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Abstract

Let Xn = {X1, . . . , Xn} ⊂ RD be an iid sample drawn with a unknown distribution
PX associated to a density f and supported by S. We study the problem of estimating
the density f . When the density is continuous with regard to the Lebesgue measure and
under wide hypotheses, the proposed density estimator has a minimax local asymptotic
behaviour when D ≤ 7, but also offers global warranties (whatever the dimension is).
It allows to estimate the level sets of the density consistently, even for level sets that
intersects the boundary. It is also easy to adapt it to the case of a distribution supported
by a d-dimensional, smooth enough, sub-manifold of RD with similar convergence rates
(depending on d instead of D). The paper is dedicated to the study of the asymptotical
behaviour of the proposed estimator based on local behaviour and is concluded by
numerical experiments.

1 Introduction

The density estimation problem, got an important impulse after Parzen (1962) and Rosen-
blatt (1956) fundamental pioneering works and is still an important and active area of
research. There have been many well known books regarding the topic. Just to mention
a few of them, see Silverman (1986), Devroye (1987), Devroye and Lugosi (1987), Scott
(1992). However it is still a current topic, see Chacon and Duong (2018). Nowadays there
are two axis that attract particular attention: the bias reduction near the boundary of
the support and the density estimation on manifolds. The aim of this paper is to propose
an asymptotically unbiased (on the whole support) density estimator which can easily be
adapted to the manifold case.
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Let Xn = {X1, . . . , Xn} ⊂ RD be an iid sample drawn according to an (unknown)
distribution PX supported by S (possibly unknown). Recall that its support is S =
∩E closed, PX(E)=1E. Our density estimator is based on Getz and Wilmer (2004) in which
it is proposed to estimate the support and the density respectively by

Ŝrn =

n⋃
i=1

H(B(Xi, rn)) ∩ Xn), (1)

and

f̃rn(x) = max
Xi, x∈B(Xi,rn)

#(Xn ∩B(Xi, rn))

n|H(B(Xi, rn)) ∩ Xn)|D
. (2)

Where B(x, r) is the closed ball centered at x and of radius r, |A|D denotes the D-
dimensional volume of a set A and H(A) the convex hull of the set A.

It as been proved in Aaron and Bodart (2016) that the proposed support estimator
has many nice properties (universality, minimax and topological guarantees under some
additional hypothesis).

In this paper we focus on the density estimation and we propose an inspired by (2)
density estimator. Indeed we will see that the density estimator proposed in Getz and
Wilmer (2004) provides a wide overestimation of the density. But with help of small
accurate corrections we can obtain an asymptotically unbiased estimator, with minimax
guarantees.

Bias Reduction in the full dimensional setting. Suppose that the support S ⊂ RD

is regular, that is S̊ = S. This is equivalent to have a density that is absolutely continuous
with regard to the Lebesgue measure. We will refer to this as the full dimensional setting
since the dimension d of S equals D. Suppose that the density f is continuous and positive
on S̊. It is well known that the Lebesgue differentiation theorem entails the so–called
Besicovitch condition: let x ∈ S̊

lim
r→0

∫
B(x,r) f(t)dt

|B(x, r)|D
= f(x), (3)

This is at the heart of the simplest density estimation methods (since
∫
B(x,r) f(t)dt

can easily be estimated by the ratio of number of observation in B(x, r) on the total
number of observations) but fails for points x ∈ ∂S such that f(x) > 0. When d = 1 bias
reduction in density estimation has yet been extensively studied (see for instance Ruppert
ans Cline (1994), Marron and Ruppert (1994), Jones et al. (1995) or Leblanc (2010)).
When considering higher dimensions, most of the proposed bias correction methods rely
on corrections of kernel density estimators built on the knowledge of the support. This is
the case for Bertin et al (2020), Charpentier and Gallic (2016), Funkea and Kawka (2015)
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or Bouezmarnia and Rombouts (2015). Up to our knowledge the only method that allows
bias reduction method when the support is not known can be found in Berry and Sauer
(2017).

The way to extend (3) on S and to obtain uniform convergence rates is to use that for
all x ∈ S

lim
r→0

∫
B(x,r) f(t)dt

|B(x, r) ∩ S|D
= f(x), (4)

which generalizes Equation (3) at possible discontinuity points localized on the boundary.
Thus, via a plugin method, a very simple class of density estimators should be:

f̆(x) =
#{Xn ∩B(x, r)}

n ¤�|B(x, r) ∩ S|D
.

Notice that the use of ¤�|B(x, r) ∩ S|D = |H(B(x, r) ∩ Xn)|D induces an overestimation
of the density for all x such that B(x, r) ⊂ S, that is most of the points. Thus the density
estimator (2) by Getz and Wilmer (2004) which is even bigger than this quantity will
provide a wide overestimation of the density.

In this paper, we propose a slightly modified estimator that takes into account the
number of observations that are located on the boundary of H(B(x, r) ∩ Xn) to reduce
the aforementioned bias. The importance of the number of boundary observations in the
probability contents estimation as been initially noticed in Efron (1965) (see Equation
(3.7)) and more recently in Baldin and Reiss (2016). Our proposal is inspired by Baldin
and Reiss (2016). Now, let us give some additional notations. First ωD denotes the volume
of the D dimensional unit ball. Then, based on the sample Xn, let us introduce Nx,r =
#{Xn ∩B(x, r)}, Cx,r = H(B(x, r) ∩ Xn), N∂

x,r = #{Xn ∩ ∂Cx,r} and No
x,r = Nx,r −N∂

x,r.
We propose the following density estimator:

f̂r,A(x) =
No
x,r

(n−N∂
x,r)|Cx,r|

I|Cx,r|D≥AωDrDIN∂
x,r≤n/2. (5)

If it first looks a bit cryptic, the introduction of No
x,r and N∂

x,r is in fact quite intuitive

due to Baldin and Reiss (2016) since No
x,r|Cx,r ∼ Binom(n−N∂

x,r,
∫
Cx,r

f(z)dz).

Section 2 is dedicated to the study of this new density estimator in the full dimensional
setting. After a presentation of the associated model we give the main theoretical results
of our density estimator. Roughly, our proposal has the same local asymptotic in S̊ when
D ≤ 7 than the classical counting density estimator f∗r (x) =

Nx,r
n|B(x,r)|D . But it also offers

global asymptotics in S (whatever is the dimension), and, with additional assumptions
uniform convergence rates. More precisely, let rn = n−1/(D+4), the classical optimal window
size in kernel density estimation. Theorem 1 and Corollary 1 set that, under quite wide
hypothesis (slightly more restrictive than f of class C2 and regular enough support), we
have for all x ∈ S̊:
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1. If D ≤ 6 then f̂rn,A(x)− f(x) ∼
L2
f∗rn(x)− f(x).

2. If D = 7 then f̂rn,A(x)− f(x) = O
L2

(f∗rn(x)− f(x)).

3. If D > 7 then f̂rn,A(x)− f(x)
L2

→ 0 but f∗rn(x)− f(x) = o
L2

(f̂rn,A(x)− f(x)).

Moreover, we have the existence of a constant C such that for all x ∈ S we have
E((f̂rn,A(x)− f(x))2) ≤ C(r2

n + (nrDn )−1), i.e. we have a uniform rate of convergence.

In Theorem 2 it is proved that, under the same hypotheses, maxi |f̂rn,A(Xi) − f(Xi)|
converges toward 0, going more further toward uniformity in convergence rates and allowing
results in level set estimation (see Corollary 2). When additionally supposing that S is
compact, in theorem 3 we present convergence rates for supx∈S |f̂rn,A(x)− f(x)|. Remark
that in the case D > 7 it could be more accurate to estimate the density with f∗rn(x) when

x is estimated far enough from the boundary and by f̂rn,A(x) otherwise. This proposition
is not studied in this paper which focuses on the case D ≤ 7.

Equation (5) defines a density estimator that is asymptotically unbiased on S but that
may be biased outside S. Thus it may be pertinent to prefer f̂r,A,S(x) = f̂r,A(x)IS(x) when

the support is known and f̂r,A,Ŝ(x) = f̂r,A(x)IŜ(x) when the support is unknown.

Density on Manifolds. Suppose now that S is a d-dimensional manifold with d < D
what is frequently assumed when dealing with high dimensional data sets. Under such an
hypothesis an equation similar to (3) is obtained considering integration on the manifold
at numerator and the d-dimensional volume at the denominator, i.e

lim
r→0

∫
B(x,r)∩S f(t)dt

|B(x, r)|d
= f(x), (6)

Obviously, when dealing with a manifold with boundary, a bias correction should be
applied as in the ”full dimensional” case. First, Pelletier (2005) generalized the classical
kernel density estimator when S is a known manifold without boundary replacing the
Euclidean distance by the geodesic one. In Kim and Park (2013), the same kind of idea is
used but applying kernel to projections on tangent spaces. Berry and Sauer (2017) adapt
the method proposed in Kim and Park (2013) to take into account the possible boundary
bias. Interestingly, the boundary do not need to be preliminary known. The distance
(and direction) from a point to the boundary may be estimated via a local barycenter
shift. More recently, the method developed in Divol (2021) only requires the knowledge of
the dimension d of the support S, while in Berenfeld and Hoffmann (2021), S is ”fully”
unknown (but without boundary).

To extend the results from the full dimensional case to the manifod one we classically
use a local projection on estimated tangent space step. Suppose now that, for all x ∈ S,
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we have T̂x estimation of TxS the tangent (to S) space at x. Denote by πT̂x the orthogonal

projection onto T̂x, and introduce, for R ∈ R:

1. Xn,R = πT̂x(B(x,R) ∩ Xn), with as previously Nx,R = #{Xn ∩B(x,R)},

2. “Cx,r,R = H(Xn,R ∩B(x, r)),

3. “Nx,r,R = #{Xn,R∩B(x, r)}, “N∂
x,r,R = #{Xn,R∩∂“Cx,r,R} and “No

x,r,R = “Nx,r,R− “N∂
x,r,R.

We propose the following natural extension of the estimator (5) in the manifold context:

ˆ̂
fr,R,A(x) =

Nx,R

n

“No
x,r,R

(Nx,R − “N∂
x,r,R)|“Cx,r,R|I|“Cx,r,R|≥AωdrdI“N∂

x,r,R≤Nx,R/2
, (7)

Section 3 is dedicated to provide theoretical results on this estimator that can be
summed up as follows. If S is a C2 manifold with positive reach τS , if ∂S is either empty or
is a C2 manifold with positive reach τ∂S and when the tangent space estimation is suitable
(e.g. via local PCA), then we obtain the same convergence rates as in the full dimensional
case with d instead of D. In this section, proofs are a bit technical but mostly only combine
results of section 2 and technical Lemmas in Aamari et Al (2023). They are so given in
appendix.

In section 4 we present some experimental results on toy examples and a real data set.

2 Full dimensional context

2.1 Main Results

As mentioned above, we will consider an iid sample Xn = {X1, . . . , Xn} ⊂ RD drawn
according to a distribution, supported by S (that may be unknown), and following an
unknown density f uniformly continuous with regard to the Lebesgue measure.

We will also require some assumptions on f and some smoothness condition on S.
Considering regularity assumptions on S, we will consider two types of assumptions:

the first one (Definition 1 and left part of the figure 1) is much more general and allows
the presence of corners, while the second one (Definition 2 and right part in the figure 1) is
in terms of positive reach of the boundary and is close to a C2 regularity of the boundary.

Definition 1. Ball-standardness. A closed set E is (r0, δ)-ball standard if for every x ∈ E
and every r ≤ r0, B(x, r) is path connected and there exists y such B(y, δr) ⊂ E ∩B(x, r).

Definition 2. Inside and outside rolling ball condition. A closed set E satisfies the r0-

inside and outside rolling ball condition if, E̊ = E and, for every x ∈ ∂E there exists two
points Oout

x and Oin
x such that B(Oout

x , r0) ∩ E = {x} and B(Oin
x , r0) ∩ Ec = {x}
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E is (r0, δ)-ball standard
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x

E satisfiesthe r0 inside and outside rolling ball condition

Figure 1: (r0, δ)−ball standardness (left) and r0-inside an outside rolling ball condition
(right)

It is easy to see that, if E satisfies the r0-inside and outside rolling ball condition, then
E and Ec are (2r0, 1/2)-ball standard.

Our model requires distributions that have ball standard level sets for small levels, more
precisely we will suppose that we have (r0, δ, ε0)-standard distribution.

Definition 3. (r0, δ, ε0)-standardness for a distribution. A distribution associated to a
density f is (r0, δ, ε0)-standard if, for all ε ∈ (0, ε0) the level set Lε = {x, f(x) > ε} is
(r0, δ)-ball standard.

Our model will consist in (r0, δ, ε0)-standard distributions with smooth enough densi-
ties.

Definition 4. A distribution belongs to the family model M := M(r0, δ, ε0,Kmax, f
(0)
max, f

(1)
max, f

(2)
max, Lmax)

if:

1. The distribution is (r0, δ, ε0)-standard, S is path connected and for all (x, y) ∈ S2 the
geodesic distance (in S) satisfies dS(x, y) ≤ Kmax||x− y||.

2. The associated density f is continuous on S, of class C2 on S̊ and:

(a) For all x ∈ S, f(x) ≤ f (0)
max and for all x ∈ S̊, f(x) > 0.

(b) For all x ∈ S, ||∇f (x)|| exp(3||∇ln(f)(x)||) ≤ Lmax, where ∇ stands for the

gradient. Such a condition implies that ||∇f (x)|| ≤ f
(1)
max for all x in S (see

Proposition 2).

6



(c) For all x ∈ S, ||Hf (x)||op ≤ f (2)
max, where Hf (x) stands for the Hessian and ||.||op

for the operator norm.

Model M clearly includes distributions supported by compact (r0, δ)-ball standard sup-
port S that have a C2 density bounded below by a positive constant on S and a hessian

matrix bounded above (in norm) by f
(2)
max. It also includes a wide range of classical densities

with non compact support such as Gaussian or exponential.
Let recall here some notations and the proposed density estimator definition. let Nx,r =

#{Xn∩B(x, r)}, Cx,r = H(B(x, r)∩Xn), N∂
x,r = #{Xn∩∂Cx,r} and No

x,r = Nx,r−N∂
x,r. As

in this part there is no ambiguity on the volume that always is the D dimensional volume
we will omit the D index in the volume notation.
Recall that we study the following density estimator:

f̂r,A(x) =
No
x,r

(n−N∂
x,r)|Cx,r|

I|Cx,r|≥AωDrDIN∂
x,r≤n/2.

We characterize the convergence with the use of the following notations: oα(1) (resp.
Oα(un)) is a sequence that depend on α and the constant of the model M which converges
toward 0 (resp. a sequence which is a O(un) and depend on α and the constant of the
model M.

In a first theorem we explicit pointwise L2 convergence rates. The first point is that our
estimator has the same pointwise L2 convergence rate than the classical density estimator,

up to an additional term of order r2
n(nrDn )−

2
D+1 min

(
rn, (nr

D
n )−

2
D+1

)
. When D ≤ 7 and

rn = O(n−
1

D+4 ) this additional term is at most O(n−
4

D+4 ) (see Corollary 1). Thus, for
small enough dimensions and suitable radius sequence the proposed estimator is point-
wise minimax.

Theorem 1. Let the distribution belongs to the model M. Let the window size rn be a
sequence such that rn → 0 and nrDn /lnn→ +∞. Let A < δD be a positive constant.

There exists C an explicit constant such that :

1. For all x such that f(x) > 0,

E((f̂rn,A(x)− f(x))2) ≤
Å

f(x)

ωDnrDn
+ ||Hf (x)||2opr4

n

+Cr2
n

Ç
ωDf(x)nrDn

2

å− 4
D+1

+ Cr3
n

Ç
ωDf(x)nrDn

2

å− 2
D+1

é
(1 + ox(1)).

2. For all t > 0 and x ∈ Lt such that B(x, r) ⊂ {z, f(z) > 0}, we have
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E((f̂rn,A(x)− f(x))2) ≤

(
2f

(0)
max

AωDnrDn
+ (f (2)

max)2r4
n

Cr2
n

(
ωDf

(0)
maxnrDn
2

)− 4
D+1

+ Cr3
n

(
ωDf

(0)
maxnrDn
2

)− 2
D+1

é
(1 + ot(1)).

3. Finally, if S is either convex or has the R0 inside and outside property we have that,
for all x with f(x) ≥ t > 0,

E((f̂rn,A(x)− f(x))2) ≤

(
2f

(0)
max

AωDnrDn
+ (C ′rn)2

)
(1 + ot(1)).

with C ′ = f
(1)
max when S is convex and C ′ = f

(1)
max +

f
(0)
maxωD−1

AR0ωD
when S has the inside

and outside rolling ball condition (see Definition 2).

As previously announced, Corollary 1 gives the L2 convergence rates for rn = cn−
1

D+4

which is the optimal window size in the classical kernel setting. When considering the
local convergence rates, when D < 7 the proposed estimator is equivalent to the classical
constant kernel one, for the special case D = 7 it is still minimax, and when D > 7 it is
still convergent but no more minimax. In all the cases we also have uniform convergence
rates for all level sets, that turns to uniform convergence rates on S when the density is
lower bounded by a positive constant.

Corollary 1. Let the distribution belongs to the model M. Let f∗rn be the usual count-

ing density estimator (constant kernel) and consider window size rn = cn−1/(D+4). As
previously x is such that f(x) > 0.

1. Local rates :

(a) if D ≤ 6 then E((f̂rn,A(x)−f(x))2) ≤ E((f∗rn(x)−f(x))2)(1+ox(1)) = Ox

(
n−

4
D+4

)
,

(b) if D = 7 then E((f̂rn,A(x)− f(x))2) = Ox

(
n−

4
D+4

)
,

(c) if D > 7 then E((f̂rn,A(x)− f(x))2) = Ox

Å
n
− 2(D+9)

(D+1)(D+4)

ã
.

2. Moreover if S is either convex or has the inside and outside rolling ball property

for all x with f(x) > 0, E((f̂rn,A(x) − f(x))2) = Of(x)

(
n−

2
D+4

)
. In particular,

when f is lower bounded by a positive constant f
(0)
min on S, then, for all x ∈ S,

E((f̂rn,A(x)− f(x))2) = O
(
n−

2
D+4

)
.
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We are now focusing only on the case D ≤ 7, where the proposed estimator is point-
wise minimax. When D > 7, in the case of compact unknown support (with the R0 inside
and outside rolling ball condition) and lower bounded density, a way to obtain minimax
rates should be to plug the ρ-convex hull support estimator Ŝn and consider a density
estimator that should be f∗rn(x) (the classical constant kernel density estimator) when

B(x, rn) ⊂ Ŝn, f̂A,rn if x ∈ Ŝn with d(x, ∂Ŝn) ≤ rn and 0 otherwise. Nevertheless, the
curse of dimensionality makes this approach practically unrealistic neither for the support
estimation nor for the density estimation.

When D ≤ 7 we also have uniform convergence of f̂A,rn when evaluating it on the Xi’s
that, in turn, allows to provide convergences rates for level set estimation.

Theorem 2. When D ≤ 7 and the distribution belongs to the model M. Let rn =
cn−1/(D+4) and A < δD.

1. For all t > 0, there exists Ct such that, with probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣ , Xi ∈ Lt and B(Xi, rn) ⊂ S

}
≤ Ct

√
lnnn−2/(D+4).

2. If f is bounded bellow by a positive constant f
(0)
min, there exists C such that, with

probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣ , B(Xi, rn) ⊂ S

}
≤ C
√

lnnn−2/(D+4).

3. If S is either convex or satisfies the inside and outside R0 rolling ball condition, there
exists C such that, with probability one, for n large enough:

max
i

{∣∣∣f̂rn,A(Xi)− f(Xi)
∣∣∣} ≤ Cn−1/(D+4).

Such a result allows to plug the proposed density estimator for level set estimation
using Ŝ(X+

rn,A
(t)), where Ŝ(Y) is a set estimator based on a sample Y and X+

rn,A
(t) =

{Xi, f̂rn,A(Xi) ≥ t}. We propose to give results when the chosen set estimator is the
local convex hull one. This choice has been done because it seems consistent to esti-
mate the density and the level sets with the same tool (the local convex hull). It is
also a tribute to Getz and Wilmer (2004) who first applied local convex hull to draw
home range and core area maps. In the following corollary we give convergence rates for
L̂t =

⋃
Xi∈X+

rn,A
(t)H

Ä
B(Xi, rn) ∩ X+

rn,A
(t)
ä
. Notice that it is not the original one pro-

posed in Getz and Wilmer (2004) that was L̃t =
⋃
Xi∈X+

rn,A
(t)H (B(Xi, rn) ∩ Xn) which

”overestimates” the support.
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Corollary 2. Suppose that D ≤ 7 and the distribution belongs to the model M with S
is either convex or have the inside and outside rolling ball property. Let rn = cn−1/(D+4)

and A < δD. Assume that S̊ = {z, f(z) > 0}. Introduce X+
n (t) =

¶
Xi, f̂rn,A(Xi) ≥ t

©
and

define:

L̂t :=
⋃

i,f̂rn,A(Xi)≥t

H
(
B(Xi, rn) ∩ X+

n (t)
)
.

1. If Lt ⊂ S̊ and min{||∇f (x)||, f(x) = t} = mt > 0 with probability one, for n large

enough dH(Lt, L̂t) = O(lnnn−2/(D+4)).

2. If Lt is regular (i.e. there exists ∆0 and β such that such that, for all t′, |t′− t| ≤ ∆0

we have dH(Lt, Lt′) ≤ β|t− t′|) and Lt is ball standard then, with probability one, for
n large enough dH(Lt, L̂t) = O(lnnn−1/(D+4)).

Notice that the bias correction allows to have convergence for level sets that may
intersect the boundary of the support. Most of the time, estimated level sets are supposed
to be in S̊ as in Rodŕıguez-Casal and Saavedra-Nieves (2022). Nevertheless a distribution
may have no level set included in S̊. Consider for instance the 2-dimensional case of a
restricted Gaussian with a density f(x, y) = C exp

(
−2(x2 + y2)

)
I(x,y)∈[0,1]2 , as used in one

of the simulated examples in Section 4.1. All its level sets intersects the boundary of the
support [0, 1]2. Also Remark that if the C2 regularity of the density make the level lines
`(t) = {z, f(z) = t} also C2 (as manifold), the level sets are only ball standard in this case.
For such an example the convergence rate is given by the point 2 of Corollary 2. In fact,
to be ”global” this convergence rate is rough and it is expected to be ”locally” slightly
better with the rough bound localized around the singularities of the support and around
the intersections between the level lines and the boundary of the support. A more precise
study of the precise behaviour of the level set estimation being let for future.

Finally, we can derive uniform convergence rates on the support under a more restrictive
set of assumption.

Theorem 3. Consider D ≤ 6 and the distribution belongs to the model M. Also assume
that S satisfies the inside and outside R0 rolling ball condition, and f is bounded bellow by

a positive constant f
(0)
min. Choose rn = cn−

1
D+4 , and A < 1/2. Then, with probability one,

when n large enough:

sup
x∈S
|f̂A,rn(x)− f(x)| ≤ O

(
n−

1
D+4

)
.

When D = 7, under the same conditions, we have :

sup
x∈S
|f̂A,rn(x)− f(x)| ≤ O

(
n
− 1

2(D+4)

)
.
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To conclude the discussion on the proposed estimator in the special case D ≤ 7 let us
notice that, when S is known, the proposed method allows to correct the bias without any
computation of ∂S and any Monte-Carlo integration step. It also allows to obtain a bias
correction in case of unknown support, which is a more realistic purpose. Remark that,
even if we suppose that the support is known, in fact we may only know a set containing the
support because there might be 0 density regions in our expected support. To illustrate:
suppose we aim at estimating the population density. We have knowledge of the submerged
land which is our expected support but it includes desert regions and the ”true support”
is only a subset of the expected one. In case of unknown support we may plug a support
estimator Ŝ and compute f̂rn,A,Ŝ = f̂rn,AIŜ . Obviously the uniform convergence is then

lost on RD but is limited to RD \ (S∆Ŝn).

2.2 Proofs

2.2.1 Notations

Due to the amount of notations and to have a self contained section we list here main
notations and definition used in this proof section. First, for ease of reading, we will write
r instead of rn in this proof section.

The probability content is Γx,r =
∫
B(x,r) f(z)dz and its approximation with the help of

local convex hull is Γ̃x,r =
∫
B(x,r) f(z)dz.

Due to the indicator function in the density estimation definition we will have to con-
dition by the event Ex,r ”|Cx,r| ≥ AωDr

D, Γ̃x,r ≥ f(x)AωDr
D and N∂

x,r ≤ n/2”. And,
conditionally to Ex,r, the error decomposition in the density estimation is :

f̂r,A(x)− f(x)|Ex,r = ε1(x) + ε2(x),

where:

ε1(x) =
No
x,r − Γ̃x,r(n−N∂

x,r)

|Cx,r|(n−N∂
x,r)

IEx,r and ε2(x) =

Ç
Γ̃x,r
|Cx,r|

− f(x)

å
IEx,r .

Roughly ε1 is the variance term of the error and ε2 the bias one. Indeed E(ε1) converges
toward 0 while ε2 can be deterministically bounded.

We will also make use of the following notations. For a set A and a real number r, the
r offset of A, denoted by A⊕ rB, is defined as A⊕ rB = {x ∈ RD, d(x,A) ≤ r}.

For a compact set A, we denote by πA the projection onto A which is defined as
follows: πA(x) is the point in A such that ||πA(x) − x|| = d(x,A). With regard to the
possible definition of πA(x), there are well known results : when A is convex, πA is defined
everywhere ; when A has the r0 inside and outside rolling ball property, πA is defined on
A⊕ r0B and π∂A on ∂A⊕ r0B.
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2.2.2 Error decomposition and first bounds

We have that

E((f̂r,A(x)− f(x))2) ≤ E((f̂r,A(x)− f(x))2|Ex,r) + f(x)P(Ecx,r), (8)

P(|f̂r,A(x)− f(x)| ≥ t) ≤ P(|f̂r,A(x)− f(x)| ≥ t|Ex,r) + P(Ecx,r). (9)

We then have

P(|f̂r,A(x)− f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2(x)| ≥ t2|Ex,r) + P(Ecx,r), (10)

and also

E((f̂r,A(x)− f(x))2) ≤ E(ε2
1(x)|Ex,r) + E(ε2

2(x)|Ex,r) + 2E(ε1(x)ε2(x)|Ex,r) + f(x)P(Ecx,r).
(11)

2.2.3 General bounds on P(Ecx,r), ε1(x) and ε2(x).

Bounds on P(Ecx,r)

Lemma 1. Suppose that distribution belongs to the model M.

For all A < δD and r < min(r1, (4ωD)f
(0)
max)−1/D, there exists β1 and β2 positive con-

stants such that, for all x with f(x) > 0, we have

P(Ecx,r) ≤ β1 exp
Ä
−nrD min(f(x), ε0)β2

ä
+ exp(−n/8).

Proof. First, tackle the condition on N∂
x,r. Remark that P(N∂

x,r > n/2) ≤ P(Nx,r > n/2).

Since Nx,r ∼ Binom(n,Γx,r), with Γx,r < 1/4 by condition on r ≤ (4ωDf
(0)
max)−1/D, we

have that

P(Nx,r > n/2) = P
Å
Nx,r − nΓx,r > n

Å
1

2
− Γx,r

ãã
≤ P (Nx,r − nΓx,r > n/4) .

Then, by use of Hoeffding

P(N∂
x,r > n/2) ≤ P(Nx,r > n/2) ≤ exp(−n/8). (12)

To finish the proof, let us first establish an intermediate result. Let Lt (with t > 0) be
a level set that has the (δ, r1)−inside rolling ball property and set

α = min

Ç
δD

3
,

Å
1

4

Ä
δ −A1/D

äãDå
.

We aim at proving that, for all x ∈ Lt, we have that

12



P
Å |Cx,r|

rD
≤ AωD or Γ̃x,r ≤ ωDrDAt

ã
≤

(CD + 1)CD4D
Ç

1− A1/D

δ

å−D
exp

Ä
−ωDαnrDt

ä
, (13)

where CD is the ”covering constant” of a D-Dimensional Ball.

Notice that |Cx,r| ≥ |Cy,δr|, where Cy,δr denotes the convex hull of the observations in
B(y, δr) the ball of the ”ball-standardness” assumption. For a given α ∈ (0, 1), suppose
that B(y, αδr) is not included in Cy,δr. Thus, there exists y1 in B(y, δαr) which is not in
Cy,δr. Because y1 is not in Cy,δr, there exists u1 a unit vector such that, for all observation

Xi in B(y, δr), we have 〈Xi − y1, u1〉 < 0. Introduce now z = y + 〈y1−y,u1〉+δr
2 u1. We

have that z belongs to B(y, δr) with B(z, (1 − α)δr/2) contains no observation. We have
then proved that, if B(y, αδr) is not included in Cy,δr, there exists z ∈ B(y, δr) with
B(z, (1− α)δr/2) ∩ Xn = ∅ (see Figure 2).

Figure 2: Construction of z

Now, deterministicaly cover B(y, δr) with ν ≤ CD4D(1−α)−D balls of radius (1−α)δr/4
centered at some z′i. It clearly comes that, if B(y, αδr) is not included in Cy,δr, there exists
z′i ∈ B(y, δr) with B(z′i, (1− α)δr/4) ∩ Xn = ∅. Thus:

P(B(y, αδr) * Cy,δr) ≤
ν∑
i=1

P(B(z′i, (1− α)δr/4) ∩ Xn = ∅),

13



P(B(y, αδr) * Cy,δr) ≤ CD4D(1− α)−D
Ä
1− ωDt((1− α)δr/4)D

än
,

P(B(y, αδr) * Cy,δr) ≤ CD4D(1− α)−D exp(−nωDt((1− α)δr/4)D).

Thus,

P
Å |Cx,r|

rD
≤ ωD (δα)D or Γ̃x,r ≤ ωD(δα)Dt

ã
≤ CD4D(1−α)−D exp(−nωDt((1−α)δr/4)D).

And so, if A < δD,

P
Å |Cx,r|

rD
≤ AωD or Γ̃x,r ≤ ωDrDAt

ã
≤

CD4D
Ç

1− A1/D

δ

å−D
exp

(
−nωDt

ÇÇ
1− A1/D

δ

å
δr

4

åD)
,

that is (13).

Let now x be such that f(x) > 0.
If f(x) < ε0, by application of (13), we have the existence of positive constants β1 and

β2 such that

P
Å |Cy,δr|

rD
≤ AωD or Γ̃x,r ≤ ωDrDAf(x).

ã
≤ β1 exp

Ä
−nrDf(x)β2

ä
If f(x) ≥ ε0, also by application of (13), it comes that.

P
Å |Cy,δr|

rD
≤ AωD or Γ̃x,r ≤ ωDrDε0A

ã
≤ β1 exp

Ä
−nrDε0β2

ä
.

That concludes the proof.

Bounds on ε1(x)

Lemma 2. Suppose that distribution belongs to the model M.
We have that

E (ε1(x)ε2(x)|Ex,r) = 0. (14)

We also roughly have a uniform bound given by:

E
(
ε2

1(x)|Ex,r
)
≤

2 maxz∈Cx,r(f(z))

AωDrDn
≤

2 maxz∈B(x,r)(f(z))

AωDrDn
. (15)
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A better, but local, L2 bound for points far from the boundary is the following : if x is

such that f(x) > 0 and n large enough to have
maxB(x,r) f(z)

minB(x,r) f(z) ≤ 2, then

E(ε2
1(x)|Ex,r) ≤

f(x)

n|B(x, r)|
(1 + ox(1)) . (16)

An explicit expression for ox is given within the proof.
In probability we also have

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

é
≤ 2n−4(1 + o(1)). (17)

Proof. Recall that

ε1(x) =
No
x,r − Γ̃x,r(n−N∂

x,r)

|Cx,r|(n−N∂
x,r)

IEx,r

When Cx,r is known, obviously |Cx,r| and Γ̃x,r are also known. Due to the convex
polyhedron shape of Cx,r its knowledge also implies the location of its vertices one, that,
in turn fix, with probability one, N∂

x,r. As a conclusion, when conditioning by Cx,r the
only part of ε1(x) that remains random is No

x,r. See Baldin and Reiss (2016) for the

possibility to define No
x,r|Cx,r. With probability one only n−N∂

x,r points remain ”randomly

distributed” and may fall in C̊x,r with probability Γ̃x,r. It then become clear that, almost
surely No

x,r|Cx,r ∼ Binom(n−N∂
x,r, Γ̃x,r).

First of all notice that, because ε2 is fully determined by Cx,r, we have that

E (ε1(x)ε2(x)|Cx,r) =
1

|Cx,r|(n−N∂
x,r)

Ç
Γ̃x,r
|Cx,r|

− f(x)

å
E
Ä
No
x,r − Γ̃x,r(n−N∂

x,r)|Cx,r
ä

= 0.

Thus
E (ε1(x)ε2(x)|Ex,r) = 0,

which proves (14).

We also have E(ε2
1(x)|Cx,r) =

Γ̃x,r(1−Γ̃x,r)
|Cx,r|2(n−N∂

x,r)
. Then, due to

Γ̃x,r(1−Γ̃x,r)
|Cx,r| ≤ Γ̃x,r

|Cx,r| ≤
maxz∈Cx,r(f(z)), it comes that

E(ε2
1(x)|Cx,r) ≤

maxz∈B(x,r) f(z)

n−N∂
x,r

1

|Cx,r|
.

Thus we clearly roughly obtain

E(ε2
1(x)|Ex,r) ≤

2 maxz∈B(x,r) f(z)

AnωDrD
,

15



which proves (15).

But it also can be obtained a better (but asymptotic) constant, noticing that

E(ε2
1(x)|Cx,r) ≤

maxz∈B(x,r) f(z)

n|B(x, r)|
1

1− N∂
x,r

n

Å
1 +
|B(x, r) \ Cx,r|

|Cx,r|

ã
,

E(ε2
1(x)|Cx,r) ≤

maxz∈B(x,r) f(z)

n|B(x, r)|

Ñ
1 +

N∂
x,r

n

1− N∂
x,r

n

éÅ
1 +
|B(x, r) \ Cx,r|

|Cx,r|

ã
.

Because, conditionally to Ex,r, we have
(

1− N∂
x,r

n

)−1

≤ 2 and
|B(x,r)\Cx,r|
|Cx,r| ≤ |B(x,r)\Cx,r|

A|B(x,r)| ≤
A−1, we obtain:

E(ε2
1(x)|Ex,r) ≤

maxz∈B(x,r) f(z)

n|B(x, r)|

Å
1 +

2

n
E(N∂

x,r|Ex,r)(1 +A−1) +A−1E
Å |B(x, r) \ Cx,r|

|B(x, r)|
|Ex,r

ãã
.

1. By continuity maxz∈B(x,r) f(z) = f(x)(1 + ox(1)).

2. We have E(N∂
x,r|Ex,r) ≤

E(N∂
x,r)

P(Ex,r)
. Thus, because N∂

x,r ≤ Nx,r and due to Lemma 1,

we obtain E(N∂
x,r|Ex,r) ≤

ωDnr
Df

(0)
max

1−β1 exp(−β2ωDnrDf(x))−exp(−n/8)
= ox(1).

3. To obtain better bounds on |B(x, r)\Cx,r| and N∂
x,r we apply results in Brunel (2017)

recalled in a suitable form to our purpose in Proposition 3 (see Appendix A). They

are applied to a sample drawn with a density gx,r(y) = rD f(x+ry)∫
B(x,r) f(z)dz

IB(0,1)(y) which

is the density of a local re-scaling of the part of the original sample which is in B(x, r).
Also introduce Mx,r = maxy∈B(0,1) gx,r(y).

Because n is large enough to have
maxB(x,r) f

minB(x,r) f
< 2, that implies that Mx,r ≤ 2

ωD
, by

application of (33) in Proposition 3, it comes that:

E
Å |B(x, r) \ Cx,r|

|B(x, r)|
|Nx,r = k

ã
≤ 2A1

Å
1 +

2

ωD

ã
k−

2
D+1 .

Thus, by application of Proposition 1 in Appendix A, with Γx,r =
∫
B(x,r) f(z)dz (and

because, if Nx,r = 0 we clearly have
|B(x,r)\Cx,r|
|B(x,r)| = 1), we have

E
Å |B(x, r) \ Cx,r|

|B(x, r)|

ã
≤ (1−Γx,r)

n+2A1(1+
2

ωD
)

(
exp

Å
−nΓx,r

10

ã
+

Å
nΓx,r

2

ã− 2
D+1

)
,
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E
Å |B(x, r) \ Cx,r|

|B(x, r)|

ã
≤

(
1− ωDr

Df(x)
2

)n
+2A1(1 + 2

ωD
)

Ç
exp

(
−nrDωDf(x)

20

)
+
(
nrDωDf(x)

4

)− 2
D+1

å
.

Thus, adding a conditional step, we also have E
Ä |B(x,r)\Cx,r|

|B(x,r)| |Ex,r
ä

= ox(1).

We then have proved Equation 16.

Now, to obtain (17), notice that, by Bennett’s inequality, it comes that:

P
(
|No

x,r − Γ̃x,r(n−N∂
x,r)| >

»
16 lnn(n−N∂

x,r)Γ̃x,r|Cr,x
)
≤

2 exp

(
−(n−N∂

x,r)Γ̃x,rh

(√
16 lnn

(n−N∂
x,r)Γ̃x,r

))
,

with h(u) = (1 + u) ln(1 + u)− u. Because h(u) ≥ u2/4 when u ≤ 4, we have that

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≥
8 lnn

n

é
≤ 2n−4. (18)

Now, we aim at deriving a probabilistic bound conditionally to Γ̃x,r ≤ 8 lnn
n . By use of

first Bernstein inequality, we have:

P
(
|No

x,r − Γ̃x,r(n−N∂
x,r)| >

»
a′ lnn(n−N∂

x,r)r
D|Cr,x

)
≤

2 exp

Ñ
−

a′ lnn(n−N∂
x,r)r

D

2Γ̃x,r(n−N∂
x,r) + 2

»
a′ lnn(n−N∂

x,r)r
D/3

é
.

Thus

P

(
|ε1(x)| >

√
a′ lnnrD

(n−N∂
x,r)|Cx,r|2

|Cx,r

)
≤

2 exp

Ñ
−

a′ lnn(n−N∂
x,r)r

D

2Γ̃x,r(n−N∂
x,r) + 2

»
a′ lnn(n−N∂

x,r)r
D/3

é
.
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Now, choose a′ = 16ωDf
(0)
max. It comes

P

Ñ
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≤
8 lnn

n

é
≤ 2 exp

Ç
− a′ lnnnrD

16 lnn+ 2
3

√
2a′ lnnnrD

å
.

And because nrD/ lnn→ +∞,

P

Ñ
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≤
8 lnn

n

é
≤ 2 exp

Å
−3

4

√
a′ lnnnrD

ã
(1+o(1)).

Apply again nrD

lnn → +∞ to have that

P

Ñ
|ε1(x)| >

√
32f

(0)
max lnn

A2ωDnrD

∣∣∣∣Ex,r and Γ̃x,r ≤
8 lnn

n

é
= o(n−4).

That, together with (18), concludes the proof of (17).

Bounds on ε2(x)

Lemma 3. Suppose that distribution belongs to the model M.
If S is convex, we have

P
Ä
|ε2(x)| > rf (1)

max |Ex,r
ä

= 0. (19)

And, if S has the R0-inside and outside rolling ball property, we have

P

(
|ε2(x)| > r

(
f (1)

max +
f

(0)
maxωD−1

AR0ωD

)
|Ex,r

)
= 0. (20)

Proof. Recall that

ε2(x) =

Ç
Γ̃x,r
|Cx,r|

− f(x)

å
IEx,r

|ε2(x)| =

∣∣∣∫Cx,r(f(y)− f(x))dy
∣∣∣

|Cx,r|
≤

∣∣∣∫Cx,r∩S(f(y)− f(x))dy
∣∣∣

|Cx,r|
+

∣∣∣∫Cx,r\S(f(y)− f(x))dy
∣∣∣

|Cx,r|
.

Thus,

|ε2(x)| ≤ r
Å

max
z∈B(x,r)∩S

||∇f (z)||
ã

+ f(x)
|Cx,r \ S|
|Cx,r|

.
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Figure 3: The volume of H(B(x, r) ∩ S) \ S is smaller than ωD−1`
D−1ε. Trivially ` ≤ rn.

By R2
0 = (R0 − a)2 + `2 and r2

n = `2 + (||x− π∂S(x)|| − a)2, it comes that a ≤ r2n
2R0

.

Symmetrically we have R2
0 = (R0 − b)2 + `2 and r2

n = `2 + (||x − π∂S(x)|| + b)2 and so

b ≤ r2n
2R0

. Finally ε = a+ b.

Roughly bounding the second term given Ex,r, we then obtain

|ε2(x)| ≤ r
Å

max
z∈B(x,r)∩S

||∇f (z)||
ã

+ f(x)
|H(B(x, r) ∩ S) \ S|

AωDrD
.

Obviously, if S is convex, we obtain

|ε2(x)| ≤ r
Å

max
z∈B(x,r)∩S

||∇f (z)||
ã
.

Now we are going to bound due to the outside rolling ball condition (see Figure 3 and
its legend for some details):

|ε2(x)| ≤ r
Å

max
z∈B(x,r)∩S

||∇f (z)||
ã

+ rf(x)
ωD−1

AR0ωD
.

Lemma 4. Suppose that distribution belongs to the model M. For x ∈ S̊ and r small
enough to have B(x, r) ⊂ {z, f(z) > 0}, introduce Hx,r = maxz∈B(x,r) ||Hf (x)||op, there
exists an explicit constant C such that

E(ε2(x)2|Ex,r) ≤

(
H2
x,rr

4 + Cr2

(Å
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

))
(1 + o(1)). (21)

And there exists explicit constants C, C ′ and C2 such that
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P

(
|ε2| ≥

Cr lnn

nrDγ(x)
+ r

Å
C ′

nrDγ(x)

ã 2
D+1

+ r2f (2)
max |Ex,r

)
≤ C2n

−4 + exp
Ä
n(δr)Dγ(x)/10

ä
,

(22)
where γ(x) = min(f(x), ε0), ε0 being the constant in the (r0, δ, ε0)-standardness of the
distribution.

Proof. As Cx,r ⊂ B(x, r) ⊂ S, by the use of a second order Taylor expansion we have:

∣∣∣∣∣Γ̃x,r − f(x)|Cx,r| −
∫
Cx,r

(y − x)∇f (x)′dy

∣∣∣∣∣ ≤
∫
Cx,r

||y − x||2 max
z∈Cx,r

||Hf (z)||opdy.

Because
∫
B(x,r)(y − x)∇f (x)′dy = 0, we have that:

|Γ̃x,r − f(x)|Cx,r|| ≤
∫
B(x,r)\Cx,r

r||∇f (x)||dy + |Cx,r| max
z∈Cx,r

||Hf (z)||opr
2,

from which we derive

|Γ̃x,r − f(x)|Cx,r||
|Cx,r|

≤ r||∇f (x)|| |B(x, r) \ Cx,r|
|Cx,r|

+ max
z∈Cx,r

||Hf (z)||opr
2.

Thus, given |Cx,r| ≥ AωdrD,

|ε2(x)| ≤
||∇f (x)||

A
r
|B(x, r) \ Cx,r|
|B(x, r)|

+ max
z∈Cx,r

||Hf (z)||opr
2. (23)

To control the convergence rate of |B(x, r)\Cx,r| we will make use of Results in Brunel
(2017) recalled in appendix A (see Proposition 3). To apply the aforementioned proposition

let us introduce Mx,r = maxy∈B(0,1)
rDf(x+ry)∫
B(x,r) f(z)dz

(defined because
∫
B(x,r) f(z)dz > 0).

Let us first consider the L2 convergence. Because
minB(x,r) f(y)

maxB(x,r) f(y)
|B(x,r)\Cx,r|
|B(x,r)| ≤

∫
B(x,r)\Cx,r f(z)dz∫

B(x,r) f(z)dz

and by application of 33, it comes that, for k > 0,

E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãq
|Nx,r = k

ã
≤ Aq(Mx,r + 1)q

Ç
maxB(x,r) f(y)

minB(x,r) f(y)

åq
k−

2q
D+1 ,

Notice that E
ÄÄ |B(x,r)\Cx,r|

|B(x,r)|

äq
|Nx,r = 0

ä
= 1. Then:
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E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãqã
≤Aq(Mx,r + 1)q

Ç
maxB(x,r) f(y)

minB(x,r) f(y)

åq n∑
k=1

Ç
n

k

å
k−

2q
D+1 Γkx,r(1− Γx,r)

n−k

+ (1− Γx,r)
n.

A rough bound givesMx,r ≤ 1
ωD

maxB(x,r) f(y)

minB(x,r) f(y) . IntroduceBx,r,q = Aq

(
1
ωD

maxB(x,r) f(y)

minB(x,r) f(y) + 1
)q (maxB(x,r) f(y)

minB(x,r) f(y)

)q
.

By application of Proposition 1, we have that

E
ÅÅ |B(x, r) \ Cx,r|

|B(x, r)|

ãqã
≤ Bx,r,q

(Å
nΓx,r

2

ã− 2q
D+1

+ exp

Å
−nΓx,r

10

ã)
+ (1− Γx,r)

n. (24)

And thus, because E(ε2(x)2|Ex,r) ≤ E(ε2(x)2) (ε2(x)2 is a positive random variable),
by use of (23), we obtain

E(ε2(x)2|Ex,r) ≤
||∇f (x)||2

A2
r2

(
Bx,r,2

(Å
nΓx,r

2

ã− 4
D+1

+ exp

Å
−nΓx,r

10

ã)
+ (1− Γx,r)

n

)

+2
||∇f (x)||Hx,r

A
r3

(
Bx,r,1

(Å
nΓx,r

2

ã− 2
D+1

+ exp

Å
−nΓx,r

10

ã)
+ (1− Γx,r)

n

)
+H2

x,rr
4.

By application of Proposition 2 and because (1−Γx,r)
n ≤ exp(−nΓx,r) and nrD/ lnn→

+∞, we obtain the existence of an explicit constant C such that

E(ε2(x)2|Ex,r) ≤

(
H2
x,rr

4 + Cr2

(Å
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

))
(1 + o(1)).

Let us second consider the probability convergence rate.

Introduce B′x,r = C1

(
1
ωD

maxB(x,r) f(y)

minB(x,r) f(y) + 1
)

maxB(x,r) f(y)

minB(x,r) f(y) . By use of Equation (32), we

obtain

P
ñ
k

Å |B(x, r) \ Cx,r|
|B(x, r)|

−B′x,rk−2/(D+1)

ã
> t

maxB(x,r) f(z)

minB(x,r) f(z)
|Nx,r = k

ô
≤ C2e

−t.

From which it comes that, by Proposition 2, there exists C and C ′ such that

P
ïÅ
||∇f (x)|| |B(x, r) \ Cx,r|

|B(x, r)|
≥ C t

k
+ C ′k−

2
D+1 |Nx,r = k

ã
|Ex,r

ò
≤ C2e

−t.
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Thus, for all K

P
Å
||∇f (x)|| |B(x, r) \ Cx,r|

|B(x, r)|
≥ C t

K
+ C ′K−

2
D+1 |Ex,r

ã
≤ C2e

−t + P(Nx,r < K),

which, with (23), gives

P
Å
|ε2| ≥ C

tr

K
+ C ′rK−

2
D+1 + r2f (2)

max |Ex,r
ã
≤ C2e

−t + P(Nx,r < K).

Finally, to deal with P(Nx,r < K), recall that γ(x) = min(f(x), ε0) and choose K =
nωDδ

DrDγ(x)
2 . Recall that we have Γx,r ≥ ωD(δr)Dγ(x) by the ball standardness asumption.

Thus, by application of Bennets inequality (h(0.5) ≥ 0.1) with the choice of t = 4 lnn, it
comes that the existence of (new) constants C and C ′ such that:

P

(
|ε2| ≥ r

C lnn

nrDγ(x)
+ r

Å
C ′

nrDγ(x)

ã 2
D+1

+ r2f (2)
max |Ex,r

)
≤ C2n

−4+exp
Ä
n(δr)Dγ(x)/10

ä
.

This achieves the proof of (22).

2.2.4 Proof of main Theorems and Corollaries

Proof of Theorem 1

Proof. By Equation (11)

E((f̂r,A(x)− f(x))2) ≤ E(ε2
1(x)|Ex,r) + 2E(ε1ε2|Ex,r) + E(ε2

2(x)|Ex,r) + f(x)P(Ecx,r).

By Equation (16) E(ε2
1(x)|Ex,r) ≤ f(x)

n|B(x,r)| (1 + ox(1)) .

By Equation (14) E (ε1(x)ε2(x)|Ex,r) = 0.
By Equation (21)

E(ε2(x)2|Ex,r) ≤

(
H2
x,rr

4 + Cr2

(Å
nΓx,r

2

ã− 4
D+1

+ r

Å
nΓx,r

2

ã− 2
D+1

))
(1 + o(1)).

Finally, by Equation (13), if x ∈ Lt,

P (Ecx,r) ≤ (CD + 1)CD4D
Ç

1− A1/D

δ

å−D
exp

Ä
−ωDαnrDt

ä
.

Because x ∈ Lf(x), we have that

f(x)P(Ecx,r) ≤ f (0)
max(CD + 1)CD4D

Ç
1− A1/D

δ

å−D
exp

Ä
−ωDαnrDf(x)

ä
.
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Because f(x) > 0 and nrD → +∞, it comes that f(x)P(Ecx,r) = ox((nrD)−1). Also, due

to nrD � lnn, it comes that for all β > 0, f(x)P(Ecx,r) = ox(n−β). As we also have

r ≥ (lnn/n)1/D, we clearly get f(x)P(Ecx,r) = ox(n−4), and thus:

f(x)P(Ecx,r) = ox(max((nrD)−1, r4).

That achieves the proof of the first point.

Second point of Theorem 1 is proved the same by use of Equation (15) instead of (16).
Final point of Theorem 1 comes from the use of (15) instead of (16) and (19) or (20)

instead of (21).

Proof of Corrolary 1

Proof. By Theorem 1,

E((f̂r,A(x)− f(x))2) ≤
Å

f(x)

nωDrD
+ ||Hf (x)||2opr4

+Cr2

Ç
ωDf(x)nrD

2

å− 4
D+1

+ Cr3

Ç
ωDf(x)nrD

2

å− 2
D+1

é
(1 + ox(1)).

Recall that classical computation on the uniform kernel gives E(f∗r (x) − f(x))2 =Ä
f(x)

nωDrD
+ ||Hf (x)||2opr4

ä
(1 + ox(1)).

The choice of r = cn−1/(D+4) gives that E(f∗r (x) − f(x))2 ≥ C(x)n−4/(D+4), with
C(x) > 0, since f(x) > 0. Also for r = cn−1/(D+4), we have:

r2
(
ωDf(x)nrD

2

)− 4
D+1

= O

Å
n
− 4
D+4

+
2(D−7)

(D+1)(D+4)

ã
= O

Å
n
− 2(D+9)

(D+1)(D+4)

ã
,

r3
(
ωDf(x)nrD

2

)− 2
D+1

= O

Å
n
− 4
D+4

+
(D−7)

(D+1)(D+4)

ã
= O

(
n
− 3D+11

(D+1)(D+4)

)
.

That concludes the proof of the first part of Corollary 1.

Now by use of Equations (11), (14), (15) and Lemma 3, with r = cn−1/(D+4), it comes
that there exists C such that E((f̂r,A(x) − f(x))2) = Cn−2/(D+4) + f(x)P(Ecx,r). Now

because f(x)P(Ecx,r) ≤ βf(x) exp(−β′n
4

D+4 f(x)) (due to Equation (13)), we have that

f(x)P(Ecx,r) = of(x)(n
− 4
D+4 ). And if f is lower bounded on S, we have that f(x)P(Ecx,r) =

o(n−
4

D+4 ). That concludes the proof of the second part of Corollary 1.
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Proof of Theorem 2

Proof. Firstly focus on the first case. Let us fix t > 0. For all x ∈ Lt such that B(x, r) ⊂ S,
due to Lemma 1, we have:

P(Ecx,r) ≤ β1 exp
Ä
−β2nr

D min(t, ε0)
ä

+ exp(−n/8) = ot(n
−4).

Also due to Equation (17), we have

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

é
≤ 2n−4(1 + o(1)).

Finally, Equation (22) for r = cn−
1

D+4 and D ≤ 7 gives

P
(
|ε2| ≥ Ot(r2)|Ex,r

)
≤ C2n

−4 + exp
Ä
nrD min(t, ε0)/10

ä
.

Thus, due to P(|f̂r,A(x) − f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2| ≥ t2|Ex,r) +
P(Ecx,r),

P

Ñ
|f̂r,A(x)− f(x)| ≥

√
32 lnnf

(0)
max

A2ωDnrD
+Ot(r

2)

é
≤ Cn−4(1 + ot(1)).

Introduce X(t, r) = {Xi ∈ Xn, f(Xi) > t,B(Xi, r) ⊂ S}. Recall that r = cn−
1

D+4 . All
the above equations provide the existence of a constant Ct such that, for n large enough,

P
(
∃Xi ∈ X(t, r) s.t |f̂r,A(Xi)− f(Xi)| ≥ Ct

√
lnnn−

2
D+4

)
≤ Cn−3(1 + o(1)).

That, with Borrel Cantelli Lemma, concludes the proof of the first point of Theorem 2.
The second point of Theorem 2 is the same using the lower bound of the density to

obtain uniform rates and is let to the reader.

We now prove the third point of Theorem 2. First suppose that f(x) ≥ (lnn/(nrD))1/2.

Then, by Lemma 1 and because nrD

lnn → +∞,

P(Ecx,r) ≤ β1 exp

(
−β2 lnn

 
nrD

lnn

)
+ exp(−n/8) = o(n−4)

.
Also due to Equation (17),

P

Ñ
|ε1(x)| >

√
32 lnnf

(0)
max

A2ωDnrD
|Ex,r

é
≤ 2n−4(1 + o(1)).
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And, under the rolling ball condition or the convexity condition, due to Lemma 3, there
exists C such that

P (|ε2| > Cr |Ex,r ) = 0.

Thus, due to P(|f̂r,A(x) − f(x)| ≥ t1 + t2) ≤ P(|ε1(x)| ≥ t1|Ex,r) + P(|ε2| ≥ t2|Ex,r) +
P(Ecx,r),

P

Ñ
|f̂r,A(x)− f(x)| ≥

√
32 lnnf

(0)
max

A2ωDnrD
+ Cr

é
≤ 2n−4(1 + o(1)).

Second, suppose that 0 < f(x) ≤ (lnn/(nrD))1/2. Because, conditionally to Ecx,r,

f̂r,A(x) = 0, we have P(|f̂r,A(x) − f(x)| > lnn/(nrD))1/2|Ecx,r) = 0. It comes that, when

t ≥ 2(lnn/(nrD))1/2,

P(|f̂r,A(x)− f(x)| ≥ t) ≤ P(|f̂r,A(x)− f(x)| ≥ t|Ex,r).

Thus, applying the same calculus as in the first case,

P

Ñ
|f̂r,A(x)− f(x)| ≥

…
lnn

nrD
max

Ñ√
32f

(0)
max

A2ωD
, 2

é
+ Cr

é
≤ 2n−4(1 + o(1)).

Thus, for all x in S,

P

Ñ
|f̂r,A(x)− f(x)| ≥

…
lnn

nrD
max

Ñ√
32f

(0)
max

A2ωD
, 2

é
+ Cr

é
≤ 2n−4(1 + o(1)).

Thus, when r = cn−
1

D+4 ,

P
Ä
∃Xi s.t |f̂r,A(Xi)− f(Xi)| ≥ Cr(1 + o(1))

ä
≤ 2n−3(1 + o(1)).

That, with Borrel Cantelli Lemma, concludes the proof of last point of the Theorem.

Proof of Corollary 2

Proof. Recall the local convex hull definition: for a set E,

Hr(E) :=
⋃
x∈E

H (B(x, r) ∩ E) .
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Suppose first that Lt ⊂ S̊. The regularity of the level set Lt and the regularity of
the density imply that Lt has the mt

f
(2)
max

-inside and outside rolling ball condition (see The-

orem 2 in Walther (1997)). By easy Taylor majoration it also comes that for all ∆t with
|∆t| ≤ mt

4f
(1)
maxf

(2)
max

, Lt+∆t has the mt

2f
(2)
max

-inside and outside rolling ball condition.

Notice now that there exists αt > 0 such that, for all 0 < ε ≤ αt, Lt−ε ⊂ S̊. Indeed,
if there exists a sequence εn → 0 with εn < t/2, Lt−εn ∩ ∂S 6= ∅, since Lt−εn ∩ ∂S is a
decreasing (for the inclusion) sequence of non empty compacts, we have Lt ∩ ∂S 6= ∅. And
that contradicts Lt ⊂ S̊.

We now prove that, for all 0 < ε < min
(
αt,

mtd(Lt−αt ,∂S)
2 ,

m2
t

2f
(2)
max

)
, we have that

Lt−ε ⊂ Lt ⊕
2ε

mt
B and d(Lt−ε, ∂S) ≥ αt −

2ε

mt
. (25)

Indeed, consider x ∈ Lt−ε and y = x + 2 ε
mt

∇f (x)
||∇f (x)|| . We have that x ∈ Lt−αt and

||y − x|| < d(Lt−αt , ∂S), thus y ∈ S̊. That allows to write that

f(y) ≥ f(x) + 2
ε

mt
||∇f (x)|| − 1

2

Å
2
ε

mt

ã2

f (2)
max.

We have f(y) ≥ t − ε + 2ε − ε2εf
(2)
max

m2
t

. Thus, since ε < m2
t /(2f

(2)
max), we also have f(y) ≥ t

and thus y ∈ Lt. That, together with ||y−x|| = 2ε
mt

, concludes the proof of the first part of

(25). It also implies that, when 2ε
mt
≤ mt

f1max
, we have d(Lt, Lt−ε) ≤ 2ε

mt
. Condition ε < αt,

d(Lt, ∂S) ≥ αt and triangular inequality concludes the proof of (25).

By last point of Theorem 2: with probability one for n large enough, for all Xi such

that f̂(Xi) ≥ t we have f(Xi) ≥ t− Cn−
1

D+4 .
As Xi ∈ L

t−Cn−
1

D+4
, by distance inequality in (25) we have that, with probability one

for n large enough, for all Xi such that f̂(Xi) ≥ t, B(Xi, r) ⊂ S.

Also, for n large enough to have Cn−
1

D+4 < t/2, from Theorem 2 (first point), with
probability one for n large enough, for all Xi such that f̂(Xi) ≥ t, we have |f(Xi)−f̂(Xi)| ≤
Ct/2
√

lnnn−
2

D+4 . Thus Xi ∈ Lt−εn with εn = Ct/2
√

lnnn−
2

D+4 . We then have, with
probability one for n large enough:

L̂t ⊂ Hr (Xn ∩ Lt−εn) ⊂ Hr(Lt−εn).

Recall that Lt−εn satisfies the mt

2f
(1)
max

-inside and outside rolling ball condition of then

using a purely geometric calculus as in Figure 3 we obtain that (with probability one for
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n large enough)

L̂t ⊂ Lt−εn ⊕
4r2f

(1)
max

mt
B ⊂ Lt ⊕

(
4r2f

(1)
max + 2εn
mt

)
B (26)

Now we consider reverse inclusion. Introduce ε′n = Ct
√

lnnn−
2

D+4 , same kind of argu-
ments successively give that, with probability one for n large enough, Xn∩Lt+ε′n ⊂ X+

r,A(t).
Thus for any c, with probability one for n large enough:

H
c( lnn

n )
1

D+1

(
Xn ∩ Lt+ε′n

)
⊂ Hr

(
Xn ∩ Lt+ε′n

)
⊂ L̂t

Because Lt+ε′n has the mt

2f
(1)
max

-inside and outside rolling ball condition, and because t > 0,

by application of Aaron and Bodart (2016) (Theorem 2 with α = 0) it comes that, there
exists a constant C ′t such that, with probability one for n large enough:

Lt+ε′n ⊂ L̂t ⊕ C
′
t

Å
lnn

n

ã 2
D+1

B;

Thus again by application of (25) we have

Lt ⊂ L̂t ⊕

(
C ′t

Å
lnn

n

ã 2
D+1

+
2ε′n
mt

)
B

which, together with Equation (26) achieves the proof of the first point of corollary 2.

The more general case where Lt ∩ ∂S 6= ∅.

Let us here only sketch the proof, since the arguments are really similar to those

of the first part. Put εn = Cn−
1

D+4 , such that f(Xi) ≥ t − εn ⇒ f̂r,A(Xi) ≥ t and

f̂r,A(Xi) ≥ t⇒ f(Xi) ≥ t+ εn. We have that L̂t ⊂ Hr(Lt−εn) ⊂ Lt−εn ⊕ rB and regularity

of the level set gives L̂t ⊂ Lt⊕((β+1)r)B. Reversely, Xn∩Lt+εn ⊂ Lt and, since Lt+εn ⊂ Lt
has the δ-ball standardness, for all dH(Xn ∩ Lt+εn , Lt+εn) ≤ Ot((lnn/n)1/D). Then using
again the regularity of the level set t we can conclude the proof.

Proof of Theorem 3

Proof. First, under the assumptions of Theorem 3 (i.e. the distribution belongs to the
model, the support has the inside and outside rolling ball property and the density is
bounded bellow by a positive constant), then with probability one for n large enough, for
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all x ∈ S, Ex,r is realised and as a consequence Γ̃x,r ≥ Af
(0)
minωDr

D. The proof is very
similar to the one of Lemma 1.

For z ∈ ∂S, let denote by ηz the normal outward unit vector to S. For all x ∈ S, define

y =

®
x if d(x, ∂S) ≥ r,
π∂S(x)− r+d(x,∂S)

2 ηπ∂S(x) if d(x, ∂S) < r,

and

ρn =

®
r if d(x, ∂S) ≥ r,
π∂S(x)− r+d(x,∂S)

2 if d(x, ∂S) < r
.

The regularity condition on S warranties that B(y, ρn) ⊂ S ∩ B(x, r). As in Lemma 1
(illustrated in Figure 2), if there exists an x such that B(y, ρn − c(lnn/n)1/D) * Cx,r,
then there exists z with B(z, c(lnn/n)1/D) ⊂ S and B(z, c(lnn/n)1/D) ∩ Xn = ∅ has a
probability null for n large enough when c is a large enough constant. Since ρn ≥ r/2 and
r >> (lnn/n)1/D, for all A < 1/2 with probability one, for n large enough and for all
x ∈ S, we have that Cx,r ≥ AωDrD and the condition on the density also guarantees that

Γ̃x,r ≥ Af (0)
minωDr

D.
Now, let cover S with xi, . . . , xν balls of radius r with ν ≤ Cr−D. Suppose that there

exists x ∈ S such that N∂
x,r > n/2. Then Nx,r > n/2 > 2D+1nf

(0)
maxωDr

D and there exists

xi with Nxi,2r > 2D+1nf
(0)
maxωDr

D. Thus,

P(∃x ∈ S,N∂
x,r > n/2) ≤

∑
i

P(Nxi,2r > 2D+1f (0)
maxωDnr

D),

P(∃x ∈ S,N∂
x,r > n/2) ≤

∑
i

P
Ä
Nxi,2r − nΓxi,2r > n(2D+1f (0)

maxωDr
D − Γxi,2r)

ä
,

P(∃x ∈ S,N∂
x,r > n/2) ≤

∑
i

P
Ä
Nxi,2r − nΓxi,2r > nf (0)

maxωDr
D(2D+1 − 2D)

ä
.

By use of Bennett’s inequality

P(∃x ∈ S,N∂
x,r > n/2) ≤

∑
i

exp

(
−nΓxi,2rh

(
2Df

(0)
maxωDr

D

Γxi,2r

))
.

And, finally, because h is increasing:

P(∃x ∈ S,N∂
x,r > n/2) ≤ Cr−D exp

Ä
−nf (0)

minωD2DrDh(1)
ä

Thus, for r = cn−
1

D+4 , by Borrel Cantelli, we have that, with probability one, for n
large enough and for all x ∈ S, Ex,r is realized. The bound on P(∃x ∈ S,N∂

x,r > n/2) may
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seem rough. But it will be re-employed since, in fact, we have shown that, with probability

one, for n large enough and for all x ∈ S, Nx,r ≤ 2D+1f
(0)
maxωDnr

D. That, in turns, allow

to bound the number of different values of f̂r,A(x) for x ∈ S. Indeed there is as many
different values as there are non empty sets

SI =

(⋂
i∈I

B(Xi, r)

)⋂(⋂
i∈Ic

B(Xi, r)
c

)⋂
S,

where I ⊂ {1, . . . , n} and Ic = {1, . . . , n} \ I, because if x ∈ SI then Xn ∩ B(x, r) =
{Xi, i ∈ I}. Now, with probability one, for n large enough and for all x ∈ S, there exists
i such that x ∈ B(Xi, r) (because r � (lnn/n)1/D) and B(Xi, r) may intersect at most

222D+1f
(0)
maxωDr

D
B(Xj , r) (following the previous calculus). Thus with probability one, for

n large enough,

#SI ≤ n222D+1f
(0)
maxωDnr

D
.

Define Y1, . . . , YK arbitrary points in each non empty SIi . We have that:

max
x∈S
|f̂r,A(x)−f(x)| = max

i,x∈SIi
|f̂r,A(Yi)−f(x)| ≤ max

i
|f̂r,A(Yi)−f(Yi)|+ max

i,x∈SIi
|f(x)−f(Xi)|.

Because SI as a diameter bounded by 2r, due to f regularity,

max
x∈S
|f̂r,A(x)− f(x)| = max

i,x∈SIi
|f̂r,A(Yi)− f(x)| ≤ max

i
|f̂r,A(Yi)− f(Yi)|+ 2rf (1)

max. (27)

Now, by Hoeffding inequality,

P
(
|No

x,r − Γ̃x,r(n−N∂
x,r)| >

√
C ′n

D
2(D+4) |Cx,r

)
≤ 2 exp

(
−C ′n

4
D+4

)
,

which, adapted to our case (r = cn−
1

D+4 ), gives:

P
Ç
|ε1(x)| > 2

√
C ′

AcDωD
n

D−8
2(D+4) |Ex,r

å
≤ 2 exp

(
−C ′n

4
D+4

)
.

Finally, as we can apply Lemma 3, it comes that:

P
Ç
|f̂r,A(Yi)− f(Yi)| ≥

2
√
C ′

AcDωD
n

D−8
2(D+4) + Ccn−

1
D+4 |EYi,r

å
≤ 2 exp

(
−C ′n

4
D+4

)
.

Which, with Equation (27) and the given r sequence, gives:
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P
Ç

max
x∈S
|f̂r,A(x)− f(x)| ≥ 2

√
C ′

AcDωD
n

D−8
2(D+4) + (C + 2f (1)

max)cn−
1

D+4

å
≤

2n exp
(
−n

4
D+4

Ä
C ′ − 2D+1f (0)

maxc ln 2
ä)

+ P(∃x ∈ S,Ecx,r).

3 Density on manifold

Suppose now that, if the observations are in RD, the distribution is in fact supported by
S a d-dimensional manifold with d < D. Suppose that, for all x ∈ S, we know T̂x an
estimation of TxS the tangent space at x. Recall the notations given in introduction: πT̂x
is the orthogonal projection onto T̂x, Xn,R = πT̂x(B(x,R)∩Xn), Nx,R = #{Xn ∩B(x,R)},“Cx,r,R = H(Xn,R ∩ B(x, r)), “Nx,r,R = #{Xn,R ∩ B(x, r)}, “N∂

x,r,R = #{Xn,R ∩ ∂“Cx,r,R} and“No
x,r,R = “Nx,r,R − “N∂

x,r,R.
We propose the natural extensions of the density estimator in this manifold context

which is given by:

ˆ̂
fr,R,A(x) =

Nx,R

n

“No
x,r,R

(Nx,R − “N∂
x,r,R)|“Cx,r,R|I|“Cx,r,R|≥AωdrdI“N∂

x,r,R≤Nx,R/2
.

As in the full dimensional case we need to make assumptions on the support and the
density. Regarding support we will, classically, characterize its smoothness by its reach.

Definition 5. Let S be a compact set. Its medial axis is defined by

Med(S) = {z ∈ RD,∃x 6= y ∈ S, ||x− z|| = ||y − z|| = d(z, S)}.

Its reach τS is
τS = min

x∈S
d(x,Med(S)).

Manifolds with positive reach are C1
1 and, due to Federer (1959) and Federer (1959),

positive reach allow to make calculus on manifolds with few need of differential geometry.
Our model in the manifold setting will only focus on supports that are manifolds with
positive reach. We may deal with manifolds with or without boundary. Nevertheless, we
will restrict the study to boundary with positive reach.

Assumptions on the density will be a bit more restrictive than in the full dimensional
case. Beyond the C2 regularity on the interior which is expressed in (28), we will restrict
the study to lower bounded densities.
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Definition 6. A distribution belongs to the family model M′d = M′d(τmin, τ∂,min, f
(0)
min, f

(0)
max,GS,f , HS,f ),

where τmin, τ∂,min , f
(0)
min, f

(0)
max, GS,f and HS,f are positive constants, if:

1. S is a C2 compact d-dimensional manifold with positive reach τS ≥ τmin. If exists,
its boundary ∂S is a (d− 1)-manifold without boundary and with reach τ∂S ≥ τ∂,min.

2. Its density f satisfies that f
(0)
min ≤ f(x) ≤ f

(0)
max for all x ∈ S. Also, there exist

constants GS,f and HS,f , and there exist vectors Gx ∈ TxS such that, for all (x, y) ∈
S2

||f(y)− f(x)−Gx.(y − x)|| ≤ HS,f ||y − x||2 , and sup
x∈S
||Gx|| ≤ GS,f (28)

The following Theorem gives the convergence rates of the density estimator. Notice
first that the O does not depend on x (as in point 2. and 3. in the lower bounded density
case given in Theorem 1). The manifold case just add an error term that depends on the
tangent space approximation quality Θn, classically characterized by ∠T̂x, TxS, the angle
between the tangent space and its approximation, which is also defined as the operator
norm of πTxS − πT̂x .

Theorem 4. If the distribution belongs to the model M′d. Let the window size rn be a
sequence such that rn → 0 and nrdn/lnn → +∞. Let A < 4−d be a positive constant.
Suppose that for all x, we have ∠TxS, T̂x ≤ Θn with Θn → 0.

1. For all x such that d(x, ∂S) ≥ 5rn/4, we have

E((
ˆ̂
fr,R,A(x)− f(x))2) =

O

Å
(nrdn)−1 +

(
(rn + Θn)2 + (rn + Θ2

n)(nrdn)−
2
d+1

)2
+ max(n−1,Θ4

n)

ã
.

2. For all x ∈ S,

E((
ˆ̂
fr,R,A(x)− f(x))2) = O

Ä
(nrdn)−1 + (rn + Θ2

n)2 + max(n−1,Θ4
n)
ä
.

A nice corollary of previous theorem is that, for optimal windows size rn = cn−1/(d+4)

and the usual error rates in tangent space estimation with local PCA which are of order
(lnn/n)1/d (see Aamari et Al (2023)), the Θn dependant part of the convergence rates can
be neglected.

Corollary 3. If the distribution belongs to the model M′d. Let the window size rn =
cn−1/(d+4). Let A < 4−d be a positive constant. Suppose that Θn ≤ (lnn/n)1/d and d ≤ 7,
then:
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1. For all x such that d(x, ∂S) ≥ 5rn/4, we have E((
ˆ̂
fr,R,A(x)−f(x))2) = O(n−4/(d+4)).

2. For all x ∈ S, we have E((
ˆ̂
fr,R,A(x)− f(x))2) = O(n−2/(d+4)).

We also have a uniform (on the observation) convergence result :

Theorem 5. If the distribution belongs to the model M′d. Let the window size rn =
cn−1/(d+4). Let A < 4−d be a positive constant. Suppose that Θn ≤ (lnn/n)1/d and d ≤ 7.
Then, there exists C such that, with probability one, for n large enough,

max
i

ß∣∣∣∣ ˆ̂
fr,R,A(Xi)− f(Xi)

∣∣∣∣ , d(Xi, ∂S) ≥ 5rn/4

™
≤ C
√

lnnn−2/(d+4),

and

max
i

ß∣∣∣∣ ˆ̂
fr,R,A(Xi)− f(Xi)

∣∣∣∣™ ≤ Cn−1/(d+4).

4 Numerical Experimentation’s

4.1 On simulated data

First, we propose to test the local convex hull density estimator on a sample drawn accord-
ing to a Gaussian restricted to the square [0, 1]2. Namely, in our first example the density
is f(x, y) = c exp(−2(x2 + y2)). In Figure 4, we present a comparison of the local convex
hull density estimator f̂ and f∗ the classical kernel one on a sample of size n = 5000. On
the left (a) and (b) panels, the results associated to the local convex hull density estimator
(r = 0.18 and A = 0.1) are presented. The top figure (a) present the sample cloud with
a color that is related to the rank of the estimated density value (isopleth presentation).
The bottom figure (b) present the associated level sets estimated with the local convex hull
method (also r = 0.18) for levels in {0, 0.5, 1, 1.5, 2, 2.5}. On the same figure, (c) and (d)
illustrates the results with the density estimator f∗ (and the same window size).

On figure 4, we can observe that, as expected, the local convex hull correction improves
the density estimation near the boundary of the support.

To investigate a bit further this improvement we also tested the proposed method on
a uniform drawn on the unit disk. Results are presented in Figure 5. We tried different
sample sizes n ∈ {1000, 2000, 3000, 5000, 10000}. Tested parameters are rn = 0.5n−1/6 and
A = 1/8. For each sample sizes we ran each time 100 replications and, for each replication
k compute Qα(k), the α-quantile (on i) of |f̂rn,A(Xi) − f(Xi)|. We then present in blue
plain line the median (on k) of Qα(k), in blue dashed line we present the 25 and 75 percent
quantiles (on k) of Qα(k) and blue points are the max and min (on k) of Qα(k). The red
curves present the same quantities computed on f∗rn (classical uniform kernel method with
the same radius). Because the local convex hull corrections acts close to the boundary i.e.
on few data points) we can observe difference between blue and red curves for high values
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Figure 4: Comparison of density estimation methods for a gaussian restricted to a square.
(a) and (b) our estimator compared to the usual one in (c) and (d). Top graphs : sample
cloud colored with the estimated density rank value ; bottom graphs : level sets estimated
with the local convex hull method for levels in 0, 0.5, 1, 1.5, 2, 2.5.

of α (100%, 99% and 95%) and, quickly (in n) the corrected estimator is better than the
classical kernel one. For ”small” quantiles (75% and 50%) we can observe the similarity
between the two estimators that reflects the similarity between the two estimators in S̊.

4.2 Example on real data

4.2.1 Comparison with the Original Paper

In this part we aim at making a comparison between the original Getz and Wilmer (2004)
method and our proposed correction. As a tribute to Getz and Wilmer, we test the
two approaches on core-area estimation of Panther Jitter (data base downloaded from
PennState Department of Ecosystem Science and Management). We present in Figure 6
the x% isoplet (x ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90}) on the left with application of the
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Figure 5: Comparison of density estimation methods for samples uniformly drawn on a
disk. Computation of different quantiles of |f̂rn,A(Xi) − f(Xi)| with the estimator we
propose in blue and the usual one un red.

Figure 6: Isoplet for Panter Jitter, left original method from Getz and Wilmer (2004) and
right the proposed corrected method

original method and on the right with our proposed correction. If the two plots look quite
similar, they are a bit more ”smooth” (less local maxima) with the proposed correction.

4.2.2 A manifold example

We finally illustrate in Figure 7 the manifold method. Here data are localizations on
the earth via latitude and longitude (a 2 dimensional known manifold) of earthquakes
(magnitude greater than 3). Computations have been done using the method proposed
in section 3 with known manifold and real tangent space. The two graphs present a
projection on a planisphere of the data sample with color depending on the rank of the
density. The top one illustrates the local convex hull method, while the second one is just
the constant kernel for manifold. The two densities look quite similar but there still exists
some differences. For instance our correction allow to put more mass on the Mid-Atlantic
Ridge, where the density is underestimated in the classical kernel method due to proximity
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with a lower dimensional structure. Also in the circled area we can observe a maximum
of the density localized in a corner of the support that should be impossible with no bias
correction.
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A Technical Lemmas in the full dimensional setting

Proposition 1. Let p ∈)0, 1( and (n, q,D) ∈ (N∗)3

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1− p)n−k ≤ exp

(
−np

10

)
+
(
−np

2

)− 2q
D+1

.
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Proof.

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k ≤

bnp/2c∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k+

n∑
k=dnp/2e

Ç
n

k

å
k−

2q
D+1 pk(1−p)n−k.

Due to Bennet’s Inequality that implies that P(K ≤ np/2) ≤ exp(−np/10), we have
that

n∑
k=1

Ç
n

k

å
k−

2q
D+1 pk(1− p)n−k ≤ exp

(
−np

10

)
+
(np

2

)− 2q
D+1

.

That concludes the proof of the proposition.

Proposition 2. Let f be a C2 density supported by S such that, for all x ∈ S,

g(x) = ||∇f (x)|| exp(3||∇ln(f)(x)||) ≤ Lmax.

Additionally assume that, for all x, we have that B(x, r) ∩ S is path connected and that,
for all (x, y) ∈ S2 which are path connected, dS(x, y) ≤ Kmax||x− y||.

First we have that f
(1)
max := supS ||∇f (x)|| is well define.

Second, for all r ≤ 1
2Kmax

, for all x ∈ S such that B(x, r)∩S ⊂ {z, f(z) > 0}, we have:

Gr(x) := ||∇f (x)||
maxz∈B(x,r)∩S f(z)

minz∈B(x,r)∩S f(z)

Ç
1

ωd

maxz∈B(x,r)∩S f(z)

minz∈B(x,r)∩S f(z)
+ 1

å
≤ max

Å
2Lmax

ωd
, f (1)

max

ã
.

Proof. Preliminary introduce S− = {x ∈ S, f(x) < 1} and S+ = {x ∈ S, f(x) ≥ 1}.
Because S+ is a compact, regularity condition on f implies that maxS+ ||∇f (x)|| exists.
Suppose now that x ∈ S−. We have that :

||∇f (x)|| exp(3||∇f (x)||) ≤ ||∇f (x)|| exp(3||∇f (x)/f(x)||) ≤ Lmax.

Because ϕ : R+ 7→ R+ defined by ϕ(x) = xe3x is an increasing one to one function
we have ||∇f (x)|| ≤ ϕ−1(Lmax) and thus supx∈S− ||∇f (x)|| is well define. Therefore,

f
(1)
max = supx∈S ||∇f (x)|| is well define.

Suppose that r ≤ (2Kmax)−1 is fixed and consider x such that B(x, r) ⊂ S .
First, notice that:

If
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≤ ωd then Gr(x) ≤ 2||∇f (x)||. (29)
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Second, suppose that x is such that

maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
> ωd,

then Gr(x) ≤ 2
ωd
||∇f (x)||

(
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)

)2
.

Denote by z+(resp z−) the point inB(x, r)∩S where maxB(x,r)∩S f(z) (resp. minB(x,r)∩S f(z))
is realized. Because z+ and z− are path connected, by application of the mean value the-
orem,

ln(f(z+))− ln(f(z−))

dS(z+, z−)
≤ max

B(x,r)
||∇ln(f)(y)||.

Because r ≤ 1
2Kmax

and the geodesic condition, we have

maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≤ exp

Å
max
B(x,r)

||∇ln(f)(y)||
ã
. (30)

Thus, Gr(x) ≤ 2
ωd
||∇f (x)|| exp

(
2 maxB(x,r) ||∇ln(f)(y)||

)
, from which we have Gr(x) ≤

2
ωd
f(x)

||∇f (x)||
f(x) exp

(
2 maxB(x,r) ||∇ln(f)(y)||

)
and finally:

Gr(x) ≤ 2

ωd
f(x)||∇ln(f)(x)|| exp

Å
2 max
B(x,r)

||∇ln(f)(y)||
ã
.

In the sequel z is a point of B(x, r) where ||∇ln(f)(z)|| = maxy∈B(x,r) ||∇ln(f)(y)||. We

clearly have Gr(x) ≤ 2
ωd
f(x)||∇ln(f)(z)|| exp

(
2||∇ln(f)(z)||

)
. Thus:

Gr(x) ≤ 2

ωd

f(x)

f(z)
||∇f (z)|| exp

(
2||∇ln(f)(z)||

)
,

and by new application of (30) we have Gr(x) ≤ 2
ωd
||∇f (z)|| exp

(
3||∇ln(f)(z)||

)
.

Thus,

if
maxz∈B(x,r) f(z)

minz∈B(x,r) f(z)
≥ ωd, then Gr(x) ≤ 2||∇f (z)|| exp

(
3||∇ln(f)(z)||

)
≤ 2Lmax

ωd
. (31)

This and Equation (29) conclude the proof of the second part of the proposition.

Introduce, for x a point where f(x) > 0, gx,r(y) = rD f(x+ry)∫
B(x,r) f(z)dz

IB(0,1)(y) which

is the density of a local re-scaling of the sample. When exists, also introduce Mx,r =
maxy∈B(0,1) gx,r(y).

From the results in Theorem 1, Corollary 1 and Theorem 3 in Brunel (2017), we have:
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Proposition 3.

P
ñ
k

Ç∫
B(x,r)\Cx,r f(z)dz∫
B(x,r) f(z)dz

− C1 (Mx,r + 1) k−2/(D+1)

å
> t|Nx,r = k

ô
≤ C2e

−t, (32)

E

[Ç∫
B(x,r)\Cx,r f(z)dz∫
B(x,r) f(z)dz

åq
|Nx,r = k

]
≤ Aq (Mx,r + 1)q k−2q/(D+1), (33)

E
îÄ
N∂
x,r

äq
|Nx,r = k

ó
≤ Bq (Mx,r + 1)q kq(D−1)/(D+1), (34)

where C1 and C2 only depend on the dimension D, Aq and Bq depend on the dimension D
and q ∈ N∗.

B Proofs in the manifold setting

B.1 preliminary formulas on manifolds with positive reach

We recall here some properties of manifolds with positive reach that we will use in the
following of the proof. First, by Lemma 3 in Boissonnat et al (2019), we have that

||x− y|| ≤ dS(x, y) ≤ 2τS arcsin

Å ||x− y||
2τS

ã
. (35)

From which, we trivially obtain that, when ||x− y|| ≤ 2τS , we have

||x− y|| ≤ dS(x, y) ≤ π

2
||x− y||. (36)

Also, by prop 5.2 (arxiv version) in Aamari et Al (2023),

∠TxS, TyS ≤
dS(x, y)

τS
. (37)

And by prop 5.4 (arxiv version ) in Aamari et Al (2023),

||πT̂x(y − x)|| ≥ ||y − x||
Å

1− ∠T̂x, TxS −
||x− y||

2τS

ã
, (38)

and

||πT̂⊥x (y − x)|| ≤ ||y − x||
Å
∠T̂x, TxS +

||x− y||
2τS

.

ã
(39)

In particular, when ||πT̂x(y − x)|| < τS
2(1−∠T̂x,TxS)2

, by (38) it comes that either

||y − x|| ≤ τS(1− ∠T̂x, TxS)

(
1−

√
1−

2||πT̂x(y − x)||
τS(1− ∠T̂x, TxS)2

)
≤

2||πT̂x(y − x)||
(1− ∠T̂x, TxS)

, (40)
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or

||y − x|| ≥ τS(1− ∠T̂x, TxS)

(
1 +

√
1−

2||πT̂x(y − x)||
τS(1− ∠T̂x, TxS)2

)
≥ τS(1− ∠T̂x, TxS). (41)

This last equation implies, again by (38), that we also have ||πT̂x(y−x)|| > τS(1−∠T̂x,TxS))2

2
and thus only (40) is true.

Proposition 4. If for all x ∈ S, ∠TxS, T̂x ≤ θ < 1/12 then for all x ∈ S, πT̂x is injective
on B(x, τS/3)

Proof. For y and y′ in B(x, τS/3), first ∠TyS, T̂x ≤ ∠TyS, TxS + θ thus by (37) and (36)

∠TyS, T̂x ≤ dS(x,y)
τS

+ θ ≤ π||x−y||
2τS

+ θ ≤ π
6 + θ. From that Equation (38)

||πT̂x(y′ − y)|| ≥ ||y′ − y||
Å

1− ∠T̂x, TyS −
||y′ − y||

2τS

ã
With that, equation (38) gives :

||πT̂x(y′ − y)|| ≥ ||y′ − y||
Å

4− π
6
− θ
ã
≥ ||y′ − y||7− 2π

12

from which we obtain the injectivity.

B.2 Sketch of proof of Theorem 4 and 5

Take R ≤ min
Ä
τS
3 ,

1
4(D−d)

ä
and n large enough to have Θn ≤ min

Ä
1
12 ,

1
2(D−d) − 2 R

τS

ä
.

Due to Proposition 4, we have that πT̂x : S∩B(x,R)→ Sx,R = πT̂x(S∩B(x,R)) is one to

one. Let (ux,1, . . . , ux,d) be an orthonormalized basis of T̂x, completed by (ux,d+1, . . . , ux,D)
to have an orthonormalized basis of RD, so that

π−1

T̂x
: Sx,R → S ∩B(x,R)

z =
∑d

i=1 ziux,i 7→ x+ z +
∑D

i=d+1 ϕx,i−d(z)ux,i

Define φx(z) = (ϕx,1(z), . . . , ϕx,D−d+1(z)) and denote by Jx,R(z) the Jacobian matrix of
φx(z) i.e.

Jx(z) =

Ü
∂ϕx,1
∂z1

(z) . . .
∂ϕx,1
∂zd

(z)
...

...
∂ϕx,D−d
∂z1

(z) . . .
∂ϕx,D−d
∂zd

(z)

ê
On the one hand, when i ≥ 1, then ux,d+i is in T̂⊥x . On the other hand for all

j ∈ {1, . . . , d} we have that vx,j := ux,j +
∑D−d

k=1
∂ϕx,k(z)
∂zj

ux,k+d ∈ Tx+z+φx(z)S. Thus
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|〈ux,d+i, vx,j〉| ≤ (Θn + ∠TxS, Tx+z+φx(z)S)||vx,j ||, from which it comes that, since ||z +

φx(z)|| ≤ R ≤ τS/3, we have that |〈ux,d+i, vx,j〉| ≤
Ä
Θn + π||z+φx(z)||

2τS

ä
||vx,j ||. Thus:Å

∂ϕx,i
∂zj

(z)

ã2

≤
Å

Θn +
π||z + φx(z)||

2τS

ã2
(

1 +
D−d∑
k=1

Å
∂ϕx,k
∂zj

(z)

ã2
)
.

Now, summing on i gives that, if z ∈ Sx,R,

D−d∑
k=1

Å
∂ϕx,k
∂zj

(z)

ã2

≤

Ä
Θn + π||z+φx(z)||

2τS

ä2
(D − d)

1−
Ä
Θn + π||z+φx(z)||

2τS

ä2
(D − d)

.

That directly implies, by Cauchy Schwartz, that

||J ′x(z)Jx(z)||∞ ≤

Ä
Θn + π||z+φx(z)||

2τS

ä2
(D − d)

1−
Ä
Θn + π||z+φx(z)||

2τS

ä2
(D − d)

.

Then, because J ′xJx is a d-dimensional symmetric positive matrix that has a rank upper
bounded by min(d,D − d) and eigen values upper bounded by d||J ′x(z)Jx(z)||∞, it comes
that

1 ≤ det(I + J ′x(z)Jx(z)) ≤

Ñ
1 +

Ä
Θn + dπ||z+φx(z)||

2τS

ä2
(D − d)

1−
Ä
Θn + π||z+φx(z)||

2τS

ä2
(D − d)

émin(d,D−d)

. (42)

Introduce gx,R the density of πT̂x(X) given ||X − x|| ≤ R:

gx,R(z) =
»

det(I + Jx,R(z)′Jx,R(z))
f(x+ z + φx(z))

PX(B(x,R))
ISx,R(z).

Consider now Yn,R,x = πT̂x(X ∩ B(x,R)) = {Y1, . . . , YNx,R}, where Yi is an iid sam-
ple that has the same law than a sample drawn as follows : draw Nx,R according to
Binom(n,P(B(x,R))) then draw Nx,R points in Rd with a density gx,R.

As previously E′x,r,R denotes the event ”|“Cx,r,R| ≥ Aωdrd and “N∂
x,r,R ≤ Nx,R/2”.

Now introduce :

Γ̂x,r,R =

∫“Cx,r,R gx,R(z)dz , ε̂1(x) =
“No
x,r,R − Γ̃x,r(Nx,R − “N∂

x,r,R)

|“Cx,r,R|(Nx,R − “N∂
x,r,R)

ε̂2(x) =
Γ̃x,r

|“Cx,r,R| − gx,R(0) and ε̂3(x)(x) =
Nx,R

n
gx,R(0)− f(x),

so that, given E′x,r,R,
ˆ̂
fr,R,A(x)− f(x) =

Nx,R
n (ε̂1(x) + ε̂2(x)) + ε̂3(x)(x).
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1. We have, for all z ∈ Sx,R, f
(0)
min ≤ gx,R(z) ≤ f

(0)
max(1 + d)min(d,D−d). Also, by Corol-

lary B.6 in Aamari et Al (2023), we have that there exists x′ ∈ B(x, 3rn/4) with
B(x′, rn/4)∩∂S = ∅. Thus, by LemmaB.11 in Aamari et Al (2023), πT̂x(B(x′, rn/4)) ⊂
Sx,R and, by reach condition, BT̂x

Ä
πT̂x(x′), rn4

Ä
1− θn + rn

2τS

ää
⊂ Sx,R. Thus, exactly

as in proof of Lemma 1 and by use of the lower bound of f , we easily obtain that,
for all A < 4−d, there exists β1 and β2 such that

P((E′x,r,R)c|Nx,R = k) ≤ β1 exp(−nrdnf
(0)
minβ2) + exp(−k/8).

2. Concerning ε̂1(x), we easily obtain, exactly as in the proof if Lemma 2, that

E (ε̂1(x)ε2(x)|Ex,r) = 0. (43)

We roughly have a uniform bound given by:

E
(
ε̂1(x)2|Ex,r and Nx,R = k

)
≤ 2f

(0)
max(1 + d)min(d,D−d)

Aωdrdk
, (44)

and

P

Ñ
|ε̂1(x)| >

√
32 ln kf

(0)
max(1 + d)min(d,D−d)

A2ωdkrdn
|Ex,r and Nx,R = k

é
≤ 2k−4(1 + o(1)).

(45)

3. Concerning ε̂2(x), when n large enough to have rn < τS
1
2

(
11
12

)2
so that (41) is im-

possible for all z ∈ πT̂x(S∩B(x,R)) ∩ B(0, rn), we have ||z + φx(z)|| ≤ 2rn
1−Θn

. Thus, by

Equations (28) and (42), it comes the existence of constants CS,f such that, for all
z ∈ πT̂x(S∩B(x,R)) ∩B(0, rn),

|gx,R(z)− gx,R(0)| ≤ CS,f (rn + Θ2
n) (46)

|gx,R(z)− gx,R(0)− Gx.z

P(B(x,R))
| ≤ CS,f (rn + Θn)2 (47)

(a) A rough bound ε̂2(x) ≤ CS,f (rn + Θ2
n) is obtained, as in Lemma 3, by:

|ε̂2(x)| ≤ CS,f (rn + Θ2
n) + f (0)

max(1 +O(Θn + rn)2)
H(BT̂x(0, rn) ∩ Sx,R) \ Sx,R

Aωdrdn
.

To obtain a bound on
H(B(0,rn)∩Sx,R)\Sx,R

Aωdrdn
, we use Lemmas A.6 and A.7 in Aa-

mari et Al (2023). Namely:
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i. By lemma A.6: if d(x, ∂S) ≥ 5rn/4, then BT̂x(0, rn) ⊂ Sx,R and thus

H(B(0, rn) ∩ Sx,R) \ Sx,R
Aωdrdn

= 0.

ii. If d(x, ∂S) < 5rn/4, introduce x∗ = π∂S(x). We have ∠Tx∗S, T̂x ≤ Θn +
dS(x,x∗)

τS
and then dS(x, x∗) ≤ 2τS arcsin

Ä ||x−x∗||
2τS

ä
≤ π ||x−x

∗||
2 ≤ 3rn. Since

Θn + 3rn ≤ 1/8, we can apply Lemma A.7 and there exists a unit vector η̂∗

such that

BT̂x(πT̂x(x∗)− r0η̂
∗, r0) ⊂ Sx,R ⊂ B̊c

T̂x
(πT̂x(x∗) + r0η̂

∗, r0).

This is a local version of the rolling ball property used in the proof of Lemma
3, which is sufficient to conclude that, for n large enough,

|ε̂2(x)| ≤ 2
CS,f
A

(rn + Θ2
n). (48)

(b) Suppose now that x is far from the boundary, i.e. d(x, ∂S) ≥ 5rn/4. That
guaranties, due to Lemma 5.6. in Aamari et Al (2023) (arxiv version), that
B(O, rn) ⊂ Sx,R. Better bounds on ε̂2(x), are obtained as in Equation 21.
Precisely, it comes that

ε̂2(x) =

∫
B(x,rn)(gx,R(z)− gx,R(0))

|“Cx,r,R| −

∫
B(x,rn)\“Cx,r,R(gx,R(z)− gx,R(0))

|“Cx,r,R| .

By use of Equation (47), we have that, conditionally to E′x,r,R,∣∣∣∣∣
∫
B(x,rn)(gx,R(z)− gx,R(0))

|“Cx,r,R| ∣∣∣∣∣ ≤ CS,f
A

(rn + Θn)2.

Also, when n large enough,∣∣∣∣∣
∫
B(x,rn)\“Cx,r,R(gx,R(z)− gx,R(0))

|“Cx,r,R| ∣∣∣∣∣ ≤ 2CS,f
A

(rn + Θ2
n)
|B(x, rn) \ “Cx,r,R|
|B(x, rn)|

.

Then, because the density gx,R is lower and upper bounded by positive constants,
we can apply results in Brunel (2017) and formulaes (33) to obtain the existence
of a constant C such that

E(ε̂2(x)2|Ex,r and Nx,R = k) ≤ C
(

(rn + Θn)2 + (rn + Θ2
n)(krdn)−

2
d+1

)2
. (49)
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Also, by use of (32), there exists C and C ′ such that:

P

(
|ε̂2(x)| ≥ Crn ln k

krdn
+ rn

Å
C ′

krdn

ã 2
d+1

+ r2
nf

(2)
max |Ex,r and Nx,R = k

)
≤

C2k
−4 + exp

Ä
−krDn f

(0)
min/10

ä
. (50)

4. By definition of ε̂3(x), we have

V(ε̂3(x)) =
(1− P(B(x,R))) det(I + Jx,R(0)′Jx,R(0)))f(x)2

nP(B(x,R))
,

from which V(ε̂3(x)) ≤ f(x)2

nωdRdf
(0)
min

(1 +O(Θ2
n)).

Now, by use of the decomposition

ε̂3(x) = f(x)

Å
Nx,R

nP(B(x,R))
− 1

ã
+f(x)

Nx,R

nP(B(x,R))

(
1−

»
det(I + Jx,R(0)′Jx,R(0)))

)
,

it comes that |E(ε̂3(x))| ≤ f(x)CΘ2
n(1 + o(1)) and so E(ε̂3(x)2) ≤ O(max(n−1,Θ4

n)).

Also, we clearly have

∣∣∣∣f(x)
Nx,R

nP(B(x,R))

(
1−

»
det(I + Jx,R(0)′Jx,R(0)))

)∣∣∣∣ ≤ f
(0)
max

f
(0)
minωdR

d
Od,D(Θn)2.

With this equation and by use of Hoeffding inequality, it comes that

P

(
|ε̂3(x)| ≥

√
2 lnn

nωdRdf
(0)
max

+O(Θ2
n)

)
≤ 2n−4.

Theorems 4 and 5 are consequences of previous formulas, getting rid of the condition
on Nx,R by use of Hoeffding inequality which gives the uniform bound:

P(Nx,R ≤
n

2
f

(0)
minωdR

d)) ≤ exp(−n
2
f

(0)
minωdR

d).
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