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Abstract

Consider an i.i.d. sample Xn = {X1, . . . , Xn} ⊂ RD drawn from an unknown distribution
PX associated to a density f and supported in S. We introduce and analyze a density
estimator based on the Local Convex Hull (LoCoH) method, inspired by [20]. We prove
that, if f is Lipschitz continuous and bounded below on a sufficiently regular support S,
the proposed estimator achieves pointwise minimax rates at any point in S, even if S is
unknown. If f is C2, when D ≤ 7, under broad assumptions regarding the support set S,
the proposed estimator can achieve minimax rates in S̊, with additional guarantees at the
boundary of S. This offers guarantees for level set estimation (even for level sets intersecting
the boundary). Additionally, we offer a generalization for density estimation when S is a
d-dimensional sub-manifold of RD with similar convergence rates (depending on d instead
of D). We also present several numerical illustrations.

1 Introduction

The density estimation problem, got an important impulse after [25] and [28] fundamental pi-
oneering works. It remains an active area of research. Numerous well-known books have been
published on this topic. To name a few, refer to [31], [14], [15], and [30]. As evidenced by
[10], density estimation remains a contemporary and actively researched topic. Presently, two
focal points attract notable attention: mitigating bias near the support boundary and extend-
ing density estimation to encompass manifolds. The objective of this paper is to propose an
asymptotically unbiased density estimator applicable across the entire support, while also offer-
ing adaptability for manifold scenarios.

Let us first focus on the bias reduction problem in the full dimensional setting.
Consider an i.i.d. sample Xn = {X1, . . . , Xn} ⊂ RD drawn from an unknown distribution PX

supported in S (which is also unknown). Recall the definition of S as the intersection of all

closed sets E for which we have PX(E) = 1. Assuming that S is a regular set, specifically S̊ = S,
and that the density restricted to S, denoted as f |S , is continuous, we recall the Besicovitch
condition through the Lebesgue differentiation theorem:

Let x ∈ S̊, lim
r→0

∫
B(x,r)

f(t)dt

|B(x, r)|D
= f(x). (1)

This forms the foundation of basic density estimation techniques. This is due to the fact that∫
B(x,r)

f(t)dt can be readily estimated by the ratio of the number of observations within B(x, r)

to the total number of observations. However, this approach introduces a bias for points x ∈ ∂S
where f(x) > 0. Bias reduction techniques in density estimation have been extensively explored
when D = 1, with notable works such as [29], [24], [21], and [23]. In higher dimensions, many
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proposed bias correction methods rely on adjusting kernel density estimators with knowledge
of the support. This is exemplified by approaches like those presented in [6], [11], [19], and
[8]. To the best of our knowledge, the only method allowing for bias reduction without prior
knowledge of the support can be found in [5]. A way to extend (1) on S is to use that, for all

x ∈ S, limr→0

∫
B(x,r)

f(t)dt

|B(x,r)∩S|D = f(x). By applying a plugin methodology, a straightforward class of

density estimators emerges:

f̆(x) =
#{Xn ∩B(x, r)}

n ¤�|B(x, r) ∩ S|D
.

In this method, the crucial aspect lies in the choice of ¤�|B(x, r) ∩ S|D, an estimate for the D-
dimensional volume of the intersection between B(x, r), the close ball centered at x and of radius

r, and the support S. A straightforward naive option for ¤�|B(x, r) ∩ S|D, utilizing the concept of

local convex hull (LoCoH), is |H(B(Xi, r)) ∩ Xn|D and thus f̆naive(x) =
#{Xn∩B(x,r)}

n|H(B(Xi,r))∩Xn|D . Re-

grettably, this choice provides overestimation of the density and hampers the convergence rate
for points x satisfying d(x, ∂S) ≥ r, which asymptotically encompasses the most of the obser-
vations. It is important to notice that the situation is even worth when considering the density

estimator implicitly proposed in [20], which is f̆Getz(x) = maxXi, x∈B(Xi,r)
#(Xn∩B(Xi,r))

n|H(B(Xi,r))∩Xn)|D .

Let us introduce Nx,r = #{Xn ∩ B(x, r)}, Cx,r = H(B(x, r) ∩ Xn), N
∂
x,r = #{Xn ∩ ∂Cx,r}

and No
x,r = Nx,r −N∂

x,r. Due to [3] we can propose the following LoCoH correction for the naive
estimator:

f̂r,A(x) =
No

x,r

(n−N∂
x,r)|Cx,r|

I|Cx,r|D≥AωDrD IN∂
x,r≤n/2. (2)

Remarks:

1. The inclusion of the additional parameter A and the use of indicator functions is only
intended to prevent division by zero.

2. The count of observations within ∂Cx,r, denoted as N∂
x,r, is non-zero. Indeed Cx,r is

a convex polytope defined by vertices that are part of the observation sets, which also
encompasses those within ∂Cx,r.

3. Although the initial presentation might appear intricate, the introduction of No
x,r and N∂

x,r

is actually quite intuitive, as demonstrated by [3]. This is becauseNo
x,r|Cx,r ∼ Binomial(n−

N∂
x,r,
∫
Cx,r

f(z)dz).

Subject to relatively broad assumptions concerning f and S, the proposed estimator has nice
theoretical properties, namely:

1. If f is Lipschitz continuous and bounded below on a sufficiently regular support S, the
proposed estimator achieves pointwise minimax rates at any point in S even if S is unknown
(see Theorem 1).

2. If f is C2, when D ≤ 7, under broad assumptions regarding the support set S, the proposed
estimator can achieve minimax rates in the interior of S, with additional guarantees at
the boundary of S (see Theorem 2 and Corollary 1). This offers guarantees for level set
estimation (even for level sets intersecting the boundary), see Theorem 4.

Assuming that S is a d-dimensional manifold with d < D, a common assumption when
working with high-dimensional data-sets, our focus shifts towards estimating a density on
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a manifold. Density estimation on a known manifold without a boundary was initially intro-
duced in [26], where the conventional kernel density estimator was extended by substituting the
Euclidean distance with the geodesic distance. In [22], a similar approach was employed, but
kernels were applied to projections onto tangent spaces. The technique presented in [5] adapted
the methodology from [22] to address potential boundary bias. Importantly, the prior knowledge
of the boundary is not necessary in this context: the distance and direction from a point to
the boundary can be estimated through a local barycenter shift. More recently, methods have
been proposed for unknown manifolds without boundaries. The approach developed in [16] only
requires knowledge of the dimension d of the support S, whereas in [4], the support S is en-
tirely unknown. In section 3 we present an extension of the density estimator introduced in (2),
designed to accommodate densities supported in a possibly unknown manifold that may have
boundaries. We adopt the classical approach of using local projections onto estimated tangent
spaces. When S represents a sufficiently regular compact manifold with either a regular boundary
or no boundary, and f is Lipschitz continuous, we obtain L1 convergence (see Theorem 5).

The paper is organized as follows. Section 2 is devoted to the presentation of the main results
in the full-dimensional context. Section 3 deals with the extension to the manifold setting. In
Section 4 we present some numerical experiments. Finally, the proofs are given in Section 5.

2 Full dimensional context

2.1 Geometric asumptions and statistical model

Let Xn = {X1, . . . , Xn} ⊂ RD, be an i.i.d. sample drawn from a distribution supported in S,
and characterized by an unknown density f that is uniformly continuous with respect to the
Lebesgue measure. Additionally, we will assume certain regularity conditions on both S and f .

First, we define and discuss the geometric assumptions on S. We may either consider the ball
standardness (Definition 1, illustrated in the left part of Figure 1) or the rolling ball condition
(Definition 2, illustrated in the right part of Figure 1).

Definition 1 (Ball-standardness). A closed set E is (r0, δ)-ball standard if for all x ∈ E and all
r ≤ r0, B(x, r) ∩ E is path connected and there exists y such that B(y, δr) ⊂ E ∩B(x, r).

Having a ball-standard support and a density bounded bellow by a positive constant imply
the classical standardness of the distribution as introduced in [12]. This characteristic also ac-
commodates the presence of corners (though not cusps). Opting for ball standardness rather
than the traditional standardness separates the geometric aspects from the distributional ones,
enabling a clearer distinction between the two components. Ball standardness guarantees con-
sistency, but when aiming for convergence rates, more regular support yields significantly better
results. Classically (as in [32]) we will characterize smooth support via the inside and outside
rolling ball condition.

Definition 2 (Inside and outside rolling ball condition). A closed set E satisfies the r0-inside

and outside rolling ball condition if E̊ = E and, for all x ∈ ∂E, there exist two points Oout
x and

Oin
x such that B(Oout

x , r0) ∩ E = {x} and B(Oin
x , r0) ⊂ E.

Such a condition has been extensively studied in [33]. It implies that ∂S is a C1
1 manifold or,

equivalently, that ∂S has a positive reach. It is easy to see that, if E satisfies the r0-inside and
outside rolling ball condition, then E and Ec are (r0, 1/2)-ball standard (see Proposition 4 and
its proof in Appendix A).

Our LoCoH density estimator has minimax pointwise convergence rate at any point of S
(even of the boundary) when considering the following model.
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Figure 1: (r0, δ)−ball standardness (left) and r0-inside an outside rolling ball condition (right).

Definition 3. A distribution belongs to the family model M1 if:

1. it is supported in a compact support S that either is convex and ball standard, or has the
r0-inside and outside rolling ball condition for some r0 > 0,

2. f |S is K-Lipschitz continuous and bounded below by a positive constant f
(0)
min.

Ensuring consistency at boundary points necessitates shape assumptions on S. Indeed it’s
required that, as r goes to 0, |B(x, r) ∩ S| ∼ |H(B(x, r) ∩ S)| for any x ∈ ∂S. This entails
considering a combination of convexity and rolling ball conditions, as illustrated in Figure 2.

S

A

Figure 2: Convexity : H(B(x, r) ∩ S) = B(x, r) ∩ S for r small enough, when x belongs to blue
part of ∂S (illustrated by the three blue balls). Rolling ball : |H(B(x, r) ∩ S)| ∼ |B(x, r) ∩ S|
when x belongs to the grey part of ∂S (illustrated with the two grey balls). |B(A, r) ∩ S| and
H(B(A, r) ∩ S) are not similar when r → 0 (illustrated by the red ball).

The LoCoH estimator also achieves good convergence properties in S̊ under the more classical
hypotheses of C2 regularity of the density and possibly unbounded support. Convergence is
studied for distribution in the model M2, see Definition 5. Roughly speaking, the density must
be C2 with upper-bounded first derivatives and the support and ”small level” sets must be
ball-standard.

Definition 4 ((r0, δ, ε0)-standardness for a distribution). A distribution associated to a density f
is (r0, δ, ε0)-standard if, for all ε ∈ (0, ε0) ,the level set Lε = {x, f(x) > ε} is (r0, δ)-ball standard.

The second model consists in (r0, δ, ε0)-standard distributions with smooth enough densities.

Definition 5. A distribution belongs to the family model M2 if:
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1. The distribution is (r0, δ, ε0)-standard, S is path connected and for all (x, y) ∈ S2 the
geodesic distance (in S) satisfies dS(x, y) ≤ Kmax||x− y||.

2. The associated density f is continuous on S, of class C2 on S̊ and:

(a) For all x ∈ S, f(x) ≤ f
(0)
max and for all x ∈ S̊, f(x) > 0.

(b) For all x ∈ S, ||∇f (x)|| exp(3||∇ln(f)(x)||) ≤ Lmax, where ∇ stands for the gradient.

Such a condition implies that ||∇f (x)|| ≤ f
(1)
max for all x in S (see Proposition 7 in

Appendix C).

(c) For all x ∈ S, ||Hf (x)||op ≤ f
(2)
max, where Hf (x) stands for the Hessian and ||.||op for

the operator norm.

Model M2 inherently encompasses distributions supported in compact (r0, δ)-ball standard
supports S, characterized by C2 densities that exhibit a positive lower bound on S, and have

a hessian matrix whose norm is bounded above by f
(2)
max. This model further encompasses a

diverse array of classical densities with non-compact supports, such as Gaussian or exponential
distributions.

2.2 Main theoretical results for model M1

For bounded support, under regularity assumptions, and with a Lipschitz-continuous density
bounded from below by a positive constant, the proposed estimator f̂rn,A(x) exhibits L2 con-
vergence. This is achieved since x is an element of S, rn tends to zero, and nrDn / lnn tends to

infinity. The general rate can be found in Equation (3), and by optimally choosing rn = cn− 1
D+2 ,

we achieve minimax L2 rates of order n− 1
D+2 at any point x within S, as indicated in Equation

(4). The advantage is that this correction doesn’t require prior knowledge of the support. When
the support is unknown, the only points that are guaranteed to belong to S are the observations,
and Equation (5) claims that with high probability, the density estimation of every observation
is close to the real density.

Theorem 1. Let the distribution belong to the model M1. Let the window size rn be a sequence
such that rn → 0 and nrDn /lnn → +∞. Let A < δD be a positive constant. There exist explicit
constants depending only on the model such that,

for all x ∈ S, E((f̂rn,A(x)− f(x))2) ≤ a1(nr
D
n )−1 + a2r

2
n + a3 exp(−a4nr

D
n ) + a5 exp(−n/8). (3)

for all x ∈ S, we have E((f̂cn−1/(D+2),A(x)− f(x))2) ≤ a(c2 + c−D)n− 2
D+2 . (4)

There exist explicit constants depending only on the model such that, with probability one, for n
large enough,

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣} ≤ b1

 
lnn

nrDn
+ b2rn. (5)

2.3 Main theoretical results for Model M2

2.3.1 Pointwise L2 convergence rates

We characterize the convergence with the use of the following notations. oα(1) (resp. Oα(un))
represents a sequence depending on α and the constants of model M2, converging towards 0
(resp. depending on α and the constants of model M2 and being a O(un)).
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In Theorem 2 we establish that for points x ∈ S̊, the density estimator proposed in (2) ex-

hibits a squared convergence rate of the order (nrDn )−1+r4n+r2n(nr
D
n )−

4
D+1 +r3n(nr

D
n )−

2
D+1 . This

includes the ”classical” density rate (nrDn )−1+r4n, along with an additional term r2n(nr
D
n )−

4
D+1 +

r3n(nr
D
n )−

2
D+1 coming from the estimation of LoCoH volume. Despite this added term, the ad-

vantage is that, under additional hypotheses on S, the bias is rectified at possible points of
discontinuity located on the boundary of S. Moreover, as stated in Corollary 1, this supplemen-
tary term doesn’t hinder the attainment of the minimax rate when D ≤ 7.

Theorem 2. Let the distribution belong to the model M2. Let the window size rn be a sequence
such that rn → 0 and nrDn /lnn → +∞. Let A < δD be a positive constant.

1. For all x ∈ S̊, E((f̂rn,A(x)−f(x))2) = Ox

Ä
(nrDn )−1 + r4n + r2n(nr

D
n )−

4
D+1 + r3n(nr

D
n )−

2
D+1

ä
.

2. If S is either convex or has the R0 inside and outside rolling ball property, we have that,
for all x ∈ S, E((f̂rn,A(x)− f(x))2) = O

(
(nrDn )−1 + r2n

)
.

More explicit values of O can be found within proofs (see Equations (13) and (18)).
In Corollary 1, we present, for points in S̊, optimal radius size and associated convergence

rates depending on the dimension.

Corollary 1. Let the distribution belong to the model M2.

1. if D ≤ 7, the choice of rn = cn− 1
D+4 provide that, for all x ∈ S̊, the L2 error has the

minimax convergence rate of order n− 2
D+4 .

2. if D > 7, the choice of rn = cn− 2
3D+1 provide that, for all x ∈ S̊, the L2 error has a

non-optimal convergence rate of order n− 4
3D+1 .

It may be possible to develop a more sophisticated method that allows us to achieve the
minimax rate of order n−2/(D+4) everywhere, even at the boundary, by applying the following
algorithm:

1. Compute Ŝ and ”∂S, which are estimators of S and ∂S respectively.

2. If x ∈ Ŝ and d(x,”∂S) ≥ h estimate the density with standard kernel estimator.

3. If x ∈ Ŝ and d(x,”∂S) < h, if possible, apply to our corrected estimator a high order bias
correction near the boundary, similar to the proposition in section 3.3 in [5].

This approach is likely to yield methods with minimax optimal rates without any restrictions
on the dimension. However, it comes with some computational and practical challenges. For
instance:

1. Parameter tuning: this approach involves tuning more parameters. First, for the support
estimation step, we need to choose an appropriate reference distance to the support’s
boundary to decide which density estimation method to apply. Furthermore, there are two
density estimation parameters to be tuned.

2. Convex hull estimation: the convex hull estimation step may not be realistic when the
dimension D is greater than 7.

Therefore, it might be more convenient to focus on the case where D ≤ 7 and use radius

sequences of the form rn = cn− 1
D+4 . This choice is minimax for all points in the interior of S

and remains consistent on all of S. Additionally, there are only two parameters to tune: A and
rn. Empirically, we have observed that the window size tuning method for the classical kernel
works also very well for our modified version.
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2.3.2 Uniform convergence rates and application to level set estimation

The previous section provided point-wise convergence rates for density estimation at a point
x ∈ S. However, when S is unknown, these point-wise convergence rates do not allow us to
achieve uniform convergence rates over the entire space RD. Nevertheless, because we know that
all the observations are located on the set S, we can derive uniform convergence rates over the
set of observations.

Theorem 3. When D ≤ 7 and the distribution belongs to the model M2, let rn = cn−1/(D+4)

and A < δD.

1. For all t > 0, there exists Ct such that, with probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣ , Xi ∈ Lt and B(Xi, rn) ⊂ S

}
≤ Ct

√
lnnn−2/(D+4).

2. If f |S ≥ f
(0)
min > 0, there exists C such that, with probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣ , B(Xi, rn) ⊂ S

}
≤ C

√
lnnn−2/(D+4).

3. If S is either convex or satisfies the inside and outside R0 rolling ball condition, there exists
C such that, with probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣} ≤ Cn−1/(D+4).

This result allows us to employ the proposed density estimator for level set estimation using
Ŝ(X+

rn,A
(t)) (where Ŝ(Y) is a set estimator based on a sample Y and X+

rn,A
(t) = {Xi, f̂rn,A(Xi) ≥

t}). The chosen set estimator is the LoCoH estimator. This choice was made because it seems
consistent to estimate both the density and the level sets with the same tool. It also pays homage
to [20], who initially applied the LoCoH to create home range and core area maps. In theorem
4, we provide convergence rates for

L̂t =
⋃

Xi∈X+
rn,A(t)

H
Ä
B(Xi, rn) ∩ X+

rn,A
(t)
ä
, (6)

which differs from the original method proposed in [20]. The distinction between the two methods
is discussed in the numerical study section. It’s worth noting that the bias correction allows us
to achieve convergence for level sets that may intersect the boundary of the support (as indicated
in point 2 of Theorem 4). More precisely, we consider two kinds of levels. First, we deal with
regular levels (see Definition 6) that satisfy the classical assumptions in the field of level set
estimation, as in [27] for instance. In particular, regular levels do not intersect the boundary
and, by application of Theorem 2 in [32], they have the inside and outside rolling ball property.
Second, we consider standard levels (see Definition 7) that may intersect the boundary and are
only ball standard.

Definition 6 (Regular levels). t > 0 is a regular level if there exits ∆t > 0 and mt > 0 such
that

Lt−∆t
⊂ S̊ and min

z∈Lt−∆t\L̊t+∆t

||∇f (z)|| = mt > 0.
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Definition 7 (Standard levels). t > 0 is a standard level if there exits ∆t, βt, δt, γt and ℓt such
that , for all r ≤ ∆t and all x ∈ Lt, |B(x, r) ∩ Lt| ≥ δtωDrD and dH(Lt, Lt ⊕ rB) ≤ γtr. Also,
for all t′ such that |t′ − t| ≤ ∆t, we have dH(Lt, Lt′) ≤ βt|t− t′| and |∂Lt|D−1 ≤ ℓt.

Roughly speaking, if t is a regular level, then all the t′-level sets, t′ being close enough to t,
have the rolling ball property with the same radius. The level t is considered ”standard” if Lt is
standard and partly expandable (as in [13]). Additionally, in a neighborhood of t, level sets are
sufficiently close to Lt, and their perimeters are uniformly bounded. To illustrate this two kinds
of level, consider for instance the density f(z) = c(2 − ||z||2)I[−1,1]2(z). For such a density, any
levels t ∈)c, 2c( are regular and any levels t ∈)0, c] are standard.

Theorem 4. Suppose that D ≤ 7 and that the distribution belongs to the model M2, with S
is either convex or have the inside and outside rolling ball property. Let rn = cn−1/(D+4) and
A < δD. Assume that S̊ = {z, f(z) > 0} and define L̂t as in Equation (6).

1. If t is a regular level, then, with probability 1 for n large enough, dH(Lt, L̂t) = O(lnnn−2/(D+4)).

2. If t is a standard level and c ≥ 4βtC (C being the constant of Theorem 3 point 3.), with
probability one, for n large enough, dH(Lt, L̂t) = O(n−1/(D+4)).

3 Density on manifolds

In this section, our aim is to generalize the results for the model M1 to the density estimation of a
distribution supported in a compact manifold. The associated model, see Definition 9, naturally
focuses on lower-bounded and Lipschitz-continuous density (similar to model M1). However, it
requires additional regularity assumptions on the manifold S and its boundary ∂S, which are
typically characterized by their reach.

Definition 8. Let S be a compact set. Its medial axis Med(S) and its reach τS are defined by

Med(S) = {z ∈ RD,∃x ̸= y ∈ S, ||x− z|| = ||y − z|| = d(z, S)} and τS = min
x∈S

d(x,Med(S)).

Roughly speaking, manifolds with positive reach are regular enough to have ”nice” tangent
spaces (for detailed results on reach, see [17] and [18]). The rolling ball condition in the full
dimensional context is generalized by manifolds whose boundary has a positive reach (see [1]).
If ∂S = ∅, which is possible in the manifold case, we use the convention τ∅ = +∞.

Definition 9. A distribution belongs to the family model M′
d if

1. S is a compact d-dimensional manifold with positive reach τS ≥ τmin > 0. If exists, its
boundary ∂S is a (d− 1)-manifold without boundary and with reach τ∂S ≥ τ∂,min > 0.

2. Its density f satisfies that 0 < f
(0)
min ≤ f(x) ≤ f

(0)
max for all x ∈ S. Also, f |S is K-Lipshitz

continuous.

Now, let’s extend the density estimator by using local projections onto estimated tangent
spaces. Suppose that, for all x ∈ S, we have T̂x, an estimation of TxS. Let πT̂x

denote the

orthogonal projection onto T̂x. Introduce the following notations for R ∈ R:

1. Xn,R = πT̂x
(B(x,R) ∩ Xn), with as previously Nx,R = #{Xn ∩B(x,R)},

2. “Cx,r,R = H(Xn,R ∩B(x, r)),
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3. “Nx,r,R = #{Xn,R ∩B(x, r)}, “N∂
x,r,R = #{Xn,R ∩ ∂“Cx,r,R} and “No

x,r,R = “Nx,r,R − “N∂
x,r,R.

The proposed LoCoH estimator is now:

ˆ̂
fr,R,A(x) =

Nx,R

n

“No
x,r,R

(Nx,R − “N∂
x,r,R)|“Cx,r,R|

I|“Cx,r,R|≥Aωdrd
I
N̂∂

x,r,R≤Nx,R/2
. (7)

The following theorem provides the convergence rates of the density estimator. In the man-
ifold case, an additional error term is introduced, which depends on the quality of the tangent
space approximation, denoted by Θn. This quality is typically characterized by ∠T̂x, TxS, which
represents the angle between the tangent space and its approximation. It can also be defined as
the operator norm of πTxS − πT̂x

.

Theorem 5. Let the distribution belong to the model M′
d. Let the window size rn be a sequence

such that rn → 0 and nrdn/lnn → +∞. Let A < 4−d be a positive constant. Additionally suppose
that there exits Θn → 0 such that ∠TxS, T̂x ≤ Θn. Then there exists R0 such that, for all R < R0

there exits C such that E
Å∣∣∣∣ ˆ̂frn,R,A(x)− f(x)

∣∣∣∣ã ≤ C

Å
1√
nrdn

+ rn +Θn

ã
.

When S ⊂ S, where S is a known d-manifold, we obtain a natural extension of Theorem 1
with Θn = 0. This is the case, for instance, in the seismic example in the next section. When
the support S is fully unknown, we can apply Theorem 5 at points x ⊂ Xn. Additionally, we
need to estimate the tangent spaces with local PCA. This can be done with Θn of the order
(lnn/n)1/d (as described in [1]) therefore, the part of the convergence rates depending on Θn

can be considered negligible. Consequently, we obtain the minimax rate of order n− 1
d+2 .

The additional parameter R is a macro parameter, distinct from the parameters used in local
PCA tangent space estimation. Conceptually, R represents a radius such that, for all x ∈ S, the
projection πTx |S∩B(x,R) is injective and possesses a boundary that is ”sufficiently regular”. As
in [1], any radius R sufficiently small with regard to the reach of S and that of ∂S is suitable.
In practice, it can be tuned as in [1] and approached in a similar manner (see Section 6.2.2 of [1]
for details).

Extension to L2 convergence is still feasible but more technical. Also extending the results
of model M2 to the manifold setting is possible assuming C2 manifolds and C2 densities. The
proofs, while a much more technical than those of Theorem 5, follow a similar structure. However,
extending level set estimation to the manifold setting is considerably more challenging. This is
because level sets on manifolds have boundaries, and only the method proposed in [1] could be
directly applied to density estimation with little additional work. It is believed that the LoCoH
still provides a viable estimator in this case, but rigorous proofs are required to establish its
performance.

4 Numerical Experiments

4.1 Computation and complexity

In languages such as MATLAB, where the convex hull is already programmed, computation is
particularly easy. In MATLAB, Let Y be the set of points at distance at most r from x, the func-
tion [F,Vol]=convhulln(Y ) returns |Cx,r| =Vol, N∂

x,r =size(Unique(F),1) and No
x,r =size(Y,1)-

N∂
x,r. The complexity is upper-bounded by the computational complexity of the Delaunay trian-

gulation of Y from which we can obtain the volume as the sum of the volumes of simplices (with
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straightforward formulas) and the set of boundary observations. The computational time of

f̂rn,A(x) is then typically of the order 2D(Nx,r log(Nx,r) +N
D/2
x,r ). When computing the density

for the entire observation set, the computational time is of order 2D(n2rD log(n) + n(nrD)D/2)
(notice that Nx,r = O(nrd)). For radius sequences r = cn−1/(D+2) and rn = cn−1/(D+4), respec-
tively, the complexity is less than 2Dn2 and less than 2Dn3, respectively.

4.2 Experiments on simulated data

First, we propose to test the LoCoH density estimator on a sample drawn from a Gaussian
distribution restricted to the square [0, 1]2. Specifically, in this first example, the density is
f(x, y) = c exp(−2(x2 + y2)). In Figure 3, we present a comparison of the LoCoH density

estimator f̂ and f∗
rn(x) = Nx,rn/(nωDrDn ), the classical kernel estimator, on a sample of size

n = 5000. In panels (a) and (b) on the left, we present the results associated with the LoCoH
density estimator (r = 0.18 and A = 0.1). The top figure (a) presents the sample cloud with
colors corresponding to the rank of the estimated density value (isopleth presentation). The
bottom figure (b) presents the associated level sets estimated with the LoCoH method (also
with r = 0.18) for levels in {0, 0.5, 1, 1.5, 2, 2.5}. In the same figure, panels (c) and (d) illustrate
the results with thekernel density estimator f∗ (using the same window size). In Figure 3, we
can observe that, as expected, the LoCoH correction improves the density estimation near the
boundary of the support.

To investigate this improvement further, we also tested the proposed method on data drawn
from a uniform distribution within the unit disk. The results are presented in Figure 4. We
experimented with different sample sizes, specifically n ∈ {1000, 2000, 3000, 5000, 7000, 10000}.
The tested parameters were set to rn = 0.5n−1/6 and A = 1/8. For each sample size, we
conducted 100 replications. For each replication k, we computed Qα(k), the α-quantile (on i) of

|f̂rn,A(Xi)−f(Xi)|. We then plotted the results as follows: the median (on k) of Qα(k) is shown
in solid blue lines, the 25th and 75th percentiles (on k) of Qα(k) are presented as blue dashed
lines, and blue points represent the maximum and minimum (on k) of Qα(k). The red curves
display the same quantities calculated for f∗

rn , which is the classical uniform kernel method with
the same radius. Since the LoCoH correction primarily affects data points near the boundary, we
can observe differences between the blue and red curves for high values of α (e.g., 100%, 99%, and
95% quantiles). Moreover, as the sample size n increases, the corrected estimator outperforms
the classical kernel estimator. For ”small” quantiles (e.g., 75% and 50%), we can observe the
similarity between the two estimators, reflecting their similarity at points far from the boundary.

4.3 Examples on real data

4.4 Comparison with standard KDE : Camping and seasonal rental

An example based on camping and seasonal rentals in France (see Figures 5 and 6) illustrates
how LoCoH density estimation can correct density estimations at highly touristic boundary
locations. The two density maps (LoCoH vs classical KDE) are presented in Figure 5, with
the LoCoH method on the left showing much higher contrast. To be more precise on difference
between the two density estimations, in Figure 6 we present the relative difference between f̂ and
f∗. As expected, we observe more differences in the density estimation, along the boundary of
France, especially at its corners, and in specific cities with significant tourist or economic interest,
where seasonal lodging of the whole surrounding is concentrated (such as Toulouse, Bordeaux,
or Rennes, for instance).
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Figure 3: Comparison of Density Estimation Methods for a Gaussian Restricted to a Square.
Panels (a) and (b) show the LoCoH estimator, while panels (c) and (d) depict the results with the
classical kernel method. In the top graphs, the sample cloud is colored based on the estimated
density rank value. In the bottom graphs, we present the level sets estimated using the LoCoH
method for levels {0, 0.5, 1, 1.5, 2, 2.5}.

Figure 4: Comparison of density estimation methods for samples uniformly drawn on a disk.
Computation of different quantiles of |f̂rn,A(Xi)− f(Xi)| with the LoCoH estimator we propose
in blue and the usual kernel one in red.

4.4.1 Comparison with standard LoCoH : Panther Jitter

In this section, we aim to compare the original LoCoH method proposed by [20] with our proposed
LoCoH correction. As a tribute to Getz and Wilmer, we test both approaches for core-area esti-
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Figure 5: Density Estimation for Camping and Seasonal Rental. On the left, the LoCoH density
estimator; on the right, the classical KDE. The two densities are presented with the same scale
of grey or brown (for Paris and its surrounding).

Figure 6: (f̂ − f∗)/f∗ presented in five color level : less than 20% blue, between 20% and 50%
green, between 50% and 100% mustard, between 100% and 200% orange and more than 200%
brown
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Figure 7: Isoplet for Panter Jitter, left original method from [20] and right the proposed corrected
method,

mation on the Panther Jitter dataset (downloaded from the Penn State Department of Ecosystem
Science and Management). In Figure 7, we present the x% isopleths, where x is chosen from
{0, 10, 20, 30, 40, 50, 60, 70, 80, 90}. On the left, we apply the original LoCoH method and, on the
right, we apply our proposed LoCoH correction.

Let recall that the level sets in [20] are estimated via

L̆Getz
t =

⋃
i,

#(Xn∩B(Xi,r))

|H(B(Xi,r)∩Xn|≥nt

H(B(Xi, r) ∩ Xn).

Note that with the estimator we propose, the estimated levels are more focused on the data
points, whereas the original estimator extends the different levels quite away form the data
points (see e.g. mid-grey levels).

4.4.2 A manifold example

In Figure 8, we illustrate the manifold method. In this case, the data consists of earthquake
localizations on Earth, specified by latitude and longitude (a known 2-dimensional manifold).
We only kept earthquakes with a magnitude greater than 3. We conducted computations using
the LoCoH method proposed in Section 3, assuming a known manifold and real tangent space.

The two graphs depict a projection on a planisphere of the data sample, with colors indicating
the rank of the density. The top graph illustrates the LoCoH method, while the second one
employs the constant kernel for manifolds. Although the two densities appear quite similar,
some differences still exist. For instance, our correction allows for more mass to be placed on the
Mid-Atlantic Ridge, where the density is underestimated in the classical kernel method due to its
proximity to a lower-dimensional structure. Many other estimation differences can be observed
all along the different ridges. This highlights the accuracy of our new LoCoH estimator in the
manifold case.

Additionally, in the circled area, we can observe a density maximum located in a corner of
the support. This would typically be impossible without bias correction.
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Figure 8: Earthquake density with two methods : the LoCoH for known manifold (top) and
classical kernel for known manifold (down).
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5 Proofs

In the proofs, we make use of the following notations. For a set A and a real number ρ, the ρ
offset of A, denoted by A⊕ρB, is defined as A⊕ρB = {x ∈ RD, d(x,A) ≤ ρ}. For a compact set
A, when well defined, we denote by πA the projection onto A which is defined as follows: πA(x)
is the point in A such that ||πA(x)− x|| = d(x,A). When A is convex, πA is defined everywhere
; when A has the r0 inside and outside rolling ball property, πA is defined on A⊕ r0B and π∂A

on ∂A⊕ r0B.

5.1 Notations and definitions

First, for the sake of clarity, we will use r instead of rn in this section. The probability content
is Γx,r =

∫
B(x,r)

f(z)dz and its approximation with the help of LoCoH is Γ̃x,r =
∫
Cx,r

f(z)dz.

Due to the indicator function in the definition of the density estimation we introduce the
event Ex,r =”|Cx,r| ≥ AωDrD, Γ̃x,r ≥ f(x)AωDrD and N∂

x,r ≤ n/2”. Conditionally to Ex,r, the

error decomposition in the density estimation is f̂r,A(x)− f(x)|Ex,r = ε1(x) + ε2(x), where:

ε1(x) =
No

x,r − Γ̃x,r(n−N∂
x,r)

|Cx,r|(n−N∂
x,r)

IEx,r
and ε2(x) =

Ç
Γ̃x,r

|Cx,r|
− f(x)

å
IEx,r

. (8)

Roughly speaking, ε1 is the variance term of the error and ε2 the bias one. We will make use
of the following error decompositions:

E((f̂r,A(x)− f(x))2) ≤ E(ε21(x)|Ex,r) + E(ε22(x)|Ex,r) + 2E(ε1(x)ε2(x)|Ex,r) + f(x)2P(Ec
x,r), (9)

P(|f̂r,A(x)− f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2(x)| ≥ t2|Ex,r) + P(Ec
x,r). (10)

5.2 Bound on P(Ec
x,r) and rough bounds on ε1 and ε2

Lemma 1 (Bound on P(Ec
x,r)). Suppose that the distribution is (r0, δ, ε0)-standard and the

density f is upper-bounded by f
(0)
max. For all A < δD and r < min(r0, (4ωD)f

(0)
max)−1/D, there

exist β1 and β2 positive constants such that, for all x with f(x) > 0, we have

P(Ec
x,r) ≤ β1 exp

(
−nrD min(f(x), ε0)β2

)
+ exp(−n/8).

Proof. First, tackle the condition on N∂
x,r. Remark that P(N∂

x,r > n/2) ≤ P(Nx,r > n/2). Since

Nx,r ∼ Binom(n,Γx,r) with Γx,r < 1/4, by condition r ≤ (4ωDf
(0)
max)−1/D, we have that

P(Nx,r > n/2) = P
Å
Nx,r − nΓx,r > n

Å
1

2
− Γx,r

ãã
≤ P (Nx,r − nΓx,r > n/4) .

Then, by use of Hoeffding, we obtain P(N∂
x,r > n/2) ≤ P(Nx,r > n/2) ≤ exp(−n/8).

Let now Lt (with t > 0) be a level set that has the (δ, r1)−inside rolling ball property. We
aim at proving that, for all x ∈ Lt, we have that

P
Å |Cx,r|

rD
≤ AωD or Γ̃x,r ≤ ωDrDAt

ã
≤ CD4D

exp

Å
−nωDt

ÄÄ
1− A1/D

δ

ä
δr
4

äDãÄ
1− A1/D

δ

äD , (11)

where CD is the ”covering constant” of a D-Dimensional Ball.
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Notice that Cy,δr ⊂ Cx,r, where Cy,δr denotes the convex hull of the observations in B(y, δr)
the ball of the ”ball-standardness” assumption (B(y, δr) ⊂ B(x, r)∩Lt). Set α ∈)0, 1(. Suppose
that B(y, αδr) is not included in Cy,δr. Thus, there exists y1 in B(y, δαr) which is not in Cy,δr.
Because y1 is not in Cy,δr, there exists u1 a unit vector such that, for all observation Xi in

B(y, δr), we have ⟨Xi−y1, u1⟩ < 0. Introduce z = y+ ⟨y1−y,u1⟩+δr
2 u1. We have that z belongs to

B(y, δr) and B(z, (1− α)δr/2) contains no observation. We have then proved that, if B(y, αδr)
is not included in Cy,δr, there exists z ∈ B(y, δr) with B(z, (1 − α)δr/2) ∩ Xn = ∅ (see Figure
9).

Figure 9: Construction of z

Now, deterministicaly cover B(y, δr) with ν ≤ CD4D(1 − α)−D balls of radius (1 − α)δr/4
centered at points z′1, . . . , z

′
ν . It clearly comes that, if B(y, αδr) is not included in Cy,δr, there

exists z′i ∈ B(y, δr) with B(z′i, (1− α)δr/4) ∩ Xn = ∅. Thus, we have:

P(B(y, αδr) ⊈ Cy,δr) ≤
ν∑

i=1

P(B(z′i, (1− α)δr/4) ∩ Xn = ∅),

P(B(y, αδr) ⊈ Cy,δr) ≤ CD4D
(
1− ωDt((1− α)δr/4)D

)n
(1− α)D

≤ CD4D
exp(−nωDt((1− α)δr/4)D)

(1− α)D
.

Because B(y, αδr) ⊂ Cy,δr ⊂ Cx,r implying both that |Cx,r| ≥ ωD(αδr)d and Γ̃x,r ≥ ωD(αδr)dt,
we get

P
Å |Cx,r|

rD
≤ ωD (δα)

D
or Γ̃x,r ≤ ωD(δα)Dt

ã
≤ CD4D(1− α)−D exp(−nωDt((1− α)δr/4)D).

And so, if A < δD, with α = A1/D/δ, we obtain (11).
Let now x be such that f(x) > 0. If f(x) < ε0, by application of (11) with t = f(x), we have

the existence of positive constants β1 and β2 such that P
Ä |Cy,δr|

rD
≤ AωD or Γ̃x,r ≤ ωDrDAf(x)

ä
≤

β1 exp
(
−nrDf(x)β2

)
. If f(x) ≥ ε0, also by application of (11) with t = ε0, to have

P
Å |Cy,δr|

rD
≤ AωD or Γ̃x,r ≤ ωDrDε0A

ã
≤ β1 exp

(
−nrDε0β2

)
That concludes the proof under model M2.
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Lemma 2 (Bounds on ε1). Suppose that the density is upper-bounded by f
(0)
max. Then we have

that

E (ε1(x)ε2(x)|Ex,r) = 0, (12)

E
(
ε21(x)|Ex,r

)
≤

2maxz∈Cx,r (f(z))

AωDrDn
≤ 2f

(0)
max

AωDrDn
, (13)

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

é
≤ 2n−4(1 + o(1)). (14)

Proof. Recall that

ε1(x) =
No

x,r − Γ̃x,r(n−N∂
x,r)

|Cx,r|(n−N∂
x,r)

IEx,r
.

See [3] for the possibility to define No
x,r|Cx,r. Given Cx,r, the quantities |Cx,r|, Γ̃x,r and

ε2(x) are known. As a first conclusion E (ε1(x)ε2(x)|Cx,r) = ε2(x)E(ε1(x)|Cx,r). Also, with
probability one, N∂

x,r is the number of vertices of the convex polygon Cx,r and thus is also

known. So, almost surely, No
x,r|Cx,r ∼ Binom(n−N∂

x,r, Γ̃x,r). We thus also have E(ε1(x)|Ex,r) =
E(No

x,r|Ex,r)−Γ̃x,r(n−N∂
x,r)

|Cx,r|(n−N∂
x,r)

= 0. We then have E (ε1(x)ε2(x)|Cx,r) = ε2(x)E(ε1(x)|Cx,r) = 0, which

proves (12). We also have E(ε21(x)|Cx,r) =
V(No

x,r|Ex,r)

|Cx,r|2(n−N∂
x,r)

2 =
Γ̃x,r(1−Γ̃x,r)

|Cx,r|2(n−N∂
x,r)

. Then, due to

Γ̃x,r(1−Γ̃x,r)
|Cx,r| ≤ Γ̃x,r

|Cx,r| ≤ maxCx,r
(f(z)), it comes that E(ε21(x)|Cx,r) ≤

maxz∈B(x,r) f(z)

n−N∂
x,r

1
|Cx,r| . Thus

we clearly roughly obtain

E(ε21(x)|Ex,r) ≤
2maxz∈B(x,r) f(z)

AnωDrD
≤ 2f

(0)
max

AnωDrD
,

which proves (13). By Bennett’s inequality, it comes that:

P
(
|No

x,r − Γ̃x,r(n−N∂
x,r)| >

»
16 lnn(n−N∂

x,r)Γ̃x,r|Cr,x

)
≤

2 exp

(
−(n−N∂

x,r)Γ̃x,rh

(√
16 lnn

(n−N∂
x,r)Γ̃x,r

))
,

with h(u) = (1 + u) ln(1 + u)− u. Because h(u) ≥ u2/4 when u ≤ 4, we get

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≥ 8 lnn

n

é
≤ 2n−4. (15)

To conclude the proof we aim at bounding the probability of large ε1 given Ex,r and Γ̃x,r ≤
8 lnn
n (that could happen for points x with f(x) ≤ 8 lnn/(AωDnrD)). Recall that, given Cx,r,

No
x,r has a binomial law. Then, by use of first Bernstein inequality, we have:

P
Ä
|No

x,r − Γ̃x,r(n−N∂
x,r)| > t|Cr,x

ä
≤ 2 exp

Ç
− t2

2Γ̃x,r(1− Γ̃x,r)(n−N∂
x,r) + 2t/3

å
.

Introduce n∂ = n−N∂
x,r and choose t =

√
a′n∂ lnnrD to obtain

P
Ä
|No

x,r − n∂Γ̃x,r| >
√
a′n∂rD lnn|Cr,x

ä
≤ 2 exp

Ç
− a′n∂rD lnn

2n∂Γ̃x,r(1− Γ̃x,r) + 2
√
a′n∂rD lnn/3

å
.
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Thus (division by n∂ |Cx,r| in the left term and trivial bound in the right one) we have

P
Ç
|ε1(x)| >

 
a′rD lnn

n∂ |Cx,r|2
|Cx,r

å
≤ 2 exp

Ç
− a′n∂rD lnn

2n∂Γ̃x,r + 2
√
a′n∂rD lnn/3

å
.

Now, choose a′ = 16ωDf
(0)
max and notice that, given Ex,r, n

∂ ≥ n/2. It comes

P

Ñ
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≤ 8 lnn

n

é
≤ 2 exp

Ç
− a′nrD lnn

16 lnn+ 2
3

√
2a′rDn lnn

å
.

And, because nrD/ lnn → +∞, we obtain

P

Ñ
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≤ 8 lnn

n

é
≤ 2 exp

Å
−3

2

√
a′ lnnnrD

ã
(1 + o(1)).

Apply again nrD

lnn → +∞ to have that P
Å
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣Ex,r and Γ̃x,r ≤ 8 lnn
n

ã
= o(n−4).

That, together with (15), concludes the proof of (14).

Lemma 3 (Rough bound on ε2). Suppose that the support S of the distribution is either convex
or has the R0-inside and outside rolling ball condition. Also suppose that the density f is K-

Lipschitz continuous on S and upper-bounded by f
(0)
max. Then, if S is convex, we have

P (|ε2(x)| > rK |Ex,r ) = 0. (16)

And, if S has the R0-inside and outside rolling ball property, we have

P
Ç
|ε2(x)| > r

Ç
K +

4f
(0)
maxωD−1

3AR0ωD

å
|Ex,r

å
= 0. (17)

Proof. Recall that

ε2(x) =

Ç
Γ̃x,r

|Cx,r|
− f(x)

å
IEx,r

,

|ε2(x)| =

∣∣∣∫Cx,r
(f(y)− f(x))dy

∣∣∣
|Cx,r|

≤

∣∣∣∫Cx,r∩S
(f(y)− f(x))dy

∣∣∣
|Cx,r|

+

∣∣∣∫Cx,r\S(f(y)− f(x))dy
∣∣∣

|Cx,r|
.

Thus, we have |ε2(x)| ≤ rK+ f(x)
|Cx,r\S|
|Cx,r| . Then, roughly bounding the second term given Ex,r,

we get |ε2(x)| ≤ rK + f(x) |H(B(x,r)∩S)\S|
AωDrD

. Obviously, if S is convex, we obtain |ε2(x)| ≤ rf
(1)
max.

When S has the rolling ball condition, by application of proposition 5 (see Appendix B) it comes

that |ε2(x)| ≤ r(f
(1)
max + f(x) 4ωD−1

3AR0ωD
).

5.3 Proof of Theorem for model M1

Proof of Theorem 1. By Equation (9), we have

E((f̂r,A(x)− f(x))2) ≤ E(ε21(x)|Ex,r) + 2E(ε1ε2|Ex,r) + E(ε22(x)|Ex,r) + f(x)2P(Ec
x,r).
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Compactness of S and Lipschitz continuity of f imply that the density is upper bounded by

f
(0)
max ≤ f

(0)
min+K diam(S)

2 so we can apply Lemmas 2 and 3. We then have E(ε21(x)|Ex,r) ≤ 2f(0)
max

AωDnrD
,

E (ε1(x)ε2(x)|Ex,r) = 0 and E(ε2(x)2|Ex,r) ≤ r2
(
K +

4f(0)
maxωD−1

3AR0ωD

)2
(take R0 = +∞ in case of

convex support). We also can apply Lemma 1 (the density is upper bounded and the distribution

is (r, δ, f
(0)
min)-standard) to achieve the proof of the first equation, for n large enough:

E((f̂r,A(x)− f(x))2) ≤ 2f
(0)
max

AωDnrD
+ r2

Ç
K +

4f
(0)
maxωD−1

3AR0ωD

å2

+ (f (0)
max)

2
Ä
β1 exp(−nrDf

(0)
minβ2) + exp(−n/8)

ä
.

To prove the second equation we can proceed the same way, by use of equation (10), and
obtain

P(|f̂r,A(x)− f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2(x)| ≥ t2|Ex,r) + P(Ec
x,r).

Choose then t1 =

√
32f

(0)
max lnn

A2ωDnrD
and t2 = r

(
K +

4f(0)
maxωD−1

3AR0ωD

)
. By Lemma 3, P(|ε2(x)| ≥ t2|Ex,r) =

0; and by Lemmas 2, 3 and 1
∑

nP(|ε1(x)| ≥ t1|Ex,r) < +∞ and
∑

nP(Ec
x,r) < +∞. Thus we

can conclude by use of Borrel-Cantelli Lemma.

5.4 Proofs for model M2

Lemma 4 (Bounds on ε2 for model M2). Suppose that the distribution belongs to the model
M2. For x ∈ S̊ and r small enough to have B(x, r) ⊂ {z, f(z) > 0}, introduce Hx,r =
maxz∈B(x,r) ||Hf (x)||op. There exists an explicit constant C such that

E(ε2(x)2|Ex,r) ≤
Ç
H2

x,rr
4 + Cr2

ÇÅ
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

åå
(1 + o(1)). (18)

And there exist explicit constants C, C ′ and C2 such that

P

(
|ε2| ≥

Cr lnn

nrDγ(x)
+ r

Å
C ′

nrDγ(x)

ã 2
D+1

+ r2f (2)
max |Ex,r

)
≤ C2n

−4 + exp
(
−n(δr)Dγ(x)/10

)
,

(19)
where γ(x) = min(f(x), ε0), ε0 being the constant in the (r0, δ, ε0)-standardness of the distribu-
tion.

Proof. As Cx,r ⊂ B(x, r) ⊂ S, by the use of a second order Taylor expansion (see Proposition 2
in Appendix A), we get:∣∣∣∣∣Γ̃x,r − f(x)|Cx,r| −

∫
Cx,r

(y − x)∇f (x)
′dy

∣∣∣∣∣ ≤
∫
Cx,r

||y − x||2 max
z∈Cx,r

||Hf (z)||opdy.

Because
∫
B(x,r)

(y − x)∇f (x)
′dy = 0, we have that:

|Γ̃x,r − f(x)|Cx,r|| ≤
∫
B(x,r)\Cx,r

r||∇f (x)||dy + |Cx,r| max
z∈Cx,r

||Hf (z)||opr2,
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from which we derive
|Γ̃x,r−f(x)|Cx,r||

|Cx,r| ≤ r||∇f (x)|| |B(x,r)\Cx,r|
|Cx,r| + maxz∈Cx,r

||Hf (z)||opr2. Thus,
given |Cx,r| ≥ AωDrD, we obtain

|ε2(x)| ≤
||∇f (x)||

A
r
|B(x, r) \ Cx,r|

|B(x, r)|
+ max

z∈Cx,r

||Hf (z)||opr2. (20)

To control the convergence rate of |B(x, r)\Cx,r| we will make use of results from [9] recalled
in Appendix C (see Proposition 6). To apply the aforementioned proposition let us introduce

Mx,r = maxy∈B(0,1)
rDf(x+ry)∫
B(x,r)

f(z)dz
(defined because

∫
B(x,r)

f(z)dz > 0).

Let us first consider the L2 convergence. Because
minB(x,r) f(y)

maxB(x,r) f(y)
|B(x,r)\Cx,r|

|B(x,r)| ≤
∫
B(x,r)\Cx,r

f(z)dz∫
B(x,r)

f(z)dz

and by application of equation (30) (Appendix C), it comes that, for k > 0,

E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãq

|Nx,r = k

ã
≤ Aq(Mx,r + 1)q

Ç
maxB(x,r) f(y)

minB(x,r) f(y)

åq

k−
2q

D+1 .

Notice that E
ÄÄ |B(x,r)\Cx,r|

|B(x,r)|

äq
|Nx,r = 0

ä
= 1. Then, we have:

E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãqã
≤Aq(Mx,r + 1)q

Ç
maxB(x,r) f(y)

minB(x,r) f(y)

åq n∑
k=1

Ç
n

k

å
k−

2q
D+1Γk

x,r(1− Γx,r)
n−k

+ (1− Γx,r)
n.

A rough bound gives Mx,r ≤ 1
ωD

maxB(x,r) f(y)

minB(x,r) f(y)
.

Introduce Bx,r,q = Aq

(
1

ωD

maxB(x,r) f(y)

minB(x,r) f(y)
+ 1
)q (maxB(x,r) f(y)

minB(x,r) f(y)

)q
. By application of Proposi-

tion 1 (Appendix A), we have that

E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãqã
≤ Bx,r,q

(Å
nΓx,r

2

ã− 2q
D+1

+ exp

Å
−nΓx,r

10

ã)
+ (1− Γx,r)

n. (21)

And thus, because E(ε2(x)2|Ex,r) ≤ E(ε2(x)2) (ε2(x)2 is a positive random variable), by use of
(20), we obtain

E(ε2(x)2|Ex,r) ≤
||∇f (x)||2

A2
r2
Ç
Bx,r,2

ÇÅ
nΓx,r

2

ã− 4
D+1

+ exp

Å
−nΓx,r

10

ãå
+ (1− Γx,r)

n

å
+ 2

||∇f (x)||Hx,r

A
r3
Ç
Bx,r,1

ÇÅ
nΓx,r

2

ã− 2
D+1

+ exp

Å
−nΓx,r

10

ãå
+ (1− Γx,r)

n

å
+H2

x,rr
4.

Because (1 − Γx,r)
n ≤ exp(−nΓx,r) and nrD/ lnn → +∞, and by application of Proposition 7

(Appendix C) we obtain the existence of an explicit constant C such that

E(ε2(x)2|Ex,r) ≤
Ç
H2

x,rr
4 + Cr2

ÇÅ
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

åå
(1 + o(1)).

Let us second consider the convergence in probability.

Introduce B′
x,r = C1

(
1

ωD

maxB(x,r) f(y)

minB(x,r) f(y)
+ 1
)

maxB(x,r) f(y)

minB(x,r) f(y)
. By use of Equation (29) (Appendix

C), we obtain

P
ñ
k

Å |B(x, r) \ Cx,r|
|B(x, r)|

−B′
x,rk

−2/(D+1)

ã
> t

maxB(x,r) f(z)

minB(x,r) f(z)
|Nx,r = k

ô
≤ C2e

−t.
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From this, it comes, by Proposition 7 (Appendix C), that there exist C and C ′ such that

P
ïÅ

||∇f (x)||
|B(x, r) \ Cx,r|

|B(x, r)|
≥ C

t

k
+ C ′k−

2
D+1 |Nx,r = k

ã
|Ex,r

ò
≤ C2e

−t.

Thus, for all K, we obtain

P
Å
||∇f (x)||

|B(x, r) \ Cx,r|
|B(x, r)|

≥ C
t

K
+ C ′K− 2

D+1 |Ex,r

ã
≤ C2e

−t + P(Nx,r < K),

which, with (20), gives

P
Å
|ε2| ≥ C

tr

K
+ C ′rK− 2

D+1 + r2f (2)
max |Ex,r

ã
≤ C2e

−t + P(Nx,r < K).

Finally, to deal with P(Nx,r < K), recall that γ(x) = min(f(x), ε0) and chooseK = nωDδDrDγ(x)
2 .

Also recall that we have Γx,r ≥ ωD(δr)Dγ(x) by the ball standardness asumption. Thus, by
application of Bennets inequality (h(0.5) ≥ 0.1) with the choice of t = 4 lnn, it comes the
existence of (new) constants C and C ′ such that:

P

(
|ε2| ≥ r

C lnn

nrDγ(x)
+ r

Å
C ′

nrDγ(x)

ã 2
D+1

+ r2f (2)
max |Ex,r

)
≤ C2n

−4 + exp
(
−n(δr)Dγ(x)/10

)
.

This achieves the proof of (19).

Proof of Theorem 2. By Equation (9), we have

E((f̂r,A(x)− f(x))2) ≤ E(ε21(x)|Ex,r) + 2E(ε1ε2|Ex,r) + E(ε22(x)|Ex,r) + f2(x)P(Ec
x,r).

By Equation (13), E(ε21(x)|Ex,r) ≤ 2f(0)
max

AωDrDn
. By Equation (12), E (ε1(x)ε2(x)|Ex,r) = 0. By

Equation (18), for n large enough to have B(x, r) ⊂ S,

E(ε2(x)2|Ex,r) ≤
Ç
H2

x,rr
4 + Cr2

ÇÅ
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

åå
(1 + o(1)).

This gives

E(ε2(x)2|Ex,r) ≤

(
H2

x,rr
4 + Cr2

(Å
nωDf(x)rD

2

ã− 4
D+1

+ r

Å
nωDf(x)rD

2

ã− 2
D+1

))
(1+ ox(1)).

Finally, by Lemma 1, we have

f2(x)P(Ec
x,r) ≤ β1f

2(x) exp
(
−nrD min(f(x), ε0)β2

)
+ (f (0)

max)
2 exp(−n/8).

Thus, we obtain

f2(x)P(Ec
x,r) ≤ max

Å
4β1e

−2

(β2nrD)2
, β1(f

(0)
max)

2 exp(−nrDβ2ε0)

ã
+ (f (0)

max)
2 exp(−n/8).

And because nrD → +∞, we have

f2(x)P(Ec
x,r) = O((nrD)−2).

This achieves the proof of the first point of Theorem 2.

Second point of Theorem 2 is proved the same by use of Lemma 3 instead of equation(18).
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As is common and classical, the proof of Corollary 1 is left for the reader.

Proof of Theorem 3. Firstly focus on the first case. Let us fix t > 0. For all x ∈ Lt such that
B(x, r) ⊂ S, due to Lemma 1, we have:

P(Ec
x,r) ≤ β1 exp

(
−β2nr

D min(t, ε0)
)
+ exp(−n/8) = ot(n

−4).

Also due to Equation (14), we have P
Å
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

ã
≤ 2n−4(1 + o(1)). Finally,

Equation (19) for r = cn− 1
D+4 and D ≤ 7 gives

P
(
|ε2| ≥ Ot(r

2)|Ex,r

)
≤ C2n

−4 + exp
(
−nrD min(t, ε0)/10

)
.

Thus, due to P(|f̂r,A(x)− f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2| ≥ t2|Ex,r) + P(Ec
x,r),

P

Ñ
|f̂r,A(x)− f(x)| ≥

√
32 lnnf

(0)
max

A2ωDnrD
+Ot(r

2)

é
≤ Cn−4(1 + ot(1)).

Introduce X(t, r) = {Xi ∈ Xn, f(Xi) > t,B(Xi, r) ⊂ S}. Recall that r = cn− 1
D+4 . All the

above equations provide the existence of a constant Ct such that, for n large enough,

P
Ä
∃Xi ∈ X(t, r) s.t |f̂r,A(Xi)− f(Xi)| ≥ Ct

√
lnnn− 2

D+4

ä
≤ Cn−3(1 + o(1)).

That, with Borrel Cantelli Lemma, concludes the proof of the first point of Theorem 3.
The second point of Theorem 3 is the same using the lower bound of the density to obtain

uniform rates and is let to the reader.

We now prove the third point of Theorem 3. First suppose that f(x) ≥ (lnn/(nrD))1/2. Then,

by Lemma 1 and because nrD

lnn → +∞, we have P(Ec
x,r) ≤ β1 exp

(
−β2 lnn

»
nrD

lnn

)
+exp(−n/8) =

o(n−4). Due to Equation (14), we also have P
Å
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

ã
≤ 2n−4(1 + o(1)).

And, under the rolling ball condition or the convexity condition, due to Lemma 3, there exists
C such that P (|ε2| > Cr |Ex,r ) = 0. Thus, due to P(|f̂r,A(x) − f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥
t1|Ex,r) + P(|ε2| ≥ t2|Ex,r) + P(Ec

x,r), we obtain

P

Ñ
|f̂r,A(x)− f(x)| ≥

√
32 lnnf

(0)
max

A2ωDnrD
+ Cr

é
≤ 2n−4(1 + o(1)).

Second, suppose that 0 < f(x) ≤ (lnn/(nrD))1/2. Because, conditionally to Ec
x,r, f̂r,A(x) =

0, we have P(|f̂r,A(x)−f(x)| > (lnn/(nrD))1/2|Ec
x,r) = 0. It comes that, when t ≥ 2(lnn/(nrD))1/2,

P(|f̂r,A(x)− f(x)| ≥ t) ≤ P(|f̂r,A(x)− f(x)| ≥ t|Ex,r).

Then, applying the same calculus as in the first case, we obtain

P

Ñ
|f̂r,A(x)− f(x)| ≥

…
lnn

nrD
max

Ñ√
32f

(0)
max

A2ωD
, 2

é
+ Cr

é
≤ 2n−4(1 + o(1)).
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Thus, for all x in S, we have

P

Ñ
|f̂r,A(x)− f(x)| ≥

…
lnn

nrD
max

Ñ√
32f

(0)
max

A2ωD
, 2

é
+ Cr

é
≤ 2n−4(1 + o(1)).

Thus, when r = cn− 1
D+4 , P

Ä
∃Xi s.t |f̂r,A(Xi)− f(Xi)| ≥ Cr(1 + o(1))

ä
≤ 2n−3(1+o(1)) . That,

with Borrel Cantelli Lemma, concludes the proof of last point of Theorem 3.

Proof of Theorem 4. Recall the LoCoH definition: for a set E,

Hr(E) :=
⋃
x∈E

H (B(x, r) ∩ E) .

Suppose first that t is a regular level. The C2 condition on f implies that for all

(x, y) ∈ S × S ||∇f (x)−∇f (y)|| ≤ f
(2)
max||x− y||. Thus, by application of Theorem 2 in [32], for

all t′ ∈ [t−∆t, t+∆t], Lt′ has the
mt

f
(2)
max

-inside and outside rolling ball condition.

We now prove that, for all 0 < ε < min
(
∆t,

mtd(Lt−∆t ,∂S)

2 ,
m2

t

2f
(2)
max

)
, we have that Lt−ε ⊂

Lt ⊕ 2ε
mt

B. Indeed, consider x ∈ Lt−ε and y = x + 2 ε
mt

∇f (x)
||∇f (x)|| .We have that x ∈ Lt−∆t and

||y − x|| < d(Lt−∆t
, ∂S), thus y ∈ S̊. That allows to write, according to Proposition 2, that

f(y) ≥ f(x) + 2
ε

mt
||∇f (x)|| −

1

2

Å
2

ε

mt

ã2

f (2)
max.

We have f(y) ≥ t − ε + 2ε − ε
2εf(2)

max

m2
t

. Thus, since ε < m2
t/(2f

(2)
max), we also have f(y) ≥ t and

thus y ∈ Lt. That, together with ||y − x|| = 2ε
mt

, concludes the proof of the inclusion:

Lt−ε ⊂ Lt ⊕
2ε

mt
B. (22)

By last point of Theorem 3, with probability one for n large enough, for all Xi such that

f̂(Xi) ≥ t, we have f(Xi) ≥ t− Cn− 1
D+4 . Thus, when n is large enough to have Cn− 1

D+4 ≤ ∆t,
we have Xi ∈ Lt−∆t

and thus d(Xi, ∂S) ≥ d(Lt−∆t
, ∂S) > 0. When r ≤ d(Lt−∆t

, ∂S) (that is
when n is large enough), from Theorem 3 (first point), with probability one for n large enough,

for all Xi such that f̂(Xi) ≥ t, we have |f(Xi) − f̂(Xi)| ≤ Ct−∆t

√
lnnn− 2

D+4 . Thus, we get

that Xi ∈ Lt−εn with εn = Ct−∆t

√
lnnn− 2

D+4 . We then have, with probability one for n large
enough:

L̂t ⊂ Hr (Xn ∩ Lt−εn) ⊂ Hr(Lt−εn).

When n is large enough to have all previous conditions and Ct−∆t

√
lnnn− 2

D+4 ≤ ∆t, Lt−εn

satisfies the mt

f
(2)
max

-inside and outside rolling ball condition. Then, by Proposition 5 equation (27)

(Appendix B), we obtain that (with probability one for n large enough):

L̂t ⊂ Lt−εn ⊕ r2f
(2)
max

mt
B ⊂ Lt ⊕

Ç
r2f

(2)
max + 2εn
mt

å
B. (23)

Now, we consider reverse inclusion. Introduce ε′n = Ct

√
lnnn− 2

D+4 . By last point of Theorem
3, with probability one for n large enough, we have Xn ∩ Lt+ε′n

⊂ X+
r,A(t). Introduce now
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Pt = tωD

(
mt

f
(2)
max

)D
and n′ = nPt/2. Recall that r = cn− 1

D+4 . Thus with probability one for n

large enough, we get:

H
c( lnn′

n′ )
1

D+1

(
Xn ∩ Lt+ε′n

)
⊂ Hr

(
Xn ∩ Lt+ε′n

)
⊂ L̂t.

Recall that Lt+ε′n
has the mt

f
(2)
max

-inside and outside rolling ball condition (when n is large

enough). Thus we have |Lt+ε′n
| ≥ ωD

(
mt

f
(2)
max

)D
and P(Lt+ε′n

) ≥ Pt. In consequence, by Hoeffding,

with probability one for n large enough, there is more than n′ observations in Xn ∩ Lt+ε′n
. We

can apply [2] (Theorem 2 with α = 0). More precisely, there exists a constant C ′
t such that, with

probability one for n large enough, we have:

Lt+ε′n
⊂ H

c( lnn′
n′ )

1
D+1

(
Xn ∩ Lt+ε′n

)
⊕ C ′

t

Å
lnn

n

ã 2
D+1

B.

Previous chain of inclusion allows then to conclude that Lt+ε′n
⊂ L̂t ⊕ C ′

t

(
lnn
n

) 2
D+1 B. Thus

again, by application of (22), we have Lt ⊂ L̂t ⊕
(
C ′

t

(
lnn
n

) 2
D+1 +

2ε′n
mt

)
B, which, together with

Equation (23) achieves the proof of the first point of Theorem 4.

Supposenow that t is a standard level. Choose εn = Cn− 1
D+4 , such that for all Xi we

have f(Xi) ≥ t+ εn ⇒ f̂r,A(Xi) ≥ t ⇒ f(Xi) ≥ t− εn. It implies that Hr(Lt+εn ∩ Xn) ⊂ L̂r ⊂
Hr(Lt−εn ∩ Xn).

Take now n large enough to have εn ≤ ∆t. We first have the trivial inclusions L̂t ⊂ Hr(Lt−εn∩
Xn) ⊂ Hr(Lt−εn) ⊂ Hr(Lt ⊕ εnβtB) ⊂ Lt ⊕ (r+ εnβt)B (due to Hr(S) ⊂ S⊕ rB for any set S).

Focus now on the reverse inclusion. First, there exists a constant ct such that, with proba-
bility one for n large enough, Lt+εn ⊂ (Lt+εn ∩Xn)⊕ ct(lnn/n)

1/DB. The proof being classical,
we refer the reader to Proposition 3 in Appendix B for further details. Thus, by standard-
ness, we get Lt ⊂ (Lt+εn ∩ Xn) ⊕

(
ct(lnn/n)

1/D + βtεn
)
B. And finally, using arguments as in

Theorem 1 and Corollary 1 in [2], we have that dH

(
H4(ct(lnn/n)1/D+βtεn)(Lt+εn ∩ Xn), Lt

)
≤

γt
(
ct(lnn/n)

1/D + βtεn
)
. Hence, we obtain

Lt ⊂
(
H4(ct(lnn/n)1/D+βtεn)(Lt+εn ∩ Xn)

)
⊕ γt

Ä
ct(lnn/n)

1/D + βtεn
ä
B.

Thus, since rn = cn− 1
D+4 with c > 4βtC, we have that, with probability one for n large enough,

Lt ⊂ (Hrn(Lt+εn ∩ Xn))⊕ γt
Ä
ct(lnn/n)

1/D + βtεn
ä
B,

Lt ⊂ L̂t ⊕ γt
Ä
ct(lnn/n)

1/D + βtεn
ä
B.

That concludes the proof of the second point of the theorem.

5.5 Proofs for the manifold case

Proof of Theorem 5 in a nutshell: Let introduce gx,R(z) the density of πT̂x
(X)|X ∈ B(x,R).

By applying following Lemma 6 for R and Θn small enough, we are in situation similar to the
one model M1 so that, there exist constants β′

1, β
′
2, C1 and C2 such that:

E
Å ∣∣∣∣nk ˆ̂

fr,R,A(x)− gx,R(0)

∣∣∣∣∣∣∣∣Nx,R = k

ã
≤ C1√

krd
+ C2r + β′

1 exp(−β′
2kr

d) + exp(−k/8).
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Thus, we have

E
Å
| ˆ̂fr,R,A(x)− f(x)|

∣∣∣∣Nx,R = k

ã
≤ C1

√
k

n
√
rd

+
k

n

(
C2r + β′

1 exp(−β′
2kr

d) + exp(−k/8)
)

+E
Å ∣∣∣∣kngx,R(0)− PX(B(X,R))gx,R(0)

∣∣∣∣∣∣∣∣Nx,R = k

ã
+E ( |PX(B(X,R))gx,R(0)− f(x)||Nx,R = k) .

In consequence (extensively using k/n ≤ 1), we obtain

E
(
| ˆ̂fr,R,A(x)− f(x)|

)
≤

C1E(
√
Nx,R)

n
√
rd

+ C2r + E(β′
1 exp(−β′

2Nx,Rr
d) + exp(−Nx,R/8))

+gx,R(0)E
Å∣∣∣∣Nx,R

n
− PX(B(X,R))

∣∣∣∣ã+ |PX(B(X,R))gx,R(0)− f(x)| .

By Jensen inequality for concave functions (applied to the first term), E(exp(−αN) = (1− p+
pe−α)n ≤ exp(−np(1− eα)) when N ∼ Binom(n, p) (end of the first line), and Cauchy Schwartz
and the law of Nx,r (the second line), it comes existence of positive β′′

2 and β3 such that

E
(
| ˆ̂fr,R,A(x)− f(x)|

)
≤ C1√

nrd
+ C2r + β′

1 exp(−β′′
2nr

d) + exp(−β3n)

+
gx,R(0)

4
√
n

+ |PX(B(X,R))gx,R(0)− f(x)| .

By the following Lemma 5 second point, we have that |PX(B(X,R))gx,R(0)− f(x)| ≤ C3Θn.
This achieves the proof of the existence of C such that, for n large enough,

E
(
| ˆ̂frn,R,A(x)− f(x)|

)
≤ C

Ç
1√
nrdn

+ rn +Θn

å
.

Main Lemmas

Lemma 5. Introduce Sx,R = πT̂x
(S ∩ B(x,R)). For all R ≤ min

Ä
τS
3 , τS

2d(D−d) ,
1

4(D−d)

ä
, there

exit K ′, r0, C
′, Gmin and Gmax positive constants such that, for n large enough to have Θn ≤

min
Ä

1
12 ,

1
2(D−d) − 2 R

τS

ä
, we have:

1. for all z ∈ Sx,R, Gmin ≤ gx,R(z) ≤ Gmax,

2. |PX(B(x,R))gx,R(0)− f(x)| ≤ C ′Θ2
n(1 + o(1)),

3. for all z ∈ B(0, r0) ∩ Sx,r, |gx,R(z)− gx,R(0)| ≤ K ′(||z||+Θ2
n +Θ2

n||z||2).

Proof. Due to Proposition 8, we have that πT̂x
: S ∩ B(x,R) → Sx,R = πT̂x

(S ∩ B(x,R)) is one

to one. Let (ux,1, . . . , ux,d) be an orthonormalized basis of T̂x, completed by (ux,d+1, . . . , ux,D)
to have an orthonormalized basis of RD, so that

π−1

T̂x
: Sx,R → S ∩B(x,R)

z =
∑d

i=1 ziux,i 7→ x+ z +
∑D

i=d+1 φx,i−d(z)ux,i
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Define ϕx(z) = (φx,1(z), . . . , φx,D−d+1(z)) and denote by Jx(z) the Jacobian matrix of ϕx(z) i.e.

Jx(z) =

Ü
∂φx,1

∂z1
(z) . . .

∂φx,1

∂zd
(z)

...
...

∂φx,D−d

∂z1
(z) . . .

∂φx,D−d

∂zd
(z)

ê
.

On the one hand, when i ≥ 1, then ux,d+i is in T̂⊥
x . On the other hand, for all j ∈ {1, . . . , d},

we have that vx,j := ux,j +
∑D−d

k=1
∂φx,k(z)

∂zj
ux,k+d ∈ Tx+z+ϕx(z)S. Thus, we get |⟨ux,d+i, vx,j⟩| ≤

(Θn + ∠TxS, Tx+z+ϕx(z)S)||vx,j ||. From this, since ||z + ϕx(z)|| ≤ R ≤ τS/3, it comes that

|⟨ux,d+i, vx,j⟩| ≤
Ä
Θn + π||z+ϕx(z)||

2τS

ä
||vx,j ||. Thus, we obtain:Å

∂φx,i

∂zj
(z)

ã2

≤
Å
Θn +

π||z + ϕx(z)||
2τS

ã2
(
1 +

D−d∑
k=1

Å
∂φx,k

∂zj
(z)

ã2
)
.

Now, summing on i gives that, if z ∈ Sx,R,
∑D−d

k=1

Ä
∂φx,k

∂zj
(z)
ä2

≤
Ä
Θn+

π||z+ϕx(z)||
2τS

ä2
(D−d)

1−
Ä
Θn+

π||z+ϕx(z)||
2τS

ä2
(D−d)

.

That directly implies, by Cauchy Schwartz, that || tJx(z)Jx(z)||∞ ≤
Ä
Θn+

π||z+ϕx(z)||
2τS

ä2
(D−d)

1−
Ä
Θn+

π||z+ϕx(z)||
2τS

ä2
(D−d)

.

Then, because
t
JxJx is a d-dimensional symmetric positive matrix that has a rank upper bounded

by min(d,D − d) and eigen values upper bounded by d|| tJx(z)Jx(z)||∞, it comes that

1 ≤ det(I +
t
Jx(z)Jx(z)) ≤

Ñ
1 +

Ä
Θn + dπ||z+ϕx(z)||

2τS

ä2
(D − d)

1−
Ä
Θn + π||z+ϕx(z)||

2τS

ä2
(D − d)

émin(d,D−d)

, (24)

gx,R(z) =
»
det(I +

t
Jx(z)Jx(z))

f(x+ z + ϕx(z))

PX(B(x,R))
ISx,R

(z).

Conditions on Θn and R imply that 1 ≤
√

det(I +
t
Jx(z)Jx(z)) ≤ 2

min(d,D−d)
2 and thus

Gmin = f
(0)
min and Gmax =

f(0)
max2

min(d,D−d)
2

PX(B(x,R)) are suitable constants for point 1 of Lemma 5.

Also f(x)
PX(B(x,R)) ≤ gx,R(0) ≤ f(x)

PX(B(x,R))

(
1 + (Θn)

2(D−d)

1−(Θn)
2(D−d)

)min(d,D−d)
2

allows to prove the

second point with C ′ = (D−d)2

2 .

Finally, when z ∈ Sx,r, introduce ∆J = |
√

det(I +
t
Jx(z)Jx(z)) −

√
det(I +

t
Jx(0)Jx(0))|.

We have |gx,R(z)−gx,R(0)| ≤ ∆J
f(0)
max

PX(B(x,R)) +

√
det(I+tJx(0)Jx(0))

PX(B(x,R)) K||z+ϕx(z)||. Then, using that

∆j ≲ Θ2
n+||z||2,

√
det(I +

t
Jx(0)Jx(0)) ≲ (1+Θ2

n) and Equation (37) to have ||z+ϕx(z)|| ≲ ||z||,
we can conclude the proof of point 3 of Lemma 5.

Lemma 6. There exist constants β′
1, β

′
2, C1 and C2 such that, for n large enough,

E
Å ∣∣∣∣nk ˆ̂

fr,R,A(x)− gx,R(0)

∣∣∣∣∣∣∣∣Nx,R = k

ã
≤ C1√

krd
+ C2r + β′

1 exp(−β′
2kr

d) + exp(−k/8).

Proof. Introduce Γ̂x,r,R =
∫“Cx,r,R

gx,R(z)dz, and the event Êx,r,R =”|“Cx,r,R| ≥ AωDrD, Γ̃x,r,R ≥
gx,R(0)AωDrD and “N∂

x,r,R ≤ Nx,R/2” and define

ε̂1(x) =
“No
x,r,R − Γ̂x,r,R(n− “N∂

x,r,R)

|“Cx,r,R|(n− “N∂
x,r,R)

IÊx,r,R
and ε̂2(x) =

Ç
Γ̂x,r,R

|“Cx,r,R|
− gx,R(0)

å
IÊx,r,R

.(25)
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We are in the full dimensional case and we have

E
Å ∣∣∣∣nk ˆ̂

fr,R,A(x)− gx,R(0)

∣∣∣∣∣∣∣∣Nx,R = k

ã
≤

E(|ε̂1(x)||Ex,r, Nx,R = k) + E(|ε̂2(x)||Ex,r, Nx,R = k) +GmaxP(Êc
x,r|Nx,R = k). (26)

By Cauchy Schwartz and Lemma 2 Equation (13), we obtain:

E(|ε̂1(x)||Ex,r, Nx,R = k) ≤
»
E(ε̂1(x)2|Ex,r, Nx,R = k) ≤ 2Gmax

Aωdrd
.

Exactly as in Lemma 3, we have that (deterministically)

|ε̂2(x)| ≤ max
Sx,R∩B(x,r)

|gx,R(z)− gxR
(0)|+ gx,R(0)

|H(B(0, r) ∩ Sx,R) \ Sx,R|
Aωdrd

.

Thus by application of Lemma 5, we obtain

|ε̂2(x)| ≤ K ′(r +Θ2
n + r2Θ2

n) +
Gmax

Aωdrd
|H(B(0, r) ∩ Sx,R) \ Sx,R|.

When B(0, r) ⊂ Sx,R, we have |H(B(0, r)∩Sx,R) \Sx,R| = 0. To bound |H(B(0, r)∩Sx,R) \
Sx,R| when B(0, r)∩Sc

x,R ̸= ∅ and r is small enough, we can apply Lemma A.7 in [1] from which
there exits R′ > 0 (depending on R and the reaches τM and τ∂M ) and η a unit vector such
that B(0∗ − R′η,R′) ∩ T̂x ⊂ Sx,R ⊂ Bc(0∗ + R′η,R′) ∩ T̂x, where 0∗ is the projection of 0 on
πT̂x

(∂S ∩B(x,R)). This local version of the rolling ball condition allows, as in Proposition 4, to

obtain that, for r < R′, there exists y ∈ T̂x such that B(y, r/2)∩ T̂x ⊂ B(0, r)∩ Sx,R. This local
ball standardness and lower bound on gx,R allows to bound on P(Ec

x,r|Nx,R = k) as in Lemma
1.
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[6] Karine Bertin, Nicolas Klutchnikoff, José Rafael León, and Clémentine Prieur. Adaptive
density estimation on bounded domains under mixing conditions. Electronic Journal of
Statistics, 2020.
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A Basic Tools

Proposition 1. Let p ∈)0, 1( and (n, q,D) ∈ (N∗)3. We have

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1− p)n−k ≤ exp

(
−np

10

)
+
(
−np

2

)− 2q
D+1

.

Proof.

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k ≤

⌊np/2⌋∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k+

n∑
k=⌈np/2⌉

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k.

Due to Bennet’s Inequality that implies that P(K ≤ np/2) ≤ exp(−np/10), we have that

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1− p)n−k ≤ exp

(
−np

10

)
+
(np

2

)− 2q
D+1

.

That concludes the proof of the proposition.

Proposition 2. Let g : S̊ ⊂ RD 7→ R be a C2 function such that supS̊ ||Hg(z)||op < +∞. For all

x ∈ S̊ and all y such that (x, y) ⊂ S, we have: |g(y)−g(x)−(y−x)
t∇g(x)| ≤ supS̊ ||Hg(z)||op||y−

x||2.
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Proof. Let x ∈ S̊, let u be an unit vector and λ ∈ (0, λ0( with λ0 = sup{z, (x, z) ⊂ S̊}. Taylor
Lagrange applied to Gx,u : R 7→ R Gx,u(λ) = g(x+ λu) provides the existence of µ ∈ (0, λ) such

that Gx,u(λ)−Gx,u(0) = λG′
x,u(0)+

λ2

2 G′′
x,u(µ). Thus, we have |Gx,u(λ)−Gx,u(0)−λu

t∇g(x)| ≤
λ2

2 | tuHf (x+ µu)u| ≤ λ2

2 supS̊ ||Hf (z)||op.

Proposition 3. If t is a standard level, there exits ct such that, with probability one for n large
enough, for all ε > 0, Lt+ε ⊂ (Lt+ε ∩ Xn)⊕ ( 4

tδtωD
)1/D(lnn/n)1/DB.

Proof. Deterministicaly cover Lt+ε with ν ≤ Ct
n

aD lnn
balls of radius a(lnn/n)1/D centered at

some x1, . . . , xν in Lt. If there exists x ∈ Lt+ε such that d(x,Xn) ≥ b(lnn/n)1/D, then there exits
a xi with B(xi, (b−a)(lnn/n)1/D)∩Xn = ∅. By standardness of the level and classical calculation,

we obtain P(d(x,Xn) ≥ b(lnn/n)1/D) ≤ ν(1− tδtωD(b− a)D lnn/n)n = O(n1−tδtωD(b−a)D ). The

choice of b = ( 4
tδtωD

)1/D and a = 41/D−31/D

(tδtωD)1/D
allow to have

∑
P(d(x,Xn) ≥ b(lnn/n)1/D) < +∞.

That concludes the proof by application of Borrel-Cantelli Lemma.

B Technical results on sets with rolling ball property

Proposition 4. If E ⊂ RD satisfies the r0-inside and outside rolling ball condition, then E and
Ec are (2r0, 1/2)-ball standard.

Proof. First let prove that, for all r ≤ 2r0, there exists y such B(y, r/2) ⊂ E ∩ B(x, r). If
d(x, ∂S) ≥ r/2, one can trivially choose y = x. If now d(x, ∂S) < r/2 ≤ r0, introduce x∗ =
π∂S(x). We have that x = x∗ − d(x, ∂S)ηx∗ and Ox = x∗ − r0ηx∗ . By rolling ball condition, we
have that B(Ox, r0)∩B(x, r) ⊂ E ∩B(x, r). The choice of y = x∗− (r/2)ηx∗ is convenient since,
if z ∈ B(y, r/2), we have

1. ||z − x|| ≤ ||z − y||+ ||y − x|| = ||z − y||+ (r/2− d(x, ∂S)) ≤ r, thus z ∈ B(x, r);

2. z = y + αηx∗ + βv with v a unit vector of η⊥x∗ and α2 + β2 ≤ (r/2)2. Thus we have
||Oy − z||2 = (r0 − (r/2) + α)2 + β2 ≤ r20 − (2r0 − r)(α − r/2) ≤ r20. And so we obtain
z ∈ B(Ox, r0).

Suppose that E has more than one connected component and consider two connected com-
ponents of E: E1 and E2. Suppose that infx∈E1,y∈E2

||x − y|| = ℓ < 2r0. Compacity of E1

and E2 allows to turn the inf into a min which is realized for some x∗ and y∗ respectively
located at the boundary of E1 and E2, and consider now O = x∗+y∗

2 . By inside rolling ball
condition we must have O − x∗ = (ℓ/2)ηx∗ and O − y∗ = (ℓ/2)ηy∗ (otherwise we can contra-
dict the minimum distance) which, in turn contradicts the outside rolling ball condition because
y∗ ∈ B(x∗ + r0ηx∗ , r0). Thus, if E has many path connected component E1, . . . , Ek, x ∈ Ei

and r ≤ 2r0, then B(x, r) ∩ E = B(x, r) ∩ Ei. Ei has the r0 rolling ball property thus positive
reach r0. So, by application of Corollary 1 in [7], B(x, r) is geodesically convex and then path
connected since r < r0.

Proposition 5. Let S ⊂ DD be a set that has the R0 inside and outside ball property. For all
r ≤ R0/2 and all x ∈ S, we have:

d(H(B(x, r) ∩ S), S) ≤ r2/R0, (27)

|H(B(x, r) ∩ S) \ S| ≤ 4ωD−1

3R0
rD+1. (28)
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Proof. If d(x, ∂S) ≥ r, we have H(B(x, r)∩ S) \ S = ∅, thus it has a null volume. Consider now
x such that d(x, ∂S) = h < r. As possible due to rolling ball condition, for r ≤ R0, introduce
x∗ = π∂S(x), Oin = x∗ − R0ηx∗ and Oout = x∗ + R0ηx∗ . Let v be a unit vector of η⊥x∗ and
z = x+ αηx∗ + βv ∈ B(x, r) ∩ S. By rolling ball property, ||z −Oout||2 > R2

0, and we have®
||z − x||2 = α2 + β2 ≤ r2

||z −Oout||2 = (α− (h+R0))
2 + β2 > R2

0

⇒ α ≤ (h+R0)
2 −R2

0 + r2

2(h+R0)
= h+

r2 − h2

2(R0 + h)
.

Introduce H+ =
¶
z, ⟨z − x, η∗⟩ ≤ h+ r2−h2

2(R0+h)

©
. We so have B(x, r) ∩ S ≤ B(x, r) ∩H+ and

H(B(x, r) ∩ S) ⊂ B(x, r) ∩H+.

Similarly {z, ||z − x||2 ≤ r2, ||z −Oin||2 ≤ R2
0} ⊂ B(x, r) ∩ S and B(x, r) ∩H− ⊂ B(x, r) ∩ S

with H− =
¶
z, ⟨z − x, η∗⟩} ≤ h− r2−h2

2(R0−h)

©
. Thus we have

H(B(x, r)∩S)\S ⊂ (B(x, r)∩H+)\S = (B(x, r)∩H+)\(B(x, r)∩S) ⊂ (B(x, r)∩H+)\(B(x, r)∩Hc
−).

This finally implies that H(B(x, r) ∩ S) \ S ⊂ B(x, r) ∩ (H+ \H−). Thus H(B(x, r) ∩ S) \ S is
included in the cylinder C defined as follows:

C =

ß
z = x+ αηx∗ + βv, ||v|| = 1, v ∈ η⊥x∗ , |β|r, h− r2 − h2

2(R0 − h)
≤ α ≤ h+

r2 − h2

2(R0 + h)

™
.

We then can conclude the proof arguing that |C| = ωD−1r
D−1 (r2−h2)R0

R2
0−h2 ≤ 4ωD−1

3R0
rD+1.

C Technical results to bound ||∇f(x)|| |B(x,r)\Cx,r|
|B(x,r)|

Introduce, for x a point where f(x) > 0, gx,r(y) = rD f(x+ry)∫
B(x,r)

f(z)dz
IB(0,1)(y), which is the density

of a local re-scaling of the sample. When exists, also introduce Mx,r = maxy∈B(0,1) gx,r(y). From
the results in Theorem 1, Corollary 1 and Theorem 3 in [9], we have:

Proposition 6.

P
ñ
k

Ç∫
B(x,r)\Cx,r

f(z)dz∫
B(x,r)

f(z)dz
− C1 (Mx,r + 1) k−2/(D+1)

å
> t|Nx,r = k

ô
≤ C2e

−t, (29)

E

[Ç∫
B(x,r)\Cx,r

f(z)dz∫
B(x,r)

f(z)dz

åq

|Nx,r = k

]
≤ Aq (Mx,r + 1)

q
k−2q/(D+1), (30)

E
î(
N∂

x,r

)q |Nx,r = k
ó
≤ Bq (Mx,r + 1)

q
kq(D−1)/(D+1), (31)

where C1 and C2 only depend on the dimension D, Aq and Bq depend on the dimension D and
q ∈ N∗.

Proposition 7. Let f be a C2 density supported in S such that, for all x ∈ S,

g(x) = ||∇f (x)|| exp(3||∇ln(f)(x)||) ≤ Lmax.

Additionally, assume that, for all x, we have that B(x, r) ∩ S is path connected and that, for all
(x, y) ∈ S2 which are path connected, dS(x, y) ≤ Kmax||x− y||.
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First, we have that f
(1)
max := supS ||∇f (x)|| is well defined.

Second, for all r ≤ 1
2Kmax

, for all x ∈ S such that B(x, r) ∩ S ⊂ {z, f(z) > 0}, we have:

Gr(x) := ||∇f (x)||
maxz∈B(x,r)∩S f(z)

minz∈B(x,r)∩S f(z)

Ç
1

ωd

maxz∈B(x,r)∩S f(z)

minz∈B(x,r)∩S f(z)
+ 1

å
≤ max

Å
2Lmax

ωd
, f (1)

max

ã
.

Proof. Preliminary introduce S− = {x ∈ S, f(x) < 1} and S+ = {x ∈ S, f(x) ≥ 1}. Because S+

is a compact, regularity condition on f implies that maxS+
||∇f (x)|| exists. Suppose now that

x ∈ S−. We have that: ||∇f (x)|| exp(3||∇f (x)||) ≤ ||∇f (x)|| exp(3||∇f (x)/f(x)||) ≤ Lmax.
Because φ : R+ 7→ R+ defined by φ(x) = xe3x is an increasing one to one function, we

have ||∇f (x)|| ≤ φ−1(Lmax) and thus supx∈S−
||∇f (x)|| is well defined. Therefore, f

(1)
max =

supx∈S ||∇f (x)|| is well defined.

Suppose that r ≤ (2Kmax)
−1 is fixed and consider x such that B(x, r) ⊂ S. First, notice

that:

If
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≤ ωd, then Gr(x) ≤ 2||∇f (x)||. (32)

Second, suppose that x is such that
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
> ωd, thenGr(x) ≤ 2

ωd
||∇f (x)||

(
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)

)2
.

Denote by z+(resp z−) the point in B(x, r)∩ S where maxB(x,r)∩S f(z) (resp. minB(x,r)∩S f(z))
is realized. Because z+ and z− are path connected, by application of the mean value theorem,
we get

ln(f(z+))− ln(f(z−))

dS(z+, z−)
≤ max

B(x,r)
||∇ln(f)(y)||.

Because r ≤ 1
2Kmax

and the geodesic condition, we have

maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≤ exp

Å
max
B(x,r)

||∇ln(f)(y)||
ã
. (33)

Thus, we obtain Gr(x) ≤ 2
ωd

||∇f (x)|| exp
(
2maxB(x,r) ||∇ln(f)(y)||

)
, from which we have

Gr(x) ≤
2

ωd
f(x)

||∇f (x)||
f(x)

exp

Å
2 max
B(x,r)

||∇ln(f)(y)||
ã
,

and finally, we get

Gr(x) ≤
2

ωd
f(x)||∇ln(f)(x)|| exp

Å
2 max
B(x,r)

||∇ln(f)(y)||
ã
.

In the sequel z, is a point of B(x, r) where ||∇ln(f)(z)|| = maxy∈B(x,r) ||∇ln(f)(y)||. We clearly

have Gr(x) ≤ 2
ωd

f(x)||∇ln(f)(z)|| exp
(
2||∇ln(f)(z)||

)
. Thus, we get:

Gr(x) ≤
2

ωd

f(x)

f(z)
||∇f (z)|| exp

(
2||∇ln(f)(z)||

)
,

and, by new application of (33), we have Gr(x) ≤ 2
ωd

||∇f (z)|| exp
(
3||∇ln(f)(z)||

)
. Thus, we

obtain

if
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≥ ωd, then Gr(x) ≤ 2||∇f (z)|| exp

(
3||∇ln(f)(z)||

)
≤ 2Lmax

ωd
. (34)

This and Equation (32) conclude the proof of the second part of the proposition.
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D Manifolds with positive reach

We recall here some properties of manifolds with positive reach that we will use in the following.
First, by Lemma 3 in [7], by prop 5.2 and prop 5.4 in [1], we have that, when ||x− y|| ≤ 2τS ,

||x− y|| ≤ dS(x, y) ≤
π

2
||x− y||; ||πT̂x

(y − x)|| ≥ ||y − x||
Ä
1− ∠T̂x, TxS − ||x−y||

2τS

ä
; (35)

∠TxS, TyS ≤ dS(x, y)

τS
; ||πT̂⊥

x
(y − x)|| ≤ ||y − x||

Ä
∠T̂x, TxS + ||x−y||

2τS

ä
. (36)

In particular, when ||πT̂x
(y − x)|| < τS(1−∠T̂x,TxS)2

2 , by (35) it comes that either

||y − x|| ≤ τS(1− ∠T̂x, TxS)

(
1−

√
1−

2||πT̂x
(y − x)||

τS(1− ∠T̂x, TxS)2

)
≤

2||πT̂x
(y − x)||

(1− ∠T̂x, TxS)
, (37)

or

||y − x|| ≥ τS(1− ∠T̂x, TxS)

(
1 +

√
1−

2||πT̂x
(y − x)||

τS(1− ∠T̂x, TxS)2

)
≥ τS(1− ∠T̂x, TxS). (38)

This last equation (38) implies, again by (35), that we also have ||πT̂x
(y− x)|| > τS(1−∠T̂x,TxS))2

2
and thus, by contradiction, only (37) is true.

Proposition 8. If for all x ∈ S, ∠TxS, T̂x ≤ θ < 1/12, then for all x ∈ S, πT̂x
is injective on

B(x, τS/3).

Proof. For y and y′ in B(x, τS/3), first ∠TyS, T̂x ≤ ∠TyS, TxS + θ. Thus by (36) and (35), we

have ∠TyS, T̂x ≤ dS(x,y)
τS

+ θ ≤ π||x−y||
2τS

+ θ ≤ π
6 + θ. From that and Equation (35), we obtain

||πT̂x
(y′ − y)|| ≥ ||y′ − y||

Å
1− ∠T̂x, TyS − ||y′ − y||

2τS

ã
.

With that, equation (35) gives :

||πT̂x
(y′ − y)|| ≥ ||y′ − y||

Å
4− π

6
− θ

ã
≥ ||y′ − y||7− 2π

12
,

from which we obtain the injectivity.
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