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Introduction

The density estimation problem, got an important impulse after [START_REF] Parzen | On estimation of a probability density function and mode[END_REF] and [START_REF] Rosenblatt | Remarks on some nonparametric estimates of a density function[END_REF] fundamental pioneering works. It remains an active area of research. Numerous well-known books have been published on this topic. To name a few, refer to [START_REF] Walter | Density estimation for statistics and data analysis[END_REF], [START_REF] Devroye | A course in density estimation[END_REF], [START_REF] Devroye | Combinatorial methods in density estimation[END_REF], and [START_REF] Scott | Multivariate density estimation, theory, practice and visualization[END_REF]. As evidenced by [START_REF] Chacón | Multivariate kernel smoothing and its applications[END_REF], density estimation remains a contemporary and actively researched topic. Presently, two focal points attract notable attention: mitigating bias near the support boundary and extending density estimation to encompass manifolds. The objective of this paper is to propose an asymptotically unbiased density estimator applicable across the entire support, while also offering adaptability for manifold scenarios.

Let us first focus on the bias reduction problem in the full dimensional setting. Consider an i.i.d. sample X n = {X 1 , . . . , X n } ⊂ R D drawn from an unknown distribution P X supported in S (which is also unknown). Recall the definition of S as the intersection of all closed sets E for which we have P X (E) = 1. Assuming that S is a regular set, specifically S = S, and that the density restricted to S, denoted as f | S , is continuous, we recall the Besicovitch condition through the Lebesgue differentiation theorem:

Let x ∈ S, lim r→0 B(x,r) f (t)dt |B(x, r)| D = f (x). (1) 
This forms the foundation of basic density estimation techniques. This is due to the fact that B(x,r) f (t)dt can be readily estimated by the ratio of the number of observations within B(x, r) to the total number of observations. However, this approach introduces a bias for points x ∈ ∂S where f (x) > 0. Bias reduction techniques in density estimation have been extensively explored when D = 1, with notable works such as [START_REF] Ruppert | Bias reduction in kernel density estimation by smoothed empirical transformations[END_REF], [START_REF] Marron | Transformations to reduce boundary bias in kernel density estimation[END_REF], [START_REF] Jones | A simple bias reduction method for density estimation[END_REF], and [START_REF] Leblanc | A bias-reduced approach to density estimation using bernstein polynomials[END_REF]. In higher dimensions, many 1 proposed bias correction methods rely on adjusting kernel density estimators with knowledge of the support. This is exemplified by approaches like those presented in [START_REF] Bertin | Adaptive density estimation on bounded domains under mixing conditions[END_REF], [START_REF] Charpentier | Kernel density estimation based on ripley's correction[END_REF], [START_REF] Funke | Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods[END_REF], and [START_REF] Bouezmarni | Nonparametric density estimation for multivariate bounded data[END_REF]. To the best of our knowledge, the only method allowing for bias reduction without prior knowledge of the support can be found in [START_REF] Berry | Density estimation on manifolds with boundary[END_REF]. A way to extend [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF] on S is to use that, for all x ∈ S, lim r→0 B(x,r) f (t)dt |B(x,r)∩S| D = f (x). By applying a plugin methodology, a straightforward class of density estimators emerges:

f (x) = #{X n ∩ B(x, r)} n ¤ |B(x, r) ∩ S| D .
In this method, the crucial aspect lies in the choice of ¤ |B(x, r) ∩ S| D , an estimate for the Ddimensional volume of the intersection between B(x, r), the close ball centered at x and of radius r, and the support S. A straightforward naive option for ¤ |B(x, r) ∩ S| D , utilizing the concept of local convex hull (LoCoH), is |H(B(X i , r)) ∩ X n | D and thus fnaive (x) = #{Xn∩B(x,r)} n|H(B(Xi,r))∩Xn| D . Regrettably, this choice provides overestimation of the density and hampers the convergence rate for points x satisfying d(x, ∂S) ≥ r, which asymptotically encompasses the most of the observations. It is important to notice that the situation is even worth when considering the density estimator implicitly proposed in [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF], which is fGetz (x) = max Xi, x∈B(Xi,r) #(Xn∩B(Xi,r)) n|H(B(Xi,r))∩Xn)| D . Let us introduce N x,r = #{X n ∩ B(x, r)}, C x,r = H(B(x, r) ∩ X n ), N ∂

x,r = #{X n ∩ ∂C x,r } and N o

x,r = N x,r -N ∂ x,r . Due to [START_REF] Baldin | Unbiased estimation of the volume of a convex body[END_REF] we can propose the following LoCoH correction for the naive estimator: fr,A (x) = N o

x,r

(n -N ∂ x,r )|C x,r | I |Cx,r| D ≥Aω D r D I N ∂ x,r ≤n/2 . (2) 
Remarks:

1. The inclusion of the additional parameter A and the use of indicator functions is only intended to prevent division by zero.

2. The count of observations within ∂C x,r , denoted as N ∂ x,r , is non-zero. Indeed C x,r is a convex polytope defined by vertices that are part of the observation sets, which also encompasses those within ∂C x,r .

Although the initial presentation might appear intricate, the introduction of N o

x,r and N ∂

x,r is actually quite intuitive, as demonstrated by [START_REF] Baldin | Unbiased estimation of the volume of a convex body[END_REF]. This is because N o x,r |C x,r ∼ Binomial(n-N ∂

x,r , Cx,r f (z)dz).

Subject to relatively broad assumptions concerning f and S, the proposed estimator has nice theoretical properties, namely:

1. If f is Lipschitz continuous and bounded below on a sufficiently regular support S, the proposed estimator achieves pointwise minimax rates at any point in S even if S is unknown (see Theorem 1).

2. If f is C 2 , when D ≤ 7, under broad assumptions regarding the support set S, the proposed estimator can achieve minimax rates in the interior of S, with additional guarantees at the boundary of S (see Theorem 2 and Corollary 1). This offers guarantees for level set estimation (even for level sets intersecting the boundary), see Theorem 4.

Assuming that S is a d-dimensional manifold with d < D, a common assumption when working with high-dimensional data-sets, our focus shifts towards estimating a density on a manifold. Density estimation on a known manifold without a boundary was initially introduced in [START_REF] Pelletier | Kernel density estimation on riemannian manifolds[END_REF], where the conventional kernel density estimator was extended by substituting the Euclidean distance with the geodesic distance. In [START_REF] Yoon | Geometric structures arising from kernel density estimation on riemannian manifolds[END_REF], a similar approach was employed, but kernels were applied to projections onto tangent spaces. The technique presented in [START_REF] Berry | Density estimation on manifolds with boundary[END_REF] adapted the methodology from [START_REF] Yoon | Geometric structures arising from kernel density estimation on riemannian manifolds[END_REF] to address potential boundary bias. Importantly, the prior knowledge of the boundary is not necessary in this context: the distance and direction from a point to the boundary can be estimated through a local barycenter shift. More recently, methods have been proposed for unknown manifolds without boundaries. The approach developed in [START_REF] Divol | Measure estimation on manifolds: an optimal transport approach[END_REF] only requires knowledge of the dimension d of the support S, whereas in [START_REF] Cl | Density estimation on an unknown submanifold[END_REF], the support S is entirely unknown. In section 3 we present an extension of the density estimator introduced in (2), designed to accommodate densities supported in a possibly unknown manifold that may have boundaries. We adopt the classical approach of using local projections onto estimated tangent spaces. When S represents a sufficiently regular compact manifold with either a regular boundary or no boundary, and f is Lipschitz continuous, we obtain L 1 convergence (see Theorem 5).

The paper is organized as follows. Section 2 is devoted to the presentation of the main results in the full-dimensional context. Section 3 deals with the extension to the manifold setting. In Section 4 we present some numerical experiments. Finally, the proofs are given in Section 5.

Full dimensional context 2.1 Geometric asumptions and statistical model

Let X n = {X 1 , . . . , X n } ⊂ R D , be an i.i.d. sample drawn from a distribution supported in S, and characterized by an unknown density f that is uniformly continuous with respect to the Lebesgue measure. Additionally, we will assume certain regularity conditions on both S and f . First, we define and discuss the geometric assumptions on S. We may either consider the ball standardness (Definition 1, illustrated in the left part of Figure 1) or the rolling ball condition (Definition 2, illustrated in the right part of Figure 1).

Definition 1 (Ball-standardness).

A closed set E is (r 0 , δ)-ball standard if for all x ∈ E and all r ≤ r 0 , B(x, r) ∩ E is path connected and there exists y such that B(y, δr) ⊂ E ∩ B(x, r).

Having a ball-standard support and a density bounded bellow by a positive constant imply the classical standardness of the distribution as introduced in [START_REF] Cuevas | On pattern analysis in the non-convex case[END_REF]. This characteristic also accommodates the presence of corners (though not cusps). Opting for ball standardness rather than the traditional standardness separates the geometric aspects from the distributional ones, enabling a clearer distinction between the two components. Ball standardness guarantees consistency, but when aiming for convergence rates, more regular support yields significantly better results. Classically (as in [START_REF] Walther | Granulometric smoothing[END_REF]) we will characterize smooth support via the inside and outside rolling ball condition. x such that B(O out x , r 0 ) ∩ E = {x} and B(O in x , r 0 ) ⊂ E. Such a condition has been extensively studied in [START_REF] Walther | On a generalization of blaschke's rolling theorem and the smoothing of surfaces[END_REF]. It implies that ∂S is a C 1 1 manifold or, equivalently, that ∂S has a positive reach. It is easy to see that, if E satisfies the r 0 -inside and outside rolling ball condition, then E and E c are (r 0 , 1/2)-ball standard (see Proposition 4 and its proof in Appendix A).

Our LoCoH density estimator has minimax pointwise convergence rate at any point of S (even of the boundary) when considering the following model. 1. it is supported in a compact support S that either is convex and ball standard, or has the r 0 -inside and outside rolling ball condition for some r 0 > 0, Ensuring consistency at boundary points necessitates shape assumptions on S. Indeed it's required that, as r goes to 0, |B(x, r) ∩ S| ∼ |H(B(x, r) ∩ S)| for any x ∈ ∂S. This entails considering a combination of convexity and rolling ball conditions, as illustrated in Figure 2. The LoCoH estimator also achieves good convergence properties in S under the more classical hypotheses of C 2 regularity of the density and possibly unbounded support. Convergence is studied for distribution in the model M 2 , see Definition 5. Roughly speaking, the density must be C 2 with upper-bounded first derivatives and the support and "small level" sets must be ball-standard. Definition 4 ((r 0 , δ, ε 0 )-standardness for a distribution). A distribution associated to a density f is (r 0 , δ, ε 0 )-standard if, for all ε ∈ (0, ε 0 ) ,the level set

2. f | S is K-Lipschitz
L ε = {x, f (x) > ε} is (r 0 , δ)-ball standard.
The second model consists in (r 0 , δ, ε 0 )-standard distributions with smooth enough densities. 1. The distribution is (r 0 , δ, ε 0 )-standard, S is path connected and for all (x, y) ∈ S 2 the geodesic distance (in S) satisfies d S (x, y) ≤ K max ||x -y||. Model M 2 inherently encompasses distributions supported in compact (r 0 , δ)-ball standard supports S, characterized by C 2 densities that exhibit a positive lower bound on S, and have a hessian matrix whose norm is bounded above by f [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF] max . This model further encompasses a diverse array of classical densities with non-compact supports, such as Gaussian or exponential distributions.

The associated density

Main theoretical results for model M 1

For bounded support, under regularity assumptions, and with a Lipschitz-continuous density bounded from below by a positive constant, the proposed estimator frn,A (x) exhibits L 2 convergence. This is achieved since x is an element of S, r n tends to zero, and nr D n / ln n tends to infinity. The general rate can be found in Equation [START_REF] Baldin | Unbiased estimation of the volume of a convex body[END_REF], and by optimally choosing r n = cn -1 D+2 , we achieve minimax L 2 rates of order n -1 D+2 at any point x within S, as indicated in Equation ( 4). The advantage is that this correction doesn't require prior knowledge of the support. When the support is unknown, the only points that are guaranteed to belong to S are the observations, and Equation (5) claims that with high probability, the density estimation of every observation is close to the real density.

Theorem 1. Let the distribution belong to the model M 1 . Let the window size r n be a sequence such that r n → 0 and nr D n /lnn → +∞. Let A < δ D be a positive constant. There exist explicit constants depending only on the model such that, for all x ∈ S, E(( frn,A (x)

-f (x)) 2 ) ≤ a 1 (nr D n ) -1 + a 2 r 2 n + a 3 exp(-a 4 nr D n ) + a 5 exp(-n/8). (3) for all x ∈ S, we have E(( fcn -1/(D+2) ,A (x) -f (x)) 2 ) ≤ a(c 2 + c -D )n -2 D+2 . ( 4 
)
There exist explicit constants depending only on the model such that, with probability one, for n large enough, In Theorem 2 we establish that for points x ∈ S, the density estimator proposed in (2) exhibits a squared convergence rate of the order (nr

max i frn,A (X i ) -f (X i ) ≤ b 1 ln n nr D n + b 2 r n . (5 
D n ) -1 +r 4 n +r 2 n (nr D n ) -4 D+1 +r 3 n (nr D n ) -2 D+1
. This includes the "classical" density rate (nr D n ) -1 + r 4 n , along with an additional term r

2 n (nr D n ) -4 D+1 + r 3 n (nr D n ) -2 D+1
coming from the estimation of LoCoH volume. Despite this added term, the advantage is that, under additional hypotheses on S, the bias is rectified at possible points of discontinuity located on the boundary of S. Moreover, as stated in Corollary 1, this supplementary term doesn't hinder the attainment of the minimax rate when D ≤ 7.

Theorem 2. Let the distribution belong to the model M 2 . Let the window size r n be a sequence such that r n → 0 and nr D n /lnn → +∞. Let A < δ D be a positive constant.

1. For all x ∈ S, E((

frn,A (x)-f (x)) 2 ) = O x Ä (nr D n ) -1 + r 4 n + r 2 n (nr D n ) -4 D+1 + r 3 n (nr D n ) -2 D+1 ä .
2. If S is either convex or has the R 0 inside and outside rolling ball property, we have that, for all x ∈ S, E((

frn,A (x) -f (x)) 2 ) = O (nr D n ) -1 + r 2 n .
More explicit values of O can be found within proofs (see Equations ( 13) and ( 18)).

In Corollary 1, we present, for points in S, optimal radius size and associated convergence rates depending on the dimension. 1. if D ≤ 7, the choice of r n = cn -1 D+4 provide that, for all x ∈ S, the L 2 error has the minimax convergence rate of order n -2 D+4 .

2. if D > 7, the choice of r n = cn -2 3D+1 provide that, for all x ∈ S, the L 2 error has a non-optimal convergence rate of order n -4 3D+1 .

It may be possible to develop a more sophisticated method that allows us to achieve the minimax rate of order n -2/(D+4) everywhere, even at the boundary, by applying the following algorithm:

1. Compute S and " ∂S, which are estimators of S and ∂S respectively.

2. If x ∈ S and d(x, " ∂S) ≥ h estimate the density with standard kernel estimator.

3. If x ∈ S and d(x, " ∂S) < h, if possible, apply to our corrected estimator a high order bias correction near the boundary, similar to the proposition in section 3.3 in [START_REF] Berry | Density estimation on manifolds with boundary[END_REF]. This approach is likely to yield methods with minimax optimal rates without any restrictions on the dimension. However, it comes with some computational and practical challenges. For instance:

1. Parameter tuning: this approach involves tuning more parameters. First, for the support estimation step, we need to choose an appropriate reference distance to the support's boundary to decide which density estimation method to apply. Furthermore, there are two density estimation parameters to be tuned.

2. Convex hull estimation: the convex hull estimation step may not be realistic when the dimension D is greater than 7.

Therefore, it might be more convenient to focus on the case where D ≤ 7 and use radius sequences of the form r n = cn -1 D+4 . This choice is minimax for all points in the interior of S and remains consistent on all of S. Additionally, there are only two parameters to tune: A and r n . Empirically, we have observed that the window size tuning method for the classical kernel works also very well for our modified version.

Uniform convergence rates and application to level set estimation

The previous section provided point-wise convergence rates for density estimation at a point x ∈ S. However, when S is unknown, these point-wise convergence rates do not allow us to achieve uniform convergence rates over the entire space R D . Nevertheless, because we know that all the observations are located on the set S, we can derive uniform convergence rates over the set of observations. Theorem 3. When D ≤ 7 and the distribution belongs to the model M 2 , let r n = cn -1/(D+4) and A < δ D .

1. For all t > 0, there exists C t such that, with probability one, for n large enough:

max i frn,A (X i ) -f (X i ) , X i ∈ L t and B(X i , r n ) ⊂ S ≤ C t √ ln nn -2/(D+4) . 2. If f | S ≥ f (0)
min > 0, there exists C such that, with probability one, for n large enough:

max i frn,A (X i ) -f (X i ) , B(X i , r n ) ⊂ S ≤ C √ ln nn -2/(D+4) .
3. If S is either convex or satisfies the inside and outside R 0 rolling ball condition, there exists C such that, with probability one, for n large enough:

max i frn,A (X i ) -f (X i ) ≤ Cn -1/(D+4) .
This result allows us to employ the proposed density estimator for level set estimation using Ŝ(X + rn,A (t)) (where Ŝ(Y) is a set estimator based on a sample Y and X + rn,A (t) = {X i , frn,A (X i ) ≥ t}). The chosen set estimator is the LoCoH estimator. This choice was made because it seems consistent to estimate both the density and the level sets with the same tool. It also pays homage to [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF], who initially applied the LoCoH to create home range and core area maps. In theorem 4, we provide convergence rates for Lt =

Xi∈X + rn ,A (t) H Ä B(X i , r n ) ∩ X + rn,A (t) ä , (6) 
which differs from the original method proposed in [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF]. The distinction between the two methods is discussed in the numerical study section. It's worth noting that the bias correction allows us to achieve convergence for level sets that may intersect the boundary of the support (as indicated in point 2 of Theorem 4). More precisely, we consider two kinds of levels. First, we deal with regular levels (see Definition 6) that satisfy the classical assumptions in the field of level set estimation, as in [START_REF] Rodríguez | A data-adaptive method for estimating density level sets under shape conditions[END_REF] for instance. In particular, regular levels do not intersect the boundary and, by application of Theorem 2 in [START_REF] Walther | Granulometric smoothing[END_REF], they have the inside and outside rolling ball property. Second, we consider standard levels (see Definition 7) that may intersect the boundary and are only ball standard.

Definition 6 (Regular levels). t > 0 is a regular level if there exits ∆ t > 0 and m t > 0 such that L t-∆t ⊂ S and min

z∈Lt-∆ t \ Lt+∆ t ||∇ f (z)|| = m t > 0.
Definition 7 (Standard levels). t > 0 is a standard level if there exits ∆ t , β t , δ t , γ t and ℓ t such that , for all r ≤ ∆ t and all

x ∈ L t , |B(x, r) ∩ L t | ≥ δ t ω D r D and d H (L t , L t ⊕ rB) ≤ γ t r. Also, for all t ′ such that |t ′ -t| ≤ ∆ t , we have d H (L t , L t ′ ) ≤ β t |t -t ′ | and |∂L t | D-1 ≤ ℓ t .
Roughly speaking, if t is a regular level, then all the t ′ -level sets, t ′ being close enough to t, have the rolling ball property with the same radius. The level t is considered "standard" if L t is standard and partly expandable (as in [START_REF] Cuevas | On boundary estimation[END_REF]). Additionally, in a neighborhood of t, level sets are sufficiently close to L t , and their perimeters are uniformly bounded. To illustrate this two kinds of level, consider for instance the density

f (z) = c(2 -||z|| 2 )I [-1,1] 2 (z).
For such a density, any levels t ∈)c, 2c( are regular and any levels t ∈)0, c] are standard.

Theorem 4. Suppose that D ≤ 7 and that the distribution belongs to the model M 2 , with S is either convex or have the inside and outside rolling ball property. Let r n = cn -1/(D+4) and A < δ D . Assume that S = {z, f (z) > 0} and define Lt as in Equation (6).

1. If t is a regular level, then, with probability

1 for n large enough, d H (L t , Lt ) = O(ln nn -2/(D+4) ).
2. If t is a standard level and c ≥ 4β t C (C being the constant of Theorem 3 point 3.), with probability one, for n large enough, d H (L t , Lt ) = O(n -1/(D+4) ).

Density on manifolds

In this section, our aim is to generalize the results for the model M 1 to the density estimation of a distribution supported in a compact manifold. The associated model, see Definition 9, naturally focuses on lower-bounded and Lipschitz-continuous density (similar to model M 1 ). However, it requires additional regularity assumptions on the manifold S and its boundary ∂S, which are typically characterized by their reach. Roughly speaking, manifolds with positive reach are regular enough to have "nice" tangent spaces (for detailed results on reach, see [START_REF] Federer | Curvature measures[END_REF] and [START_REF] Fédérer | Geometric measure theory[END_REF]). The rolling ball condition in the full dimensional context is generalized by manifolds whose boundary has a positive reach (see [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF]). If ∂S = ∅, which is possible in the manifold case, we use the convention τ ∅ = +∞.

Definition 9. A distribution belongs to the family model M

′ d if 1. S is a compact d-dimensional manifold with positive reach τ S ≥ τ min > 0. If exists, its
boundary ∂S is a (d -1)-manifold without boundary and with reach τ ∂S ≥ τ ∂,min > 0.

Its density

f satisfies that 0 < f (0) min ≤ f (x) ≤ f (0) max for all x ∈ S. Also, f | S is K-Lipshitz continuous.
Now, let's extend the density estimator by using local projections onto estimated tangent spaces. Suppose that, for all x ∈ S, we have Tx , an estimation of T x S. Let π Tx denote the orthogonal projection onto Tx . Introduce the following notations for R ∈ R:

1. X n,R = π Tx (B(x, R) ∩ X n ), with as previously N x,R = #{X n ∩ B(x, R)}, 2. " C x,r,R = H(X n,R ∩ B(x, r)), 3. " N x,r,R = #{X n,R ∩ B(x, r)}, " N ∂ x,r,R = #{X n,R ∩ ∂ " C x,r,R } and " N o x,r,R = " N x,r,R -" N ∂ x,r,R . The proposed LoCoH estimator is now: fr,R,A (x) = N x,R n " N o x,r,R (N x,R -" N ∂ x,r,R )| " C x,r,R | I | " C x,r,R |≥Aω d r d I N ∂ x,r,R ≤N x,R /2 . (7) 
The following theorem provides the convergence rates of the density estimator. In the manifold case, an additional error term is introduced, which depends on the quality of the tangent space approximation, denoted by Θ n . This quality is typically characterized by ∠ Tx , T x S, which represents the angle between the tangent space and its approximation. It can also be defined as the operator norm of π TxS -π Tx .

Theorem 5. Let the distribution belong to the model M ′ d . Let the window size r n be a sequence such that r n → 0 and nr d n /lnn → +∞. Let A < 4 -d be a positive constant. Additionally suppose that there exits Θ n → 0 such that ∠T x S, Tx ≤ Θ n . Then there exists R 0 such that, for all R < R 0

there exits C such that E Å frn,R,A (x) -f (x) ã ≤ C Å 1 √ nr d n + r n + Θ n ã .
When S ⊂ S, where S is a known d-manifold, we obtain a natural extension of Theorem 1 with Θ n = 0. This is the case, for instance, in the seismic example in the next section. When the support S is fully unknown, we can apply Theorem 5 at points x ⊂ X n . Additionally, we need to estimate the tangent spaces with local PCA. This can be done with Θ n of the order (ln n/n) 1/d (as described in [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF]) therefore, the part of the convergence rates depending on Θ n can be considered negligible. Consequently, we obtain the minimax rate of order n -1 d+2 .

The additional parameter R is a macro parameter, distinct from the parameters used in local PCA tangent space estimation. Conceptually, R represents a radius such that, for all x ∈ S, the projection π Tx | S∩B(x,R) is injective and possesses a boundary that is "sufficiently regular". As in [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF], any radius R sufficiently small with regard to the reach of S and that of ∂S is suitable. In practice, it can be tuned as in [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF] and approached in a similar manner (see Section 6.2.2 of [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF] for details).

Extension to L 2 convergence is still feasible but more technical. Also extending the results of model M 2 to the manifold setting is possible assuming C 2 manifolds and C 2 densities. The proofs, while a much more technical than those of Theorem 5, follow a similar structure. However, extending level set estimation to the manifold setting is considerably more challenging. This is because level sets on manifolds have boundaries, and only the method proposed in [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF] could be directly applied to density estimation with little additional work. It is believed that the LoCoH still provides a viable estimator in this case, but rigorous proofs are required to establish its performance.

Numerical Experiments

Computation and complexity

In languages such as MATLAB, where the convex hull is already programmed, computation is particularly easy. In MATLAB, Let Y be the set of points at distance at most r from x, the function

[F,Vol]=convhulln(Y ) returns |C x,r | =Vol, N ∂ x,r =size(Unique(F),1) and N o x,r =size(Y,1)- N ∂
x,r . The complexity is upper-bounded by the computational complexity of the Delaunay triangulation of Y from which we can obtain the volume as the sum of the volumes of simplices (with straightforward formulas) and the set of boundary observations. The computational time of frn,A (x) is then typically of the order 2 D (N x,r log(N x,r ) + N D/2 x,r ). When computing the density for the entire observation set, the computational time is of order 2 D (n 2 r D log(n) + n(nr D ) D/2 ) (notice that N x,r = O(nr d )). For radius sequences r = cn -1/(D+2) and r n = cn -1/(D+4) , respectively, the complexity is less than 2 D n 2 and less than 2 D n 3 , respectively.

Experiments on simulated data

First, we propose to test the LoCoH density estimator on a sample drawn from a Gaussian distribution restricted to the square [0, 1] 2 . Specifically, in this first example, the density is f (x, y) = c exp(-2(x 2 + y 2 )). In Figure 3, we present a comparison of the LoCoH density estimator f and f * rn (x) = N x,rn /(nω D r D n ), the classical kernel estimator, on a sample of size n = 5000. In panels (a) and (b) on the left, we present the results associated with the LoCoH density estimator (r = 0.18 and A = 0.1). The top figure (a) presents the sample cloud with colors corresponding to the rank of the estimated density value (isopleth presentation). The bottom figure (b) presents the associated level sets estimated with the LoCoH method (also with r = 0.18) for levels in {0, 0.5, 1, 1.5, 2, 2.5}. In the same figure, panels (c) and (d) illustrate the results with thekernel density estimator f * (using the same window size). In Figure 3, we can observe that, as expected, the LoCoH correction improves the density estimation near the boundary of the support.

To investigate this improvement further, we also tested the proposed method on data drawn from a uniform distribution within the unit disk. The results are presented in Figure 4. We experimented with different sample sizes, specifically n ∈ {1000, 2000, 3000, 5000, 7000, 10000}. The tested parameters were set to r n = 0.5n -1/6 and A = 1/8. For each sample size, we conducted 100 replications. For each replication k, we computed Q α (k), the α-quantile

(on i) of | frn,A (X i ) -f (X i )|.
We then plotted the results as follows: the median (on k) of Q α (k) is shown in solid blue lines, the 25th and 75th percentiles (on k) of Q α (k) are presented as blue dashed lines, and blue points represent the maximum and minimum (on k) of Q α (k). The red curves display the same quantities calculated for f * rn , which is the classical uniform kernel method with the same radius. Since the LoCoH correction primarily affects data points near the boundary, we can observe differences between the blue and red curves for high values of α (e.g., 100%, 99%, and 95% quantiles). Moreover, as the sample size n increases, the corrected estimator outperforms the classical kernel estimator. For "small" quantiles (e.g., 75% and 50%), we can observe the similarity between the two estimators, reflecting their similarity at points far from the boundary.

Examples on real data 4.4 Comparison with standard KDE : Camping and seasonal rental

An example based on camping and seasonal rentals in France (see Figures 5 and6) illustrates how LoCoH density estimation can correct density estimations at highly touristic boundary locations. The two density maps (LoCoH vs classical KDE) are presented in Figure 5, with the LoCoH method on the left showing much higher contrast. To be more precise on difference between the two density estimations, in Figure 6 we present the relative difference between f and f * . As expected, we observe more differences in the density estimation, along the boundary of France, especially at its corners, and in specific cities with significant tourist or economic interest, where seasonal lodging of the whole surrounding is concentrated (such as Toulouse, Bordeaux, or Rennes, for instance). In this section, we aim to compare the original LoCoH method proposed by [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF] with our proposed LoCoH correction. As a tribute to Getz and Wilmer, we test both approaches for core-area esti- Figure 6: ( f -f * )/f * presented in five color level : less than 20% blue, between 20% and 50% green, between 50% and 100% mustard, between 100% and 200% orange and more than 200% brown Figure 7: Isoplet for Panter Jitter, left original method from [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF] and right the proposed corrected method, mation on the Panther Jitter dataset (downloaded from the Penn State Department of Ecosystem Science and Management). In Figure 7, we present the x% isopleths, where x is chosen from {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}. On the left, we apply the original LoCoH method and, on the right, we apply our proposed LoCoH correction.

Let recall that the level sets in [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF] are estimated via

LGetz

t = i, #(Xn∩B(X i ,r)) |H(B(X i ,r)∩Xn| ≥nt H(B(X i , r) ∩ X n ).
Note that with the estimator we propose, the estimated levels are more focused on the data points, whereas the original estimator extends the different levels quite away form the data points (see e.g. mid-grey levels).

A manifold example

In Figure 8, we illustrate the manifold method. In this case, the data consists of earthquake localizations on Earth, specified by latitude and longitude (a known 2-dimensional manifold). We only kept earthquakes with a magnitude greater than 3. We conducted computations using the LoCoH method proposed in Section 3, assuming a known manifold and real tangent space.

The two graphs depict a projection on a planisphere of the data sample, with colors indicating the rank of the density. The top graph illustrates the LoCoH method, while the second one employs the constant kernel for manifolds. Although the two densities appear quite similar, some differences still exist. For instance, our correction allows for more mass to be placed on the Mid-Atlantic Ridge, where the density is underestimated in the classical kernel method due to its proximity to a lower-dimensional structure. Many other estimation differences can be observed all along the different ridges. This highlights the accuracy of our new LoCoH estimator in the manifold case.

Additionally, in the circled area, we can observe a density maximum located in a corner of the support. This would typically be impossible without bias correction. 

Proofs

In the proofs, we make use of the following notations. For a set A and a real number ρ, the ρ offset of A, denoted by A ⊕ ρB, is defined as A ⊕ ρB = {x ∈ R D , d(x, A) ≤ ρ}. For a compact set A, when well defined, we denote by π A the projection onto A which is defined as follows: π A (x) is the point in A such that ||π A (x) -x|| = d(x, A). When A is convex, π A is defined everywhere ; when A has the r 0 inside and outside rolling ball property, π A is defined on A ⊕ r 0 B and π ∂A on ∂A ⊕ r 0 B.

Notations and definitions

First, for the sake of clarity, we will use r instead of r n in this section. The probability content is Γ x,r = B(x,r) f (z)dz and its approximation with the help of LoCoH is Γx,r = Cx,r f (z)dz.

Due to the indicator function in the definition of the density estimation we introduce the event

E x,r ="|C x,r | ≥ Aω D r D , Γx,r ≥ f (x)Aω D r D and N ∂ x,r ≤ n/2".
Conditionally to E x,r , the error decomposition in the density estimation is fr,A (x) -f (x)|E x,r = ε 1 (x) + ε 2 (x), where:

ε 1 (x) = N o x,r -Γx,r (n -N ∂ x,r ) |C x,r |(n -N ∂ x,r ) I Ex,r and ε 2 (x) = Ç Γx,r |C x,r | -f (x) å I Ex,r . (8) 
Roughly speaking, ε 1 is the variance term of the error and ε 2 the bias one. We will make use of the following error decompositions:

E(( fr,A (x) -f (x)) 2 ) ≤ E(ε 2 1 (x)|E x,r ) + E(ε 2 2 (x)|E x,r ) + 2E(ε 1 (x)ε 2 (x)|E x,r ) + f (x) 2 P(E c x,r ), (9) 
P(| fr,A (x) -f (x)| ≥ t 1 + t 2 ) ≤ P(|ε 1 (x)| ≥ t 1 |E x,r ) + P(|ε 2 (x)| ≥ t 2 |E x,r ) + P(E c x,r ). ( 10 
)
5.2 Bound on P(E c x,r ) and rough bounds on ε 1 and ε 2

Lemma 1 (Bound on P(E c x,r )). Suppose that the distribution is (r 0 , δ, ε 0 )-standard and the density f is upper-bounded by f (0) max . For all A < δ D and r < min(r 0 , (4ω D )f (0) max ) -1/D , there exist β 1 and β 2 positive constants such that, for all x with f (x) > 0, we have

P(E c x,r ) ≤ β 1 exp -nr D min(f (x), ε 0 )β 2 + exp(-n/8).
Proof. First, tackle the condition on N ∂ x,r . Remark that P(N ∂ x,r > n/2) ≤ P(N x,r > n/2). Since N x,r ∼ Binom(n, Γ x,r ) with Γ x,r < 1/4, by condition r ≤ (4ω D f (0) max ) -1/D , we have that

P(N x,r > n/2) = P Å N x,r -nΓ x,r > n Å 1 2 -Γ x,r ãã ≤ P (N x,r -nΓ x,r > n/4) .
Then, by use of Hoeffding, we obtain P(N ∂ x,r > n/2) ≤ P(N x,r > n/2) ≤ exp(-n/8). Let now L t (with t > 0) be a level set that has the (δ, r 1 )-inside rolling ball property. We aim at proving that, for all x ∈ L t , we have that

P Å |C x,r | r D ≤ Aω D or Γx,r ≤ ω D r D At ã ≤ C D 4 D exp Å -nω D t ÄÄ 1 -A 1/D δ ä δr 4 ä D ã Ä 1 -A 1/D δ ä D , (11) 
where C D is the "covering constant" of a D-Dimensional Ball.

Notice that C y,δr ⊂ C x,r , where C y,δr denotes the convex hull of the observations in B(y, δr) the ball of the "ball-standardness" assumption (B(y, δr) ⊂ B(x, r) ∩ L t ). Set α ∈)0, 1(. Suppose that B(y, αδr) is not included in C y,δr . Thus, there exists y 1 in B(y, δαr) which is not in C y,δr . Because y 1 is not in C y,δr , there exists u 1 a unit vector such that, for all observation X i in B(y, δr), we have ⟨X i -y 1 , u 1 ⟩ < 0. Introduce z = y + ⟨y1-y,u1⟩+δr 2 u 1 . We have that z belongs to B(y, δr) and B(z, (1 -α)δr/2) contains no observation. We have then proved that, if B(y, αδr) is not included in C y,δr , there exists z ∈ B(y, δr) with B(z, (1 -α)δr/2) ∩ X n = ∅ (see Figure 9). Because B(y, αδr) ⊂ C y,δr ⊂ C x,r implying both that |C x,r | ≥ ω D (αδr) d and Γx,r ≥ ω D (αδr) d t, we get

P Å |C x,r | r D ≤ ω D (δα) D or Γx,r ≤ ω D (δα) D t ã ≤ C D 4 D (1 -α) -D exp(-nω D t((1 -α)δr/4) D ).
And so, if A < δ D , with α = A 1/D /δ, we obtain [START_REF] Charpentier | Kernel density estimation based on ripley's correction[END_REF]. Let now x be such that f (x) > 0. If f (x) < ε 0 , by application of (11) with t = f (x), we have the existence of positive constants β 1 and β 2 such that P

Ä |C y,δr | r D ≤ Aω D or Γx,r ≤ ω D r D Af (x) ä ≤ β 1 exp -nr D f (x)β 2 . If f (x) ≥ ε 0 ,
also by application of [START_REF] Charpentier | Kernel density estimation based on ripley's correction[END_REF] with t = ε 0 , to have

P Å |C y,δr | r D ≤ Aω D or Γx,r ≤ ω D r D ε 0 A ã ≤ β 1 exp -nr D ε 0 β 2
That concludes the proof under model M 2 .

Lemma 2 (Bounds on ε 1 ). Suppose that the density is upper-bounded by f (0) max . Then we have that

E (ε 1 (x)ε 2 (x)|E x,r ) = 0, (12) 
E ε 2 1 (x)|E x,r ≤ 2 max z∈Cx,r (f (z)) Aω D r D n ≤ 2f (0) max Aω D r D n , (13) 
P Ñ |ε 1 (x)| > 32 ln nf (0) max A 2 ω D nr D |E x,r é ≤ 2n -4 (1 + o(1)). (14) 
Proof. Recall that

ε 1 (x) = N o x,r -Γx,r (n -N ∂ x,r ) |C x,r |(n -N ∂ x,r ) I Ex,r .
See [START_REF] Baldin | Unbiased estimation of the volume of a convex body[END_REF] for the possibility to define N o x,r |C x,r . Given C x,r , the quantities |C x,r |, Γx,r and ε 2 (x) are known. As a first conclusion

E (ε 1 (x)ε 2 (x)|C x,r ) = ε 2 (x)E(ε 1 (x)|C x,r
). Also, with probability one, N ∂ x,r is the number of vertices of the convex polygon C x,r and thus is also known. So, almost surely, N o x,r |C x,r ∼ Binom(n-N ∂ x,r , Γx,r ). We thus also have

E(ε 1 (x)|E x,r ) = E(N o x,r |Ex,r)-Γx,r(n-N ∂ x,r ) |Cx,r|(n-N ∂ x,r ) = 0. We then have E (ε 1 (x)ε 2 (x)|C x,r ) = ε 2 (x)E(ε 1 (x)|C x,r ) = 0, which
proves [START_REF] Cuevas | On pattern analysis in the non-convex case[END_REF]. We also have

E(ε 2 1 (x)|C x,r ) = V(N o x,r |Ex,r) |Cx,r| 2 (n-N ∂ x,r ) 2 = Γx,r(1-Γx,r) |Cx,r| 2 (n-N ∂ x,r ) . Then, due to Γx,r(1-Γx,r) |Cx,r| ≤ Γx,r |Cx,r| ≤ max Cx,r (f (z)), it comes that E(ε 2 1 (x)|C x,r ) ≤ max z∈B(x,r) f (z) n-N ∂ x,r 1 
|Cx,r| . Thus we clearly roughly obtain

E(ε 2 1 (x)|E x,r ) ≤ 2 max z∈B(x,r) f (z) Anω D r D ≤ 2f (0) max Anω D r D ,
which proves [START_REF] Cuevas | On boundary estimation[END_REF]. By Bennett's inequality, it comes that:

P |N o x,r -Γx,r (n -N ∂ x,r )| > » 16 ln n(n -N ∂ x,r ) Γx,r |C r,x ≤ 2 exp -(n -N ∂ x,r ) Γx,r h 16 ln n (n -N ∂ x,r ) Γx,r , with h(u) = (1 + u) ln(1 + u) -u. Because h(u) ≥ u 2 /4 when u ≤ 4, we get P Ñ |ε 1 (x)| > 32 ln nf (0) max A 2 ω D nr D E x,r and Γx,r ≥ 8 ln n n é ≤ 2n -4 . (15) 
To conclude the proof we aim at bounding the probability of large ε 1 given E x,r and Γx,r ≤

ln n n

(that could happen for points x with f (x) ≤ 8 ln n/(Aω D nr D )). Recall that, given C x,r , N o

x,r has a binomial law. Then, by use of first Bernstein inequality, we have:

P Ä |N o x,r -Γx,r (n -N ∂ x,r )| > t|C r,x ä ≤ 2 exp Ç - t 2 2 Γx,r (1 -Γx,r )(n -N ∂ x,r ) + 2t/3 å . Introduce n ∂ = n -N ∂ x,r and choose t = √ a ′ n ∂ ln nr D to obtain P Ä |N o x,r -n ∂ Γx,r | > √ a ′ n ∂ r D ln n|C r,x ä ≤ 2 exp Ç - a ′ n ∂ r D ln n 2n ∂ Γx,r (1 -Γx,r ) + 2 √ a ′ n ∂ r D ln n/3 å .
Thus (division by n ∂ |C x,r | in the left term and trivial bound in the right one) we have

P Ç |ε 1 (x)| > a ′ r D ln n n ∂ |C x,r | 2 |C x,r å ≤ 2 exp Ç - a ′ n ∂ r D ln n 2n ∂ Γx,r + 2 √ a ′ n ∂ r D ln n/3 å . Now, choose a ′ = 16ω D f (0)
max and notice that, given E x,r , n ∂ ≥ n/2. It comes

P Ñ |ε 1 (x)| > 32f (0) max ln n A 2 ω D nr D E x,r and Γx,r ≤ 8 ln n n é ≤ 2 exp Ç - a ′ nr D ln n 16 ln n + 2 3 √ 2a ′ r D n ln n å .
And, because nr D / ln n → +∞, we obtain

P Ñ |ε 1 (x)| > 32f (0) max ln n A 2 ω D nr D E x,r and Γx,r ≤ 8 ln n n é ≤ 2 exp Å - 3 2 √ a ′ ln nnr D ã (1 + o(1)).
Apply again nr D ln n → +∞ to have that P

Å |ε 1 (x)| > 32f (0) max ln n A 2 ω D nr D E x,r and Γx,r ≤ 8 ln n n ã = o(n -4 ).
That, together with [START_REF] Devroye | Combinatorial methods in density estimation[END_REF], concludes the proof of ( 14).

Lemma 3 (Rough bound on ε 2 ). Suppose that the support S of the distribution is either convex or has the R 0 -inside and outside rolling ball condition. Also suppose that the density f is K-Lipschitz continuous on S and upper-bounded by f (0) max . Then, if S is convex, we have

P (|ε 2 (x)| > rK |E x,r ) = 0. ( 16 
)
And, if S has the R 0 -inside and outside rolling ball property, we have

P Ç |ε 2 (x)| > r Ç K + 4f (0) max ω D-1 3AR 0 ω D å |E x,r å = 0. ( 17 
)
Proof. Recall that

ε 2 (x) = Ç Γx,r |C x,r | -f (x) å I Ex,r , |ε 2 (x)| = Cx,r (f (y) -f (x))dy |C x,r | ≤ Cx,r∩S (f (y) -f (x))dy |C x,r | + Cx,r\S (f (y) -f (x))dy |C x,r | . Thus, we have |ε 2 (x)| ≤ rK + f (x)
|Cx,r\S| |Cx,r| . Then, roughly bounding the second term given E x,r , we get

|ε 2 (x)| ≤ rK + f (x) |H(B(x,r)∩S)\S| Aω D r D . Obviously, if S is convex, we obtain |ε 2 (x)| ≤ rf (1) max .
When S has the rolling ball condition, by application of proposition 5 (see Appendix B) it comes that |ε 2 (x)| ≤ r(f

(1) max + f (x) 4ω D-1 3AR0ω D ).

Proof of Theorem for model M 1

Proof of Theorem 1. By Equation ( 9), we have

E(( fr,A (x) -f (x)) 2 ) ≤ E(ε 2 1 (x)|E x,r ) + 2E(ε 1 ε 2 |E x,r ) + E(ε 2 2 (x)|E x,r ) + f (x) 2 P(E c x,r ).
Compactness of S and Lipschitz continuity of f imply that the density is upper bounded by f

(0) max ≤ f (0) min +K diam(S)
2 so we can apply Lemmas 2 and 3. We then have

E(ε 2 1 (x)|E x,r ) ≤ 2f (0) max Aω D nr D , E (ε 1 (x)ε 2 (x)|E x,r ) = 0 and E(ε 2 (x) 2 |E x,r ) ≤ r 2 K + 4f (0) max ω D-1 3AR0ω D 2
(take R 0 = +∞ in case of convex support). We also can apply Lemma 1 (the density is upper bounded and the distribution is (r, δ, f

min )-standard) to achieve the proof of the first equation, for n large enough:

E(( fr,A (x) -f (x)) 2 ) ≤ 2f (0) max Aω D nr D + r 2 Ç K + 4f (0) max ω D-1 3AR 0 ω D å2 + (f (0) max ) 2 Ä β 1 exp(-nr D f (0) min β 2 ) + exp(-n/8) ä .
To prove the second equation we can proceed the same way, by use of equation [START_REF] Chacón | Multivariate kernel smoothing and its applications[END_REF], and obtain

P(| fr,A (x) -f (x)| ≥ t 1 + t 2 ) ≤ P(|ε 1 (x)| ≥ t 1 |E x,r ) + P(|ε 2 (x)| ≥ t 2 |E x,r ) + P(E c
x,r ).

Choose then

t 1 = 32f (0) max ln n A 2 ω D nr D and t 2 = r K + 4f (0) max ω D-1 3AR0ω D
. By Lemma 

Proofs for model M 2

Lemma 4 (Bounds on ε 2 for model M 2 ). Suppose that the distribution belongs to the model M 2 . For x ∈ S and r small enough to have B(x, r) ⊂ {z, f (z) > 0}, introduce H x,r = max z∈B(x,r) ||H f (x)|| op . There exists an explicit constant C such that

E(ε 2 (x) 2 |E x,r ) ≤ Ç H 2 x,r r 4 + Cr 2 Ç Å nΓ x,r 2 
ã -4 D+1 + r Å nΓ x,r 2 
ã -2 D+1 åå (1 + o(1)). ( 18 
)
And there exist explicit constants C, C ′ and C 2 such that

P |ε 2 | ≥ Cr ln n nr D γ(x) + r Å C ′ nr D γ(x) ã 2 D+1 + r 2 f (2) max |E x,r ≤ C 2 n -4 + exp -n(δr) D γ(x)/10 , (19 
) where γ(x) = min(f (x), ε 0 ), ε 0 being the constant in the (r 0 , δ, ε 0 )-standardness of the distribution.

Proof. As C x,r ⊂ B(x, r) ⊂ S, by the use of a second order Taylor expansion (see Proposition 2 in Appendix A), we get:

Γx,r -f (x)|C x,r | - Cx,r (y -x)∇ f (x) ′ dy ≤ Cx,r ||y -x|| 2 max z∈Cx,r ||H f (z)|| op dy.
Because B(x,r) (y -x)∇ f (x) ′ dy = 0, we have that:

| Γx,r -f (x)|C x,r || ≤ B(x,r)\Cx,r r||∇ f (x)||dy + |C x,r | max z∈Cx,r ||H f (z)|| op r 2 , from which we derive | Γx,r-f (x)|Cx,r|| |Cx,r| ≤ r||∇ f (x)|| |B(x,r)\Cx,r| |Cx,r| + max z∈Cx,r ||H f (z)|| op r 2 . Thus, given |C x,r | ≥ Aω D r D , we obtain |ε 2 (x)| ≤ ||∇ f (x)|| A r |B(x, r) \ C x,r | |B(x, r)| + max z∈Cx,r ||H f (z)|| op r 2 . ( 20 
)
To control the convergence rate of |B(x, r) \ C x,r | we will make use of results from [START_REF] Brunel | Uniform deviation and moment inequalities for random polytopes with general densities in arbitrary convex bodies[END_REF] recalled in Appendix C (see Proposition 6). To apply the aforementioned proposition let us introduce M x,r = max y∈B(0,1)

r D f (x+ry) B(x,r) f (z)dz (defined because B(x,r) f (z)dz > 0). Let us first consider the L 2 convergence. Because min B(x,r) f (y) max B(x,r) f (y) |B(x,r)\Cx,r| |B(x,r)| ≤ B(x,r)\Cx,r f (z)dz B(x,r) f (z)dz
and by application of equation ( 30) (Appendix C), it comes that, for k > 0,

E ÅÅ |B(x, r) \ C x,r | |B(x, r)| ã q |N x,r = k ã ≤ A q (M x,r + 1) q Ç max B(x,r) f (y) min B(x,r) f (y) å q k -2q D+1 .
Notice that E ÄÄ |B(x,r)\Cx,r|

|B(x,r)| ä q |N x,r = 0 ä = 1.
Then, we have:

E ÅÅ |B(x, r) \ C x,r | |B(x, r)| ã q ã ≤A q (M x,r + 1) q Ç max B(x,r) f (y) min B(x,r) f (y) å q n k=1 Ç n k å k -2q D+1 Γ k x,r (1 -Γ x,r ) n-k + (1 -Γ x,r ) n . A rough bound gives M x,r ≤ 1 ω D max B(x,r) f (y) min B(x,r) f (y) . Introduce B x,r,q = A q 1 ω D max B(x,r) f (y) min B(x,r) f (y) + 1 q max B(x,r) f (y) min B(x,r) f (y) q
. By application of Proposition 1 (Appendix A), we have that

E ÅÅ |B(x, r) \ C x,r | |B(x, r)| ã q ã ≤ B x,r,q Å nΓ x,r 2 
ã -2q D+1 + exp Å - nΓ x,r 10 
ã + (1 -Γ x,r ) n . ( 21 
)
And thus, because

E(ε 2 (x) 2 |E x,r ) ≤ E(ε 2 (x) 2 ) (ε 2 (x)
2 is a positive random variable), by use of [START_REF] Getz | A local nearest-neighbor convex-hull construction of home ranges and utilization distributions[END_REF], we obtain

E(ε 2 (x) 2 |E x,r ) ≤ ||∇ f (x)|| 2 A 2 r 2 Ç B x,r,2 Ç Å nΓ x,r 2 
ã -4 D+1 + exp Å - nΓ x,r 10 
ã å + (1 -Γ x,r ) n å + 2 ||∇ f (x)||H x,r A r 3 Ç B x,r,1 Ç Å nΓ x,r 2 
ã -2 D+1 + exp Å - nΓ x,r 10 
ã å + (1 -Γ x,r ) n å + H 2 x,r r 4 .
Because (1 -Γ x,r ) n ≤ exp(-nΓ x,r ) and nr D / ln n → +∞, and by application of Proposition 7 (Appendix C) we obtain the existence of an explicit constant C such that

E(ε 2 (x) 2 |E x,r ) ≤ Ç H 2 x,r r 4 + Cr 2 Ç Å nΓ x,r 2 
ã -4 D+1 + r Å nΓ x,r 2 
ã -2 D+1 åå (1 + o(1)).
Let us second consider the convergence in probability. y) . By use of Equation ( 29) (Appendix C), we obtain

Introduce B ′ x,r = C 1 1 ω D max B(x,r) f (y) min B(x,r) f (y) + 1 max B(x,r) f (y) min B(x,r) f ( 
P ñ k Å |B(x, r) \ C x,r | |B(x, r)| -B ′ x,r k -2/(D+1) ã > t max B(x,r) f (z) min B(x,r) f (z) |N x,r = k ô ≤ C 2 e -t .
From this, it comes, by Proposition 7 (Appendix C), that there exist C and C ′ such that

P ïÅ ||∇ f (x)|| |B(x, r) \ C x,r | |B(x, r)| ≥ C t k + C ′ k -2 D+1 |N x,r = k ã |E x,r ò ≤ C 2 e -t .
Thus, for all K, we obtain

P Å ||∇ f (x)|| |B(x, r) \ C x,r | |B(x, r)| ≥ C t K + C ′ K -2 D+1 |E x,r ã ≤ C 2 e -t + P(N x,r < K),
which, with (20), gives

P Å |ε 2 | ≥ C tr K + C ′ rK -2 D+1 + r 2 f (2) max |E x,r ã ≤ C 2 e -t + P(N x,r < K).
Finally, to deal with P(N x,r < K), recall that γ(x) = min(f (x), ε 0 ) and choose

K = nω D δ D r D γ(x) 2 
. Also recall that we have Γ x,r ≥ ω D (δr) D γ(x) by the ball standardness asumption. Thus, by application of Bennets inequality (h(0.5) ≥ 0.1) with the choice of t = 4 ln n, it comes the existence of (new) constants C and C ′ such that:

P |ε 2 | ≥ r C ln n nr D γ(x) + r Å C ′ nr D γ(x) ã 2 D+1 + r 2 f (2) max |E x,r ≤ C 2 n -4 + exp -n(δr) D γ(x)/10 .
This achieves the proof of [START_REF] Funke | Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods[END_REF].

Proof of Theorem 2. By Equation ( 9), we have

E(( fr,A (x) -f (x)) 2 ) ≤ E(ε 2 1 (x)|E x,r ) + 2E(ε 1 ε 2 |E x,r ) + E(ε 2 2 (x)|E x,r ) + f 2 (x)P(E c x,r ).
By Equation ( 13),

E(ε 2 1 (x)|E x,r ) ≤ 2f (0) 
max Aω D r D n . By Equation ( 12), E (ε 1 (x)ε 2 (x)|E x,r ) = 0. By Equation [START_REF] Fédérer | Geometric measure theory[END_REF], for n large enough to have B(x, r) ⊂ S,

E(ε 2 (x) 2 |E x,r ) ≤ Ç H 2 x,r r 4 + Cr 2 Ç Å nΓ x,r 2 
ã -4 D+1 + r Å nΓ x,r 2 
ã -2 D+1 åå (1 + o(1)).
This gives

E(ε 2 (x) 2 |E x,r ) ≤ H 2 x,r r 4 + Cr 2 Å nω D f (x)r D 2 ã-4 D+1 + r Å nω D f (x)r D 2 ã-2 D+1 (1 + o x (1)).
Finally, by Lemma 1, we have

f 2 (x)P(E c x,r ) ≤ β 1 f 2 (x) exp -nr D min(f (x), ε 0 )β 2 + (f (0) max ) 2 exp(-n/8
). Thus, we obtain

f 2 (x)P(E c x,r ) ≤ max Å 4β 1 e -2 (β 2 nr D ) 2 , β 1 (f (0) max ) 2 exp(-nr D β 2 ε 0 ) ã + (f (0) max ) 2 exp(-n/8).
And because nr D → +∞, we have

f 2 (x)P(E c x,r ) = O((nr D ) -2
). This achieves the proof of the first point of Theorem 2.

Second point of Theorem 2 is proved the same by use of Lemma 3 instead of equation [START_REF] Fédérer | Geometric measure theory[END_REF].

As is common and classical, the proof of Corollary 1 is left for the reader.

Proof of Theorem 3. Firstly focus on the first case. Let us fix t > 0. For all x ∈ L t such that B(x, r) ⊂ S, due to Lemma 1, we have:

P(E c x,r ) ≤ β 1 exp -β 2 nr D min(t, ε 0 ) + exp(-n/8) = o t (n -4 ).
Also due to Equation ( 14), we have P

Å |ε 1 (x)| > 32 ln nf (0) max A 2 ω D nr D |E x,r ã ≤ 2n -4 (1 + o(1)). Finally, Equation (19) 
for r = cn -1 D+4 and D ≤ 7 gives

P |ε 2 | ≥ O t (r 2 )|E x,r ≤ C 2 n -4 + exp -nr D min(t, ε 0 )/10 .
Thus, due to

P(| fr,A (x) -f (x)| ≥ t 1 + t 2 ) ≤ P(|ε 1 (x)| ≥ t 1 |E x,r ) + P(|ε 2 | ≥ t 2 |E x,r ) + P(E c x,r ), P Ñ | fr,A (x) -f (x)| ≥ 32 ln nf (0) max A 2 ω D nr D + O t (r 2 ) é ≤ Cn -4 (1 + o t (1)). Introduce X(t, r) = {X i ∈ X n , f (X i ) > t, B(X i , r) ⊂ S}. Recall that r = cn -1 D+4 .
All the above equations provide the existence of a constant C t such that, for n large enough,

P Ä ∃X i ∈ X(t, r) s.t | fr,A (X i ) -f (X i )| ≥ C t √ ln nn -2 D+4 ä ≤ Cn -3 (1 + o(1)).
That, with Borrel Cantelli Lemma, concludes the proof of the first point of Theorem 3.

The second point of Theorem 3 is the same using the lower bound of the density to obtain uniform rates and is let to the reader.

We now prove the third point of Theorem 3. First suppose that f (x) ≥ (ln n/(nr D )) 1/2 . Then, by Lemma 1 and because nr D ln n → +∞, we have

P(E c x,r ) ≤ β 1 exp -β 2 ln n » nr D ln n +exp(-n/8) = o(n -4
). Due to Equation ( 14), we also have P

Å |ε 1 (x)| > 32 ln nf (0) max A 2 ω D nr D |E x,r ã ≤ 2n -4 (1 + o(1)).
And, under the rolling ball condition or the convexity condition, due to Lemma 3, there exists

C such that P (|ε 2 | > Cr |E x,r ) = 0. Thus, due to P(| fr,A (x) -f (x)| ≥ t 1 + t 2 ) ≤ P(|ε 1 (x)| ≥ t 1 |E x,r ) + P(|ε 2 | ≥ t 2 |E x,r ) + P(E c
x,r ), we obtain

P Ñ | fr,A (x) -f (x)| ≥ 32 ln nf (0) max A 2 ω D nr D + Cr é ≤ 2n -4 (1 + o(1)).
Second, suppose that 0 < f (x) ≤ (ln n/(nr D )) 1/2 . Because, conditionally to E c x,r , fr,A (x) = 0, we have

P(| fr,A (x)-f (x)| > (ln n/(nr D )) 1/2 |E c x,r ) = 0. It comes that, when t ≥ 2(ln n/(nr D )) 1/2 , P(| fr,A (x) -f (x)| ≥ t) ≤ P(| fr,A (x) -f (x)| ≥ t|E x,r ).
Then, applying the same calculus as in the first case, we obtain

P Ñ | fr,A (x) -f (x)| ≥ … ln n nr D max Ñ 32f (0) max A 2 ω D , 2 é + Cr é ≤ 2n -4 (1 + o(1)).
Thus, for all x in S, we have

P Ñ | fr,A (x) -f (x)| ≥ … ln n nr D max Ñ 32f (0) max A 2 ω D , 2 é + Cr é ≤ 2n -4 (1 + o(1)).
Thus, when r = cn )) . That, with Borrel Cantelli Lemma, concludes the proof of last point of Theorem 3.

-1 D+4 , P Ä ∃X i s.t | fr,A (X i ) -f (X i )| ≥ Cr(1 + o(1)) ä ≤ 2n -3 (1+o( 1 
Proof of Theorem 4. Recall the LoCoH definition: for a set E,

H r (E) := x∈E H (B(x, r) ∩ E) .
Suppose first that t is a regular level. The C 2 condition on f implies that for all (x, y)

∈ S × S ||∇ f (x) -∇ f (y)|| ≤ f (2)
max ||x -y||. Thus, by application of Theorem 2 in [START_REF] Walther | Granulometric smoothing[END_REF], for all

t ′ ∈ [t -∆ t , t + ∆ t ], L t ′ has the mt f (2) max
-inside and outside rolling ball condition.

We now prove that, for all 0 < ε < min ∆ t ,

mtd(Lt-∆ t ,∂S) 2 , m 2 t 2f (2) max 
, we have that

L t-ε ⊂ L t ⊕ 2ε mt B. Indeed, consider x ∈ L t-ε and y = x + 2 ε mt ∇ f (x)
||∇ f (x)|| .We have that x ∈ L t-∆t and ||y -x|| < d(L t-∆t , ∂S), thus y ∈ S. That allows to write, according to Proposition 2, that

f (y) ≥ f (x) + 2 ε m t ||∇ f (x)|| - 1 2 Å 2 ε m t ã 2 f (2) max . 
We have f (y

) ≥ t -ε + 2ε -ε 2εf (2) max m 2 t . Thus, since ε < m 2 t /(2f (2) 
max ), we also have f (y) ≥ t and thus y ∈ L t . That, together with ||y -x|| = 2ε mt , concludes the proof of the inclusion:

L t-ε ⊂ L t ⊕ 2ε m t B. (22) 
By last point of Theorem 3, with probability one for n large enough, for all X i such that f (X i ) ≥ t, we have f (X i ) ≥ t -Cn -1 D+4 . Thus, when n is large enough to have Cn -1 D+4 ≤ ∆ t , we have X i ∈ L t-∆t and thus d(X i , ∂S) ≥ d(L t-∆t , ∂S) > 0. When r ≤ d(L t-∆t , ∂S) (that is when n is large enough), from Theorem 3 (first point), with probability one for n large enough, for all X i such that f (X i ) ≥ t, we have |f

(X i ) -f (X i )| ≤ C t-∆t √ ln nn -2 D+4
. Thus, we get that X i ∈ L t-εn with ε n = C t-∆t √ ln nn -2 D+4 . We then have, with probability one for n large enough:

Lt

⊂ H r (X n ∩ L t-εn ) ⊂ H r (L t-εn ).
When n is large enough to have all previous conditions and C t-∆t √ ln nn -2 D+4 ≤ ∆ t , L t-εn satisfies the mt f (2) max -inside and outside rolling ball condition. Then, by Proposition 5 equation [START_REF] Rodríguez | A data-adaptive method for estimating density level sets under shape conditions[END_REF] (Appendix B), we obtain that (with probability one for n large enough):

Lt ⊂ L t-εn ⊕ r 2 f (2) max m t B ⊂ L t ⊕ Ç r 2 f (2) max + 2ε n m t å B. (23) 
Now, we consider reverse inclusion. Introduce

ε ′ n = C t √ ln nn -2 D+4
. By last point of Theorem 3, with probability one for n large enough, we have X n ∩ L t+ε ′ n ⊂ X + r,A (t). Introduce now

P t = tω D mt f (2) max D
and n ′ = nP t /2. Recall that r = cn -1 D+4 . Thus with probability one for n large enough, we get:

H c( ln n ′ n ′ ) 1 D+1 X n ∩ L t+ε ′ n ⊂ H r X n ∩ L t+ε ′ n ⊂ Lt . Recall that L t+ε ′ n has the mt f (2) max
-inside and outside rolling ball condition (when n is large enough). Thus we have

|L t+ε ′ n | ≥ ω D mt f (2) max 

D

and P(L t+ε ′ n ) ≥ P t . In consequence, by Hoeffding, with probability one for n large enough, there is more than n ′ observations in X n ∩ L t+ε ′ n . We can apply [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF] (Theorem 2 with α = 0). More precisely, there exists a constant C ′ t such that, with probability one for n large enough, we have:

L t+ε ′ n ⊂ H c( ln n ′ n ′ ) 1 D+1 X n ∩ L t+ε ′ n ⊕ C ′ t Å ln n n ã 2 D+1 B.
Previous chain of inclusion allows then to conclude that 

L t+ε ′ n ⊂ Lt ⊕ C ′ t ln n n 2 D+1 B.
Supposenow that t is a standard level. Choose ε n = Cn -1 D+4 , such that for all X i we have f (X i ) ≥ t + ε n ⇒ fr,A (X i ) ≥ t ⇒ f (X i ) ≥ t -ε n . It implies that H r (L t+εn ∩ X n ) ⊂ Lr ⊂ H r (L t-εn ∩ X n ).
Take now n large enough to have ε n ≤ ∆ t . We first have the trivial inclusions Lt

⊂ H r (L t-εn ∩ X n ) ⊂ H r (L t-εn ) ⊂ H r (L t ⊕ ε n β t B) ⊂ L t ⊕ (r + ε n β t )B (due to H r (S) ⊂ S ⊕ rB for any set S).
Focus now on the reverse inclusion. First, there exists a constant c t such that, with probability one for n large enough, L t+εn ⊂ (L t+εn ∩ X n ) ⊕ c t (ln n/n) 1/D B. The proof being classical, we refer the reader to Proposition 3 in Appendix B for further details. Thus, by standardness, we get L t ⊂ (L t+εn ∩ X n ) ⊕ c t (ln n/n) 1/D + β t ε n B. And finally, using arguments as in Theorem 1 and Corollary 1 in [START_REF] Aaron | Local convex hull support and boundary estimation[END_REF], we have that d H H 4(ct(ln n/n) 1/D +βtεn) (L t+εn ∩ X n ), L t ≤ γ t c t (ln n/n) 1/D + β t ε n . Hence, we obtain

L t ⊂ H 4(ct(ln n/n) 1/D +βtεn) (L t+εn ∩ X n ) ⊕ γ t Ä c t (ln n/n) 1/D + β t ε n ä B.
Thus, since r n = cn -1 D+4 with c > 4β t C, we have that, with probability one for n large enough,

L t ⊂ (H rn (L t+εn ∩ X n )) ⊕ γ t Ä c t (ln n/n) 1/D + β t ε n ä B, L t ⊂ Lt ⊕ γ t Ä c t (ln n/n) 1/D + β t ε n ä B.
That concludes the proof of the second point of the theorem.

Proofs for the manifold case

Proof of Theorem 5 in a nutshell: Let introduce g x,R (z) the density of π Tx (X)|X ∈ B(x, R). By applying following Lemma 6 for R and Θ n small enough, we are in situation similar to the one model M 1 so that, there exist constants β ′ 1 , β ′ 2 , C 1 and C 2 such that:

E Å n k fr,R,A (x) -g x,R (0) N x,R = k ã ≤ C 1 √ kr d + C 2 r + β ′ 1 exp(-β ′ 2 kr d ) + exp(-k/8).
Thus, we have

E Å | fr,R,A (x) -f (x)| N x,R = k ã ≤ C 1 √ k n √ r d + k n C 2 r + β ′ 1 exp(-β ′ 2 kr d ) + exp(-k/8) +E Å k n g x,R (0) -P X (B(X, R))g x,R (0) N x,R = k ã +E ( |P X (B(X, R))g x,R (0) -f (x)|| N x,R = k) .
In consequence (extensively using k/n ≤ 1), we obtain

E | fr,R,A (x) -f (x)| ≤ C 1 E( N x,R ) n √ r d + C 2 r + E(β ′ 1 exp(-β ′ 2 N x,R r d ) + exp(-N x,R /8)) +g x,R (0)E Å N x,R n -P X (B(X, R)) ã + |P X (B(X, R))g x,R (0) -f (x)| .
By Jensen inequality for concave functions (applied to the first term), E(exp(-αN ) = (1 -p + pe -α ) n ≤ exp(-np(1 -e α )) when N ∼ Binom(n, p) (end of the first line), and Cauchy Schwartz and the law of N x,r (the second line), it comes existence of positive β ′′ 2 and β 3 such that

E | fr,R,A (x) -f (x)| ≤ C 1 √ nr d + C 2 r + β ′ 1 exp(-β ′′ 2 nr d ) + exp(-β 3 n) + g x,R (0) 4 √ n + |P X (B(X, R))g x,R (0) -f (x)| .
By the following Lemma 5 second point, we have that |P 

X (B(X, R))g x,R (0) -f (x)| ≤ C 3 Θ n .

ä

, there exit K ′ , r 0 , C ′ , G min and G max positive constants such that, for n large enough to have

Θ n ≤ min Ä 1 12 , 1 2(D-d) -2 R τ S ä
, we have:

1. for all z ∈ S x,R , G min ≤ g x,R (z) ≤ G max , 2. |P X (B(x, R))g x,R (0) -f (x)| ≤ C ′ Θ 2 n (1 + o(1)), 3. for all z ∈ B(0, r 0 ) ∩ S x,r , |g x,R (z) -g x,R (0)| ≤ K ′ (||z|| + Θ 2 n + Θ 2 n ||z|| 2 ).
Proof. Due to Proposition 8, we have that π Tx : S ∩ B(x, R) → S x,R = π Tx (S ∩ B(x, R)) is one to one. Let (u x,1 , . . . , u x,d ) be an orthonormalized basis of Tx , completed by (u x,d+1 , . . . , u x,D ) to have an orthonormalized basis of R D , so that

π -1 Tx : S x,R → S ∩ B(x, R) z = d i=1 z i u x,i → x + z + D i=d+1 φ x,i-d (z)u x,i
Define ϕ x (z) = (φ x,1 (z), . . . , φ x,D-d+1 (z)) and denote by J x (z) the Jacobian matrix of ϕ x (z) i.e.

J x (z) = Ü ∂φx,1 ∂z1 (z) . . . ∂φx,1 ∂z d (z) . . . . . . ∂φ x,D-d ∂z1 (z) . . . ∂φ x,D-d ∂z d (z) 
ê .

On the one hand, when i ≥ 1, then u x,d+i is in T ⊥ x . On the other hand, for all j ∈ {1, . . . , d}, we have that v x,j := u

x,j + D-d k=1 ∂φ x,k (z) ∂zj u x,k+d ∈ T x+z+ϕx(z) S. Thus, we get |⟨u x,d+i , v x,j ⟩| ≤ (Θ n + ∠T x S, T x+z+ϕx(z) S)||v x,j ||. From this, since ||z + ϕ x (z)|| ≤ R ≤ τ S /3, it comes that |⟨u x,d+i , v x,j ⟩| ≤ Ä Θ n + π||z+ϕx(z)|| 2τ S ä ||v x,j
||. Thus, we obtain:

Å ∂φ x,i ∂z j (z) ã 2 ≤ Å Θ n + π||z + ϕ x (z)|| 2τ S ã 2 1 + D-d k=1 Å ∂φ x,k ∂z j (z) ã 2 . Now, summing on i gives that, if z ∈ S x,R , D-d k=1 Ä ∂φ x,k ∂zj (z) ä 2 ≤ Ä Θn+ π||z+ϕx (z)|| 2τ S ä 2 (D-d) 1- Ä Θn+ π||z+ϕx (z)|| 2τ S ä 2 (D-d)
.

That directly implies, by Cauchy Schwartz, that

|| t J x (z)J x (z)|| ∞ ≤ Ä Θn+ π||z+ϕx (z)|| 2τ S ä 2 (D-d) 1- Ä Θn+ π||z+ϕx (z)|| 2τ S ä 2 (D-d)
.

Then, because t J x J x is a d-dimensional symmetric positive matrix that has a rank upper bounded by min(d, D -d) and eigen values upper bounded by d||

t J x (z)J x (z)|| ∞ , it comes that 1 ≤ det(I + t J x (z)J x (z)) ≤ Ñ 1 + Ä Θ n + d π||z+ϕx(z)|| 2τ S ä 2 (D -d) 1 - Ä Θ n + π||z+ϕx(z)|| 2τ S ä 2 (D -d) é min(d,D-d) , (24) 
g x,R (z) = » det(I + t J x (z)J x (z)) f (x + z + ϕ x (z)) P X (B(x, R)) I S x,R (z). 
Conditions on Θ n and R imply that 1 ≤ det(I +

t J x (z)J x (z)) ≤ 2 min(d,D-d) 2
and thus

G min = f (0) min and G max = f (0) max 2 min(d,D-d) 2 P X (B(x,R))
are suitable constants for point 1 of Lemma 5. Also f (x)

P X (B(x,R)) ≤ g x,R (0) ≤ f (x) P X (B(x,R)) 1 + (Θn) 2 (D-d) 1-(Θn) 2 (D-d) min(d,D-d) 2 
allows to prove the second point with 

C ′ = (D-d) 2 2 . Finally, when z ∈ S x,r , introduce ∆ J = | det(I + t J x (z)J x (z)) -det(I + t J x (0)J x (0))|. We have |g x,R (z) -g x,R (0)| ≤ ∆ J f (0) max P X (B(x,R)) + √ det(I+ t Jx(0)Jx(0)) P X (B(x,R)) K||z + ϕ x (z)||. Then, using that ∆ j ≲ Θ 2 n +||z|| 2 , det(I + t J x (0)J x (0)) ≲ (1+Θ 2 
E Å n k fr,R,A (x) -g x,R (0) N x,R = k ã ≤ C 1 √ kr d + C 2 r + β ′ 1 exp(-β ′ 2 kr d ) + exp(-k/8). Proof. Introduce Γ x,r,R = " C x,r,R g x,R (z)dz, and the event Êx,r,R ="| " C x,r,R | ≥ Aω D r D , Γx,r,R ≥ g x,R (0)Aω D r D and " N ∂ x,r,R ≤ N x,R /2" and define ε 1 (x) = " N o x,r,R -Γ x,r,R (n -" N ∂ x,r,R ) | " C x,r,R |(n -" N ∂ x,r,R ) I Êx,r,R and ε 2 (x) = Ç Γ x,r,R | " C x,r,R | -g x,R (0) å I Êx,r,R . (25) 
We are in the full dimensional case and we have

E Å n k fr,R,A (x) -g x,R (0) N x,R = k ã ≤ E(| ε 1 (x)||E x,r , N x,R = k) + E(| ε 2 (x)||E x,r , N x,R = k) + G max P( Êc x,r |N x,R = k). (26) 
By Cauchy Schwartz and Lemma 2 Equation ( 13), we obtain:

E(| ε 1 (x)||E x,r , N x,R = k) ≤ » E( ε 1 (x) 2 |E x,r , N x,R = k) ≤ 2G max Aω d r d .
Exactly as in Lemma 3, we have that (deterministically)

| ε 2 (x)| ≤ max S x,R ∩B(x,r) |g x,R (z) -g x R (0)| + g x,R (0) |H(B(0, r) ∩ S x,R ) \ S x,R | Aω d r d .
Thus by application of Lemma 5, we obtain

| ε 2 (x)| ≤ K ′ (r + Θ 2 n + r 2 Θ 2 n ) + G max Aω d r d |H(B(0, r) ∩ S x,R ) \ S x,R |. When B(0, r) ⊂ S x,R , we have |H(B(0, r) ∩ S x,R ) \ S x,R | = 0. To bound |H(B(0, r) ∩ S x,R ) \ S x,R | when B(0, r) ∩ S c
x,R ̸ = ∅ and r is small enough, we can apply Lemma A.7 in [START_REF] Aamari | Minimax boundary estimation and estimation with boundary[END_REF] from which there exits R ′ > 0 (depending on R and the reaches τ M and τ ∂M ) and η a unit vector such that B(0

* -R ′ η, R ′ ) ∩ Tx ⊂ S x,R ⊂ B c (0 * + R ′ η, R ′ ) ∩ Tx ,
where 0 * is the projection of 0 on π Tx (∂S ∩ B(x, R)). This local version of the rolling ball condition allows, as in Proposition 4, to obtain that, for r < R ′ , there exists y ∈ Tx such that B(y, r/2) ∩ Tx ⊂ B(0, r) ∩ S x,R . This local ball standardness and lower bound on g x,R allows to bound on P(E c x,r |N x,R = k) as in Lemma 1.

A Basic Tools

Proposition 1. Let p ∈)0, 1( and (n, q, D) ∈ (N * ) 3 . We have

n k=1 Ç n k å k -2q D+1 p k (1 -p) n-k ≤ exp - np 10 + - np 2 -2q D+1 . Proof. n k=1 Ç n k å k -2q D+1 p k (1-p) n-k ≤ ⌊np/2⌋ k=1 Ç n k å k -2q D+1 p k (1-p) n-k + n k=⌈np/2⌉ Ç n k å k -2q D+1 p k (1-p) n-k .
Due to Bennet's Inequality that implies that P(K ≤ np/2) ≤ exp(-np/10), we have that

n k=1 Ç n k å k -2q D+1 p k (1 -p) n-k ≤ exp - np 10 + np 2 -2q D+1 .
That concludes the proof of the proposition.

Proposition 2. Let g : S ⊂ R D → R be a C 2 function such that sup S ||H g (z)|| op < +∞. For all x ∈ S and all y such that (x, y) ⊂ S, we have:

|g(y)-g(x)-(y-x) t ∇ g (x)| ≤ sup S ||H g (z)|| op ||y- x|| 2 .
Proof. If d(x, ∂S) ≥ r, we have H(B(x, r) ∩ S) \ S = ∅, thus it has a null volume. Consider now x such that d(x, ∂S) = h < r. As possible due to rolling ball condition, for r ≤ R 0 , introduce x * = π ∂S (x), O in = x * -R 0 η x * and O out = x * + R 0 η x * . Let v be a unit vector of η ⊥

x * and z = x + αη x * + βv ∈ B(x, r) ∩ S. By rolling ball property, ||z -O out || 2 > R 2 0 , and we have This finally implies that H(B(x, r) ∩ S) \ S ⊂ B(x, r) ∩ (H + \ H -). Thus H(B(x, r) ∩ S) \ S is included in the cylinder C defined as follows:

® ||z -x|| 2 = α 2 + β 2 ≤ r 2 ||z -O out || 2 = (α -(h + R 0 )) 2 + β 2 > R 2 0 ⇒ α ≤ (h + R 0 ) 2 -R 2 0 + r 2 2(h + R 0 ) = h + r 2 -h 2 2(R 0 + h) . Introduce H + = ¶ z, ⟨z -x, η * ⟩ ≤ h + r 2 -h 2
C = ß z = x + αη x * + βv, ||v|| = 1, v ∈ η ⊥ x * , |β|r, h - r 2 -h 2 2(R 0 -h) ≤ α ≤ h + r 2 -h 2 2(R 0 + h) ™ .
We then can conclude the proof arguing that |C| = ω D-1 r D-1 (r 2 -h 2 )R0 

å > t|N x,r = k ô ≤ C 2 e -t , (29) 
E Ç B(x,r)\Cx,r f (z)dz B(x,r) f (z)dz åq |N x,r = k ≤ A q (M x,r + 1) q k -2q/(D+1) ,

E î N ∂ (30) 
x,r q |N x,r = k ó ≤ B q (M x,r + 1) q k q(D-1)/(D+1) ,

where C 1 and C 2 only depend on the dimension D, A q and B q depend on the dimension D and q ∈ N * .

Proposition 7. Let f be a C 2 density supported in S such that, for all x ∈ S, g(x) = ||∇ f (x)|| exp(3||∇ ln(f ) (x)||) ≤ L max .

Additionally, assume that, for all x, we have that B(x, r) ∩ S is path connected and that, for all (x, y) ∈ S 2 which are path connected, d S (x, y) ≤ K max ||x -y||.

First, we have that f

(1) max := sup S ||∇ f (x)|| is well defined.

Second, for all r ≤ 1 2Kmax , for all x ∈ S such that B(x, r) ∩ S ⊂ {z, f (z) > 0}, we have: 

D Manifolds with positive reach

We recall here some properties of manifolds with positive reach that we will use in the following. First, by Lemma 3 in [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF], by prop 5.2 and prop 5. from which we obtain the injectivity.

Definition 2 (

 2 Inside and outside rolling ball condition). A closed set E satisfies the r 0 -inside and outside rolling ball condition if E = E and, for all x ∈ ∂E, there exist two points O out x and O in

EFigure 1 :

 1 Figure 1: (r 0 , δ)-ball standardness (left) and r 0 -inside an outside rolling ball condition (right).

  continuous and bounded below by a positive constant f (0) min .

SAFigure 2 :

 2 Figure 2: Convexity : H(B(x, r) ∩ S) = B(x, r) ∩ S for r small enough, when x belongs to blue part of ∂S (illustrated by the three blue balls). Rolling ball : |H(B(x, r) ∩ S)| ∼ |B(x, r) ∩ S| when x belongs to the grey part of ∂S (illustrated with the two grey balls). |B(A, r) ∩ S| and H(B(A, r) ∩ S) are not similar when r → 0 (illustrated by the red ball).

Definition 5 .

 5 A distribution belongs to the family model M 2 if:

  f is continuous on S, of class C 2 on S and: (a) For all x ∈ S, f (x) ≤ f (0) max and for all x ∈ S, f (x) > 0. (b) For all x ∈ S, ||∇ f (x)|| exp(3||∇ ln(f ) (x)||) ≤ L max , where ∇ stands for the gradient. Such a condition implies that ||∇ f (x)|| ≤ f (1) max for all x in S (see Proposition 7 in Appendix C). (c) For all x ∈ S, ||H f (x)|| op ≤ f (2) max , where H f (x) stands for the Hessian and ||.|| op for the operator norm.

Corollary 1 .

 1 Let the distribution belong to the model M 2 .

Definition 8 .

 8 Let S be a compact set. Its medial axis Med(S) and its reach τ S are defined by Med(S) = {z ∈ R D , ∃x ̸ = y ∈ S, ||x -z|| = ||y -z|| = d(z, S)} and τ S = min x∈S d(x, Med(S)).

Figure 3 :

 3 Figure 3: Comparison of Density Estimation Methods for a Gaussian Restricted to a Square. Panels (a) and (b) show the LoCoH estimator, while panels (c) and (d) depict the results with the classical kernel method.In the top graphs, the sample cloud is colored based on the estimated density rank value. In the bottom graphs, we present the level sets estimated using the LoCoH method for levels {0, 0.5, 1, 1.5, 2, 2.5}.

Figure 4 :

 4 Figure 4: Comparison of density estimation methods for samples uniformly drawn on a disk. Computation of different quantiles of | frn,A (X i ) -f (X i )| with the LoCoH estimator we propose in blue and the usual kernel one in red.
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 41 Comparison with standard LoCoH : Panther Jitter

Figure 5 :

 5 Figure 5: Density Estimation for Camping and Seasonal Rental. On the left, the LoCoH density estimator; on the right, the classical KDE. The two densities are presented with the same scale of grey or brown (for Paris and its surrounding).

Figure 8 :

 8 Figure 8: Earthquake density with two methods : the LoCoH for known manifold (top) and classical kernel for known manifold (down).

Figure 9 :

 9 Figure 9: Construction of z Now, deterministicaly cover B(y, δr) with ν ≤ C D 4 D (1 -α) -D balls of radius (1 -α)δr/4 centered at points z ′ 1 , . . . , z ′ ν . It clearly comes that, if B(y, αδr) is not included in C y,δr , there exists z ′ i ∈ B(y, δr) with B(z ′ i , (1 -α)δr/4) ∩ X n = ∅. Thus, we have:

5 .

 5 This achieves the proof of the existence of C such that, for n large enough,E | frn,R,A (x) -f (x)| ≤ C Introduce S x,R = π Tx (S ∩ B(x, R)). For all R ≤ min Ä τ S 3 , τ S 2d(D-d) , 1 4(D-d)

  have B(x, r) ∩ S ≤ B(x, r) ∩ H + andH(B(x, r) ∩ S) ⊂ B(x, r) ∩ H + . Similarly {z, ||z -x|| 2 ≤ r 2 , ||z -O in || 2 ≤ R 2 0 } ⊂ B(x, r) ∩ S and B(x, r) ∩ H -⊂ B(x, r) ∩ S with H -= ¶ z, ⟨z -x, η * ⟩} ≤ h -r 2 -h 2 2(R0-h) © .Thus we have H(B(x, r)∩S)\S ⊂ (B(x, r)∩H + )\S = (B(x, r)∩H + )\(B(x, r)∩S) ⊂ (B(x, r)∩H + )\(B(x, r)∩H c -).

2 ≤

 2 4ω D-1 3R0 r D+1 . C Technical results to bound ||∇ f (x)|| |B(x,r)\C x,r | |B(x,r)|Introduce, for x a point where f (x) > 0, g x,r (y) = r D f (x+ry) B(x,r) f (z)dz I B(0,1) (y), which is the density of a local re-scaling of the sample. When exists, also introduce M x,r = max y∈B(0,1) g x,r (y). From the results in Theorem 1, Corollary 1 and Theorem 3 in[START_REF] Brunel | Uniform deviation and moment inequalities for random polytopes with general densities in arbitrary convex bodies[END_REF], we have: ,r)\Cx,r f (z)dz B(x,r) f (z)dz -C 1 (M x,r + 1) k -2/(D+1)

G 2 .

 2 r (x) := ||∇ f (x)|| max z∈B(x,r)∩S f (z) min z∈B(x,r)∩S f (z) Ç 1 ω d max z∈B(x,r)∩S f (z) min z∈B(x,r)∩S f (zPreliminary introduce S -= {x ∈ S, f (x) < 1} and S + = {x ∈ S, f (x) ≥ 1}. Because S + is a compact, regularity condition on f implies that max S+ ||∇ f (x)|| exists. Suppose now that x ∈ S -. We have that:||∇ f (x)|| exp(3||∇ f (x)||) ≤ ||∇ f (x)|| exp(3||∇ f (x)/f (x)||) ≤ L max .Because φ : R + → R + defined by φ(x) = xe 3x is an increasing one to one function, we have||∇ f (x)|| ≤ φ -1 (L max ) and thus sup x∈S-||∇ f (x)|| is well defined. Therefore, f (1) max = sup x∈S ||∇ f (x)|| is well defined.Suppose that r ≤ (2K max ) -1 is fixed and consider x such that B(x, r) ⊂ S. First, notice that:If max z∈B(x,r) f (z) min z∈B(x,r) f (z) ≤ ω d , then G r (x) ≤ 2||∇ f (x)||. (32)Second, suppose that x is such thatmax z∈B(x,r) f (z) min z∈B(x,r) f (z) > ω d , then G r (x) ≤ 2 ω d ||∇ f (x)|| max z∈B(x,r) f (z) min z∈B(x,r) f (z)Denote by z + (resp z -) the point in B(x, r) ∩ S where max B(x,r)∩S f (z) (resp. min B(x,r)∩S f (z)) is realized. Because z + and z -are path connected, by application of the mean value theorem, we get ln(f (z+ )) -ln(f (z -)) d S (z + , z -) ≤ max B(x,r) ||∇ ln(f ) (y)||.Because r ≤ 1 2Kmax and the geodesic condition, we have max z∈B(x,r) f (z)min z∈B(x,r) f (z) obtain G r (x) ≤ 2 ω d ||∇ f (x)|| exp 2 max B(x,r) ||∇ ln(f ) (y)|| , from which we have G r (x) ≤ 2 ω d f (x) ||∇ f (x)|| f (x) exp Å 2 max B(x,r) ||∇ ln(f ) (y)|| ã ,and finally, we getG r (x) ≤ 2 ω d f (x)||∇ ln(f ) (x)|| exp Å 2 max B(x,r) ||∇ ln(f ) (y)|| ã .In the sequel z, is a point of B(x, r) where||∇ ln(f ) (z)|| = max y∈B(x,r) ||∇ ln(f ) (y)||. We clearly have G r (x) ≤ 2 ω d f (x)||∇ ln(f ) (z)|| exp 2||∇ ln(f ) (z)|| . Thus, we get:G r (x) ≤ 2 ω d f (x) f (z) ||∇ f (z)|| exp 2||∇ ln(f ) (z)|| ,and, by new application of (33), we haveG r (x) ≤ 2 ω d ||∇ f (z)|| exp 3||∇ ln(f ) (z)|| . Thus, we obtain if max z∈B(x,r) f (z) min z∈B(x,r) f (z) ≥ ω d , then G r (x) ≤ 2||∇ f (z)|| exp 3||∇ ln(f ) (z)|| ≤ 2L max ω d . (34)This and Equation (32) conclude the proof of the second part of the proposition.
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 12281 4 in [1], we have that, when ||x -y|| ≤ 2τ S , ||x -y|| ≤ d S (x, y) ≤ π 2 ||x -y||; ||π Tx (y -x)|| ≥ ||y -x|| Ä ∠ Tx , T x S -||x-y|| 2τ S ä ; (35)∠T x S, T y S ≤ d S (x, y) τ S ; ||π T ⊥ x (y -x)|| ≤ ||y -x|| Ä ∠ Tx , T x S + ||x-y|| 2τ S ä .(36)In particular, when ||π Tx (y -x)|| < τ S (1-∠ Tx,TxS) 2 by (35) it comes that either||y -x|| ≤ τ S (1 -∠ Tx , T x S) 1 -1 -2||π Tx (y -x)|| τ S (1 -∠ Tx , T x S) 2 ≤ 2||π Tx (y -x)|| (1 -∠ Tx , T x S) ,(37)or||y -x|| ≥ τ S (1 -∠ Tx , T x S) 1 + 1 -2||π Tx (y -x)|| τ S (1 -∠ Tx , T x S) 2 ≥ τ S (1 -∠ Tx , T x S).(38)This last equation (38) implies, again by (35), that we also have ||π Tx (y -x)|| > τ S (1-∠ Tx,TxS))and thus, by contradiction, only (37) is true. If for all x ∈ S, ∠T x S, Tx ≤ θ < 1/12, then for all x ∈ S, π Tx is injective on B(x, τ S /3).Proof. For y and y ′ in B(x, τ S /3), first ∠T y S, Tx ≤ ∠T y S, T x S + θ. Thus by (36) and (35), we have ∠T y S, Tx ≤ d S (x,y) τ S + θ ≤ π||x-y|| 2τ S + θ ≤ π 6 + θ. From that and Equation (35), we obtain ||π Tx (y ′ -y)|| ≥ ||y ′ -y|| Å ∠ Tx , T y S -||y ′ -y|| 2τ S ã . With that, equation (35) gives : ||π Tx (y ′ -y)|| ≥ ||y ′ -y|| Å 4 -π 6 -θ ã ≥ ||y ′ -y|| 7 -2π 12 ,

  Thusagain, by application of (22), we have L t ⊂ Lt ⊕ C ′

	t	ln n n	2 D+1 +	2ε ′ n mt B, which, together with
	Equation (23) achieves the proof of the first point of Theorem 4.	

  n ) and Equation (37) to have ||z+ϕ x (z)|| ≲ ||z||, we can conclude the proof of point 3 of Lemma 5. Lemma 6. There exist constants β ′ 1 , β ′ 2 , C 1 and C 2 such that, for n large enough,
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Proof. Let x ∈ S, let u be an unit vector and λ ∈ (0, λ 0 ( with λ 0 = sup{z, (x, z) ⊂ S}. Taylor Lagrange applied to G x,u : R → R G x,u (λ) = g(x + λu) provides the existence of µ ∈ (0, λ) such that G x,u (λ)-G x,u (0) = λG ′

x,u (0)+ λ 2 2 G ′′ x,u (µ). Thus, we have

If t is a standard level, there exits c t such that, with probability one for n large enough, for all ε > 0,

Proof. Deterministicaly cover L t+ε with ν ≤ C t n a D ln n balls of radius a(ln n/n) 1/D centered at some x 1 , . . . , x ν in L t . If there exists x ∈ L t+ε such that d(x, X n ) ≥ b(ln n/n) 1/D , then there exits a x i with B(x i , (b-a)(ln n/n) 1/D )∩X n = ∅. By standardness of the level and classical calculation, we obtain

That concludes the proof by application of Borrel-Cantelli Lemma. Proof. First let prove that, for all r ≤ 2r 0 , there exists y such B(y, r/2) Suppose that E has more than one connected component and consider two connected components of E: E 1 and E 2 . Suppose that inf x∈E1,y∈E2 ||x -y|| = ℓ < 2r 0 . Compacity of E 1 and E 2 allows to turn the inf into a min which is realized for some x * and y * respectively located at the boundary of E 1 and E 2 , and consider now O = x * +y *

B Technical results on sets with rolling ball property

2

. By inside rolling ball condition we must have O -x * = (ℓ/2)η x * and O -y * = (ℓ/2)η y * (otherwise we can contradict the minimum distance) which, in turn contradicts the outside rolling ball condition because y * ∈ B(x * + r 0 η x * , r 0 ). Thus, if E has many path connected component E 1 , . . . , E k , x ∈ E i and r ≤ 2r 0 , then B(x, r) ∩ E = B(x, r) ∩ E i . E i has the r 0 rolling ball property thus positive reach r 0 . So, by application of Corollary 1 in [START_REF] Boissonnat | The reach, metric distortion, geodesic convexity and the variation of tangent spaces[END_REF], B(x, r) is geodesically convex and then path connected since r < r 0 . Proposition 5. Let S ⊂ D D be a set that has the R 0 inside and outside ball property. For all r ≤ R 0 /2 and all x ∈ S, we have: