice depths
(4 to 9 Er) and different shaking frequencies (0.5 and 1 kHz). The shaking ampli-
tude x̄0 is at maximum on the order of 0.5 a and the ratio ~ω/J varies between 0.3
and 30. Right: momentum distribution of atoms in the shaken lattice for ξ0 < 2.4
(top) and for ξ0 slightly larger than 2.4 (bottom). In the second case, the presence
of two peaks at p = ±~k indicates that the minimum of the band is located at the
edge of the Brillouin zone, corresponding to an effective tunnel coefficient J ′ < 0.
Figures extracted from Lignier, Sias, et al. (2007).

amplitudes x̄0. The experimental results show a remarkable phenomenon:
the ratio J ′/J of the tunnel rates with and without modulation depends
only on the parameter ξ0 = −maωx̄0/~ introduced above (29). The dotted
line is the absolute value of the Bessel function J0(ξ0), a result that we
will justify later. In particular, one observes a cancellation of the tunnel
coefficient (no spatial diffusion) for ξ0 ≈ 2.4 (the first zero of the Bessel
function is at 2.405).

The study of spatial diffusion does not provide the sign of J ′. One can
access it with a time-of-flight experiment, where the momentum distribu-
tion of the atoms is measured. For ξ0 < 2.4, we find that this distribution
is centered on p = 0, indicating that the minimum of the energy band is
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located at q = 0, which means that J ′ > 0. On the other hand, for ξ0 > 2.4,
we find a momentum distribution with two peaks of comparable heights
at p = ±~k, indicating that the minimum of the band has been shifted to
q = ±k, as expected for a tunnel coefficient J ′ < 0. In the following we
will explain the essence of these results and refer the reader interested in
more detailed theoretical analyses to the papers by Eckardt, Holthaus, et
al. (2009) and Creffield, Sols, et al. (2010).

3 A simple approach to shaken lattices

3-1 Preliminary: a two-site system

To start with, we consider a simpler system than an infinite lattice, limiting
ourselves to a double-well potential in which we identify two states |wj〉,
j = ±, corresponding to a particle located on the right (x = +a/2) or on the
left (x = −a/2) of the center. This problem has been studied theoretically
by Grossmann, Dittrich, et al. (1991) and we refer to Grifoni & Hänggi
(1998) for a review of possible theoretical treatments. We limit ourselves
here to a simple mathematical approach, which nevertheless allows us to
capture the core of the phenomenon.

For a two-site system, the Hamiltonian (26) is replaced by

Ĥ(t) = −J (|w+〉〈w−| + |w−〉〈w+|) +
1

2
~ω ξ(t) (|w+〉〈w+| − |w−〉〈w−|)

(35)
which can be written

Ĥ = −J σ̂x +
1

2
~ω ξ(t) σ̂z (36)

where the σ̂i are the Pauli matrices in the basis {|w+〉, |w−〉}. Let us write
the state of the particle under the form

|ψ(t)〉 =
∑

j=±
αj(t)|wj〉. (37)

The evolution of the αj ’s is then given by:

i α̇+ =
ω

2
ξ(t)α+ −

J

~
α−, i α̇− = −ω

2
ξ(t)α− −

J

~
α+ . (38)

These two equations can be rewritten as

i~ ˙̃α+ = −J eiη α̃−, i~ ˙̃α− = −J e−iη α̃+ , (39)

where we have defined

α̃± = α± exp(±iη/2), η(t) = ω

∫ t

0

ξ(t′) dt′. (40)

Consider the situation where the evolution due to the tunnelling be-
tween the two wells, of time scale ~/J , is much slower than the modulation
frequency ω giving the evolution of the function ξ(t). Let us take the time
average3 of equations (39) on a time period T = 2π/ω of the fast oscillation
and write, at the lowest order in J/~ω:

i~ ˙̄α+ = −J ′ᾱ−, i~ ˙̄α− = −J ′∗ᾱ+, (41)

where we have defined:
J ′ = J 〈eiη〉. (42)

These evolution equations for ᾱ± are the same as those for a double well
without fast modulation, except for a renormalization of the tunnel coeffi-
cient: J → J ′.

Let us take the case of a sinusoidal modulation:

ξ(t) = ξ0 cos(ωt), η(t) = ξ0 sin(ωt), (43)

which leads to
J ′ = J J0(ξ0), (44)

where J0 is the Bessel function of the first kind defined by

J0(x) =
1

π

∫ π

0

cos[x sin(τ)] dτ. (45)

Since this function takes positive and negative values according to its ar-
gument, we see that the fast modulation in ξ(t) allows to reduce the tunnel
coefficient, or even to cancel it and change its sign.

3We could justify this procedure by using a Fourier development for the known func-
tion η(t) and the unknown functions α̃±(t) and by solving perturbatively these equations in
powers of the small parameter J/~ω. We will not do it here because this procedure is closely
related to the Floquet approach which we will present later.
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3-2 Analogy with a spin 1/2 in an oscillating field

In the case of atoms in an optical potential that creates a double well, the
experimental demonstration of the modification of the tunnel coefficient
has been described by Kierig, Schnorrberger, et al. (2008). The situation
we have studied here is mathematically equivalent to the modification of
the Landé factor of an atom with a spin 1/2 whose magnetic moment is
coupled to a fast oscillating magnetic field:

B(t) = B0ux +B1(t)uz, B1(t) = B̄1 cos(ωt). (46)

This situation is indeed described by a Hamiltonian that is formally iden-
tical to (36):

Ĥ(t) =
~ω0

2
σ̂x +

~ω̄1

2
cos(ωt)σ̂z. (47)

We have denoted here respectively as ω0 and ω̄1 the Larmor frequency for
the fields B0 and B̄1. In the limit ω0 � ω̄1, the equivalent of the modifica-
tion of the tunnel coefficient J is a modification of the Larmor frequency
ω0 which becomes

ω′0 = ω0 J0(ω̄1/ω). (48)

This change in ω0, which can be interpreted as a change in the Landé factor
caused by the fast oscillating field, has been observed by Haroche, Cohen-
Tannoudji, et al. (1970). The main result is shown in figure 2: in particular
we observe a cancellation, then a change of sign of the Landé factor, in
good agreement with the prediction (48).

Note that the theoretical study of this modification of the Landé factor
becomes much simpler to carry out if we consider a square-wave modu-
lation of the field B1(t) rather than a sinusoidal modulation. For a field
B1(t) = B̄1uz during one half-period π/ω and B1(t) = −B̄1uz during the
other half-period, one can explicitly compute the evolution of the spin 1/2
at order 1 in B0/B̄1, by considering the following points:

• The Larmor frequency is independent of time and is ωL = (ω2
0 +

ω̄2
1)1/2 ≈ ω̄1.

• The direction of the magnetic field oscillates between the two direc-
tions n = ± cos θ uz + sin θ ux, with tan θ = B0/B̄1 � 1.
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FIG. 3. Plot of the ratio s/so as a function of yHq/cu.
The experimental points for Rb and H fit into the same
theoretical curve.

both experiments the ratio s/s, as a function of
the dimensionless quantity yH, /&u, proportional
to the rf field amplitude. It can be seen that the
experimental results for H' and Rb fjt into the
same curve.
These results can be understood if one consid-

ers that the microwave field h, cosset is a probe
which explores the energy diagram of the com-
pound system "atom+rf field" which we call the
atom "dressed" by the rf photons. We have al-
ready studied in great detail the effect of such a
"dressing" on the magnetic properties of an atom-
ic level. ' Let us recall briefly the results of the
theory in the simple case of hydrogen. The en-
ergy diagram of the free-hydrogen ground state
in the field H, is given on Fig. 2(a). In the pres-
ence of an rf field H, cos~t perpendicular to Ho,
these energy levels are modified. First, suppose
that B, is very small so that the coupling between
the atomic system and the rf photons can be ne-
glected. Then the energy levels of the compound
system will merely be the states

~ E, mF, n) rep-
resenting the atom in the state ( Em )F(E=1,0)
with n rf photons. present; the energy of these
states is (with h = 1) n~ if F = 0, and &, +m ~&uo
+n~ if I' = 1. In the I" = 1 states, the energy dia-
gram of the compound system will consist of
manifolds separated from each other by the en-
ergy ~; each manifold corresponds to a given
value of n and is split into three magnetic levels
corresponding to the three possible m~ values
[da.shed lines on Fig. 2(b)]. A microwave field
can induce only ~=1, &n=0 transitions [for ex-
ample when h, is perpendicular to H„only the
transitions A. and g of Fig. 2(b) are possible].
The selection rule &n=O results from the com-
mutation of microwave and rf variables. The
coupling with the rf field which we now take into

0 = 0, +(n—n')(d+(ggmg-g/ m/') psH,
must appear. They can be understood in terms

(2)

account occurs only in the F = 1 states and leads
to a kind of "renormalization" of the "unper-
turbed" system described above. It has two ef-
fects': First, it changes the slope of the energy
levels [full lines on Fig. 2(c)]; this corresponds
to R modification of the Lande factor g~ of the
hyperfine level E, which becomes now

ZF ZF~O(yFHy/~), yF 8F i"8,
where ~, is the zero-order Bessel function and
p~ the Bohr magneton. Second, the coupling
modifies the energy eigenstates: The "renorm-
alized" states ~E, m~, n)d are now admixtures of
the unperturbed states ~ E, m~', n') due to virtual
absorptions and emissions of rf quanta and no
longer correspond to a definite n value.

The modification of the Lande factor explains
our experimental observations. In the H-maser
experiment, we detect the maser oscillation on
the transition g, (~E =0;n) —~E = 1,m~ =+1;n)d)
[Fig. 2(c)] of the "dressed" atom which corre-
sponds, for B,=O, to the field-dependent transi-
tion p of the free atom [Fig. 2(a)]. The case of
Rb" is more complicated because both hyperfine
levels E=2, E'=1 are coupled to the rf field.
But relation (1) holds for both hyperfine levels
and since y~——-y~., and Jo is an even function,
g~ and g~. are modified in the same way and in
particular cancel for the same values of B,. For
this reason, the splitting s between the field-de-
pendent resonances must vary exactly as in the
hydrogen case. On Fig. 3 we have plotted in solid
lines the theoretical curve &o(y~H, /u) which fits
very well with the experimental points. We have
observed several oscil1.ations of s. Let us men-
tion that the variations of g~ are responsible for
other physical effects such as the modification of
the width of the zero-field level-crossing reso-
nance s (Hanle effect).'
As can be seen on Fig. 1 in the case of Rb",

the coupling with the rf field affects not only the
splitting s but also the intensity of the lines.
This is due to the modification of the magnetic
dipole matrix elements between the correspond-
ing perturbed eigenstates. Moreover, new tran-
sitions can now be induced between two eigen-
states ~E, m~, n)d and ~E', mF. ', n')d with differ-
ent n values (as n is no longer a good quantum
number, the se1.ection rule M=0 is no longer
valid). Thus, new sideband resonances at the
frequencies

Figure 2. Modification of the Landé factor of rubidium and hydrogen atoms, when
they are illuminated by a radiofrequency field H1 with frequency ω/2π of a few
kHz. Figure extracted from Haroche, Cohen-Tannoudji, et al. (1970).

• The evolution operator during a time t for which the magnetic field
keeps a fixed direction n is

Û(t) = e−iĤt/~ = 1̂ cos(ω̄1t/2)− i(n · σ̂) sin(ω̄1t/2) (49)

We can then calculate the product of the evolution operators on the two
segments4 that constitute one oscillation period T = 2π/ω and we arrive
at:

Û(T ) ≈ 1̂− iσ̂x
ω0T

2
sinc

(π
2

ω̄1

ω

)
, (50)

which, for ω0T � 1, corresponds to the modification of the Larmor fre-
quency

ω′0 = ω0 sinc
(π

2

ω̄1

ω

)
(51)

where the Bessel function of (48) has been replaced by a sinc function.

The cancellation of the Landé factor is particularly simple in this point
of view: it occurs for ω̄1T/2 = 2π, which means that the spin makes a

4We can take for example B1(t) = B̄1 between 0 and T/4, then B1(t) = −B̄1 between
T/4 and 3T/4, and finally B1(t) = B̄1 between 3T/4 and T , to calculate the evolution op-
erator between 0 and T . This choice of phase, which is the equivalent for a square lattice
of B̄1 cos(ωt) for a sinusoidal modulation, will be made in all this chapter. One can consult
the article by Eckardt, Holthaus, et al. (2009) for a discussion on the spurious effects that can
appear with other choices for the phase.
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complete turn during each half-period for which the field B1 keeps a con-
stant direction. It is clear that the spin does not evolve ”on average”, which
corresponds to a zero Landé factor with respect to the B0 field.

3-3 The shaken lattice (simple approach)

Our approach is implemented for a lattice in almost the same way as for
the double well. We write the state vector of a particle under the form

|φ(t)〉 =
∑

j

αj(t) |wj〉, (52)

we obtain the evolution of the coefficients αj for the tight-binding Hamil-
tonian H1(t) given in (26)

i α̇j = j ω ξ(t)αj −
J

~
(αj−1 + αj+1). (53)

We introduce the variables

α̃j = αj exp(i jη) (54)

where η is defined as in (40) by η = ω
∫ t

0
ξ(t′) dt′, and we obtain5

i~ ˙̃αj = −J
(
eiη α̃j−1 + e−iη α̃j+1

)
. (55)

After averaging over one period of the fast oscillation, this equation of mo-
tion is identical to that of a lattice without modulation and a renormalized
tunnel coefficient J〈e±iη〉, where the sign + (resp. −) corresponds to hop-
pings to the right (resp. left). For a sinusoidal modulation, the time average
is expressed in terms of the Bessel function of the first kind

J ′ = JJ0(ξ0), (56)

a result identical to that of the double well. In particular, we find that we
can cancel the tunnel effect by choosing ξ0 equal to the first zero of the
Bessel function (≈ 2.405) or change the sign of J by choosing ξ0 slightly
higher than this value. This simple approximation thus explains the exper-
imental results described in the previous paragraph.

5Note that we could have written this system of equations directly starting from the Hamil-
tonian Ĥ0 (31) instead of Ĥ1, and using ap0(t)/~ = η(t).

4 Bloch approach for a shaken lattice

We now go beyond the simple approach developed in the previous section
and study in a more rigorous way the evolution of a wave packet in a
shaken lattice. The essential tool is once again Bloch’s theorem, which puts
strong constraints on the possible form of the solutions of the Schrödinger
equation. These constraints are such that the exact solution of the problem
can be written explicitly if we limit the dynamics of the atoms to a single
band. In the case where several bands are simultaneously populated, we
have to resort to the Floquet method, whose broad lines will be presented.

4-1 Bloch theorem in the time-dependent case

The Bloch theorem encountered in chapter 2 provides the eigenstates of a
time-independent Hamiltonian with a spatially periodic potential V (x)

Ĥ =
p̂2

2m
+ V (x̂), V (x+ a) = V (x). (57)

Bloch theorem indicates that one can search for an eigenstate basis of this
Hamiltonian in the form of Bloch waves ψq(x) = eixquq(x), where uq(x)
is also spatially periodic and where q is the quasi-momentum chosen by
convention in the first Brillouin zone ]− π/a, π/a]. Recall that the defining
property of these Bloch waves is the fact that they are eigenstates of the
spatial translation operator T̂a with eigenvalue e−iaq .

We also mentioned in chapter 2 the case of spatially periodic and time-
dependent Hamiltonians, and we indicated that the Bloch waveform is
then preserved during the evolution. Let us briefly prove again this point
by considering for example the Hamiltonian

Ĥ(t) =
(p̂−A(t))

2

2m
+ V (x̂, t), (58)

with
V (x+ a, t) = V (x, t). (59)

This Hamiltonian commutes at each time with the spatial translation oper-
ator T̂a, and this property also holds for the evolution operator between an
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initial time t0 and a final time t1. We deduce that if the initial state ψ(x, t0)
is an eigenstate of T̂a with eigenvalue e−iaq [i.e. ψ(x, t0) = eixquq(x, t0)], it
will also be the case for the final state ψ(x, t1), with the same eigenvalue
[i.e. ψ(x, t1) = eixquq(x, t1)].

4-2 Evolution of the quasi-momentum q(t)

Since a Hamiltonian of the form (58) preserves the form of Bloch functions,
an initial state eixqin u(x, 0) with u(x, 0) which is spatially periodic keeps
this form during the evolution, with the same quasi-momentum qin. This
property applies to the two Hamiltonians Ĥ0(t) and Ĥ2(t) which indeed
have the form (58), but it does not apply to the Hamiltonian Ĥ1(t)

Ĥ1(t) =
p̂2

2m
+ V (x̂)− F (t) x̂ (60)

that describes the motion of the particle in the presence of the spatially
uniform force F (t), in addition to the periodic potential V (x).

However, the solutions of the Schrödinger equation for Ĥ1(t) are also
very simple. If φ0(x, t) = eixqin u(x, t) is the solution of the Schrödinger
equation for the Hamiltonian Ĥ0, then the unitary transformation Û1 gives
the solution φ(x, t) for the Hamiltonian Ĥ1:

φ(x, t) = Û1φ0(x, t) = eix q(t)/~ u(x, t) (61)

with

q(t) = qin −A(t)/~ = qin +
1

~

∫ t

0

F (t′) dt′. (62)

The Hamiltonian Ĥ1(t) thus preserves the Bloch waveform, but with a
quasi-momentum that depends on time by ”integrating” the force F (t).

Finally, we need to determine the evolution of the periodic part u(x, t),
no matter if we choose to work with Ĥ0(t), Ĥ1(t) or Ĥ2(t). We already
encountered this kind of questions while studying the ramping of a lattice.
We explained that if the lattice parameters vary slowly, the particle initially
prepared in a Bloch function of the n-th band, associated with the periodic
state |un,q〉, follows adiabatically this state |un,q〉. In what follows, we will
again make this adiabatic assumption. As we have already mentioned, we

will detail in the next chapter the conditions that need to be satisfied for
this approximation to be valid when we study Bloch oscillations.

4-3 Localization in the lowest band

To solve the problem of the evolution of a particle in a shaken lattice when
this evolution is restricted to the lowest band, we will use the point of
view of the Hamiltonian Ĥ0, for which the calculations are the simplest.
We therefore start from the tight-binding Hamiltonian

Ĥ0(t) = −J
(
T̂1 eiap0(t)/~ + T̂ †1 e−iap0(t)/~

)
, (63)

or its more complete version that includes the hoppings between distant
neighbors, but still restricted to the lowest band [with J(1) = −J]:

Ĥ0(t) =

+∞∑

j′=1

J(j′)
(
T̂j′ eij′ap0(t)/~ + T̂ †j′ e−ij′ap0(t)/~

)
. (64)

We assume that the system is initially prepared in a Bloch function ψq (we
forget the band index since we restrict ourselves to n = 0). Because of the
single-band approximation, this Bloch function is unique and is written,
up to a global phase:

|ψ(0)〉 ∝ |ψq〉 =
∑

j∈Z
eijaq|wj〉. (65)

The periodic function |uq〉 associated to |ψq〉 is also unique in this single-
band approximation and it is in fact independent of q:

|u〉 =
∑

j∈Z
|wj〉. (66)

Let us look for the evolution of |ψ(t)〉 under the effect of the Hamiltonian
Ĥ0(t). Since this Hamiltonian is spatially periodic, we know that the Bloch
form will be preserved and the quasi-momentum q will not change over
time. Since we assume that the system remains in the lowest band, the
state vector at time t is necessarily proportional to the state |ψq〉, since this
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is the only Bloch state available for this quasi-momentum. The state |ψ(t)〉
can only differ from |ψq〉 by a phase factor and is therefore written

|ψ(t)〉 = e−iΦq(t) |ψq〉. (67)

The determination of the global phase Φq(t) is simple. We only need to
use the expression (67) for |ψ(t)〉 in the time-dependent Schrödinger equa-
tion. By construction, the state |ψq〉 is an eigenstate of the translational
operators T̂j′ with eigenvalues e−ij′aq . It is therefore an eigenstate of the
Hamiltonian Ĥ0(t) at any time t.

Ĥ0(t)|ψq〉 = E[q − p0(t)/~]|ψq〉, (68)

where we have used the expression of the energy of the lowest band of the
Hamiltonian (63):

E(q) = −2J cos(aq) (69)

and

E(q) = 2

+∞∑

j′=1

J(j′) cos(j′aq) (70)

for the Hamiltonian (64) including distant hoppings.

The equation to determine the global phase Φq(t) is therefore

~Φ̇q = E[q − p0(t)/~], (71)

which is formally integrated to give

Φq(t) = Φq(0) +
1

~

∫ t

0

E[q − p0(t′)/~] dt′. (72)

Let us consider the instants 0, T, 2T, . . . , nT, . . ., where T = 2π/ω is the
shaking period of the lattice. Because of the temporal periodicity of p0(t′),
one can immediately show from (72) that

Φq(nT )− Φq(0) = n [Φq(T )− Φq(0)] (73)

where n is an integer: the accumulated phase ∆Φq is proportional to the
elapsed time nT . This evolution is very similar to the one we would find

for a time-independent problem, at least if we limit ourselves to a ”strobo-
scopic” observation of this state by looking at its value at integer multiples
nT of the oscillation period T .

To formalize this analogy, let us introduce the quasi-energy

ε(q) =
~
T

[Φq(T )− Φq(0)] =
1

T

∫ T

0

E[q − p0(t)/~] dt. (74)

We can then rewrite the previous result in the form

|ψ(nT )〉 = e−iε(q)nT/~|ψ(0)〉, (75)

which is very similar to the evolution we would have in a time-
independent lattice for a Bloch wave:

|ψ(t)〉 = e−iE(q)t/~|ψ(0)〉. (76)

In other words, if we limit ourselves to a stroboscopic observation at times
which are multiples of T , the evolution of a Bloch wave (or more gener-
ally of a wave packet formed by Bloch waves of the considered band), is
identical to the case of an unmodulated lattice provided that we make the
substitution

E(q) → ε(q) =
1

T

∫ T

0

E[q − p0(t)/~] dt. (77)

We will see in the next paragraph that this conclusion is a special case of
the consequences of Floquet’s approach, which allows to deal with time-
periodic Hamiltonians. The treatment presented here is particularly simple
because we have limited ourselves to a single band. As soon as we want to
take several bands into account, the Floquet method requires a numerical
treatment. Indeed, the modulation can induce interband transitions (at a
given q), which makes the problem much more complex.

Since we have the explicit expression of the energy E(q) as a function
of the tunnel coefficients J(j′), we can evaluate precisely the integral (74).
Let us consider the sinusoidal motion

x0(t) = x̄0 cos(ωt), p0(t) = −mωx̄0 sin(ωt), (78)
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for which the equation (74) providing the quasi-energy εq becomes:

ε(q) =
2

T

∞∑

j′=1

J(j′)
∫ T

0

cos {j′[aq + ξ0 sin(ωt′)]} dt′, (79)

where we have defined as previously

ξ(t) =
ma

~ω
ẍ0(t) = ξ0 cos(ωt), ξ0 = −maωx̄0/~. (80)

This integral is easily calculated:

ε(q) = 2

∞∑

j′=1

J(j′) cos(j′aq) J0(j′ξ0), (81)

to be compared to the energies without the modulation (ξ0 = 0)

E(q) = 2

∞∑

j′=1

J(j′) cos(j′aq). (82)

The expression (81) for quasi-energies allows to describe the phe-
nomenon of dynamical localization in a very simple way. Let us consider
the tight-binding limit where only the hoppings between nearest neigh-
bours, described by the parameter J = −J(1), are significant. We then
have:

E(q) = −2J cos(aq) → ε(q) ≈ −2J cos(aq)J0(ξ0), (83)

where we find the renormalization of the tunnel coefficient J → J ′ de-
termined in (56). More precisely, the quasi-energies form a band with a
width reduced with respect to the initial band, the reduction coefficient be-
ing J0(ξ0) < 1. When the argument of this Bessel function is chosen to be
equal to the first zero of this function (≈ 2.405), the band is infinitely nar-
row: all quasi-energies ε(q) are equal to each other (in this case zero). It is
then immediate to show that the state of the particle will remain the same
at all times 0, T , 2T , etc. It is enough to consider the expansion of this state
on the Bloch states

|ψ(0)〉 =

∫
C(q)|ψq〉 dq → |ψ(nT )〉 =

∫
C(q) e−iε(q)nT/~ |ψq〉 dq,

(84)

qk!t" = k +
F0

!"
sin!"t + #" , !27"

implying

1
T
#

0

T

dt cos$qk!t"!d% = J0!!K0"cos!!kd" , !28"

where J0!z" is a Bessel function of order zero, and we have
introduced the scaled driving amplitude

K0 =
F0d

!"
. !29"

Hence the quasienergy dispersion resulting from the Bloch
band !24" under sinusoidal forcing reads

$!k" = E0 + &
!=1

%

2'0(H0(!)J0!!K0"cos!!kd" . !30"

For the particular example of quasienergy bands originating
from the lowest Bloch band of an optical lattice !25", char-
acterized by the matrix elements collected in Table I, the
quasienergy band widths are depicted in Fig. 1 as functions
of K0 for some typical depths V0. Due to the dominance of
the nearest-neighbor hopping matrix element '0(H0(1) there
is strong band narrowing for values of K0 close to the zeros
of the Bessel function J0, but the nonvanishing longer-range
hopping elements prevent the band from collapsing com-
pletely, as emphasized by the inset. Thus one expects appre-
ciable, but incomplete dynamic localization in sinusoidally
driven shallow optical lattices.

B. Square-wave forcing

For square-wave forcing of the form

F!t" = * F0, 0 & t ' T/2
− F0, T/2 & t ' T ,

+ !31"

Eqs. !9" and !17" yield

qk!t" = * k + F0!t − T/4"/! , 0 & t ' T/2
k + F0!3T/4 − t"/! , T/2 & t ' T

+ , !32"

to be continued T-periodically to all t. This gives

1
T
#

0

T

dt cos$qk!t"!d% = sinc,!(K0

2
-cos!!kd" , !33"

with K0 being defined according to Eq. !29", having set "
=2( /T. Moreover, we write sinc!z"=sin!z" /z. Correspond-
ingly, the quasienergy dispersion becomes

$!k" = E0 + &
!=1

%

2'0(H0(!)sinc,!(K0

2
-cos!!kd" . !34"

Since all sinc functions adopt their zeros simultaneously,
there is a total collapse of this quasienergy band when
K0=2) with integer )=1,2 ,3 , . . .. Thus we recover the
known fact that there is exact dynamic localization, regard-
less of both the values of the hopping matrix elements and
the form of the wave packet, for these particular driving
amplitudes $20,21%. Figure 2 shows the widths of quasien-
ergy bands originating from the lowest Bloch band of an
optical lattice under square-wave forcing; the total band col-
lapse at K0=2 is clearly visible in the inset.

IV. EXPERIMENTAL RESULTS

Our experimental setup is described in detail in Ref. $16%.
Briefly, we adiabatically load Bose-Einstein condensates
consisting of about 6*104 atoms of 87Rb into the lowest
band of a one-dimensional optical lattice. The lattice is gen-
erated by focusing two counter-propagating linearly polar-
ized laser beams of wavelength +=2( /kL=842 nm onto the
condensate, resulting in the periodic potential !25" along the
beam direction. Each beam passes through an acousto-optic
modulator, allowing us to introduce a frequency difference
,)!t" between the beams that can be used to accelerate or
shake the lattice. In the laboratory frame of reference, the
condensate then experiences a time-dependent potential
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FIG. 1. Width ,sin of the lowest quasienergy band of an optical
cosine lattice under sinusoidal driving as function of the dimension-
less amplitude !29", for V0 /Er=2 !dots", 3 !long dashes", 5 !short
dashes", and 10 !full line". The inset quantifies the extent of band
narrowing for values of K0 close to the first zero j0,1=2.405 of the
Bessel function J0.
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FIG. 2. Width ,sqw of the lowest quasienergy band of an optical
cosine lattice under square-wave driving as function of the dimen-
sionless amplitude !29", for V0 /Er=2 !dots", 3 !long dashes", 5
!short dashes", and 10 !full line". The inset illustrates that an exact
band collapse occurs when K0 is a nonzero integer multiple of 2.

ECKARDT et al. PHYSICAL REVIEW A 79, 013611 !2009"

013611-4

Figure 3. Width of the quasi-band of lowest energy (in units of Er) as a function
of the modulation index ξ0 for different depths of the lattice; from top to bottom:
V0/Er = 2, 3, 5, 10. The introduction of terms beyond j = 1 in the sum (81)
results in the bandwidth not exactly cancelling when ξ0 is equal to a zero of the
Bessel function J0. Figure extracted from Eckardt, Holthaus, et al. (2009).

and to use the fact that all quasi-energies ε(q) have the same value. The
vector state |ψ(nT )〉 is then equal to |ψ(0)〉 and an initial wave packet does
not spread over times that are large compared to T ; more precisely, its
evolution between nT and (n + 1)T is identical to its evolution between 0
and T .

If the hoppings between nearest neighbours are not sufficient to de-
scribe the dynamics in the lowest band, we must consider the next terms
J(2), J(3) in the expansion (81). There is then no value of the modulation
amplitude for which the quasi-band is infinitely narrow. This quasi-band
is nevertheless strongly narrowed close to ξ0 = 2.405. We show on figure
3 a result extracted from Eckardt, Holthaus, et al. (2009), which shows the
width of the quasi-band for different values of the potential V0. Even for
a relatively small value of V0 (V0 = 2Er), the bandwidth in the vicinity
of ξ0 = 2.4 is reduced by more than a factor of 20 compared to its value
without modulation.

Note: We have focused here on a sinusoidal modulation of the position
of the lattice x0(t). Eckardt, Holthaus, et al. (2009) show that if one chooses
a scheme such that the force F (t) is a rectangular function (the lattice is
accelerated uniformly to the left, then to the right), then the quasi-band
can have a zero width even if one takes into account the couplings J2, J3,
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etc. Indeed, the Bessel function of (81) is replaced, as for the case of spin
1/2 studied in (51), by a sinc function:

J0(jξ0) −→ sinc(πjξ0/2) (85)

and this coefficient cancels when ξ0 is an even integer, fo any j.

4-4 The Floquet method

In the previous paragraph, we have been able to solve the problem of the
shaken lattice thanks to the one-band approximation which allowed us to
derive in a simple way the notion of quasi-energy. If we wish to go beyond
this approximation, it is necessary to consider the evolution of a system
under the effect of a time-periodic Hamiltonian in a more formal way. The
theoretical method adapted to this problem was developed by Floquet. We
will recall in the following the important points of this approach for the
problem we are interested in, and we will draw the link with the results of
the previous paragraph.

Floquet’s approach is a general method for dealing with the evolution
of a dynamical system governed by

d

dt
X = M̂(t) X, (86)

whereX is a column vector with d components (real or complex) and M̂(t)
is a square matrix d×d, explicitly time-dependent and periodic with period
T :

M̂(t+ T ) = M̂(t). (87)

This method is a transposition to the time domain of the Bloch function
method, which exploits the translation invariance in the spatial domain.

Before presenting Floquet’s method, let us first recall the known results
for a time-independent Hamiltonian Ĥ . Let us denote {|φα〉} the eigenvec-
tors of Ĥ and {Eα} the associated energies. The evolution operator from
time 0 to time T , denoted Û(T ), is equal to exp(−iĤT/~). The states |φα〉
are eigenstates of this operator:

Û(T ) = e−iĤT/~, Û(T ) |φα〉 = e−iEαT/~ |φα〉. (88)

Let us now turn to the case of a time-periodic Hamiltonian with the
Floquet method. We are not going to use this method in all its details, but
some of its general results will serve as a guide. Let us specify them here:

• The Schrödinger equation is of the type (86) and the evolution opera-
tor from time 0 to time nT , where n is an integer, verifies

Û(nT ) =
[
Û(T )

]n
. (89)

• The operator Û(T ) is unitary and can be diagonalized, and its eigen-
values have a modulus 1. Let us note these eigenvalues e−iεαT/~,
where the quantities εα are real and have the dimension of an energy.
The εα are called quasi-energies, by analogy to the quasi-momentum
q, and are defined modulo 2π~/T , just as the quasi-momentum q is
defined modulo 2π/a. Let us note |φα〉 the associated eigenvectors

Û(T )|φα〉 = e−iεαT/~|φα〉. (90)

These vectors form an orthogonal basis of the Hilbert space and we
find for any initial state |ψ(0)〉:

|ψ(nT )〉 =
∑

α

Cα e−inεαT/~|φα〉 (91)

where the coefficients Cα are given by Cα = 〈φα|ψ(0)〉.

• Let us consider the state |ψα(t)〉 obtained by starting from |φα(t)〉 at
time t = 0 and after an evolution under the effect of Ĥ(t):

|ψα(t)〉 = Û(t) |φα〉. (92)

Since |φα〉 is an eigenstate of Û(T ), it is clear that

|ψα(T )〉 = e−iεαT/~|ψα(0)〉. (93)

Even if the evolution of |ψα(t)〉 can be arbitrarily complicated between
0 and T , we see that this vector becomes equal to its initial value after
a period T , up to the phase εαT/~.
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• To eliminate this remaining phase εαT/~ in the evolution of |ψα(t)〉,
let us introduce the state vector |uα(t)〉 such that

|ψα(t)〉 = e−iεαt/~|uα(t)〉. (94)

It is immediate that |uα(t)〉 is time-periodic with a period T , which
allows to decompose it in Fourier series:

|uα(t)〉 =
∑

n∈Z
einωt|χα,n〉, (95)

where the time-independent vectors |χα,n〉 are for now unknown.

• To simplify the notations, we will assume that Ĥ(t) can be written as6.

Ĥ(t) = Ĥ0 + eiωt V̂+ + e−iωt V̂−, (96)

with V̂− = V̂ †+. When we replace |ψα〉 by its expression in terms of
|uα〉 and we use the Fourier expansion of this vector, the Schrödinger
equation i~|ψ̇α〉 = Ĥ(t)|ψα〉 becomes

(εα − n~ω)|χα,n〉 = Ĥ0|χα,n〉+ V̂+|χα,n−1〉+ V̂−|χα,n+1〉. (97)

• The evolution under the periodic Hamiltonian Ĥ(t) will be completely
solved once we have explicitly determined the states |χα,n〉 and the
quasi-energies εα. For this, let us assume that we can restrict the rele-
vant part of the Hilbert space to a subspace of dimension d. The oper-
ators Ĥ0, V+, V− are then d× d square matrices and the kets |χα,n〉 are
vectors with d components. Let us then form the infinite dimension
vector

|Ξ〉 = t(. . . , |χα,n−1〉, |χα,n〉, |χα,n+1〉, . . .) (98)

obtained by putting all the vectors |χα,n〉 one below the other. The
system (97) can be rewritten as an eigenvalue equation

εα |Ξ〉 = Ĥ |Ξ〉 (99)

6It is not difficult to introduce more harmonics in the Hamiltonian Ĥ(t), but it complicates
the equations a bit, by adding an extra index.

for the operator Ĥ also of infinite dimension, obtained as a band ma-
trix defined by d× d blocks:

Ĥ =


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 0 V̂+ Ĥ0 + (n− 1)~ω V̂− 0 . . . . . .

. . . 0 V̂+ Ĥ0 + n~ω V̂− 0 . . .

. . . . . . 0 V̂+ Ĥ0 + (n+ 1)~ω V̂− 0 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 .

(100)

Due to the presence of the term n~ω on the diagonal, we obtain a
spectrum that extends periodically from −∞ to +∞. In a ”Brillouin”
zone of width ~ω, we find d eigenvalues. In practice, we truncate this
infinite matrix at |n| < nmax and diagonalize numerically the resulting
square matrix.

Link with the results of the previous paragraph. In the one-band ap-
proximation, the conservation of the quasi-momentum implies that the
Bloch waves are eigenstates of the evolution operator Û(T ). The most del-
icate step of Floquet’s method, namely the search for these eigenstates, is
thus immediately done (|ψα〉 = |ψn,q〉), and the quasi-energies εα = ε(q)
are also known. One could extend Floquet’s approach to determine the
periodic functions |uα(t)〉 at any time t, which would allow to specify the
evolution of any initial state between 0 and T . One could thus evaluate
the breathing of a wave packet between 0 and T in the non-diffusive case
obtained for J0(ξ0) = 0.

5 Example of a shaken 2D lattice

The control of the tunnel coefficient by modulating the position of an opti-
cal lattice has been implemented in two dimensions in an experiment con-
ducted in Hamburg. The lattice is formed by three quasi-planar waves
propagating in the xy plane at 120 degrees from each other, with wave
vectors

k1 = k

(
1
0

)
, k2 =

k

2

(−1√
3

)
, k3 = −k

2

(
1√
3

)
. (101)
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Figure 1. Three beams intersecting in a plane and enclosing angles of 120�

pairwise create a triangular optical lattice if their polarization is perpendicular
to the plane (a). When the polarization is rotated into the plane spanned by the
lattice beams (b), a hexagonal lattice with alternating circular polarization at
the potential minima is obtained. A perpendicular 1D lattice provides an overall
3D periodic confinement.

shows absorption images that have been obtained after switching off all optical potentials
abruptly, which projects the quasi-momentum distribution in the lattice on free momentum
states. Neglecting interaction effects, the density distribution after a sufficiently long time-
of-flight (TOF) therefore represents the quasi-momentum distribution in the lattice [36], which
directly reveals the reciprocal lattice of the triangular lattice shown in figure 2(a). Opposed
to that, figure 2(b) reveals the shape of the first Brillouin zone that can be obtained by first
populating the whole first band by carefully exciting the atoms followed by an adiabatic
ramp-down of the lattice potential, thereby mapping the quasi-momentum on free momentum
states.

By rotating the polarization of the three lattice beams in the x–y plane, as depicted in
figure 1(b), another lattice geometry can be realized. The potential minima are now ordered on
a hexagonal lattice, as shown in figure 1(b). Moreover, the polarization at the potential minima
is perfectly circular and alternating in helicity for nearest-neighboring sites. For alkali atoms,
such as 87Rb, the dipole force can be rewritten in a very instructive form if the laser detuning 1
is of the order of the fine-structure splitting 1FS in 87Rb

Udip(r) = 3⇡c2

2!3
0

0

1

✓
1 +

1
3
P(r)gFm F

1FS

1

◆
I (r), (3)

New Journal of Physics 12 (2010) 065025 (http://www.njp.org/)

a1a2

J 0 J 0

J 00

Figure 4. (a) Intensity profile for a red-detuned lattice formed by three plane waves
propagating at 120 degrees from each other in the xy plane. The three waves
have the same intensity and are linearly polarized along Oz [Figure taken from
Becker, Soltan-Panahi, et al. 2010]. (b) Triangular lattice with basis vectors a1

and a2, and tunnel coefficients J ′ and J ′′ that can be controlled independently by
modulating the phases ϕ2 and ϕ3 of two of the laser beams forming the lattice.

The three waves have the same intensity I0 and are all polarized along the
axis Oz, so that the intensity at a point xy is written

I(x, y) = I0

∣∣∣eikx + e−ik(x−
√

3 y)/2 + e−ik(x+
√

3 y)/2
∣∣∣
2

= I0

∣∣∣e3ikx/2 + 2 cos(
√

3 ky/2)
∣∣∣
2

. (102)

We have chosen by convention that the three beams are in phase at position
x = y = 0. The detuning is chosen negative (on the red side) so that the po-
tential minima are located at the intensity maxima. These maxima, where
I = 9I0, are distributed according to a triangular lattice, at the vertices of
the Bravais lattice formed by the union of the two sets

(i) 3kx/2 = 0 (mod. 2π),
√

3 ky/2 = 0 (mod. 2π),

(ii) 3kx/2 = π (mod. 2π),
√

3 ky/2 = π (mod. 2π). (103)

i.e.
B = {j1a1 + j2a2, j1, j2 ∈ Z} (104)

with

a1 =
2π

3k

(
1√
3

)
, a2 =

2π

3k

(−1√
3

)
(105)

The intensity profile is shown in figure 4a. In the experiment of Struck,
Oelschlaeger, et al. (2011), the intensity I0 is large enough for the dynam-
ics in the lowest band of the lattice to be well approximated by the tight-
binding limit, with a depth of 5.6Er and a tunnel coefficient J = 0.002Er.
The confinement along the z direction is much softer, and a triangular lat-
tice of tubes is realized, each containing a few hundred atoms. The gas is
sufficiently cold for each tube to be considered as a micro-condensate, with
a well-defined phase.

If we change the phases ϕ2 and ϕ3 of the two waves that have wave
vectors k2 and k3, it is easy to show that the intensity profile I(x, y) is
simply translated in the xy plane by the quantity

∆x =
1

3k
(ϕ2 + ϕ3), ∆y =

1√
3k

(ϕ2 − ϕ3). (106)

A sinusoidal time modulation of ϕ2 and ϕ3 thus induces a shaking of the
lattice.

Struck, Oelschlaeger, et al. (2011) have chosen temporal variations of ϕ2

and ϕ3 such that ∆x = x0 cos(ωt), ∆y = y0 sin(ωt), which allows to modify
in a different way the two tunnel coefficients J ′ and J ′′ indicated in figure
4; J ′ corresponds to transitions along a1 and a2, J ′′ to transitions along
a1 − a2, parallel to the Ox axis. With arguments similar to those of the
simple approach developed above for the case of a 1D lattice, the tunnel
coefficients J ′ and J ′′ are written

J ′ = JJ (ξ′0), J ′′ = JJ (ξ′′0 ), (107)

with

ξ′0 =
mω2a

2~

√
x2

0 + 3y2
0 , ξ′′0 =

mω2a

~
x0. (108)

By controlling separately the values of x0 and y0, one can thus adjust in-
dependently the magnitudes and signs of the coefficients J ′ and J ′′. In
particular, one can choose modulations such that J ′ > 0, J ′′ < 0 (and vice
versa), whereas without the modulation, we have J ′ = J ′′ > 0.

As in the 1D experiment in Pisa, the sign flip of one of the tunnel coef-
ficients results in a shift of the minima of the lowest band in the space of
quasi-momenta q. These minima are observed directly by time of flight,
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since they correspond to the macroscopically occupied states when a con-
densate is placed in the lattice. Two clearly different time-of-flight pictures
are shown on figure 5, the one on the left being obtained for J ′, J ′′ > 0 and
the one on the right for J ′ < 0, J ′′ > 0.

To account for this change in band structure, let us write the one-particle
Hamiltonian as

Ĥ = −J ′
∑

j1,j2

(|wj1+1,j2〉〈wj1,j2 |+ |wj1,j2+1〉〈wj1,j2 |+ h.c.)

−J ′′
∑

j1,j2

(|wj1+1,j2−1〉〈wj1,j2 |+ h.c.) (109)

where the first line corresponds to hoppings along the directions a1 and
a2, and the second line to hoppings parallel to theOx axis, along the vector
a1 − a2. A Bloch state

|ψq〉 =
∑

j

eirj ·q|wj〉 (110)

is eigenstate of Ĥ with eigenvalue

E(q) = −2 [J ′ cos(a1 · q) + J ′ cos(a2 · q) + J ′′ cos((a1 − a2) · q)] . (111)

Let us first take J ′, J ′′ > 0. In this case, the ground state is obtained for
q = 0, with a corresponding energy E = −4J ′ − 2J ′′. This is indeed the
most populated state on the left image of the figure 5. Let us now choose
J ′ < 0, J ′′ > 0. The minimum is obtained by taking for example a1 · q =
a2 · q = π, which corresponds to q = uy

√
3k/2, with a corresponding

energy E = −4|J ′|−2J ′′. This prediction7 corresponds to the result visible
on the right image of figure 5.

An original point of view on the physics of atoms in this triangular
lattice is put forward by Struck, Oelschlaeger, et al. (2011); it highlights the
use of the lattice to simulate the classical magnetism of a triangular lattice.
By assigning a phase θi to the micro-condensate trapped at the site |wi〉 of
the lattice, one can write the energy of a given configuration {θi} as

E ({θi}) = −N
∑

〈i,j〉
Ji,j cos(θi − θj). (112)

7We can also take a1 · q = π and a2 · q = −π, which corresponds to q = ux(3k/2) also
visible on the right image of figure 5.

configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Fig. 1. Illustration of a
single plaquette within a
large-scale triangular lat-
tice. The accessible, inde-
pendent control parameters
J and J′ are highlighted. The
local phase of the atoms
residing on a single lat-
tice site is mapped onto a
classical vector spin (red ar-
rows). The coupling param-
eters J and J′ can be tuned ferro- or antiferromagnetically and determine the resulting spin configuration.

Fig. 2. Spin configura-
tions in a triangular lattice
and their experimental
signatures. Sketches of
small parts of the six rel-
evant spin-orders, which
can be realized within
the large-scale lattice
by tuning J and J′, are
shown. Solid and dashed
lines indicate ferro- and
antiferromagnetic cou-
plings, respectively. In
the spiral cases, two en-
ergetically degenerate
spin configurations exist.
The corresponding ex-
perimentally observed
momentum distributions
show distinct signatures.
The axes in the experi-
mental data mark the
absolute position of the
peaks. The pictures rep-
resent averages of sev-
eral experimental runs.
In the two spiral cases,
because both ground-
state configurations randomly appear, the signature of both modes is present in the average of con-
secutive pictures (see Fig. 4).
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configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Figure 5. Time-of-flight figures extracted from Struck, Oelschlaeger, et al. (2011).
Left: figure obtained for J ′, J ′′ > 0. Right: figure obtained for J ′ < 0, J ′′ > 0.

The sum runs over all pairs of nearest neighbours 〈i, j〉, and we have per-
formed the substitution

|wi〉〈wj | −→ ei(θi−θj). (113)

This substitution is valid if we can describe the state of each micro-
condensate by a classical field

√
Nj eiθj and assume that the numbers of

atoms in all these micro-condensates are similar.

The energy functional (112) is formally identical to that of an assembly
of spins Si = [cos(θi), sin(θi)] arranged on the nodes of the lattice B, with
interactions between nearest neighbours:

E ({θi}) = −
∑

〈i,j〉
Ji,jSi · Sj . (114)

The different structures which appear in time of flight when we vary the
amplitude and the sign of J ′ and J ′′ thus allow us to find the magnetic
phases of this lattice of interacting spins. The two images shown on figure 5
correspond to the ferromagnetic phase (all the spins aligned, all the phases
θj equal, energy minimum in q = 0) and to the rhombic phase (lines along
the x axis with spins pointing in a given direction, alternating with lines of
opposite spins).

We end this paragraph by mentioning that it is also possible to time-
modulate the lattice in a way that gives a non-zero imaginary part to the
tunnel coefficient (Struck, Ölschläger, et al. 2012). To do this, one can
choose a function η(t) such that 〈eiη〉 has a non-zero imaginary part. This
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allows to have a particle that travels along the edges of the unit cell of the
lattice accumulating a non-zero phase, which is the basis for the generation
of artificial magnetic fields. We will come back to this point in an upcoming
lecture series.
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Chapter V

Bloch oscillations in an optical lattice

In the previous chapter, we studied the dynamics of atoms placed in an
optical lattice whose periodic potential V(x, t) depends on time. In the case
where this dependence is limited to a displacement of the lattice

V(x, t) = V (x− x0(t)), (1)

we have shown that we can, thanks to a unitary transformation, analyze
the problem in the reference frame of the lattice. We then recover a problem
with a static lattice V (x) to which we superimpose the inertial force F (t) =
−mẍ0(t).

It is therefore natural at this stage to look further into the question of
the dynamics of a particle placed simultaneously in a periodic potential
independent of time and with a spatially uniform force. The simplest case
is the one of a time-independent force F , and we will consider this case
during most of this chapter. Our Hamiltonian will therefore be

Ĥ =
p̂2

2m
+ V (x̂)− F x̂. (2)

This problem was initially addressed by Zener to model the behavior of
an electron in a crystal lattice, on which an external electric field is applied.
The Hamiltonian (2) describes the motion of the particle in the reference
frame of the laboratory. The same problem is encountered with cold atoms
in a stationary lattice to which we add gravity or the force created by a
magnetic field gradient, like in the Stern and Gerlach experiment.

Moreover, with the equivalence between a moving lattice (without ad-
ditional force) and a fixed lattice with a force F (t), we see that we can
create this potential by starting from a periodic lattice in an uniformly
accelerated motion in the reference frame of the laboratory: if we take
x0(t) = −Ft2/(2m) in the Hamiltonian

Ĥ2(t) =
p̂2

2m
+ V (x̂− x0(t)), (3)

we recover the Hamiltonian (2) in the uniformly accelerated reference
frame in which the lattice is stationary, thanks to the unitary transforma-
tion given in the previous lecture.

Bloch oscillations of cold atoms in optical lattices have become a power-
ful tool in recent years and are used in many applications: gravity measure-
ment, study of force fields near surfaces, beam splitting for atomic interfer-
ometry. Even if cold atoms are not the first physical system on which oscil-
lations have been observed (see for example the review article of Mendez
& Bastard (1993) for studies on solid superlattices), Bloch oscillations con-
stitute an object of study with plentiful and diverse aspects for cold gases,
thanks to the richness of their applications.
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CHAPTER V. BLOCH OSCILLATIONS IN AN OPTICAL LATTICE § 1. The principle of Bloch oscillations

1 The principle of Bloch oscillations

1-1 The evolution of the quasi-momentum

In the previous chapter, we studied the evolution of a particle under the
effect of a Hamiltonian of type

Ĥ =
p̂2

2m
+ V (x̂)− F (t) x̂. (4)

where V (x) is periodic with period a. In particular, we have shown that
the Bloch form is preserved during the evolution. An initial state

ψ(x, 0) = eixqin u(x, 0) (5)

will keep this form and be written at time t

ψ(x, t) = eixq(t) u(x, t). (6)

The quasi-momentum q(t) is given by

q(t) = qin +
1

~

∫ t

0

F (t′) dt′. (7)

For the case that interests us here, the force F is independent of time and
q(t) evolves linearly in time

q(t) = qin + Ft/~. (8)

A time scale and an energy scale are therefore naturally introduced: the
time

τB = 2~k/F (9)

represents the time necessary for q(t) to go through the Brillouin zone,
which has size 2k = 2π/a. To this time is associated the angular frequency
ωB = 2π/τB and the energy

~ωB = πF/k = Fa. (10)

This energy represents the work of the forceF over a period of the potential
V (x); it is therefore the decrease in energy between two successive local
minima of the potential V (x)− Fx (cf. figure 1).

−2 −1 0 1 2

x/a

V
(x
)
−
F
x

Figure 1. Potential V (x) − Fx giving rise to Bloch oscillations, with V (x) =
V0 sin2(πx/a) and ~ωB ≡ Fa = V0/5. The energy difference between the two
horizontal lines is equal to ~ωB.

At this point, we cannot yet say anything about the spatially-periodic
function u(x, t) which multiplies eixq(t) in (6), except that it is a solution of

i~
d

dt
|u(t)〉 = Ĥper[q(t)] |u(t)〉, (11)

where Ĥper[q] is the Hamiltonian for the periodic part of the Bloch func-
tions:

Ĥper[q] =
(p̂+ ~q)2

2m
+ V (x̂). (12)

It is the adiabatic approximation which, as in the previous chapter in the
case of a sinusoidal force, will allow us to progress.

1-2 The adiabatic approximation

From now on, we assume that the initial state eiqinx u(x, 0) is a Bloch func-
tion, i.e. an eigenstate ψn,qin(x) of the n-th energy band of the Hamiltonian

Ĥ0 =
p̂2

2m
+ V (x̂) (13)

corresponding to the case F = 0. In other words, the function u(x, 0) =
〈x|u(t = 0)〉 coincides (up to a global phase) with the eigenstate un,qin(x)
of the Hamiltonian Ĥper[qin] for the periodic part (12).
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Figure 2. The evolution of the quasi-momentum in the repeated band picture. The
Bloch oscillation regime corresponds to the situation where the particle follows
adiabatically the initial energy level (here the red curve) and does not go to another
energy level (here the blue curve). The dangerous zone is located at the points
where q/k is an odd integer, where the red and blue bands are the closest. This
figure is plotted for V0 = Er.

The adiabatic approximation consists in assuming that the state |u(t)〉
solution of (11) remains equal (up to a global phase) to |un,q(t)〉, that is

ψ(x, t) ∝ eixq(t) un,q(t)(x). (14)

Since the quasi-momentum q(t) moves at uniform speed and spans the
Brillouin zone in a time τB, the time-evolution of ψ(x, t) is periodic (up to
a global phase1), with this same period τB. This evolution is represented
on figure 2 in the so-called repeated zone representation.

This periodic evolution of the state of the particle under the effect of
a uniform force (in addition to the potential V (x)) is a remarkable phe-
nomenon, which originates in the structure in energy bands of the spec-
trum of the unperturbed Hamiltonian. The name Bloch oscillations for this
phenomenon is rather paradoxical. Indeed, this effect is not described in
Bloch’s seminal paper on the quantum physics of electrons in crystals. Its
first public appearance seems to be in the paper of Zener (1934). Another
paradox is that the oscillation is not what interested Zener. He was look-
ing for the effect that an electric field could have on an insulator and it was

1We will not consider the phase (Zak 1989) accumulated during an oscillation in this chap-
ter, this will be the topic of a later lecture.

 on January 19, 2013rspa.royalsocietypublishing.orgDownloaded from 

Figure 3. Figure taken from the original paper by Zener (1934), representing the
energy bands tilted by the potential −Fx.

therefore the interband transitions that we will see a little later in this lec-
ture that motivated his study: the aim was to find a force F large enough
so that the adiabatic following would not take place, while the oscillation
itself was probably considered as trivial by Zener...

It is interesting to look at the first figure in Zener’s paper of 1934, with
which he interprets the oscillation phenomenon (see Figure 3). He makes
a local approximation of the energy bands, by plotting these bands as a
function of position after adding the potential energy −Fx. The forbidden
bands are represented by the hatched areas. The horizontal line represents
a possible energy for an electron. This electron starts from point A, is ac-
celerated by the force F until it arrives at point B, and it can then (i) turn
around, which constitutes the oscillation phenomenon, or (ii) go to point C
by tunnelling, at the bottom of the next energy band, and thus contribute
to the electric conduction. We deduce from this image the amplitude of the
oscillations in real space, xB − xA = ∆E/F , where ∆E is the width of the
allowed band that is initially occupied.

The amplitude of the oscillations in real space can be found by con-
sidering a wave packet centered on q̄(t) in momentum space, and whose
dispersion in q remains at each instant small compared to k. In real space,
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we note x̄(t) the center of this wave packet; the average velocity of the
wave packet is given by the group velocity

dx̄

dt
= vg(t) =

1

~
dEn,q

dq

∣∣∣∣
q=q̄(t)

, (15)

which evolves periodically in time. This evolution equation is integrated
to give

x̄(t)− x̄(0) =
1

~

∫ t

0

dEn,q
dq

dt =
1

F

∫ q(t)

qin

dEn,q
dq

dq, (16)

where we have used the relation q = Ft/~. We finally arrive at

x̄(t)− x̄(0) =
1

F

(
En,q̄(t) − En,qin

)
, (17)

which corresponds to the intuitive relationship suggested by figure 3.

There are several ways to represent the Bloch oscillation phenomenon.
We have so far chosen the one that uses the band structure of the energy
diagram (with no force). Another very useful point of view, directly in-
spired by quantum optics, is represented on figure 4ab. This point of view,
valid for small lattice depths, consists in treating perturbatively the effect
of the lattice in the form of multi-photon transitions that can occur when
a resonance condition is satisfied. First, we plot the dispersion relation
without the lattice E = p2/2m; the presence of the force F will force the
atom to travel across the momentum space according to the law ṗ = F .
When an atom, starting for example from p = 0 arrives at p = ~k, a reso-
nant two-photon transition can transfer it to p = −~k (4a). This jump can
also be seen as a total Bragg reflection of the atomic wave of wavelength
2π/k on the lattice of constant π/k. The acceleration starts again from the
momentum p = −~k and we recover the periodic oscillation, of frequency
F/(2~k) = ωB/2π, predicted above. This picture generalizes easily to the
Bloch oscillations in the upper bands. Figure 4b represents for example
the Bloch oscillation in the first excited band, n = 1, in terms of two multi-
photon transitions, one with two photons, and the other with four photons.

The last point of view on these Bloch oscillations that we will mention
here is based on the plane wave expansion of the Bloch functions, which is
expressed in terms of the Fourier transform of the Wannier functions (see
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Figure 4. Representation of Bloch oscillations in the lowest band (n = 0) on the
left and in the first excited band (n = 1) on the right, in terms of multi-photon
transitions. Under the effect of the constant force F , the momentum increases
linearly with time (ṗ = F ). When the momentum of the atom is such that a
resonant multi-photon transition, represented by the black dotted lines, can occur
(p/~k non-zero integer), a Bragg reflection occurs and the momentum of the atom
switches from p to −p. The frequency of the oscillation, independent of the band,
is F/(2~k) = ωB/2π.

Chapter 3):

ψn,q(x) =
1√
a

∑

j∈Z
w̃n(q + 2πj/a) eix(q+2πj/a). (18)

During the oscillation, this comb of momenta runs at constant speed and
the amplitude of the different components follows the envelope given by
the function w̃n(κ), the Fourier transform of the Wannier function wn,0(x).

2 Experimental observations

2-1 First experiments with cold atoms

In quantum optics, the first Bloch oscillations have been observed in the
groups of Christophe Salomon in Paris and Mark Raizen in Austin (Wilkin-
son, Bharucha, et al. 1996; Niu, Zhao, et al. 1996; Ben Dahan, Peik, et al.
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1996; Peik, Ben Dahan, et al. 1997; Raizen, Salomon, et al. 1997). These ob-
servations were following a demonstration in solid samples, in particular
in superlattices (Mendez & Bastard 1993). In Paris as well as in Austin, the
force F was inertial, F = −mẍ0, obtained thanks to an accelerated lattice

V (x, t) = V0 sin2 [k(x− x0(t))] (19)

with x0(t) = γt2/2. Recall that such an acceleration is realized by varying
in time the phases φ1 and φ2 of the two travelling waves ei(kx−ωt−φ1) and
e−i(kx+ωt+φ2) forming the lattice. This acceleration a can for example be
obtained by choosing

φ1(t) = kγt2/2, φ2(t) = −kγt2/2, (20)

which corresponds to the ”instantaneous frequencies”

ω1 = ω +
dφ1

dt
= ω + kγt, ω2 = ω +

dφ2

dt
= ω − kγt. (21)

The Paris experiment was conducted with cesium atoms (m = 133)
while the Austin experiment used sodium atoms (m = 23). This signifi-
cant factor on the masses, associated with an equally significant factor on
the wavelengths of the used lattices, leads to important qualitative differ-
ences on the accelerations that are compatible with an adiabatic following
(see for example the table V.1). In practice, the typical acceleration of the
Paris experiments was between 1 and a few tens of ms−2, while those used
in Austin went up to several thousand ms−2. In both cases, the lattice
depth V0 measured in units of Er was of the order of a few units.

Some results illustrating these oscillations measured in the reference
frame of the lattice (data extracted from Dahan:1996,Peik:1997) are shown
in figure 6. We see in the left column the periodic evolution of the momen-
tum distribution. In the right column, we have represented the evolution
of the average velocity of the wave packet, in good agreement with the
law (15). Note in particular the deformation of this curve when we go
from small V0/Er (weak links, top) to large V0/Er (tight-binding, bottom):

• In the case of weak links, we have E0,q ≈ ~2q2/2m except at the edge
of the zone, and the group velocity is therefore almost everywhere
equal to ~q/m, i.e. a linear function of time since q(t) = q0 +Ft/~. The
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FIG. 2. Bloch oscillations of atoms: momentum distributions
in the accelerated frame for equidistant values of the accel-
eration time ta between ta ≠ 0 and ta ≠ tB ≠ 8.2 ms. The
light potential depth is U0 ≠ 2.3ER and the acceleration is
a ≠ 20.85 mys2. The small peak in the right wing of the first
five spectra is an artifact.

These results can be explained as follows. Bloch states
of quasimomentum q are coherent superpositions of
plane waves, i.e., momentum states jp ≠ h̄sq 1 2jkdl
(j integer). Because of the applied force, q evolves in
time according to (1) with the initial condition qs0d ≠ 0.
In the perturbative case considered here (U0 ø 16ER),
for qstad , 0 the Bloch state jn ≠ 0, qstadl is very
close to the momentum state jp ≠ h̄qstadl: It has very
small populations [,sU0y16ERd2 . 1%] on the jp ≠
h̄qstad 6 2h̄kl momentum states. For qstad close to k, the
Bloch state is mainly a linear superposition of the jp ≠
h̄qstadl and jp ≠ h̄fqstad 2 2kgl momentum states, with
equal amplitudes for qstad ≠ k, i.e., for ta ≠ tBy2. For
tBy2 , ta , tB, qstad scans the g2k, 0f interval of the
Brillouin zone and the momentum distribution is turned
back into the single initial peak.
In order to further illustrate the oscillatory motion of

the atoms, we have deduced from our data the mean
atomic velocity as a function of ta for different val-
ues of the potential depth U0 and for an acceleration
a ≠ 60.85 mys2. We reduce the smoothing effect due to
the width of the quasimomentum distribution as follows:
We slice the initial momentum peak into narrow channels
labeled i, centered at qis0d and of width ky18. Follow-
ing the time evolution of each of these slices, we calculate
the mean velocity for the atoms in momentum channels
h̄qistad, h̄qistad 6 2h̄k where qistd evolves according to
(1). The contributions of the different channels are com-
bined in one curve after a time translation of h̄qis0dyF.
We have plotted in Fig. 3 the results for three values of

FIG. 3. Mean atomic velocity kyl as a function of the
acceleration time ta for three values of the potential depth: (a)
U0 ≠ 1.4ER , (b) U0 ≠ 2.3ER , (c) U0 ≠ 4.4ER . The negative
values of Fta were measured by changing the sign of F. Solid
lines: theoretical prediction.

U0yER. The measured Bloch periods agree with the ex-
pected value (8.2 ms) to within an uncertainty of 4% and
do not depend on U0. For U0 ≠ 0.54ER the amplitude
of the Bloch oscillations is 0.68h̄k and corresponds to an
oscillation in position of 3.1 mm. These amplitudes de-
crease with growing U0 [cf. Fig. 4(a)]: The band flattens
out as a consequence of the smaller tunnel coupling be-
tween neighboring sites of the lattice.
A striking feature of the oscillations presented in Fig. 3

is their asymmetry, which is particularly pronounced for
low values of the optical potential: The slope of the mean
velocity near the edge of the Brillouin zone (Fta ≠ 6h̄k)
is steeper than that near the zone center (Fta ≠ 0, 62h̄k).
This effect can be described in terms of effective masses:
The dynamics of the particle is equivalent to that of a
particle in free space: mpdkylydt ≠ F with an effective
mass mpsqd given by h̄2ymp ≠ d2E0sqdydq2, which is
in general different from the real mass because of the
interaction with the potential. In the center and at the edge
of the Brillouin zone, the energy band is approximately
parabolic, the effective mass is constant, and kyl evolves
linearly in time. By measuring the slope of kylstad around
ta ≠ 0 (q ≠ 0) and ta ≠ 6tBy2 (q ≠ 6k) in Fig. 3,
we deduce these two effective masses. In Fig. 4(b), we
present their variation with the potential depth U0. For
weak potentials (U0 ! 0), mpsq ≠ 0d tends to the free
atom mass m and mpsq ≠ kd tends to 0. With increasing
potential depth the atoms are more tightly bound and
the effective masses increase in absolute value. For

4510

VOLUME 76, NUMBER 24 P HY S I CA L REV I EW LE T T ER S 10 JUNE 1996

FIG. 2. Bloch oscillations of atoms: momentum distributions
in the accelerated frame for equidistant values of the accel-
eration time ta between ta ≠ 0 and ta ≠ tB ≠ 8.2 ms. The
light potential depth is U0 ≠ 2.3ER and the acceleration is
a ≠ 20.85 mys2. The small peak in the right wing of the first
five spectra is an artifact.

These results can be explained as follows. Bloch states
of quasimomentum q are coherent superpositions of
plane waves, i.e., momentum states jp ≠ h̄sq 1 2jkdl
(j integer). Because of the applied force, q evolves in
time according to (1) with the initial condition qs0d ≠ 0.
In the perturbative case considered here (U0 ø 16ER),
for qstad , 0 the Bloch state jn ≠ 0, qstadl is very
close to the momentum state jp ≠ h̄qstadl: It has very
small populations [,sU0y16ERd2 . 1%] on the jp ≠
h̄qstad 6 2h̄kl momentum states. For qstad close to k, the
Bloch state is mainly a linear superposition of the jp ≠
h̄qstadl and jp ≠ h̄fqstad 2 2kgl momentum states, with
equal amplitudes for qstad ≠ k, i.e., for ta ≠ tBy2. For
tBy2 , ta , tB, qstad scans the g2k, 0f interval of the
Brillouin zone and the momentum distribution is turned
back into the single initial peak.
In order to further illustrate the oscillatory motion of

the atoms, we have deduced from our data the mean
atomic velocity as a function of ta for different val-
ues of the potential depth U0 and for an acceleration
a ≠ 60.85 mys2. We reduce the smoothing effect due to
the width of the quasimomentum distribution as follows:
We slice the initial momentum peak into narrow channels
labeled i, centered at qis0d and of width ky18. Follow-
ing the time evolution of each of these slices, we calculate
the mean velocity for the atoms in momentum channels
h̄qistad, h̄qistad 6 2h̄k where qistd evolves according to
(1). The contributions of the different channels are com-
bined in one curve after a time translation of h̄qis0dyF.
We have plotted in Fig. 3 the results for three values of

FIG. 3. Mean atomic velocity kyl as a function of the
acceleration time ta for three values of the potential depth: (a)
U0 ≠ 1.4ER , (b) U0 ≠ 2.3ER , (c) U0 ≠ 4.4ER . The negative
values of Fta were measured by changing the sign of F. Solid
lines: theoretical prediction.

U0yER. The measured Bloch periods agree with the ex-
pected value (8.2 ms) to within an uncertainty of 4% and
do not depend on U0. For U0 ≠ 0.54ER the amplitude
of the Bloch oscillations is 0.68h̄k and corresponds to an
oscillation in position of 3.1 mm. These amplitudes de-
crease with growing U0 [cf. Fig. 4(a)]: The band flattens
out as a consequence of the smaller tunnel coupling be-
tween neighboring sites of the lattice.
A striking feature of the oscillations presented in Fig. 3

is their asymmetry, which is particularly pronounced for
low values of the optical potential: The slope of the mean
velocity near the edge of the Brillouin zone (Fta ≠ 6h̄k)
is steeper than that near the zone center (Fta ≠ 0, 62h̄k).
This effect can be described in terms of effective masses:
The dynamics of the particle is equivalent to that of a
particle in free space: mpdkylydt ≠ F with an effective
mass mpsqd given by h̄2ymp ≠ d2E0sqdydq2, which is
in general different from the real mass because of the
interaction with the potential. In the center and at the edge
of the Brillouin zone, the energy band is approximately
parabolic, the effective mass is constant, and kyl evolves
linearly in time. By measuring the slope of kylstad around
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Figure 5. Bloch oscillations observed in C. Salomon’s group in 1996-97 in an
accelerated optical lattice (Ben Dahan, Peik, et al. 1996; Peik, Ben Dahan, et al.
1997). The atomic velocities are measured in the reference frame in which the
optical lattice is stationary. The atoms are initially prepared in the lowest band
n = 0. Left: evolution of the velocity distribution for V0 = 2.3Er and γ =
0.85 ms−2. Right: evolution of the average velocity of the wave packet for different
lattice depths: V0/Er = 1.4, 2.3, 4.4.

Bragg reflection at the edge of the zone corresponds to a fast variation
of v, hence this sawtooth evolution.

• In the tight-binding limit, we saw in Lecture 3 that the lowest band
is sinusoidal, E0,q ≈ −2J cos(aq), and the velocity therefore varies
sinusoidally with time: v(t) ∝ sin[aq(t)].

The distributions in figure 5 represent measurements of the velocities in
the accelerated reference frame of the lattice. It is also interesting to repre-
sent these velocities in the reference frame of the laboratory, which is done
in figure 6. We can see that for these parameters which correspond to a
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and we deal with free atoms interacting with two counter-
propagating laser waves having a time-dependent frequency
difference.

A. Bloch oscillations as adiabatic rapid passage
between momentum states

In the absence of spontaneous emission the atoms mo-
mentum can change by units of \(k12k2)'2\k by absorb-
ing a photon from one wave and emitting it into the other in
a stimulated way, as depicted in Fig. 7. Because the atoms
are initially prepared with a momentum spread much smaller
than 2\k and with a kinetic energy near zero, their possible
states after interaction with the light fields are discrete points
up52 j\k ,E54 j2ER& ( j50,1,2,3 . . . ) on the momentum-
energy parabola of the free particle @26# ~cf. Fig. 7!. The gain
in kinetic energy is provided by the frequency difference
between the two laser waves: the atoms are accelerated in the
direction of the beam with the higher frequency by absorbing
photons from it and reemitting low-frequency photons into
the other. The transition up52 j\k ,E54 j2ER&!up
52( j11)\k ,E54( j11)2ER& is resonant for an angular
frequency difference Dv54(2 j11)ER /\ . As we start with
the atoms at rest ( j50) and Dv50, these resonances are
encountered sequentially and a gain of atomic momentum of
2\k can be expected after each change in the frequency
difference of 8ER /\ , as shown in Fig. 8. For a constant
change in the angular frequency difference Dv with the rate
Dv̇ , the time required for this is

t58ER /\Dv̇54ER /\ka52\k/ma , ~14!

which is equal to the Bloch period for the inertial force
ma5mDv̇/2k . Thus the mean atomic velocity increases by
2\k/m during each Bloch period. As shown in Fig. 8~b!, the
Bloch oscillations in the laboratory frame appear as a peri-
odic deviation of the mean velocity around the linear in-
crease in time at . The method of exciting the transition be-
tween two energy levels with a electromagnetic wave of
variable detuning that is scanned through resonance is well
known under the term adiabatic rapid passage ~ARP! @27#.

For properly chosen parameters ~i.e., a scan range that is
greater than the peak Rabi frequency V and slow enough
rate of change of the detuning Dv̇!V2) the transfer be-
tween the states is complete and the method can be used to
efficiently create an inversion between the levels. In our case
a sequence of transfers between momentum states results in a
coherent acceleration of the atoms in the laboratory frame.
Multiple ARP is a powerful method in quantum physics.

For instance, a sequence of ARP has been used to produce
Rydberg atoms in circular states @28#. Multiple ARP, as a
means of momentum transfer between light and atoms, has
already been proposed long ago, but considering the excita-
tion and deexcitation of an internal state of the atom using a
one-photon transition @29#. For instance, they occur in satu-
ration spectroscopy with curved wave fronts @30#. Our sys-
tem has some peculiarities in comparison with previous stud-
ies of ARP: the states are linked by a two-photon transition;
internal states of the atom are not excited, consequently there
is no relaxation or dissipation; the sequence of levels is infi-
nite, so that a large number of successive transfers can be
made. This dynamical case has to be contrasted with the
single two-photon transfer occuring in the recoil-induced
resonances observed in dissipative optical lattices in which
the atomic momentum spread is larger than 2\k @18,31#.
The two-photon Raman process can be characterized by

an effective Rabi frequency

V5V1V2/2D5U0/2\ , ~15!

which is proportional to the depth of the light-shift potential
(V1 ,V2: Rabi frequencies of the two beams, D: detuning
from the atomic resonance line!. The two ARP conditions
then read Dv̇!V2!64ER

2 /\2 and are well fulfilled for the
conditions of our BO experiment in the fundamental energy
band. The second condition, which is equivalent to the weak
binding limit for the periodic potential, allows us to treat the

FIG. 7. Energy-momentum states in the laboratory frame. In the
chirped standing wave, an initial state ug ,p& is only coupled to
ug ,p62 j\k&, where j is an integer, by stimulated two-photon Ra-
man transitions.

FIG. 8. ~a! Population of momentum states up52 j\k& as a
function of time in the chirped standing wave ~numerical simula-
tion!. ~b! Experimental measurement of the mean atomic velocity in
the laboratory frame as a function of time. Parameters are the same
as in Fig. 4.

55 2995BLOCH OSCILLATIONS OF ATOMS, ADIABATIC . . .

Figure 6. Evolution of the average velocity of the atoms in the laboratory reference
frame for the parameters of figure 5 (left). Figure extracted from Peik, Ben Dahan,
et al. (1997).

limit of weak links, the atoms keep a constant speed most of the time, but
periodically undergo a strong acceleration which increases their speed by
2~k/m. This dynamics has a simple interpretation in terms of two-photon
transitions (cf. figure 7). These transitions are successively resonant at in-
stants tj such that the instantaneous frequencies of the laser waves forming
the lattice verify

~[ω1(tj)− ω2(tj)] = [(2j + 2)2 − (2j)2]Er = (8j + 4)Er, (22)

for the transition p = 2j~k → p = (2j+ 2)~k (j is an integer). By taking the
expression (21) of ω1,2(t), we see that these accelerations occur for

tj =

(
j +

1

2

)
τB. (23)

This accelerated lattice device is thus an efficient way to communicate a
given momentum to the atoms. In practice, this momentum can reach sev-
eral hundreds of ~k.

2-2 Note: momentum balance in an accelerated lattice

When we consider the point of view of the multi-photon transitions in fig-
ure 7, it is clear that the momentum gain of the atom during the accelera-
tion of a lattice is a multiple of 2 ~k. This result is less obvious when the
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Figure 7. Acceleration of atoms by successively resonant multiphoton transitions.

analysis is performed in the accelerated frame of reference; we propose to
show it explicitly in the following paragraphs (see also Browaeys, Häffner,
et al. (2005)).

Let us start with an atom that has a well-determined momentum pin.
Let us take |pin| < ~k, so that this momentum is in the first Brillouin zone2.
Let us first adiabatically ramp up the stationary lattice. The state of the
atom follows the Bloch function ψn=0,qin with qin = pin/~. Once the lattice
has reached its full power, we put it in motion with an acceleration ẍ0(t). In
the reference frame of the lattice, the inertial force F (t) = −mẍ0(t) creates
the running of the quasi-momentum

q(t) = qin +
1

~

∫ t

0

F (t′) dt′ = qin −
m

~
ẋ0(t), (24)

while the atom remains in the lowest band n = 0.

We then stop the acceleration of the lattice at time T , and then decrease
its depth adiabatically until it is completely extinguished. In the reference
frame of the lattice, this method of band-mapping will bring the atom into
a well-defined momentum state p(lattice)

end , associated to the lowest band,
thus between−~k and ~k. More precisely p(lattice)

end is equal to ~q(t), modulo

2The following reasoning is valid even if the momentum distribution is not a delta peak,
the important assumption is that this distribution lies entirely in the Brillouin zone.
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In particular, the interference of Wannier-Stark states
results in equally spaced peaks in momentum space that
move with constant velocity _qq ! mg. The peaks spacing
is the inverse of the spatial period of the lattice and can be
written as 2qB, where qB ! h=! is the Bragg momentum.
Therefore only one or two peaks appear at the same time
in the first Brillouin zone of the lattice "#qB;$qB%, as
shown in Fig. 1.

To study the momentum distribution in the trap, we
release the cloud from the lattice, thus stopping the
evolution of the interference pattern at a given time. We
then probe the cloud by absorption imaging after a 8-ms
ballistic expansion, which maps the initial momentum
distribution into a position distribution. Actually, the
lattice depth is lowered to zero in about 50 "s, a time
scale longer than the oscillation period of the atoms in
each lattice well. The adiabatic release allows us to study
the evolution of the momentum in the first Brillouin zone.

Figure 2 shows the time evolution in q space detected in
the experiment. We can clearly see the vertical motion of
the peak of the distribution, initially centered in q ! 0 at
t ! 2 ms. It gradually disappears as it reaches the lower
edge of the Brillouin zone at t ! 2:8 ms, while a second
peak builds up at the upper edge and then scans the whole
Brillouin zone as the first one. The periodicity of this
interference pattern amounts to about 2.3 ms, in agree-
ment with the expected TB ! 2h=mg!.

A quantitative description of the observations becomes
particularly easy in a semiclassical approach. Here the
atomic cloud is described as a single wave packet that
moves uniformly in q space under the influence of gravity
and is gradually reflected each time it reaches the lower
band edge. These phenomena are the well-known Bloch
oscillations [8,12], which have been studied for a variety
of systems including cold atoms in accelerated horizontal
lattices [13,14], or BECs tunneling out of a shallow lattice
under gravity [5]. Note that at the zone edge there is a
finite probability of Zener tunneling to the continuum
[15]. However, we suppress the tunneling by using a
sufficiently tight lattice, different from the study per-
formed in [5]. This allows us to keep the atoms oscillating
in the lattice for very long times.

If we follow the vertical position of the peak of the
distribution in Fig. 2, we get the periodic motion shown
in Fig. 3, which has the peculiar sawtooth shape expected
for Bloch oscillations [16]. We can follow the oscillations
for more than 250 ms, that correspond to about 110 Bloch
periods, and only at later times the contrast is degraded
by a broadening of the momentum distribution. This is to
our knowledge the longest lived Bloch oscillator observed
so far in all kinds of physical systems. The reduction of
contrast is illustrated in Fig. 4(a). For our parameters
(EF & ER) the initial half-width of the wave packet is
#q & 0:75qB, which fulfills the requirement of a momen-
tum distribution narrower than the first Brillouin zone of
the lattice to observe the interference. During Bloch
oscillations the distribution broadens steadily and even-
tually fills completely the first Brillouin zone.

It is interesting to compare the behavior of fermions
and bosons to study the role of interactions. In our appa-
ratus we can simply repeat the experiment with a BEC of
rubidium atoms. We use a sample of typically 5' 104

atoms, at temperatures T < 0:6Tc, which is transferred
into the lattice with the same procedure described above
for the Fermi gas. The lattice depth is in the range 2–4ER

FIG. 2 (color online). Evolution of the interference pattern of the Fermi gas for increasing holding times in the vertical lattice.
The spatial distribution of the cloud detected after 8 ms of free expansion reflects the momentum distribution in the trap at the time
of release.
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FIG. 1 (color online). Momentum distribution of a coherent
superposition of Wannier-Stark states. Although the single
state fills completely the first Brillouin zone (thin line), the
interference of several states gives narrow momentum peaks.
Shown are the cases of a phase difference between successive
states of !$ ! 0 (continuous line) and !$ ! % (dashed line).
The inset shows the square of Wannier-Stark wave functions
calculated for 40K atoms in a lattice with U ! 2ER subjected to
gravity (for clarity, the states shown are separated by four
lattice sites).
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Figure 8. Bloch oscillations of 40K atoms (fermions) under gravity, observed with
a potential V0 = 2Er, λ = 873 nm [figure taken from Roati, Mirandes, et al.
(2004)]. The absence of interaction between the polarized fermions allows the ob-
servation of these oscillations with a good contrast for a long time (more than
100 τB).

a vector of the reciprocal lattice:

p
(lattice)
end = ~q(T ) + 2N~k (25)

where N is the integer closest to −q(T )/(2k).

If we return to the reference frame of the laboratory at this time, the
atomic momentum is

p
(lab)
end = p

(lattice)
end +mv(lattice)(T )

= p
(lattice)
end +mẋ0(T )

= ~q(T ) + 2N~k +mẋ0(T )

= pin + 2N~k, (26)

which indeed corresponds to the expected result. The only case where this
demonstration is not valid is when p(lattice)

end is in the immediate vicinity of
the band edge, i.e. q(T ) = k modulo 2k, because the adiabatic ramping of
the lattice is then not possible: the atom finds itself in a linear superposition
of qin +2N~k and qin +(2N+2)~k; this case corresponds to an interruption
of the acceleration at the precise instant when the two-photon transition
sketched in figure 7 occurs.

2-3 Oscillations due to gravity

One of the main difficulties in observing Bloch oscillations lies in the neces-
sity to prepare an assembly of atoms with an initial momentum dispersion
small compared to ~k. This difficulty is almost automatically overcome if

our data is gatom ¼ 9:804 923 2ð14Þ m=s2 where the uncer-
tainty corresponds to 1 standard deviation.

The reference value for local gravitational acceleration
is provided by an absolute gravimeter based on an optical
interferometer with one arm including a freely falling
corner-cube (FG5, Micro-g LaCoste). The measurement
is performed in the same laboratory at a distance of 1.15 m
from the atomic probe position. The difference in height
of 14(5) cm together with the estimated vertical gravity
gradient value gzz ¼ $3:09% 10$6 s$2 at the laboratory
site is taken into account in the data analysis. The result
is gFG5 ¼ 9:804 921 609ð84Þ m=s2

The comparison of the value obtained with the quantum
mechanical atomic sensor and the one obtained with the
classical gravimeter shows that they agree within the ex-
perimental errors.

With minor modifications of the experimental proce-
dure, in this work we also determine g by measuring the
frequency of the Bloch oscillations of the atoms in the

vertical optical lattice. Because of a better vacuum and
taking advantage of the lattice modulation method to re-
duce the initial momentum distribution of the atoms in the
lattice [19], we considerably improve the visibility of the
oscillations and, as a consequence, the frequency resolu-
tion compared with previous experiments [9]. After the
transfer of the atoms in the vertical optical lattice, an
amplitude-modulation burst with typical duration of
120 cycles at !m ’ !B is applied. The quantum phase of
the atomic wave function induced by the amplitude modu-
lation gives rise to an interference effect which results in an
enhanced visibility of the Bloch oscillations peaks in the
time-of-flight image of the atomic cloud [28]. After turning
off the modulation, we let the atomic cloud evolve for a
time T. Finally, we switch off the optical lattice within
5 "s to measure the momentum distribution of the atoms
in ballistic expansion by taking an absorption picture with
a CCD camera. In order to optimize the visibility through
this quantum interference effect, we set the time of flight to
14 ms. As shown in Fig. 4, we observe Bloch oscillations
with high visibility for &20 s. From the fit of the mean
atomic momentum we can estimate the Bloch frequency
!B with 1:7% 10$7 statistical uncertainty. In comparison
with the determination of !B obtained with the resonant
amplitude-modulation technique, however, we find a con-
siderably larger scattering in repeated measurements,
mainly due to the initial position instability of the atomic
trap and to a higher sensitivity to the timing of the experi-
ment. The value for g obtained with the Bloch oscillation
technique is gBloch ¼ 9:804 88ð6Þ m=s2, which is consis-
tent with the measurement presented above but is affected
by a larger relative uncertainty of 6% 10$6.
In conclusion, we have performed an accurate measure-

ment of gravitational acceleration using ultracold 88Sr
atoms confined in a vertical optical lattice. The result
agrees within 140 ppb with the value obtained with a
classical FG5 gravimeter. This result improves by 1 order
of magnitude in sensitivity and by more than 2 in

TABLE I. Systematic corrections and their associated uncer-
tainties (% 10$7) for the gravity measurement with 88Sr atoms
in the amplitude-modulated optical lattice.

Effect Correction Uncertainty

Lattice wavelength 0 2
Lattice beam vertical align. 0 0.2
Stark shift (beam geometry) 14.3–17.3 0.4
Experiment timing 0 0.2
Tides $1:4–0:9 <0:1
Height difference 4.3 0.2
Refraction index 0 <0:01
Fundamental constants 0 0.7
Systematics total 17.2–22.5 2.2

FIG. 4 (color online). Long-lived Bloch oscillations for Sr
atoms in the vertical lattice under the influence of gravity.
Each picture shows one Bloch cycle in successive time-of-flight
absorption images giving the momentum distribution at the time
of release from the lattice. Displayed are the first (a), the 2900th
(b), the 7500th (c), and the 9800th (d) Bloch cycles.

FIG. 3 (color online). Measurements of g using the amplitude-
modulation technique. Each experimental point is corrected for
the systematic effects presented in Table I. The red dashed line
represents the weighted mean of the 21 measurements. The blue
solid line is the value obtained with the classical absolute FG5
gravimeter.
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Figure 9. Bloch oscillations of 88Sr atoms (bosons) under the effect of gravity
in a lattice of period a = 266 nm and depth V0 ≈ 3Er [figure extracted from
Poli, Wang, et al. (2011)]. The Bloch period is ωB/2π = 574 Hz and the Bloch
oscillations can be observed for nearly 20 seconds. The images correspond to the
oscillation No. 1, 2900, 7500 and 9800. The extremely low value of the scattering
length for 88Sr atoms allows to minimize the phase shift of the oscillations due to
interactions. From these oscillations, we can deduce the value of g within 6×10−6.
The accuracy of this measurement of g is significantly improved if one uses instead
– on the same experimental setup – Wannier–Stark spectroscopy (see § 5).

one has a Bose-Einstein condensate or a degenerate Fermi gas at hand. We
cannot describe or even mention all the Bloch oscillation experiments that
followed the arrival of these degenerate gases in the laboratories. Let us
simply mention a class of experiments that are substantially different from
those of Paris and Austin, in which the force F is not inertial, but exists in
the reference frame of the laboratory. The simplest way is to choose gravity,
by arranging the optical lattice along the vertical axis. We have reproduced
on the figures 8 and 9 results obtained in the groups of M. Inguscio (Roati,
Mirandes, et al. 2004) and G. Tino (Poli, Wang, et al. 2011) where atoms are
”in suspension” in an optical lattice. The measurement of the oscillation
frequency gives in principle a direct access to the value of gravity at the
point where the atoms are. In fact, to optimize the determination of g with
atoms confined in a lattice, it seems preferable to use the spectroscopy of
Wannier–Stark states, which we will discuss later (Poli, Wang, et al. 2011;
Pelle, Hilico, et al. 2013). Poli, Wang, et al. (2011) indeed indicate signifi-
cantly larger fluctuations when directly observing Bloch oscillations, due
to the residual instability of the initial position of the atoms and to a greater
sensitivity to the timing of the experiment.
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Li Na K Rb Cs
mass (amu) 7 23 39 87 133
λ0 (nm) 671 589 770 780 852

Er/(2π~) (kHz) 63.0 25.9 8.59 3.75 2.06
ωB/2π (kHz) 0.058 0.17 0.37 0.84 1.4

~ωB/Er 0.0009 0.0067 0.043 0.22 0.68
Fc/m for V0 = Er (ms−2) 3300 450 70 13.5 4.4

Table V.1. Recoil energy and frequency of Bloch oscillations under the effect of
gravity for alkali atoms (F/m = 9.81 ms−2). The optical lattice is assumed to
be at the resonant frequency of the atom ω0 = 2πc/λ0 and its spatial period is
a = λ0/2. The ratio ~ωB/Er is crucial to evaluate the adiabaticity of the motion
in the band n = 0 (cf. figure 10). The last line gives the critical acceleration
appearing in the Landau–Zener formula (38), for a lattice depth chosen equal to
the recoil energy.

3 The adiabatic approximation and beyond

3-1 Validity of the adiabatic approximation

We will now discuss the validity of the adiabatic approximation at the basis
of the Bloch oscillation phenomenon. We have already given in a previous
chapter the general criterion characterizing this approximation (Messiah
2003). Let us recall it briefly: We consider a Hamiltonian Ĥ(λ) that de-
pends on a parameter λ, for which we have solved the eigenvalue equa-
tion. We assume for simplicity that the energies εn(λ) are non-degenerate
and form a discrete set. The associated eigenvectors are denoted |φn(λ)〉.
We are interested in a problem where the parameter λ depends on time. We
suppose that the system is prepared at time t = 0 in an eigenstate |φn[λ(0)]〉
and we search for the condition under which the system will be at time t in
the state |φn[λ(t)]〉 with probability close to 1. We can show that this will
be the case if the inequality

~
∣∣∣∣〈φn′ | d

dt
|φn〉

∣∣∣∣� |En′ − En| , ∀n′ 6= n, (27)

is satisfied at each time (the parameter λ(t) is implicit).

For the case we are interested in here, the quasi-momentum q plays the
role of the parameter λ and the quantum number n is the band index. The
Hamiltonian is Ĥper[q] given in (12), which determines the periodic part
of the Bloch functions, and the states |φn(λ)〉 are the periodic parts |un,q〉.
Using the fact that q̇ = F/~, the adiabaticity criterion is therefore

F |〈un′,q|∂qun,q〉| � |En′(q)− En(q)| , (28)

where we have noted
|∂qun,q〉 ≡

d

dq
|un,q〉. (29)

The scalar product 〈un′,q|∂qun,q〉 can be rewritten in a convenient form,
involving the matrix element of the momentum operator p̂. This relation
is established by differentiating with respect to q the eigenvalue equation
for the Hamiltonian Ĥper, and projecting the resulting equation onto |un′,q〉
(Ashcroft & Mermin 1976). We find

[En(q)− En′(q)] 〈un′,q|∂qun,q〉 =
~
m
〈un′,q|p̂|un,q〉, (30)

which allows us to rewrite the adiabaticity condition in the form

F~
m
|〈un′,q|p̂|un,q〉| � [En(q)− En′(q)]2. (31)

First, let us consider the weak-binding regime and apply this result to
the most critical point for the adiabatic following, q ≈ k, where the lowest
band n = 0 is closest to the first excited band n′ = 1. The gap between
the levels is V0/2 and the functions un,q(x) are equal to 1 ± e±2ikx (see
Chapter 2). The matrix element of p̂ is therefore ∼ ~k and the condition
(31) becomes

F~
m

~k � V 2
0

4
⇔ F � V 2

0

8Er
k ⇔ ~ωB

Er
� π

8

(
V0

Er

)2

. (32)

Let us now turn to the opposite tight-binding regime. One can find in
the thesis of M.Dahan (1997) a (not very constraining) adiabaticity condi-
tion deduced from (31). We give here another one which consists in im-
posing that the energy shift aF = ~ωB between two successive wells (cf.
fig. 1) remains lower than the energy difference ~ω ≈ 2

√
V0Er between the
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100 101 102
10−1

100

101

102

V0/Er

h̄
ω
B
/
E

r

Figure 10. Zones of validity of the adiabatic approximation (it is necessary to be
located under the corresponding lines for the approximation to be valid). Blue:
weak-binding case (32); red: tight-binding case (33). The black line gives the
limit (34) for the force F , above which the potential V (x)− Fx has no more local
minimum.

two lowest bands. This prevents a resonant tunnelling from the vibrational
state n = 0 of the well located at ja to the vibrational state n = 1 of the well
located at (j + 1)a. This condition is written in the limit V0 � Er:

~ωB

Er
< 2

(
V0

Er

)1/2

. (33)

We have drawn in figure 10 the different zones of interest in the plane
(V0, ~ωB). We have added the zone delimited by the condition

F < kV0 ⇔ ~ωB

Er
< π

V0

Er
, (34)

which corresponds to imposing that the tilted potential of figure 1 has local
minima. The adiabaticity conditions given in (32-33) are well within this
domain.

3-2 Landau–Zener transitions

The validity of the adiabatic approximation in the weak-binding case can
be more quantitatively assessed by modelling the avoided crossing be-
tween the two lowest bands by a Landau–Zener type approach.

Let us first recall the main results of this approach. We consider a two-
level system modelled by a spin 1/2 and we suppose that this spin evolves
under the effect of the explicitly time-dependent Hamiltonian

Ĥ(t) = αt σ̂z + β σ̂x, (35)

where the σ̂i are the Pauli matrix. The instantaneous eigenvalues are
±
(
α2t2 + β2

)1/2. Let us consider a spin prepared in the state |+〉 at a neg-
ative time ti such that |ti| � β/α. At a time tf positive and � β/α, the
spin will have followed adiabatically the corresponding energy level with
a probability

P = 1− e−πβ
2/(~α). (36)

In the case of interest, the intersecting energy levels are E = ~2q2/2m
and E = ~2(q − 2k)2/2m at the quasi-momentum q = k. Since q̇ = F/~,
the coefficient α is α = ~kF/m. The coefficient β, which characterizes the
coupling between the two levels, is β = V0/4. The probability of adiabatic
following can be written as

P = 1− e−Fc/F , (37)

where we introduced the critical force

Fc =
π

32

V 2
0

Er
k. (38)

The condition of adiabatic following, P ≈ 1 and thus F � Fc, gives again
the result found in (32).

The verification of this law for an atom in an optical lattice was per-
formed during the first experiments in Paris and Austin in the years 1996-
97. We show on figure 11 a more recent result obtained in Pisa (Zenesini,
Lignier, et al. 2009) where we see the successive decreases of the band oc-
cupation n = 0 each time the atom’s momentum passes at the edge of the
Brillouin zone.
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tem was close to the Brillouin zone edge, tunneling to the
upper band became increasingly likely. At t ¼ tLZ the
acceleration was abruptly reduced to asep " aLZ and the
lattice depth was increased to Vsep in a time tramp " TB.

These values were chosen in such a way that at t ¼ tLZ the
probability for LZ tunneling from the lowest to the first
excited energy band dropped from between # 0:1–0:9
(depending on the initial parameters chosen) to less than
# 0:01, while the tunneling probability from the first ex-
cited to the second excited band remained high at about
0.95. This meant that at t ¼ tLZ the tunneling process was
effectively interrupted and for t > tLZ the measured sur-
vival probability PðtÞ ¼ N0=Ntot (calculated from the num-
ber of atoms N0 in the lowest band and the total number of
atoms Ntot) reflected the instantaneous value Pðt ¼ tLZÞ.

The lattice was then further accelerated for a time tsep
such that aseptsep # 2nprec=M (typically n ¼ 2 or 3). In
this way, atoms in the lowest band were accelerated to a
final velocity v # 2nprec=M, while atoms that had tun-
neled to the first excited band before t ¼ tLZ tunneled to

higher bands with a probability>0:95 and were, therefore,
no longer accelerated. At tsep the lattice and dipole trap
beams were suddenly switched off and the expanded
atomic cloud was imaged after 23 ms. In these time-of-
flight images the two velocity classes 0 and 2nprec=M were
well separated, from which N0 and Ntot could be measured
directly. Since the populations were ‘‘frozen’’ inside the
energy bands of the lattice, which represent the adiabatic
eigenstates of the system’s Hamiltonian, this experiment
effectively measured the time dependence of Pa in the
adiabatic basis. A typical result is shown in Fig. 1(b).
One clearly sees two ‘‘steps’’ at times t ¼ 0:5TB and t ¼
1:5TB, which correspond to the instants at which the atoms
cross the Brillouin zone edges, where the lowest and first
excited energy bands exhibit avoided crossings. For com-
parison, the result of a numerical simulation (integrating
the linear Schrödinger equation for the experimental pro-
tocol) as well as an exponential decay as predicted by LZ
theory are also shown.
The LZ tunneling probability can be calculated by con-

sidering a two-level system with the adiabatic Hamiltonian

Ha ¼ Hd þ V ¼ !t"z þ
!E

2
"x; (1)

where "i are the Pauli matrices. The eigenstates of the
diabatic Hamiltonian Hd, whose eigenenergies vary line-
arly in time, are mixed by the potential V characterized by
the energy gap !E. Applying the Zener model [8] to our
case of a BEC crossing the Brillouin zone edge leads to a
band gap !E ¼ V0=2 and to ! ¼ 2vrecMaLZ ¼
2F0E

2
rec=ð#@Þ, with Erec ¼ @2#2=ð2Md2LÞ the recoil energy

and F0 ¼ MaLZdL=Erec the dimensionless force. The
limiting value of the adiabatic and diabatic LZ survival
probabilities (for t going from '1 to þ1) in the eigen-
states of Ha and Hd, respectively, is

Paðt ! þ1Þ ¼ 1' Pdðt ! þ1Þ ¼ 1' PLZ; (2)

where the standard LZ tunneling probability is

PLZ ¼ e'#=$ (3)

with the adiabaticity parameter $ ¼ 4@!ð!EÞ'2 [20].
Figure 2(a) shows the first LZ tunneling step for differ-

ent lattice depths V0, measured in units of Erec at a given
acceleration. The steps can be well fitted with a sigmoid
function

PaðtÞ ¼ 1' h

1þ exp½ðt0 ' tÞ=!tLZ)
; (4)

where t0 is the position of the step (which can deviate
slightly from the expected value of 0:5TB, e.g., due to a
nonzero initial momentum of the condensate), h is the step
height, and !tLZ represents the width of the step.
Equations (2) and (3) correctly predict the height h of the
step, as tested in the experiment for a variety of values of
V0 and F0 [see Fig. 2(b)].
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FIG. 1. Time-resolved measurement of LZ tunneling.
(a) Experimental protocol [shown in the band-structure repre-
sentation of energy EðqÞ versus quasimomentum q]. Left: The
lattice is accelerated, (partial) tunneling occurs. Right: The
acceleration is then suddenly reduced and the lattice depth
increased so as to freeze the instantaneous populations in the
lowest two bands; finally, further acceleration is used to separate,
and measure, these populations in momentum space. (b) Experi-
mental results for V0 ¼ 1Erec and F0 ¼ 0:383 (aLZ ¼
13:52 ms'2), giving TB ¼ 0:826 ms. The solid and dashed lines
are a numerical simulation of our experimental protocol and an
exponential decay curve for our system’s parameters, respec-
tively.
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Figure 11. Result from Zenesini, Lignier, et al. (2009), showing the decay of
the occupation probability of the band n = 0 in a Bloch oscillation experiment
conducted with rubidium atoms. The lattice has a depth V0 = Er. The lattice, of
period a = 421 nm, is uniformly accelerated and provides an inertial force such
that ~ωB ≈ 0.4Er. The solid line corresponds to the numerical integration of the
time-dependent Schrödinger equation, which essentially gives back the Landau–
Zener prediction. The dashed curve corresponds to an exponential approximation.

As we have stated above, this question of interband transitions was cen-
tral to Zener’s original paper in 1934. After deriving the transition prob-
ability at each edge of the Brillouin zone, Zener ends his analysis with a
reasoning similar to the one of Gamow to determine the lifetime of a nu-
cleus in a radioactive process α. The atom (or the electron for Zener) "takes
its chance" ωB/2π times per unit of time, and each time it has the proba-
bility P to stay in the band n = 0. If we multiply these probabilities for
the j = t/τB trials which take place during a duration t, we deduce the
probability Π(t) for the particle to be still in the band n = 0 at the instant t

Π(t) ≈ Pj = exp
[
j ln

(
1− e−Fc/F

)]
≈ exp(−t/τ) (39)

where the decay time τ is given by

τ = τB eFc/F . (40)

3-3 Beyond Landau–Zener

In the treatment that leads to the exponential rate law (40), one incoher-
ently adds up the different probability amplitudes corresponding to the
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FIG. 1. Experimental protocol for observing Stückelberg oscilla-
tions in accelerated optical lattices.

accelerated by applying appropriate frequency chirps on the
radio-frequency generators powering the two acousto-optic
modulators used to control the power in the lattice beams.
Finally, the dipole trap beam and the lattice beams are switched
off and an absorption image is taken after 23 ms of time of
flight. For the lattice depths below 4 Erec used in this paper, the
lowest energy band corresponds to more than 90% population
of the p = 0 momentum class, which allows us to deduce the
survival probability in the ground state P0 = N0/Ntot from the
relative number of atoms with p = 0 to a good approximation
(the small contributions of higher momentum classes are taken
into account in the simulations).

Stückelberg oscillations are then observed by first loading
the condensate adiabatically into the lowest energy band of
a lattice (V0 = 1.4 Erec) with zero quasimomentum (station-
ary lattice), accelerating the lattice across the edge of the
Brillouin zone at q = 0.5 qB (where qB = 2πh̄/dL is the Bloch
momentum), reversing the sign of the acceleration, crossing
the edge of the Brillouin zone a second time, and finally
stopping at zero quasimomentum. The results of such an
experiment with twait = 0 (i.e., Mwait = I) and varying qfin
are shown in Fig. 2. Since the energy separation between the
bands varies (approximately) linearly with qfin, the relative
phase "φ is a quadratic function of qfin and hence the
frequency of the oscillations varies, leading to “chirped”
Stückelberg oscillations. Beyond quasimomentum q = qB in

1.0
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0.2
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P
0

1.41.21.00.80.6
qfin (units of qB)

FIG. 2. Stückelberg oscillations after two crossings of the zone
edge in an optical lattice. Shown here is the survival probability in the
lowest energy band P0 for V0 = 1.4 Erec and F = 1.197 Erec/dL as a
function of qfin; for these experimental parameters the Stokes phase
is φSt ≈ −π/3. The dashed line is a numerical simulation assuming a
momentum spread of the condensate of "q = 0.03qB . The data points
are the results of single experiments and hence no error bar is reported;
shot-to-shot fluctuations for constant experimental parameters are
around 10%.

Fig. 1 our simple two-level model is, strictly speaking, no
longer valid as avoided crossings with higher bands will lead
to a loss of population from the excited band. Since the
tunneling probability to those higher bands (and back) is close
to unity, however, the dominant correction to the two-level
approximation will be in the phase factor.

In spite of the simplifying assumptions, the agreement with
our simple model (using Mathieu-function solutions for the
band structure of the lattice) is still very good. From the total
acceleration time tacc = 0.4 ms between successive crossings
of the zone edge for the maximum qfin, the damping time
of the Stückelberg oscillations of Fig. 2 is found to be around
τ = 0.35 ms. We can account reasonably well for this damping
by assuming a momentum spread of the condensate of "q =
0.03qB in our simulations, which in practice is partly due to
the intrinsic momentum width of the condensate and partly to
dephasing mechanisms such as dynamical instabilities that
occur during the acceleration phase [14]. The momentum
spread leads to an accumulation of relative phase of different
parts of the condensate at a different rate depending on their
position in the Brillouin zone. We can, therefore, connect the
momentum spread "q to the spread in the accumulated relative
phase "φ in the following way: Assuming that the two lowest
energy bands for a shallow lattice correspond roughly to the
free-particle dispersion relations En(q) = (q − nqB)2/(2M)
(except around q = 0.5 qB ), we find d"φ/dq = 8ErecTtot/h̄
with Ttot = 2tacc + twait. For a given momentum spread "q,
the damping time τ of the Stückelberg oscillations is then τ =
h̄/[8Erec("q/qB )], giving "q/qB = 0.02 for τ = 0.35 ms, in
good agreement with the simulations.
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FIG. 1. Experimental protocol for observing Stückelberg oscilla-
tions in accelerated optical lattices.

accelerated by applying appropriate frequency chirps on the
radio-frequency generators powering the two acousto-optic
modulators used to control the power in the lattice beams.
Finally, the dipole trap beam and the lattice beams are switched
off and an absorption image is taken after 23 ms of time of
flight. For the lattice depths below 4 Erec used in this paper, the
lowest energy band corresponds to more than 90% population
of the p = 0 momentum class, which allows us to deduce the
survival probability in the ground state P0 = N0/Ntot from the
relative number of atoms with p = 0 to a good approximation
(the small contributions of higher momentum classes are taken
into account in the simulations).

Stückelberg oscillations are then observed by first loading
the condensate adiabatically into the lowest energy band of
a lattice (V0 = 1.4 Erec) with zero quasimomentum (station-
ary lattice), accelerating the lattice across the edge of the
Brillouin zone at q = 0.5 qB (where qB = 2πh̄/dL is the Bloch
momentum), reversing the sign of the acceleration, crossing
the edge of the Brillouin zone a second time, and finally
stopping at zero quasimomentum. The results of such an
experiment with twait = 0 (i.e., Mwait = I) and varying qfin
are shown in Fig. 2. Since the energy separation between the
bands varies (approximately) linearly with qfin, the relative
phase "φ is a quadratic function of qfin and hence the
frequency of the oscillations varies, leading to “chirped”
Stückelberg oscillations. Beyond quasimomentum q = qB in
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FIG. 2. Stückelberg oscillations after two crossings of the zone
edge in an optical lattice. Shown here is the survival probability in the
lowest energy band P0 for V0 = 1.4 Erec and F = 1.197 Erec/dL as a
function of qfin; for these experimental parameters the Stokes phase
is φSt ≈ −π/3. The dashed line is a numerical simulation assuming a
momentum spread of the condensate of "q = 0.03qB . The data points
are the results of single experiments and hence no error bar is reported;
shot-to-shot fluctuations for constant experimental parameters are
around 10%.

Fig. 1 our simple two-level model is, strictly speaking, no
longer valid as avoided crossings with higher bands will lead
to a loss of population from the excited band. Since the
tunneling probability to those higher bands (and back) is close
to unity, however, the dominant correction to the two-level
approximation will be in the phase factor.

In spite of the simplifying assumptions, the agreement with
our simple model (using Mathieu-function solutions for the
band structure of the lattice) is still very good. From the total
acceleration time tacc = 0.4 ms between successive crossings
of the zone edge for the maximum qfin, the damping time
of the Stückelberg oscillations of Fig. 2 is found to be around
τ = 0.35 ms. We can account reasonably well for this damping
by assuming a momentum spread of the condensate of "q =
0.03qB in our simulations, which in practice is partly due to
the intrinsic momentum width of the condensate and partly to
dephasing mechanisms such as dynamical instabilities that
occur during the acceleration phase [14]. The momentum
spread leads to an accumulation of relative phase of different
parts of the condensate at a different rate depending on their
position in the Brillouin zone. We can, therefore, connect the
momentum spread "q to the spread in the accumulated relative
phase "φ in the following way: Assuming that the two lowest
energy bands for a shallow lattice correspond roughly to the
free-particle dispersion relations En(q) = (q − nqB)2/(2M)
(except around q = 0.5 qB ), we find d"φ/dq = 8ErecTtot/h̄
with Ttot = 2tacc + twait. For a given momentum spread "q,
the damping time τ of the Stückelberg oscillations is then τ =
h̄/[8Erec("q/qB )], giving "q/qB = 0.02 for τ = 0.35 ms, in
good agreement with the simulations.
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Figure 12. Observation of Stückelberg oscillations, with an optical lattice for ru-
bidium atoms, V0 = 1.4Er and ~ωB = 1.2Er (a = 421 nm). The atoms are
placed in the lowest band n = 0 at q = 0. They are accelerated to cross the edge of
the first Brillouin zone and reach a momentum qend such that 0.5 < qend/k < 1.5.
The force is then reversed to bring the atoms back to q = 0. Finally, one measures
the population of the lowest band. The dashed line is a prediction made by as-
suming an initial momentum width ∆q/k = 0.03 (figures taken from Zenesini,
Ciampini, et al. (2010)).

successive diabatic transitions when the atom passes over the edge of the
Brillouin zone. In reality, these transitions are coherent processes and it is
possible to observe significant deviations from the simple Landau–Zener
law due to the interference between these processes. A first analysis, the-
oretical and experimental, of these deviations was made in Austin at the
end of the 1990s (Wilkinson, Bharucha, et al. 1997; Niu & Raizen 1998). A
detailed theoretical treatment is presented by Holthaus (2000). Recently, an
experiment conducted in Pisa in the group of E. Arimondo has very con-
vincingly demonstrated the Stückelberg interference between two successive
Landau-Zener processes (Zenesini, Ciampini, et al. 2010). The principle of
the experiment and its result are shown in figure 12. Similar results have
been obtained in Bonn in the group of M. Weitz (Kling, Salger, et al. 2010).
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3-4 A beam splitter

Thanks to Bloch oscillations, it is possible to coherently transfer a con-
trolled (and important) momentum to atoms by placing them in an accel-
erated lattice. The fact that the probability of transferring or not this mo-
mentum depends strongly on the band n occupied by the atoms allows to
realize coherent beam splitters. The principle, implemented by Denschlag,
Simsarian, et al. (2002), then taken up again by Cladé, Guellati-Khélifa, et
al. (2009) and Müller, Chiow, et al. (2009) is simple:

• Starting from atoms of momentum p0 such that |p0| < ~k, we apply to
these atoms a Bragg pulse which places each atom in a superposition
of p0 and p0 + 2~k, or even p0 and p0 + 4~k in the case of Denschlag,
Simsarian, et al. (2002).

• An optical lattice is adiabatically ramped up to a depth V0 so that the
atoms are placed in a coherent superposition of states |n = 0, q0〉 and
|n = 2, q0〉, where q0 = p0/~. Note that it is better to choose p0 6= 0 to
avoid being bothered by the quasi-degeneracy of the bands n = 1 and
n = 2 when the lattice still has a very low intensity, which prevents a
good adiabaticity .

The optical lattice is accelerated. The pair acceleration–depth is chosen
in order to (i) have an excellent adiabatic following for the n = 0 band,
(ii) have almost no adiabatic following for the n = 2 band. Thanks to
this choice, the component |n = 0, q〉 is accelerated with the lattice and
acquires a large momentum in the laboratory reference frame. On the
contrary, the component |n = 2, q〉 undergoes diabatic transitions, and
the atom is transferred to the higher bands n = 2→ n = 3→ . . . in the
accelerated reference frame. More simply, this means that for this part
of the vector state, the atoms remain stationary in the reference frame
of the laboratory. One can verify on the figure 13, extracted from the
article of Cladé, Guellati-Khélifa, et al. (2009), that there is indeed an
appreciable range of values of V0 for which these two ”antagonistic”
conditions are simultaneously satisfied.

At the end of this acceleration of duration t, N = t/τB Bloch oscilla-
tions have occurred and the atom is in the state

|n = 0, p0 + 2N~k〉+ eiφ|n = 2, p0 + 2~k〉. (41)

band index. Therefore, if an atom passes through the cross-
ing at a given speed, the probability to make an adiabatic
transition (to stay in the same band) will be higher for low
value of the band index.

The principle of the large momentum transfer beam
splitter consists in creating a superposition of two wave
packets separated by 2 recoil velocities using, in our ex-
periment, a Raman transition. The atoms are then loaded in
the optical lattice so that one wave packet is in the first
band (A, see Fig. 1) and the second in the third band (B).
This is the case when the velocity of the lattice is chosen
such that the relative velocity of the first wave packet lies
between 0 and vr and of the second between 2vr and 3vr.
A constant acceleration (which acts like a force in the
frame of the lattice) is then applied. It is chosen small
enough so that the atoms in the first band have a large
probability to make an adiabatic transition but high enough
so that the atoms in the third band change band. Each
oscillation increases the momentum of the atoms by 2@k.
On the other hand, the atoms in the third band (atoms that
change band) are not accelerated.

Figure 2 depicts the probability for an atom to stay in its
band as a function of the lattice amplitude for the first and
third band (solid/blue and dashed/red line, respectively).
There is clearly an intermediate regime where the proba-

bility !11 for an atom to stay in the first band is high
whereas the probability !34 for an atom to leave the third
band (and reach the fourth one) is also high. For an
acceleration of 4 recoils in 200 "s, the total probability
(! ¼ !11!34, diamond) presents a maximum aroundU0 ¼
8Er. The value of the maximum (97%) depends on the
duration of the acceleration and increases with this
parameter.
We have plotted on the right side of Fig. 2 the total

efficiency ! as a function of the initial momentum p0. This
efficiency is computed including the loading and unloading
of the atoms in the lattice: it is initially ramped up during a
time tadiab, then accelerated during Tacc and ramped down
during tadiab. By switching adiabatically up and down the
lattice amplitude, the atoms from plane wave states are
transferred to Bloch states and vice versa. As this process is
not fully adiabatic, the efficiency of the LMT is reduced. At
the center and the edge of the first Brillouin zone (q0 ¼ 0
and q0 ¼ 1), the efficiency is strongly reduced because the
atoms cannot be loaded adiabatically in the lattice (those
points are initially degenerate). For the chosen parameters
(tadiab ¼ 150 "s, Tacc ¼ 200 "s, N ¼ 2 oscillations,
U0 ¼ 8Er), we see that the efficiency is larger than 95%
on a large zone. An important issue is to maximize the
width in initial momentum where the process is very
efficient. Indeed the atoms used in the interferometer
have an initial velocity distribution selected by the
Raman beam. The wider is the initial velocity distribution
loaded into the LMT pulse, the higher is the number of
atoms that contributes to the interferometer and so is the
signal to noise ratio. We have optimized the efficiency by
varying the amplitude and the temporal parameters keep-
ing the total time 2tadiab þ Tacc ¼ 500 "s constant.
One of the main drawbacks of the LMTBS based on

Bloch oscillations is the light shift of the atoms in the
lattice. In the case of a blue detuned lattice, the atoms in
the first band are in a dark region and are almost not
shifted, whereas the nonaccelerated atoms in excited bands
see an average shift corresponding to the mean value of the
potential of the lattice. For typical parameters, this light
shift, much larger than 2#, must be canceled in order to run
the interferometer. This cancellation occurs in the Mach-
Zehnder configuration described on Fig. 3(a). The configu-
ration used for the Raman pulses is similar to a regular
interferometer with four #=2-pulses and the LMT pulses
are added inside each pair of #=2 pulses used either for
selection or measurement (see the temporal sequence of
Fig. 3(a)]. With this scheme, the LMT pulses are applied
symmetrically on each arm of the interferometer; i.e., one
arm of the interferometer is initially in the first band and
then in an excited band and vice versa for the other arm.
Therefore, the phase shift accumulated on each arm is the
same and there is no systematic effect if the laser intensity
seen by the atoms is constant. However, this is not the case
because of temporal fluctuations of the laser intensity
(leading to a phase noise in the interference pattern) or
motion of the atoms through the spatial profile of the laser

FIG. 2 (color online). Left: transfer probability as a function of
the maximal optical depth U0 of the lattice. U0 is in units of 8Er.
The acceleration is of 4 recoils in 200 "s. Solid line (blue):
transfer probability for the first band !11; dashed line (red): for
the third band (!33 # 1$ !34); diamond: Efficiency of the LMT
pulse, ! ¼ !11!34. Right: efficiency of the LMT pulse as a
function of the initial momentum p0, for Tacc ¼ 200 "s and
U0 ¼ 8Er.

FIG. 1 (color online). Band structure of the optical lattice.
Trajectories of the accelerated (A) and nonaccelerated atoms
(B).

PRL 102, 240402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending
19 JUNE 2009

240402-2

Figure 13. Probability Pn to adiabatically follow the band n for 87Rb atoms placed
in an optical lattice accelerated at ∼ 100 ms−2, as a function of the lattice depth
U0 = V0/(8Er). The blue (resp. red) curve corresponds to n = 0 (resp. n =
2). The beam splitter will be efficient if P0 ≈ 1 and P2 ≈ 0. The black curve
P0(1 − P2) is a measure of the overall efficiency, which is optimal for U0 ≈ 1, so
V0 ≈ 8Er (Figure taken from Cladé, Guellati-Khélifa, et al. (2009)).

The coherence of this superposition can be tested by constructing a
Mach-Zender type interferometer, where the two arms undergo this ac-
celeration at different times (Denschlag, Simsarian, et al. 2002).

If one wants to use this beam splitter for atomic interferometry and pre-
cision measurements, an important difficulty comes from the differential
light shift between the two arms. The part of the wave function corre-
sponding to an accelerated atom (in the band n = 0) does not have the
same spatial location in the lattice as the part of the wave function of a
non-accelerated atom (in the band n = 2). For example, if the lattice is
blue-detuned with respect to the atomic resonance, the atoms in the band
n = 0 will remain localized in the vicinity of the nodes of the standing
wave, whereas the atoms in the band n = 2 will successively explore the
nodes and the anti-nodes of this standing wave. The light shift is therefore
not the same in both cases, which leads to a phase shift between the two
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arms that is difficult to control. More complicated interferometric schemes
are needed to restore a sufficient symmetry between these arms [Cladé,
Guellati-Khélifa, et al. (2009), Müller, Chiow, et al. (2009)].

4 Bloch oscillations in the tight-binding regime

Considering the practical importance of the Bloch oscillation phenomenon,
it is useful to see it from several angles, in particular in the tight-binding
regime. In this limit, we have simple analytical expressions for the different
quantities involved, which are useful to get an intuition of the problem.

4-1 The oscillating wave function

In the tight-binding limit, we assume that the dynamics of the particle is
restricted to the lowest band. We will therefore omit the band index n = 0
in this section. We only take into account the hopping between nearest
neighbours, and write the initial Hamiltonian (2) as:

Ĥ = −J
(
T̂ + T̂ †

)
− Fa

∑

j

j|wj〉〈wj |, (42)

where |wj〉 represents the state where the particle is localized at site j and
T̂ is the translation operator by one site to the right:

T̂ =
∑

j

|wj+1〉〈wj |. (43)

Recall that the Bloch functions |ψq〉, their periodic part |uq〉 and the associ-
ated energy E(q) are written

|ψq〉 =
∑

j

eijaq|wj〉, |uq〉 =
∑

j

|wj〉, E(q) = −2J cos(aq), (44)

and |uq〉 is independent of q in this particular case.

We can already introduce a dimensionless number which will be use-
ful to characterize the influence of the force F on the particle placed in the

lattice. Consider the picture of Zener (Figure 3), which shows a character-
istic length for the oscillation, L = ∆E/F , where ∆E is the bandwidth. In
the case of tight-binding, we simply have ∆E = 4J . We denote by ν the
number of sites that are located within this distance L

ν =
4J

Fa
=

∆E

~ωB
. (45)

We expect that this dimensionless number ν will play a role in the charac-
terization of the amplitude of the oscillations.

We start with a particle prepared in the Bloch function |ψqin〉. The gen-
eral results obtained in the previous chapter can be written in this limit

|ψ(t)〉 = e−iΦ(t)
∑

j

eijaq(t)|wj〉, (46)

where q(t) = qin +Ft/~ as in (8) and where the phase Φ corresponds to the
dynamic phase:

Φ(t) = Φ(0) +
1

~

∫ t

0

E[q(t′)] dt′ =
ν

2
{sin [aq(t)]− sin[aqin]} . (47)

It is quite clear that in this tight-binding limit, we have neglected all the in-
terband transitions studied above. The assumption of adiabatic following
is therefore implicit in this section.

4-2 Evolution operator and oscillations in real space

In the tight-binding approximation, the form of the evolution operator is
remarkably simple, both in the basis of Bloch functions and in the basis of
Wannier functions. The calculations are detailed in the article of Hartmann,
Keck, et al. (2004), and we simply give here the essential results.

In the Bloch functions basis, the evolution operator is immediately de-
duced from (46):

〈ψq′ |Û(t)|ψq〉 = δ(q′ − q − Ft/~) e−iν[sin(aq′)−sin(aq)]/2. (48)

In the Wannier function basis, the calculation is a little longer but does not
present any serious difficulty. Expressing the Wannier functions in terms
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of the Bloch waves, we arrive at

〈wj′ |Û(t)|wj〉 = ei(j+j′)ωBt/2Jj′−j [ν sin(ωBt/2)]. (49)

The periodicity of the Bloch oscillations is obvious for both expressions.

We can take advantage of the explicit expression (49) to study the mo-
tion of a wave packet in real space. We will review the two limiting cases
of a very localized initial wave packet and of a wave packet spreading over
many sites.

In the case of an initial state occupying only one site, for example the
state |w0〉, the motion corresponds to a breathing of the wave packet, sym-
metrically with respect to the starting point. The probability P (j) to find
the particle on the site |wj〉 at time t is obtained directly from (49):

P (j) = |Jj [ν sin(ωBt/2)]|2 (50)

The extension of the wave packet is maximal after half an oscillation
(sin(ωBt/2) = ±1) and it is typically of the order of ∆j ∼ ν sites.

Let us now take the case of an initial wave packet of large extension, and
choose a Gaussian distribution for the occupation probability amplitude of
site |wj〉:

〈wj |Ψ(0)〉 ∝ e−j
2/4σ2

, σ � 1. (51)

We can then show that the extension of the wave packet remains approxi-
mately constant in time, and that its center jc(t) evolves periodically

|〈wj |Ψ(t)〉|2 ∝ e−[j−jc(t)|2/2σ2

, jc(t) = ν sin2(ωBt/2). (52)

The total amplitude (peak to peak) of the oscillation is thus ν sites, as we
had foreseen when defining ν from Zener’s argument. We show on figure
14 two numerical results obtained by Hartmann, Keck, et al. (2004) in these
two limiting cases.

6 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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Figure 3. Breathing mode for a state initially localized at n = 0 (left) and
oscillatory mode for an extended Gaussian distribution (22) with β = 0.01 (right)
in the tight-binding model with γ = 15.8. Shown is a colour map of |〈n|ψ(t)〉| as
a function of t/TB and n.

In the basis of Wannier states one obtains the propagator as [33, 36]

Unn′(t) = 〈n|U(t)|n′〉 =
∑

l

〈n|$l〉e−iElt/h̄〈$l|n′〉

= Jn−n′

(
2γ sin

ωBt

2

)
ei(n−n′)(π−ωBt)/2−in′ωBt, (18)

the Fourier image of (13). Here ωB = 2π/TB = dF/h̄ is the Bloch frequency. The time evolution
operator is periodic with the Bloch period TB = 2πh̄/(dF ). It should be noted that this analysis
can also be extended to the case of a time-dependent force F(t) [33, 37, 38].

Let us consider two illustrating limits of the dynamics generated by (18). For an initial state

|ψ(t)〉 =
∑

n

cn(t)|n〉,
∑

n

|cn|2 = 1, (19)

which is strongly localized in co-ordinate space, e.g. in the extreme case cn(0) = δn0 where a
single Wannier state n = 0 is populated at time t = 0, the time dependence is

cn(t) = Un0(t) = Jn

(
2γ sin

ωBt

2

)
ein(π−ωBt)/2. (20)

In such a breathing mode, the wavepackets widen and shrink periodically populating an interval

|n| < 2γ
∣∣∣sin

ωBt

2

∣∣∣ (21)

(index of the Bessel function smaller than its argument). Figure 3 shows such a breathing
oscillation, again for parameter γ = 15.8 used already in figure 2.

In the other extreme of a broad Gaussian wavepacket,

cn(0) = g exp(−βn2 + inκ0d) (22)

New Journal of Physics 6 (2004) 2 (http://www.njp.org/)
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Figure 4. Real part of the wavefunction 〈n|ψ(t)〉 (red ∗) for a broad initial
Gaussian with distribution (22) with β = 0.01 in the tight-binding model with
γ = 15.8 for times t = T/4 (left) and T/2 (right). Also shown is the initial
distribution (blue o).

(g is a normalization factor) with small β, the time evolution of the coefficients is
approximately given by

cn(t) ≈ g exp(−i$(t) + in(κ0d − ωBt) − β(n − n(t))2) (23)

(see [33] for details), i.e. a Gaussian with wavenumber κt = κ − Ft/h̄, as already found in
(14), whose centre performs a Bloch oscillation:

n(t) = γ[cos(κ0d − ωBt) − cos(κ0d)] = −2γ sin
ωBt

2
sin

(ωBt

2
− κ0d

)
. (24)

$(t) is the dynamical phase well known from the discussion of an adiabatic evolution of
eigenstates in systems with parameter-dependent Hamiltonians:

$(t) = 1
h̄

∫ t

0
E(κt′) dt′ = − 1

F

∫ κ0−Ft/h̄

κ0

E(κ) dκ

= − 2γ sin
ωBt

2
cos

(ωBt

2
− κ0d

)
(25)

for the dispersion relation E(κ) given in (9). An example is shown in figure 3. The amplitude of
this oscillation, γ , is half of the amplitude of the breathing mode and the width of the wavepacket
is almost constant, as will be discussed in more detail in section 2.2. Note that, in this case, the
momentum distribution is sharply localized at κ0 = 0, whereas it is extended in the case of a
breathing mode.

The absolute value of the wavefunction shown in figure 3 does not resolve an important
difference between the left and the right turning points of the Bloch oscillation, which is due to
the variation of the phase. Figure 4 shows the real part of the wavefunction for a broad initial
Gaussian distribution (22) with β = 0.01 after a quarter and half of a Bloch period. In particular,
at t = TB/2, the wavefunction is real and changes sign from one site to the next because of the
phase term einωBt = (−1)n. Note also a similar behaviour of the Wannier–Stark state shown in
figure 2.

New Journal of Physics 6 (2004) 2 (http://www.njp.org/)

Figure 14. Bloch oscillations in the tight-binding limit. Left and middle: evolution
in real space of a wave packet during two Bloch periods for ν = −31.6 (negative
force). For the left figure, the initial state is the Wannier function j = 0. The
motion is then a breathing motion symmetric with respect to j = 0. In the central
figure, the initial state is a Gaussian packet of width σ = 5 and the subsequent
evolution is essentially an oscillation of the center of the wave packet, with no
noticeable deformation. The figure on the right shows the real part of 〈wn|Ψ(t)〉,
at t = 0 (blue points) and at t = π/ωB in red [figures taken from Hartmann,
Keck, et al. (2004)].

5 Wannier–Stark ladders

Insofar as the Hamiltonian considered in this chapter is time-independent,
at least in the version (2) that we give here:

Ĥ =
p̂2

2m
+ V (x̂)− F x̂, (53)

a natural approach to the problem of Bloch oscillations is to look for the
eigenstates of this Hamiltonian, in order to deduce the different aspects
of the dynamics (Wannier 1960). We immediately note that if ψ(x) is an
eigenstate with energyE, then ψ(x+a) is an eigenstate for energyE+Fa =
E + ~ωB. To each eigenstate is thus associated a ladder of energies, called
Wannier-Stark ladder, and the rungs of this ladder have a spacing of ~ωB.

This search for eigenstates has non-trivial mathematical aspects: (i) The
spectrum of the Hamiltonian is a continuum extending from −∞ to +∞,
since for any energyE, one can find an asymptotically free state for x→∞.
The Wannier–Stark ladders are in this context resonances which appear as
poles of a scattering matrix (Gluck, Kolovsky, et al. 2002). (ii) However,
restricting the search to a single band (or a finite number of bands) radi-
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cally changes the nature of this spectrum, which becomes entirely discrete
(Avron, Zak, et al. 1977; Nenciu 1991).

It is this second point of view that we will adopt in the following.
Strictly speaking, the Wannier–Stark states we will find have a finite life-
time, which is related to the width of the resonances of the exact problem.
This finite lifetime is itself the signature of the Landau-Zener transitions,
which cause a leakage of the Bloch oscillation due to transitions to higher
bands. But it can be neglected if the validity criteria of the adiabatic ap-
proximation are verified.

Let us restrict ourselves to the one-band tight-binding model, with the
Hamiltonian given in (42). It is immediate to verify3 that the state

|Φj〉 =
∑

j′∈Z
Jj′−j(ν/2) |wj′〉 (55)

is an eigenstate of Ĥ with eigenvalue −j Fa (Gluck, Kolovsky, et al. 2002;
Hartmann, Keck, et al. 2004). This state |Φj〉 is centered on site j and it
spreads on both sides over a number of sites ∼ ν/2. Indeed, if |n| � x, the
Bessel function Jn(x) decreases as (x/2)n/n! . The spread of the Wannier–
Stark state thus roughly determines the extent of the Bloch oscillation. We
can see on this simple example the particular mathematical character of
this problem: a force F , even infinitesimal, radically changes the spectrum
of the Hamiltonian: it goes from a bounded continuum between −2J and
2J to a completely discrete set, extending from −∞ to +∞.

Wannier–Stark state spectroscopy is done by applying on the atoms a
time–dependent perturbation with frequency ω: Ŵ (x, t) = Ŵ (+)(x) e−iωt+
c.c.. This probe induces a transition from |Φj〉 to |Φj′〉, a resonance occur-
ring each time ω = (j′ − j)ωB, provided of course that the matrix element
〈Φj′ |Ŵ (±)(x)|Φj〉 is nonzero. We obtain an a priori symmetric spectrum,
since the Wannier–Stark scales extend to positive as well as negative ener-
gies. One can refer to the article by Mendez & Bastard (1993) to find exam-
ples of Wannier–Stark scale spectroscopy for electrons in superlattices.

3We recall that the Bessel functions verify the relation

x (Jn+1(x) + Jn−1(x)) = 2nJn(x). (54)

red detuned (! ¼ 1064 nm, beam waist 200 "m) Yb fiber
laser providing transverse confinement (see Fig. 2). To load
this dipole trap, we superimpose it to a 3D-Magneto-
Optical trap (MOT) containing 107 atoms fed by a 2D-
MOT during 500 ms. The cloud is then cooled down to
2 "K by a far detuned molasses, at the end of which we
switch off the cooling lasers to let the untrapped atoms
fall. At our low lattice depth (Ul ’ 4ER (where ER ¼
ð@klÞ2=ð2maÞ is the lattice recoil energy), only the first
band has a non-negligible lifetime and is populated with
about 105 atoms vertically distributed along 104 sites (the
second band is centered at 5ER already above the lattice
depth). The atoms accumulated in all the Zeeman sublevels
of j52S1=2; F ¼ 2i are depumped to j52S1=2; F ¼ 1i and
then optically pumped (95% efficiency) on the j52S1=2;
F ¼ 1i ! j52P3=2; F ¼ 0i transition to the j52S1=2;
F ¼ 1; mF ¼ 0i Zeeman sublevel, which is sensitive to
stray magnetic fields only to second order. The remaining
5% unpolarized atoms can easily be removed from the trap
with a pushing beam. Our fluorescence detection scheme,
based on a time of flight measurement similar to the one
used in atomic clocks and inertial sensors, allows us to
measure the atomic populations in the two hyperfine states
after releasing the atoms from the trap [16]. The Raman
transitions are driven by two counterpropagating beams at
780 nm circularly polarized, detuned from the atomic
transition by about 3 GHz, and aligned along the direction

of the optical trap beams. The beams are collimated with a
1=e2 radius of 1 cm, ensuring a good intensity homoge-
neity along the transverse size of the trap (about 200 "m
radius).
Figure 3 shows two typical Raman spectra of the tran-

sition probability as a function of the Raman frequency #R,
taken for two different lattice depths. Transitions between
the two hyperfine levels at Raman frequencies equal to the
hyperfine splitting plus or minus an integer number !m of
Bloch frequencies (#B $ 569 Hz in our system) are the
signature that the atoms actually tunneled across !m lat-
tice sites. For those scans, the intensities in the Raman laser
beams were 0.25 and 0:54 mW=cm2. The resulting Rabi
frequencies "!m, different for each transition, are always
smaller than the Bloch frequency, so that each peak is well
resolved. The ratio between the Raman intensities was
chosen to cancel the differential light shift of the hyperfine
transition induced by them [17]. The Rabi frequency for
each transition !m is written [18]

"!m ¼ "Ul¼0hWmje%ikeffxjWm&!mi; (1)

where "Ul¼0 is the Rabi frequency in free space. Because
of the translational symmetry of the WS states, "!m does
not depend on the initial well index m but only on the
absolute value of !m [18]. It also depends on the lattice
wavelength !l and depth Ul, which is an important feature
of this experiment, as it induces a spatial inhomogeneity on
the Rabi frequency seen by the trapped atoms via the
transverse inhomogeneity of the lattice depth in the trap.
The damping induced on the Rabi oscillations by this

FIG. 2 (color online). Experimental setup for the optical trap-
ping and Raman intersite transitions. The different beams are
superposed using dichroic mirrors. The Raman beams are also
superposed and one of them is retro-reflected to allow counter-
propagating transitions.

FIG. 3 (color online). Raman spectra for two different lattice
depths, showing evidence of transitions between up to 9 neigh-
boring lattice sites, each having a different Rabi frequency
according to Eq. (1). The excitation time is 10 ms, which is
smaller than the duration of a $ pulse for each transition.
The peaks are separated by the Bloch frequency of our system
#B $ 569 Hz, and their amplitudes are related to the Rabi
frequencies calculated in Fig. 4.

PRL 106, 213002 (2011) P HY S I CA L R EV I EW LE T T E R S
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213002-2

Figure 15. Raman spectroscopy of Wannier–Stark states of rubidium atoms in
an optical lattice in the presence of gravity. We observe transitions |Φj〉 → |Φ′j〉
up to |j′ − j| = 6 for this value of the lattice depth. The frequency of the Bloch
oscillations is ωB/(2π) = 569 Hz for the wavelength of the light chosen for the
lattice (532 nm) [figure extracted from Beaufils, Tackmann, et al. (2011)].

This spectroscopic method is another way of looking at the same phys-
ical phenomenon: Bloch oscillations like those in figure 1 are the impulse
response of the system placed out of equilibrium, whereas this Wannier–
Stark spectroscopy studies the response of the system at equilibrium when
driven by a low-amplitude probe. During the first demonstrations of Bloch
oscillations with cold atoms, Christophe Salomon’s group at ENS favored
the impulse method while Mark Raizen’s group in Austin emphasized the
spectroscopic approach (Niu, Zhao, et al. 1996; Wilkinson, Bharucha, et al.
1996).

We show in Figure 15 a result obtained by Beaufils, Tackmann, et al.
(2011) at SYRTE [see also Tackmann, Pelle, et al. (2011), Pelle, Hilico,
et al. (2013)]. This result is obtained for rubidium 87 atoms in a verti-
cal lattice, and the force F is gravity. The lattice is formed by a stand-
ing wave with wavelength 532 nm, corresponding to a Bloch frequency
ωB/(2π) = 569 Hz. The depth of the lattice is about 4Er, which corre-
sponds to a bandwidth of 0.5Er ≈ 4 kHz. The parameter ν characterizing
the number of sites visited during an oscillation as well as the extension of
each Wannier–Stark state is ν ≈ 7. The Wannier–Stark ladder is measured
by inducing a Raman transition between two internal states of the rubid-
ium atom |g1,Φj〉 → |g2,Φj′〉, with |gF 〉 = |F,mF = 0〉, separated by the
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hyperfine splitting ≈ 6.8 GHz.

Recently the SYRTE group used this type of transitions to build a Ram-
sey interferometer and obtain an accurate measurement of ωB, hence of g.
The relative precision is 0.9× 10−5 in one second (Pelle, Hilico, et al. 2013),
a value comparable to that obtained in Florence (1.5 × 10−7 in one hour),
also with Wannier–Stark scale spectroscopy (Poli, Wang, et al. 2011). For
comparison, the combination of Bloch oscillations and a Ramsey–Bordé in-
terferometer allowed a team at ONERA to obtain a better accuracy (2×10−7

in only 300 s) (Charrière, Cadoret, et al. 2012), and a pure Ramsey–Bordé
interferometer at SYRTE provided a sensitivity of 0.6 × 10−9 g in 3000 s
(Louchet-Chauvet, Farah, et al. 2011), but at the cost of a fall of atoms of
0.8 mm in the first case and of about ten cm in the second. In the Wannier–
Stark spectroscopy method, the atoms remain trapped and the distance
they explore is on the order of a few microns only: this method is thus
well adapted to the measurement of local forces, such as those of Casimir–
Polder type.

6 Perspectives and applications

Bloch oscillations have become an important tool in quantum optics and
atomic physics, used in multiple applications ranging from metrology to
the study of collective phenomena. To conclude this chapter, we will
briefly discuss two of them.

Measurement of h/m. The first application discussed here concerns the
measurement of the constant h/m, where m is the mass of an atom of a
given species. This constant is the ”weak link” in the determination of
the fine structure constant α by a method that does not rely on quantum
electrodynamics (independent of g − 2 of the electron for example):

α2 =
2R∞
c

m

me

h

m
, (56)

where R∞ is the Rydberg constant and me is the mass of the electron, the
precision on the other terms (R∞/c and m/me) being notably better than
10−9.

The method used by Biraben’s group at LKB to measure h/m takes
advantage of Bloch oscillations to transfer a momentum 2N ~k to some
atoms, where N is a very large integer (between 500 and 1000). The ini-
tial momentum of the atoms is almost zero, and defined with a precision
much better than ~k. The velocity of the atoms is measured by a Raman
transition which transfers the atoms from a hyperfine state g1 to another
hyperfine state g2, by a process ”absorption of a photon of wave number
k1 – emission of a photon of wave number k2”. If the atoms have a mo-
mentum p before the Raman transfer, the transition will be resonant if the
energy difference ~ω between the two beams creating the Raman transition
verifies:

~ω(p) = ∆Ehf +
[p+ ~(k1 + k2)]

2

2m
− p2

2m
, (57)

where all momenta are supposed to be collinear and k1, k2 have opposite
directions. The difference between ~ω(pinit) and ~ω(pfinal), with pfinal =
pinit + 2N~k leads to:

ω(pfinal)− ω(pinit) = 2N
~k(k1 + k2)

m
, (58)

or by inverting this relation

~
m

=
ω(pfinal)− ω(pinit)

2Nk(k1 + k2)
. (59)

In the first version of this experiment, the transferred momentum was hor-
izontal and N ∼ 50 (Battesti, Cladé, et al. 2004). The LKB group then
switched to a vertical geometry that allows larger values of N , by elimi-
nating the effect of gravity by equating the upward and downward accel-
eration (Cladé, Mirandes, et al. 2006). Moreover, for a better accuracy on
the determination of the initial and final momenta, the Bloch oscillation
has been placed between two pairs of π/2 pulses linking g1 and g2, thus
realizing a Ramsey–Bordé interferometer (Cadoret, Mirandes, et al. 2008;
Bouchendira, Cladé, et al. 2011). The precision obtained on h/m is now
∼ 10−9 (systematic + statistical), at a level comparable to that of the other
factors entering the expression (56) for α.

Note that these measurements are made with extremely deep lattices,
V0 ∼ 100Er, for which the measured efficiency of the Bloch oscillation
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reaches 99.97% per period. At this lattice depth, tunnelling between ad-
jacent sites is completely negligible: the asymptotic formula seen in chap-
ter 3 gives a bandwidth of 10−6Er, i.e. a tunnelling time of several hun-
dred seconds. For the acceleration used in the experiment, of the order of
2000 ms−2, the parameter ν = 4J/Fa is of the order of 10−8. The Wannier–
Stark states are then almost identical to the Wannier functions in each well.
The atoms are trapped at the bottom of the potential wells created by the
standing wave and they follow adiabatically these wells when the lattice is
set in motion.

Measurement of weak forces. Bloch oscillations allows one to directly
link the force felt by the atoms to a frequency. This point led several
authors to propose to use this phenomenon to measure weak forces, the
Casimir–Polder force in the vicinity of a surface for example, or even to
search for more exotic forces corresponding to a modification of gravity at
short distances. A first experiment in this direction is presented by Sor-
rentino, Alberti, et al. (2009). Moreover, the study of Bloch oscillations in
a Fabry-Perot cavity has also been studied in depth (Prasanna Venkatesh,
Trupke, et al. 2009).

We briefly discuss here the results obtained by Carusotto, Pitaevskii, et
al. (2005), who studied the value of ωB in the vicinity of a surface, and com-
pared it to the value it would take for a vertical lattice in free space. Caru-
sotto, Pitaevskii, et al. (2005) propose to use a gas of polarized fermions,
thus without interaction, to observe only one-particle effects. By a simple
analytical study, they show that the relative shift of the Bloch frequency is

∆ωB

ωB
= −0.17

D4
(µm)4, (60)

where D is the distance between the atom and the surface. For D =
10 microns, the Casimir force (including thermal effects at 300 K) is about
105 times weaker than gravity, which should be detectable since we have
seen that the accuracy on the measurement of g with Bloch oscillations
could reach 10−7 after one hour of integration. In the article by Carusotto,
Pitaevskii, et al. (2005), a more thorough numerical study takes into ac-
count the averaging of the potential due to the initial extension of the cloud
and the region explored during the oscillation (of the order of a micron),
but the corrections are minor. Note that the damping of the oscillations

due to the inhomogeneity of ωB is small and should not compromise this
approach.

Wolf, Lemonde, et al. (2007) have proposed a slightly different approach
from that of Carusotto, Pitaevskii, et al. (2005), by imagining an interferom-
eter based on the Wannier–Stark states located j, j ± 1,. . . sites away from
the wall, in two different internal states g1 and g2. The expected sensitivity
for this type of experiment is a shift of 10−4 Hz between two neighbouring
sites, whereas gravity creates a typical kHz shift for strontium atoms and
a lattice wavelength around 700 nm. A discussion of the possibilities of
this device for the search of forces corresponding to a deviation from New-
ton’s law, both in terms of intensity and range of this hypothetic force, can
be found in Wolf, Lemonde, et al. (2007). The conclusion is that there is a
rather large range of parameters that this type of experiment could address
in a more precise way than existing devices.
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Chapter VI

Topology in a lattice: the example of Dirac points

Dirac points play a central role in many phenomena of condensed mat-
ter. They can be found in graphene, where they give ultra-relativistic prop-
erties to the motion of the conduction electrons. They also appear in topo-
logical insulators, where they are the origin of the conducting edge states.

A Dirac point is characterized by a contact between two bands with
a linear dispersion relation, which allows to illustrate several well-known
features of the Dirac equation for massless particles, such as the Klein para-
dox or the Zitterbewegung. This dispersion relation, which is very different
from the minimum of a usual band (where E ∝ q2), also manifests itself
when a magnetic field is added and gives rise to an ”anomalous” integer
quantum Hall effect.

The existence of Dirac points is a consequence of the geometry, or rather
the topology (in the sense defined below) of the band structure. The flex-
ibility of optical lattices has led several authors to imagine configurations
of light beams that allow to obtain such points in the band structure (Zhu,
Wang, et al. 2007; Wunsch, Guinea, et al. 2008; Lee, Grémaud, et al. 2009).
In this chapter, we will first identify the characteristics of a periodic lattice
that lead to Dirac points. We will then describe the first demonstration of
these Dirac points with cold atoms, made in the group of T. Esslinger in
Zürich (Tarruell, Greif, et al. 2012).

1 Dirac points in a Brillouin zone

1-1 Linear dispersion relation

In general, a Dirac point is defined as a point qD in the Brillouin zone where
two bands touch in a linear way (figure 1). In the particular case where
the two bands touch isotropically, the dispersion relation in the neighbour-
hood of qD is written

E(q) = ±~c|q − qD|+ ε0, (1)

where c has the dimension of a velocity and ε0 is the energy at the point of
contact.

q

qD

E(q)

A B

a2

a1

qx

qy b1

b2

q
(1)
D

q
(2)
D

✏0

Figure 1. A Dirac point
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Figure 2. Brick wall lattice. (a) Square lattice of side a. (b) The brick wall lat-
tice is obtained by deleting every second link along the horizontal direction. (c)
Reciprocal space and Brillouin zone.

In graphene, the chemical potential is equal to ε0 so that the behaviour
of the conduction electrons simulates the quantum electrodynamics of
massless fermions. The group velocity c at the Dirac points is about 1/300
of the speed of light.

The dispersion relation (1) can already be found in dimension 1. How-
ever, the two-dimensional aspect of graphene adds a second essential fea-
ture, the chirality of these Dirac points, which we will now describe.

1-2 Chirality of Dirac points

To give an intuition of the origin of this chirality, let us consider a lattice in
a tight-binding model, such that the unit cell of the lattice has two sites A
and B. Let us further assume that a particle on a site A (resp. B) can only
jump to a site of type B (resp. A), and this site belongs either to the same
cell, or to an adjacent cell (see figures 2 and 4).

If the on-site energy is the same for A and B (EA = EB ≡ ε0), we know
(see Chapter 3) that the Hubbard Hamiltonian in the reciprocal space Ĥ(q)

is a 2× 2 matrix of the type :

Ĥ(q) =

(
ε0 f∗(q)
f(q) ε0

)
, (2)

whose eigenenergies are

E±(q) = ε0 ± |f(q)|. (3)

We will determine later the explicit value of the function f(q) for two types
of lattices, the brick wall lattice and the hexagonal lattice of graphene.

We consider the two dimensional case, so that q is a vector (qx, qy). A
Dirac point qD is a point in the Brillouin zone for which

f(qD) = 0, (4)

so that both eigenenergies (3) are degenerate. We define in the vicinity of
qD

δq = q − qD = δq (cosϕ ux + sinϕ uy) (5)

and we suppose that close to the Dirac point, we have the expansion

f(q) = ~c(δqx ± iδqy) = ~c δq e±iϕ, (6)

We will see later that this expansion in the vicinity of a zero is, with a very
simple generalization, natural for the complex function f(qx, qy). In the
neighborhood of qD, the Hamiltonian (2) is thus written

f(q) = ~c(δqx + iδqy) : Ĥ(q) = ε01̂ + ~c σ̂ · δq , (7)

f(q) = ~c(δqx − iδqy) : Ĥ(q) = ε01̂ + ~c σ̂ · δq∗ , (8)

where σ̂j (j = x, y) are the Pauli matrices

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
. (9)

The Hamiltonian (7–8) is formally identical to that of a spin 1/2 particle
in the vicinity of the zero of a magnetic field. In the basis |+〉z, |−〉z of σ̂z ,
i.e. the basis of the Wannier functions |wA〉, |wB〉 centered on sites A and
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B, the eigenstates |χ±〉 of (7–8) associated with the energies E±(q) given
in (3) are :

f(q) = ~c(δqx + iδqy) : |χ±〉 =
1√
2

(
1
± eiϕ

)
(10)

f(q) = ~c(δqx − iδqy) : |χ±〉 =
1√
2

(
1

± e−iϕ

)
(11)

The chirality due to the term e±iϕ appears clearly on these expressions.
More precisely, if we consider a circle centered on the Dirac point and if we
adiabatically follow one of the two eigenstates |χ±〉 on this circle, the accu-
mulated geometric phase is ±π, corresponding to the well-known change
of sign of a spin 1/2 when it performs a 2π rotation.

2 The brick wall lattice

Before presenting the case of graphene, with its regular hexagonal lattice,
let us consider the brick wall lattice represented on figure 2b, which is
slightly simpler to deal with mathematically and which was implemented
by the Zurich group. This lattice is obtained by starting from a square
lattice of constant a (fig. 2a), deleting every second horizontal link, and
keeping all the vertical links1. Note that we can go from this brick wall to
graphene by a continuous deformation.

2-1 Hubbard Hamiltonian

The unit cell of this lattice, represented in grey on figure 2b, has two sites
noted A and B. We generate the lattice by copying the unit cell according
to the square Bravais lattice

B ≡ {rj = j1a1 + j2a2, j1, j2 ∈ Z} (12)

with the two vectors in the Cartesian basis ux,uy :

a1 = a

(
1
1

)
, a2 = a

(
1
−1

)
. (13)

1A bricklayer would tell us that for a real brick wall, one would have to swap horizontal
and vertical lines, but we take here the convention used by Tarruell, Greif, et al. (2012).

The Bravais lattice of the reciprocal space is also a square, generated by the
two vectors

b1 =
π

a

(
1
1

)
, b2 =

π

a

(
1
−1

)
. (14)

The vectors b1, b2 verify the general relation

ai · bj = 2π δi,j . (15)

The corresponding Brillouin zone is represented in grey on figure 2c.

We consider the tight-binding regime and note−Jx,−Jy the matrix ele-
ments along the horizontal and vertical directions of figure 2b. Let us recall
the rules to write the Hubbard Hamiltonian, already seen in Chapter 4. We
know in general that the eigenfunctions of the Hamiltonian are the Bloch
functions ψq(r) = eiq·ruq(r). The vector q can be chosen in the Brillouin
zone and uq(r) is a periodic function on the lattice. In the tight-binding
limit restricted to the lowest band, the set of periodic functions on the lat-
tice is a vector space of dimension 2, each function being characterized by
two coefficients (α, β):

|uq〉 = αq


∑

j

|wA,j〉


 + βq


∑

j

|wB,j〉


 , (16)

where |wA/B,j〉 are the Wannier functions centered on the A/B site of the
j cell. The corresponding Bloch function is written as

|ψq〉 =
∑

j

eirj ·q (αq|wA,j〉+ βq|wB,j〉) , (17)

and our goal is to find the values (αq, βq) so that |ψq〉 is an eigenstate of the
Hubbard Hamiltonian.

Let us write explicitly this Hamiltonian. The energies of the particle on
a site A and on a site B are equal, and noted E0. The Hubbard Hamil-
tonian contains by hypothesis only the hopping terms between nearest
neighbours. When a particle is on a B site, it can only hop to an A site,
which can belong to the same cell (j, horizontal jump) or to one of the two
adjacent cells (j + a1 or j + a2, vertical jumps). It is the same for a particle
on site A of the cell j, which can jump to (B, j), (B, j−a1) and (B, j−a2).
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Let us assume that |ψq〉 defined by (17) is an eigenstate of this Hub-
bard Hamiltonian with eigenvalue E(q), and let us project this eigenvalue
equation onto a given cell j. We obtain the 2× 2 system for the coefficients
(αq, βq):

Ĥ(q)

(
αq

βq

)
= E(q)

(
αq

βq

)
, (18)

where the Hubbard Hamiltonian in the reciprocal space has the structure
proposed in (2). In particular the coefficient f(q) corresponds to the cou-
pling of a given site B (jx, jy) with its three neighbours of type A: one of
its neighbours belongs to the same unit cell (horizontal link Jx), the second
to the cell (jx + 1, jy) and the third to the cell (jx, jy + 1) (vertical links Jy).
So we have

f(q) = −Jx − Jy
(
eia1·q + eia2·q) = −Jx − 2Jy eiaqx cos(aqy). (19)

The Dirac points, if they exist, correspond to the zeros of this function and
are thus obtained for

sin(aqx) = 0 ⇒ qx = 0 mod. π/a (20)

cos(aqx) cos(aqy) = − Jx
2Jy

. (21)

2-2 Pairs of Dirac points

The existence of possible solutions to the system of equations (20-21) de-
pends on the value of the ratio Jx/(2Jy):

• If Jx > 2Jy , this system has no solution. The function f(q) does not
cancel in the Brillouin zone and there are no Dirac points. The two
sub-bands E0 ± |f(q)| are separated by a non zero gap.

• If Jx = 2Jy , the function f(q) cancels at the four corners of the Bril-
louin zone. This is a second-order zero in the y direction, so it is not
strictly speaking a Dirac point.

• If Jx < 2Jy , the function f(q) cancels at two Dirac points located sym-
metrically on the vertical axis qx = 0, at points such that cos(aqy) =
−Jx/(2Jy) (figure 3). When Jx becomes very small compared to Jy ,
these points approach qy = ±π/(2a).
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Figure 3. Positions of the two Dirac points for the brick wall lattice, in the case
Jx < 2Jy .

We consider the case Jx < 2Jy and expand the function f(q) in the
neighbourhood of a Dirac point qD. We find:

f(q) ≈ iaJx [δqx + i δqy tan(aqD,y)] , (22)

which is close to the particular form assumed in (6). More precisely, since
tan(aqD,y) does not have the same sign for the two Dirac points (it is neg-
ative for the point located in the upper part of the Brillouin zone, positive
for the other), the two Dirac points have an opposite chirality. We note that
the function f(q) is generally not isotropic around the Dirac points, unless
tan(aqD,y) = 1, which is obtained for Jx =

√
2 Jy .

The fact that the Dirac points appear in pairs is a direct consequence
of the time reversal invariance of the considered problem. We have seen
in Chapter 2 that this invariance implies that if ψq is an eigenstate for the
eigenvalue E(q), then ψ−q ∝ ψ∗q is an eigenstate for the same eigenvalue.
We deduce that if q(1)

D is a Dirac point associated to a certain chirality, then
q

(2)
D = −q(1)

D is also a Dirac point, with an opposite chirality because of the
complex conjugation involved in the relation ψ−q ∝ ψ∗q .

When we continuously decrease the parameter Jx/Jy and cross the
value 2, the Dirac points are superimposed in a corner of the Brillouin zone,
which is still compatible with q(2)

D = −q(1)
D , since q(2)

D and q(1)
D then differ

by one vector of the reciprocal lattice (Montambaux, Piéchon, et al. 2009).
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3 The graphene lattice

The study of the Dirac points in graphene is done in a very similar way
to what we have done above for the brick wall lattice, and we will there-
fore limit ourselves to presenting the main lines of the approach providing
these points.

3-1 Unit cell and reciprocal lattice

Graphene is obtained by placing one carbon atom per site of a hexagonal
structure of side a. The unit cell of this structure has two sites, noted A
and B on figure 4. We generate the hexagonal lattice by copying this unit
cell (represented in grey on the figure) on all the nodes of the triangular
Bravais lattice

B ≡ {rj = j1a1 + j2a2, j1, j2 ∈ Z} (23)

where the vectors a1, a2 are defined by:

a1 =

√
3 a

2

(√
3

1

)
, a2 =

√
3

2

(√
3
−1

)
. (24)

The reciprocal lattice B′ ≡
{
Qj = j1b1 + j2b2, j1, j2 ∈ Z

}
is generated

by the vectors

b1 =
2π

3a

(
1√
3

)
, b2 =

2π

3a

(
1

−
√

3

)
. (25)

The reciprocal lattice is therefore triangular.

Brillouin zone. Recall that the Bloch functions |ψq〉 are eigenstates of the
Hamiltonian and of the translation operators T̂a1

and T̂a2
that leave the

lattice invariant. The eigenvalues associated to the translation operations
are noted eiθ1 = eia1·q and eiθ2 = eia2·q . The Brillouin zone is a domain2

centered at q = 0, in which one and only one vector q corresponds to a pair
(θ1, θ2). It is a hexagon of side 4π/(3

√
3a), whose orientation is rotated by

30◦ with respect to the hexagons of the lattice in real space (figure 4).
2More precisely, it is defined as the Wigner–Seitz cell centered at q = 0 of the reciprocal

lattice
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Figure 4. Left: hexagonal structure of graphene. This structure is composed of a
unit cell with two sites A and B, which is repeated by placing it on the nodes of
a triangular lattice j1a1 + j2a2, j1, j2 ∈ Z. A unit cell is represented in grey.
Right: reciprocal lattice for graphene, j1b1 + j2b2, j1, j2 ∈ Z. The Brillouin zone
is hexagonal and the Dirac points are the corners of this hexagon.

3-2 Dirac points for graphene

With the same reasoning as for the brick wall lattice, we find that the Hub-
bard Hamiltonian in reciprocal space has the form anticipated in (2) (Wal-
lace 1947)

Ĥ(q) =

(
E0 f∗(q)
f(q) E0

)
, (26)

with the function f(q) defined by

f(q) = −J
(
1 + eiq·a1 + eiq·a2

)
. (27)

Let us look for the zeros of f(k), by cancelling both the real part fr and the
imaginary part fi:

Cancellation of fr(q) : 1 + cos(q · a1) + cos(q · a2) = 0,

Cancellation of fi(q) : sin(q · a1) + sin(q · a2) = 0. (28)

97



CHAPTER VI. TOPOLOGY IN A LATTICE: THE EXAMPLE OF DIRAC POINTS § 3. The graphene lattice

Two types of zeros appear. The first one corresponds to

cos(q · a1) = cos(q · a2) = −1

2
,

sin(q · a1) = − sin(q · a2) = −
√

3

2
(29)

i.e.
q · a1 =

4π

3
mod 2π, q · a2 =

2π

3
mod 2π. (30)

The second type of zero is given by

q · a1 =
2π

3
mod 2π, q · a2 =

4π

3
mod 2π. (31)

By writing the solution q under the form q = α1b1 + α2b2, we immedi-
ately deduce the coordinates (α1, α2) of these Dirac points in the reciprocal
space. There are two Dirac points (one of each chirality) in the Brillouin
zone, and these points are located in

q
(1)
D =

1

3
(2b1 + b2) =

2π

3
√

3 a

(√
3 ux + uy

)
, (32)

q
(2)
D =

1

3
(b1 + 2b2) =

2π

3
√

3 a

(√
3 ux − uy

)
. (33)

These points are located at the edge of the Brillouin zone, at the vertices of
the hexagon limiting this zone (figure 4). Note that each of the six vertices
of the hexagonal Brillouin zone is a Dirac point. However, one must be
careful with double counting. A vector q and a vector q′ that differ by a
vector of the reciprocal lattice correspond to the same Bloch state. This is
the case for the four other vertices of the hexagonal Brillouin zone: they
are deduced from the two marked on the figure by subtracting b1, b2 and
b1 + b2. Moreover, we can verify that the function f(q) is at first order
isotropic around these two zeros, with

f(q) ≈ i
3Ja

2
(δqx ± i δqy) , (34)

which corresponds (up to the global factor i) to the form announced in (6).
The velocity c is given here by c = 3Ja/2 and it is of the order of 106 m/s
for graphene (Castro Neto, Guinea, et al. 2009).

3-3 Additional comments

The chirality of the zeros of f(q). We have seen in the previous examples
that the search for Dirac points is similar to the search for the zeros of a
function f(q) with two real variables, qx and qy , with values in the complex
plane. The zeros of such a function generally have a vortex structure, with
a positive or negative phase winding. This is the phase winding that gives
its chirality to a Dirac point.

Let us specify the origin of this winding in a very qualitative way. De-
pending on the value of q, the real part fr(q) of f(q) can be positive or
negative. The domains of the plane (qx, qy) corresponding to a positive
value of fr and those corresponding to a negative value of fr are separated
by lines (open or closed) along which fr cancels. The same is true for the
imaginary part fi, which cancels along other lines of the plane (qx, qy). A
zero qD of the complex function f(q) corresponds to a point where two
lines of zeros, one for fr, the other for fi, intersect. This crossing gener-
ally defines3 four quadrants that correspond to the four possible choices
for the signs of the pair (fr, fi): (+,+), (+,−), (−,−), (−,+). Depend-
ing on whether we find this order by turning around the zero clockwise or
anti-clockwise, we have one chirality or its opposite for the Dirac point.

Anomalous quantum Hall effect. The chirality of Dirac points has im-
portant consequences. Let us mention only one of them here. When such
a material is placed in a magnetic field, the energy levels (Landau levels)
are labelled with an integer n and vary as En ∝

√
n. In particular, there is

a zero energy level, which is very different from the ordinary case where
we find En ∝ (n + 1/2). The appearance of this zero energy state can be
interpreted semi-classically by evaluating the action on a cyclotron orbit in
the reciprocal space encircling the Dirac point. In addition to the usual ac-
tion, the Berry phase associated to the chirality of the Dirac point replaces
n+ 1/2 by n+ 1/2± 1/2 (Mikitik & Sharlai 1999); this allows in particular
the appearance of a zero-energy state, which plays an important role in the
anomalous quantum Hall effect observed on graphene (Zhang, Tan, et al.
2005; Novoselov, Geim, et al. 2005).

3One can imagine more exotic solutions where the zero of fr or fi is of order 2, but we
describe here only the ”standard” situation.
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Robustness of the Dirac points. Suppose that the lattice parameters are
chosen such that the function f(q) has 2 (or 4, 6,...) zeros in the Brillouin
zone. When the lattice parameters are modified while keeping the same en-
ergy for both sites, only the function f(q) changes. But the zeros of f(q) are
topologically protected by their chirality: in other words, the two curves
defining fr(q) = 0 and fi(q) = 0 will continue to cross each other (at an-
other location) if we slightly modify these curves. The only way to make
the crossings disappear in this context is to merge two zeros, one of positive
chirality and the other of negative chirality, by realizing a situation where
the two curves fr(q) = 0 and fi(q) = 0 become tangent one to the other.
For a graphene-like state filling, this particular case of two Dirac points
merging corresponds to a topological transition between a semi-metallic
phase and a band insulator, and it is studied in detail by Montambaux,
Piéchon, et al. (2009).

On-site energies. While the Dirac points can stand a (slight) modifica-
tion of the function f(k), it is not the same with respect to a dissymmetry
between the two sites A and B. If we modify the Hubbard Hamiltonian
by giving an energy E0 + ∆ (resp. E0 − ∆) to sites A (resp. B), then the
eigenvalues of

Ĥ(q) =

(
E0 + ∆ f∗(q)
f(q) E0 −∆

)
, (35)

become
E±(q) = E0 ±

[
|f(q)|2 + ∆2

]1/2
(36)

and we find two ordinary sub-bands, separated by a gap 2 ∆ and without
any remarkable topological property. While such a dissymmetry is difficult
to create on real graphene (see for example Montambaux, Piéchon, et al.
(2009) and the references therein), it is on the other hand easy in optical
lattices, as we will see below.

4 The cold atoms version of graphene

The Zurich group has recently realized an optical lattice of the brick wall
type, in which they were able to highlight Dirac points and show that their
positions were controllable with the parameter Jx/Jy . The existence of

these Dirac points was shown thanks to Bloch oscillations: the particles are
transferred with a high probability from the lower band to the upper band
when they pass in the vicinity of these contact points.

4-1 Realization of the brick wall lattice

The light potential that was used results from the superposition of several
standing light waves. The most intense wave is a standing wave in the x
direction creating the potential

V1(r) = −VX̄ cos2(kx+ θ/2) (37)

where θ is a parameter that can be adjusted by slightly varying the fre-
quency of this wave. We superimpose an optical lattice in the xy plane
formed by two standing light waves along the x and y directions, phase-
locked to each other4:

V2(r) = −VY cos2(ky) − 2
√
VXVY cos(kx) cos(ky) − VX cos2(kx). (38)

The intensities of these waves are chosen such that

VX �
√
VXVY � VY < VX̄ . (39)

In practice, only the three terms with the largest amplitudes are relevant
to the formation of the desired lattice and we will neglect the fourth term,
−VX cos2(kx), in our discussion.

Let us start with θ = π, so that V1(r) = −VX̄ sin2(kx); this parameter
will be varied later, in particular to obtain the results of figure 8. With only
the terms V1 and V

(a)
2 = −VY cos2(ky), we make a square lattice whose

sites are the points

kx = π/2 [mod. π], ky = 0 [mod. π]. (40)

Note that the tunnel effect is weaker along x than along y since VX̄ > VY .
The term in V

(b)
2 (r) = −2

√
VXVY cos(kx) cos(ky) modulates some tun-

nelling coefficients (figure 5):
4In the article by Tarruell, Greif, et al. (2012), the term in

√
VXVY is reduced by a mul-

tiplicative factor α ≈ 0.9 which characterizes the visibility of the interference between the
standing wave along y and that along x. We will omit this coefficient here as it does not play
a role in our semi-quantitative description.
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Figure 5. Construction of a brick wall lattice (Tarruell, Greif, et al. 2012). Left:
square lattice obtained by superimposing V1(r) = −VX̄ sin2(kx) and V (a)

2 =
−VY cos2(ky). Right: increase or decrease of the horizontal tunneling coefficients
with the term V

(b)
2 (r) = −2

√
VXVY cos(kx) cos(ky). Typical values are (in

units of Er): VX̄ = 4.0, VY = 2.0, VX = 0.3.

• The vertical links are centered on points such that kx = π/2 modulo π
and ky = π/2 modulo π. The tunneling matrix elements of these links
are little affected by V

(b)
2 since V (b)

2 (r) ∝ cos(kx) is zero along these
links.

• The horizontal links are centered on points such that kx = 0 modulo π
and ky = 0 modulo π. At the center of these links, we have cos(kx) =

±1 and cos(ky) = ±1. The potential V (b)
2 takes a significant value there

and modifies the tunneling matrix elements. Two cases are possible:

• A horizontal link centered on a point such that cos(kx) and
cos(ky) have the same sign (equal to ±1) corresponds to a neg-
ative value of V (b)

2 which lowers the tunnel barrier between the
two sites concerned by this link: the tunnel effect between these
two sites is increased.

• A horizontal link centered on a point such that cos(kx) and
cos(ky) have opposite sign corresponds to a positive value of V (b)

2

and the corresponding tunnel effect (already weak without V (b)
2 )

is further decreased.

In the end, the brick wall lattice is effectively realized.

4-2 Bloch oscillations and Dirac points

To probe the position of the Dirac points, the Zurich group observed the re-
sult of Bloch oscillations. These oscillations occur in the x direction under
the effect of a constant force caused by a magnetic field gradient. When
the trajectory in q space passes in the vicinity of a Dirac point, the atom
can be transferred with a high probability to the upper band (for a detailed
study of this transition, see Lim, Fuchs, et al. (2012)). The transition to
the excited band can then be detected by the band mapping technique pre-
sented in chapter 2 of this lecture: one adiabatically ramps down the lattice
(duration 0.5 ms) so that an atom remains in the band it occupied at the be-
ginning of the ramp, and then performs a time-of-flight which thus reveals
the population of each band.

The atomic gas that is used is an ensemble of polarized fermions with-
out interactions (40K). The atoms initially occupy the center of the Brillouin
zone and do not meet the Dirac points which are located close to the edge
of the band (figure 3). On the other hand, the second part of the Bloch os-
cillation (after Bragg reflection at the boundary of the Brillouin zone) can
bring them to the vicinity of the Dirac points and the transition can then
occur (figure 6).

The position of the peaks that have been transferred to the upper band
provides direct information on the position of the Dirac points. We recall
that this position is a function of the ratio Jx/Jy , and the points disappear
when this ratio becomes too high. The Zurich group studied the position of
the Dirac points by varying the potential VX̄ . The result, shown on figure
7, is in good agreement with the predictions. Note that the tight-binding
model is not quantitatively valid in this parameter domain and that a nu-
merical diagonalization of the lattice Hamiltonian must be used to deter-
mine precisely the position of the Dirac points.

It is also possible in this experiment to break the symmetry between the
two sites A and B of the lattice. For that, one can take a value of θ in (37)
different from π. We have seen in (36) that this amounts to opening a gap
between the two sub-bands; the Bloch oscillation should then no longer
cause a transition between these two sub-bands, at least if the force is not
too large. This reduction is indeed observed experimentally (figure 8).
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where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Figure 6. Left: Bloch oscillations along the x axis. Middle: initial distribution in
q space. Right: distribution in q space after a Bloch oscillation (period τB). One
can clearly distinguish the atoms which passed in the vicinity of a Dirac point
during the oscillation and which were then transferred to the upper band [figure
extracted from Tarruell, Greif, et al. (2012)].

j. The results obtained for a honeycomb lattice with V!X=ER~3:6(2),
VX=ER~0:28(1) and VY=ER~1:8(1) are displayed in Fig. 2b and
show a sharp maximum in the transferred fraction. We identify this
situation as the point of inversion symmetry, where D 5 0 (h 5p), in
good agreement with an independent calibration (Methods). At this
setting, the bandgap at the Dirac points vanishes. The population in
the second band decreases symmetrically on both sides of the peak as
the gap increases, indicating the transition from massless to massive
Dirac fermions.

The relative strength of the tunnel couplings between the different
sites of the lattice fixes the position of the Dirac points inside the
Brillouin zone, as well as the slope of the associated linear dispersion
relation5–9. However, the tunability of our optical lattice structure
allows for independent adjustment of the tunnelling parameters in
the x and y directions simply by controlling the intensity of the laser
beams. For isotropic tunnellings, the slope of the dispersion relation
around the Dirac points is the same in all directions, but is anisotropic
otherwise. The distance from the Dirac points to the corners of the
Brillouin zone along qy can be varied between 0 and qB/2, whereas
qx 5 0 is fixed by reflection symmetry20. Here qB 5 2p/l denotes the
Bloch wave vector.

We exploit the momentum resolution of the interband transitions
directly to observe the movement of the Dirac points. Starting from a
honeycomb lattice with V!X=ER~5:4(3), VX=ER~0:28(1) and
VY=ER~1:8(1), we gradually increase the tunnelling in the x direction
by decreasing the intensity of !X. The position of the Dirac points
continuously approaches the corners of the Brillouin zone (Fig. 3),
as expected from an ab initio two-dimensional band structure calcula-
tion (Methods). The deviations close to the merging point are possibly

caused by the flattening of the dispersion relation between the two
Dirac points as they approach each other8.

When they reach the corners of the Brillouin zone, the two Dirac
points merge, annihilating each other. There the dispersion relation
becomes quadratic along the qy axis, remaining linear along qx. Beyond
this critical point, a finite bandgap appears for all quasi-momenta of
the Brillouin zone. This situation signals the transition between band
structures of two different topologies, one containing two Dirac points
and the other containing none. For two-dimensional honeycomb lattices
at half-filling, it corresponds to a Lifshitz phase transition from a
semimetallic phase to a band-insulating phase6,7.

We experimentally map out the topological transition line by
recording the fraction of atoms transferred to the second band, j,
as a function of the lattice depths V!X and VX, while keeping
VY/ER 5 1.8(1). The results are shown in Fig. 4a. There the onset of
population transfer to the second band signals the appearance of Dirac
points in the band structure of the lattice. For a given value of VX, the
transferred fraction, j, decreases again for large values of V!X, as the
Dirac points lie beyond the momentum width of the cloud.

To extend the range of our measurements and probe the Dirac
points even in this region, we apply a force in the y direction. We
hence explore a new class of trajectories in quasi-momentum space.
This allows for the investigation of very anisotropic Dirac cones, which
become almost flat in the qx direction as we approach the crossover to a
one-dimensional lattice structure (V!X?VX). Along the qy trajectories,
the centre of the cloud successively passes the two Dirac points during
the Bloch cycle, effectively realizing a Stückelberg interferometer23,24 in
a two-dimensional band structure. As shown in Fig. 4b, we again
identify the topological transition by the onset of population transfer
to the second band. The results for the transition lines obtained for the
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Figure 3 | Movement of the Dirac points. a, Distance from the Dirac points to
the corners of the Brillouin zone, as measured through momentum-resolved
interband transitions. The tunnelling in the x direction increases when the
lattice depth V!X is decreased. The distance is extracted from the second-band
quasi-momentum distribution after one Bloch cycle (insets). The merging of
the two Dirac points at the corners of the Brillouin zone is signalled by a single
line of missing atoms in the first band. Data show mean 6 s.d. of three to nine
measurements. The solid line is the prediction of a two-dimensional band
structure calculation without any fitting parameters. b, Energy splitting
between the two lowest bands. It shows the displacement of the Dirac cones
inside the Brillouin zone, as well as their deformation depending on the lattice
depth V!X.
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Different lattice geometries (square, chequerboard, triangular, dimer and
honeycomb) are realized (Fig. 1b). We consider trajectories in quasi-
momentum space in the qx (a) and qy (b) directions. Each data point is a single
measurement, and as a result there are at least 1,200 points per diagram. To
maximize the transfer for the qy trajectories, where the cloud successively passes
the two Dirac points, we set h 5 1.013(1)p. For both trajectories, the onset of
population transfer to the second band signals the topological transition, where
the Dirac points appear. The dashed line is the theoretical prediction for the
transition line without any fitting parameters, and the dotted line indicates the
transition from the triangular lattice to the dimer lattice. The bottom diagrams
show cuts of the band structure along the qx axis (qy 5 0; a) and qy axis (qx 5 0;
b) for the values of VX and V!X indicated.
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Figure 7. Variation of the position of Dirac points on the axis qx = 0 as a function
of the potential depth VX̄ . For this figure, VY = 1.8 and VX = 0.28. The two
Dirac points are expected to merge in the corner of the Brillouin zone for VX̄ =
3.4, which is in good agreement with the observations [figure taken from Tarruell,
Greif, et al. (2012)].

V(x, y)

~{V!Xcos2(kxzh=2){VXcos2(kx){VYcos2(ky)

{2a
ffiffiffiffiffiffiffiffiffiffiffiffi
VXVY
p

cos(kx)cos(ky)cos(Q)

ð1Þ

where V!X, VX and VY denote the single-beam lattice depths (propor-
tional to the laser beam intensities), a is the visibility of the interference
pattern and k 5 2p/l. We can adjust the two phases continuously, and
choose h 5p and Q 5 0 (Methods). Varying the relative intensities of
the beams allows us to realize various lattice structures (Fig. 1b). In the
following, we focus on the honeycomb lattice, whose real-space poten-
tial is shown in Fig. 1c.

The honeycomb lattice consists of two sublattices, A and B. Therefore,
the wavefunctions are two-component spinors1. Tunnelling between
the sublattices leads to the formation of two energy bands, which are
well separated from the higher bands and have a conical intersection at
two quasi-momentum points in the Brillouin zone—the Dirac points.
These points are topological defects in the band structure, with
respective associated Berry phases of p and 2p. This guarantees their
stability with respect to lattice perturbations, such that a large range of
lattice anisotropies change only the positions of the Dirac points inside
the Brillouin zone. In contrast, breaking the inversion symmetry of the
potential by introducing an energy offset, D, between the sublattices
opens an energy gap at the Dirac points, proportional to D. In our
implementation, D depends only on the value of the phase h and can be
precisely adjusted (Methods). As shown in Fig. 1c, d, the primitive
lattice vectors are perpendicular, leading to a square Brillouin zone
with two Dirac points inside. Their positions are symmetric around the
centre and are fixed to quasi-momentum qx 5 0, owing to the time-
reversal and reflection symmetries of the system20. The band structure
for our lattice implementation is in the two lowest bands topologically
equivalent to that of a hexagonal lattice with six-fold symmetry. For
deep lattices, both configurations then also map to the same tight-
binding Hamiltonian.

We characterize the Dirac points by probing the energy splitting
between the two lowest-energy bands through interband transitions.
The starting point of the experiment is a non-interacting, ultracold gas
of N<50,000 fermionic 40K atoms in the jF, mFæ 5 j9/2, 29/2æ state,
where F denotes the hyperfine manifold and mF the Zeeman state. The
cloud is prepared in the lowest-energy band of a honeycomb lattice
with V!X=ER~4:0(2), VX=ER~0:28(1) and VY=ER~1:8(1), which
also causes a weak harmonic confinement with trapping frequencies
vx/2p5 17.6(1) Hz, vy/2p5 31.8(5) Hz and vz/2p5 32.7(5) Hz.
Here ER 5 h2/2ml2 is the recoil energy, h denotes Planck’s constant
and m is the mass of a 40K atom. Throughout the manuscript, errors in
parenthesis denote the standard deviation. On application of a weak
magnetic field gradient, the atomic cloud is subjected to a constant
force, F, in the x direction, with an effect equivalent to that produced by
an electric field in solid-state systems. The atoms are hence accelerated
such that their quasi-momentum qx increases linearly up to the edge of
the Brillouin zone, where a Bragg reflection occurs. The cloud even-
tually returns to the centre of the band, performing one full Bloch
oscillation21. We then measure the quasi-momentum distribution of
the atoms in the different bands22 (Methods).

Owing to the finite momentum width of the cloud, trajectories with
different quasi-momenta qy are simultaneously explored during the
Bloch cycle (Fig. 2a). For a trajectory far from the Dirac points, the
atoms remain in the lowest-energy band (trajectory 1). In contrast,
when passing through a Dirac point (trajectory 2), the atoms are
transferred from the first band to the second because of the vanishing
energy splitting at the linear band crossing. When measuring the
quasi-momentum distribution, these atoms are missing in the first
Brillouin zone and appear in the second band (Fig. 2a). We identify
the points of maximum transfer with the Dirac points. The energy
resolution of the method is set by the characteristic energy of the
applied force21, EB/h 5 Fl/2h 5 88.6(7) Hz, which is small compared

with the full bandwidth, W/h 5 4.6 kHz, and the minimum bandgap at
the edges of the Brillouin zone, EG/h 5 475 Hz.

To investigate how breaking the inversion symmetry of the lattice
affects the Dirac points, we vary the sublattice offset, D, which is
controlled by the frequency detuning, d, between the lattice beams,
and measure the total fraction of atoms transferred to the second band,
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Figure 2 | Probing the Dirac points. a, Quasi-momentum distribution of the
atoms before and after one Bloch oscillation, of period TB (colour scale, column
density of the absorption image in arbitrary units). The cloud explores several
trajectories in quasi-momentum space simultaneously. For trajectory 1 (blue
filled circle), the atoms remain in the first energy band. In contrast, trajectory 2
(green open circle) passes through a Dirac point at t 5 TB/2. There the energy
splitting between the bands vanishes and the atoms are transferred to the
second band. When measuring the quasi-momentum distribution at t 5 TB,
these atoms are missing from the first Brillouin zone and appear in the second
one. b, Dependence of the total fraction of atoms transferred to the second
band, j, on the detuning, d, of the lattice beams, which controls the sublattice
energy offset, D. The maximum indicates the point of inversion symmetry,
where D 5 0 (h 5p in equation (1)) and the gap at the Dirac point vanishes.
Insets: away from the peak, the atoms behave as Dirac fermions with a tunable
mass. Data show mean 6 s.d. of five consecutive measurements; solid line is a
Gaussian fit to the data.
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Figure 8. Disappearance of the Dirac points when the symmetry between the A
and B sites is broken. Transition probability to the upper band as a function of
the angle θ entering the definition of V1(r) (37). This angle is indicated on the
upper horizontal scale and is controlled by the detuning of the beam creating the
standing wave (lower horizontal scale) [figure extracted from Tarruell, Greif, et al.
(2012)].

4-3 Perspectives

The Zurich experiment has thus demonstrated the existence of Dirac points
in an optical lattice. The flexibility offered by these lattices is illustrated on
figure 7, where one can control the position of these points, make them
merge and then disappear. This experiment is probably only a starting
point in this cold atom simulation of graphene. Many aspects of the ultra-
relativistic physics encountered in the vicinity of Dirac points could be ad-
dressed with these systems, such as Klein’s paradox, i.e. the quasi-total
transmission of a wave packet through a very high barrier (Katsnelson,
Novoselov, et al. 2006). Let us recall that this paradox plays an important
role in real graphene because it prevents the backscattering of conduction
electrons; Dirac electrons are insensitive to the localization effects observed
for ordinary electrons and thus propagate ballistically over long distances
(micrometers). Moreover, the implementation of artificial magnetic fields
on this lattice should allow the study of the anomalous quantum Hall effect
with cold atoms.
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