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Iterative time reversal has been suggested as both an efficient method of creating a spatio-temporal focus and for use in telecommunications as a form of equalization. In this paper, the equivalence of a passive, i.e., via computation, iterative time reversal to the Moore-Penrose pseudo-inverse of the propagation matrix is shown. In the context of communications, however, any received signal is corrupted by noise. Therefore, a regularization term is introduced to the iterative equations, causing convergence to the canonical minimum mean-squared error linear equalizer. Hence, a relationship between time reversal and equalization is demonstrated.

I. INTRODUCTION

In digital communications, the performance of a standard time reversal ͑TR͒ process has limitations because the reduction in intersymbol interference is related to a matchedfilter process. [1][START_REF] Kuperman | Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror[END_REF][START_REF] Edelmann | An initial demonstration of underwater acoustic communication using time reversal[END_REF] On the other hand, the equalization used in coherent communications is more closely related to inverse filtering. Though computationally more intensive than TR, the reduction in intersymbol interference is potentially much greater, particularly when the ratio of receiving elements to transmission elements is small, and equalization can therefore provide a better approach than standard TR. A recent paper by Montaldo et al. [START_REF] Montaldo | Real time inverse filter focusing through iterative time reversal[END_REF] has described an active iterative form of time reversal to achieve spatio-temporal focusing through a complex medium with greater intersymbol interference reduction than standard TR. Additionally, they have suggested that this could be used as an efficient method of equalization. [START_REF] Montaldo | Telecommunication in a disordered environment with iterative time reversal[END_REF] In certain environments, such as underwater communications, repeated propagation through the media as described in the papers is impractical. By performing the iteration passively, via computation, this problem is relieved, at the expense of the additional computation. In this paper, a relationship between TR and equalization is derived by showing that the inclusion of a regularization term in the passive iterative TR process is identical to the minimum mean-square error linear equalizer ͑MMSE-LE͒. This allows for a physical insight into the MMSE equalizer.

II. DESCRIPTION OF ITERATIVE TIME REVERSAL

One goal of communications is to have multiple sources transmit to an array of receivers. Such is the case in underwater acoustic communications with a network of autonomous underwater vehicles ͑AUVs͒, where each source corresponds to a different user, or in some forms of array-toarray communications. The goal of passive iterative time reversal is to create a set of filter banks that equalize the received signals, such that the combined impulse response of the channel and each filter bank is a spatio-temporal Kronecker delta function corresponding to each source.

The propagation between each transmitter and receiver element is described by the set of impulse responses h ij ͑t͒, i =1,2, ... ,N R , and j =1,2, ... ,N T . For example, if the signal sent from each transmitter is the time-dependant signal x j ͑t͒, the received signals on the array, in the absence of noise, are

y i ͑t͒ = ͚ j h ij ͑t͒ x j ͑t͒, ͑1͒
where indicates convolution. Equivalently, in the frequency domain, one may write

Y i ͑͒ = ͚ j H ij ͑͒X j ͑͒, ͑2͒
where capitalization indicates the Fourier transform and is frequency. Writing this in matrix notation yields Y͑͒ = H͑͒X͑͒. ͑3͒

When the transmitters wish to send information, they first send a known function followed by the communications sequences, X͑͒. The receiver array is able to extract a noisy estimate of the unitless channel transfer functions, H͑͒, from the known part of the signals. The second part of the received signals are the communications sequences convolved with the transfer functions, H͑͒X͑͒. The transfer functions extracted from the first part of the signal are time reversed to initialize the filter for the first iteration, designated F n , where the subscript indicates iteration number,

F 1 ͑͒ = H H ͑͒. ͑4͒
The iterative process begins by passively propagating the filter impulse responses back to the transmitters. The term "passively propagating," in this case, is taken to mean replicating, via computation on a computer, the result of physically transmitting the filter impulses and measuring the field back at the original transmitters. This is analytically equivalent to an active time-reversal process when noise is not considered and reciprocity is valid. [START_REF] Roux | A nonreciprocal implementation of time reversal in the ocean[END_REF] This results in a combined channel/filter impulse expressed by the following equation, where superscript H indicates conjugate-transpose:

R 1 ͑͒ = H͑͒H H ͑͒. ͑5͒
Often, particularly with small arrays, this results in temporal sidelobes that act as intersymbol interference and degrade the performance of communications systems. The next step in the iterative process is to subtract this result from the objective delta functions, which are constant in frequency, yielding a difference term expressible as

D 1 ͑͒ = I -H͑͒H H ͑͒. ͑6͒
The filter impulse responses are then updated by adding to them the difference term convolved with the time-reversed transfer functions previously obtained. As written in Ref. 4, the iterative procedure is the set of equations below, where the frequency dependence has been suppressed for clarity:

F 0 = 0, R n = HF n , ͑7͒ D n = I -R n , F n+1 = F n + H H D n .
The difference term of the nth iteration can be shown to be

D n = ͑I -HH H ͒ n , ͑8͒
which causes filter responses of the following iteration to be equal to

F n+1 = H H ͚ k=0 n ͑I -HH H ͒ k . ͑9͒
The summation term in the above equation can be recognized as the Neumann expansion 7 of the matrix inverse, which states

A -1 = ͚ k=0 ϱ ͑I -A͒ k , ͑10͒
given that the norm of ͑I -A͒ is less than one. After many iterations, the filter responses converge to

F = H H ͑HH H ͒ -1 . ͑11͒
This is recognized as the Moore-Penrose pseudo-inverse of the propagation matrix, H. Finally, this filter set is applied to the received communications sequences, Y, and the signals, X, decoded. The problem of the estimate of the transfer function matrix, H, being noisy is lessened in the case of active iterative time reversal compared to the passive case, as each iteration introduces a different realization of the noise process. However, active iteration is impractical in certain circumstances, such as during an at-sea experiment. [START_REF] Kuperman | Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror[END_REF] Additionally, in the context of communications, additive noise dominates channel estimation error, therefore the transfer functions estimates are usually assumed to be the true trans-fer functions. A more appropriate goal of passive time reversal would be to create a set of filter impulse responses that minimize the mean-squared error of the received communications sequences. The impulse responses that achieve this goal under a white-noise assumption are governed by the well-know minimum mean-squared error linear equalizer ͑MMSE-LE͒ expression

F = H H ͑HH H + 2 I͒ -1 , ͑12͒
where 2 is the inverse of the signal-to-noise ratio ͑SNR͒, calculated as the ratio of the power transmitted from each transmitter, P, and the noise power, N 0 , received at a single receiver. It is possible, through the addition of a regularization term, to alter the iterative procedure of Eq. ͑7͒ so that it converges to the MMSE-LE equation stated above in Eq. ͑12͒. After this modification, the iterative procedure is written as

F 0 = 0, R n = HF n , ͑13͒ D n = I -R n -2 ͚ k=0 n-1 D k , F n+1 = F n + H H D n .
The only difference is the addition of a regularization term in the third iteration equation. This can be recognized as a form of gradient descent solution, similar to the conjugate gradient method, [START_REF] Moon | Mathematical Methods and Algorithms for Signal Processing ͑Prentice-Hall[END_REF] to finding the MMSE-LE filter impulse responses. Again, once a number of iterations have been performed, the filter set is applied to the received communications sequences and the signals decoded.

The MMSE-LE has advantages over the inverse filter relating to its performance in a noisy environment. By minimizing the mean-squared error of the communication sequence, it also maximizes the signal-to-interference-plusnoise ratio ͑SINR͒. Additionally, convergence is monotonic, as visible in Fig. 1, meaning there is no "best number" of iterations, such as was the case in Ref. 5. Recent results also seem to indicate that the MMSE-LE is more robust to channel estimation error. [START_REF] Ding | Effect of channel estimation error on bit rate performance of time domain equalizers[END_REF] Shown in Fig. ͑1͒ is a demonstration of the convergence of iterative time-reversal output signal-to-interference-plusnoise to the optimum output SINR of the MMSE-LE. Figure 1͑a͒ shows the output SINR as a function of number of iterations for a sample set of five measured impulse responses, 9 which are shown ͑each shifted in both time and amplitude for visualization purposes͒ in Fig. 1͑b͒. The four pairs of curves represent four input SNRs each separated by 5 dB. After each iteration, the combined channel and filter response is converted to the time domain where SINR calculations are done. The solid lines show the output SINR of modified iterative time-reversal, whereas nonmodified iterative time reversal is shown with dashed curves. Also, the MMSE-LE filter is calculated explicitly, using the formula of Eq. ͑12͒, and the combined channel and filter response con-verted to the time domain where SINR calculations are done. The results are shown as a thin gray line for each noise power.

Through analysis of the iterative process, one can see the MMSE-LE as a filter set that attempts to cancel its own sidelobes in the time domain, but is regularized that the gain in the frequency domain is not too large, taking into account the fact that the communications sequence is noisy.

III. CONVERGENCE

The modified iterative time reversal procedure converges so long as the Neumann expansion of the matrix inverse is valid, that the norm of ͑I -HH H -2 I͒ is less than one. This is not a restrictive constraint, as the received signal, Y, can be multiplied by a constant to ensure this condition is met without loss of optimality, in the sense of maximizing SINR. Scaling the received signal, Y, is equivalent to scaling both the transfer function matrix, H, and the noise, thus leaving the SINR unchanged.

The speed of convergence is determined, as in many gradient methods, by the eigenvalue spread, in frequency, of the matrix HH H + 2 I. The larger the spread, the longer the iterative algorithm takes to converge. As can be seen in Fig. 1, convergence occurs with less iteration at lower signal-tonoise ratios because the eigenvalue spread is smaller, as they are dominated by the constant noise components.

IV. CONCLUSION

It has been shown that iterative time reversal can be performed passively, resulting in a procedure that converges to the Moore-Penrose pseudo-inverse of the propagation matrix. More importantly, it has been shown that a minor modification, the inclusion of a regularization term, alters the procedure so that it converges to the MMSE linear equalizer. Thus, one can view the MMSE equalizer equivalently as a regularized iterative time reversal process. The iteration systematically reduces temporal sidelobes and the regularization limits the amplification in the frequency domain preventing noisy channels being included in the signal estimate. 

  FIG. 1. Convergence of iterative time reversal. ͑a͒ The output signal-tointerference-plus-noise ratio ͑SINR͒ is shown for four different noise powers ͑input SNRs͒, each separated by 5 dB, as a function of number of iterations. The dashed lines correspond to iterative time reversal and the solid lines correspond to the modified iterative time reversal. The optimum SINR calculated explicitly with the MMSE-LE formula is shown in gray. ͑b͒ The channel used for calculation is a measured at-sea transfer function set with one input, five outputs, and 100 taps for each of the five transfer functions.
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