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In this note we provide uniform a priori estimates for solutions to degenerate complex Hessian equations on compact hermitian manifolds. Our approach relies on the corresponding a priori estimates for Monge-Ampère equations; it provides an extension as well as a short alternative proof to results of Dinew-Ko lodziej, Ko lodziej-Nguyen and Guo-Phong-Tong.

Introduction

Let X be a compact complex manifold equipped with a hermitian form ω X . We fix 1 ≤ k ≤ n = dim C X, ω another hermitian form, and µ X a volume form on X. The complex Hessian equation is

(ω + dd c ϕ) k ∧ ω n-k X = cµ X ,
where c > 0 is a positive constant and ϕ (the unknown) is a smooth (ω, ω X , k)subharmonic function, i.e. (ω + dd c ϕ) j ∧ ω n-j X ≥ 0 for all 1 ≤ j ≤ k. When k = 1 this reduces to the Laplace equation. When k = n this yields the complex Monge-Ampère equation which was famously solved by Yau [START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation[END_REF] when ω is Kähler, and by Tosatti-Weinkove [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF] in the hermitian setting.

From now on we assume that 1 < k < n. A unique solution has been provided by Dinew-Ko lodziej [START_REF] Dinew | Liouville and Calabi-Yau type theorems for complex Hessian equations[END_REF] when ω = ω X is Kähler; the hermitian setting has been resolved independently by Székelyhidi [START_REF] Székelyhidi | Fully non-linear elliptic equations on compact Hermitian manifolds[END_REF] and Zhang [START_REF] Zhang | Hessian equations on closed Hermitian manifolds[END_REF].

It is quite natural to consider such equations in degenerate settings, allowing the measure µ X = f ω n X to be merely absolutely continuous with respect to the volume form ω n X . Such degenerate complex Hessian equations have been intensively studied in the past fifteen years (see [Blo05, Lu13, DK14, DL15, LN15, Lu15, KN16, Char16, GN18, DDT19, BZ20, GP22] and the references therein).

In this note we go one step further by allowing the form ω to degenerate as well: we no longer assume it is positive, we merely ask that it is big, in analogy with the corresponding notion from algebraic geometry [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], i.e. we assume there is an ω-psh function ρ with analytic singularities such that ω + dd c ρ dominates a hermitian form. We let Ω denote the Zariski open set where ρ is smooth.

One can not expect any longer that (ω, ω X , k)-subharmonic functions are smooth in X, but we show in Section 1.2 how to define the Hessian operator H k (f ) = (ω + dd c ϕ) k ∧ ω n-k X for such functions ϕ which are continuous in Ω and globally bounded on X.

In this context we obtain the following: Theorem A. Let ω be a semi-positive and big form and f ∈ L p (ω n X ) with p > n/k and X f ω n X > 0. There exists c > 0 and ϕ a bounded (ω, ω X , k)-subharmonic function, continuous in Ω, such that

(ω + dd c ϕ) k ∧ ω n-k X = cf ω n
X . This result extends the main result of [START_REF] Ko Lodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF]. It applies in particular to the case when π : X → Y is the desingularization of a compact hermitian variety Y , and ω = π * ω Y is the pull-back of a hermitian form ω Y on Y .

As is often the case in similar contexts, the main difficulty lies in establishing uniform a priori estimates. This is the content of our second main result: Theorem B. Let ω 0 , ω be semi-positive and big forms such that ω 0 ≤ ω. Let ϕ be a smooth (ω, ω X , k)-subharmonic function solution to

(ω + dd c ϕ) k ∧ ω n-k X = f ω n X , where f ∈ L p (dV X ), p > n/k. Then Osc X (ϕ) ≤ C,
where C > 0 depends on ω 0 , n, k, p and an upper bound for ||f || L p .

The approach of Ko lodziej-Nguyen relies on a pluripotential theory for degenerate complex Hessian equations on hermitian manifolds (mimicking the corresponding results obtained by these authors and Dinew for the Monge-Ampère equation [START_REF] Dinew | Pluripotential estimates on compact Hermitian manifolds[END_REF], [START_REF] Ko Lodziej | Weak solutions to the complex Monge-Ampère equation on compact Hermitian manifolds[END_REF], [START_REF] Ko Lodziej | Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds[END_REF], [START_REF] Nguyen | The complex Monge-Ampère type equation on compact Hermitian manifolds and applications[END_REF]). An alternative PDE proof has been recently provided by Guo-Phong-Tong-Wang in [GPT21, GPTW21] when X is Kähler, and by Guo-Phong [START_REF] Guo | On L ∞ estimates for fully nonlinear partial differential equations on Hermitian manifolds[END_REF] when X is hermitian and ω is a hermitian form.

We provide in this note a proof which relies directly on the corresponding results for the complex Monge-Ampère operator. Given ϕ a solution of the k-Hessian equation with density f , we show that the ω-psh envelope of ϕ solves a Monge-Ampère equation whose density is bounded from above by f n/k . A lower bound on ϕ thus follows from the L ∞ -a priori estimates for the Monge-Ampère equation established in [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF].

Our method is new and also of interest when X is Kähler; it applies to more general densities (see Remark 3.2); in particular the results of Theorem A and Theorem B hold when f merely satisfies

X f n k | log f | n (log | log f |) n+δ < +∞,
for some δ > 0. Radial examples show that this condition is almost optimal.

It follows from Demailly's regularization theorem [START_REF] Demailly | Regularization of closed positive currents of type (1, 1) by the flow of a Chern connection[END_REF] that one can further assume that ρ has analytic singularities, in particular ω +dd c ρ is a hermitian form in some Zariski open set that we usually denote by Ω in what follows.

An important source of examples of big forms is provided by the following construction: if V is a compact complex space endowed with a hermitian form ω V , and π : X → V is a resolution of singularities, then ω = π * ω V is big.

1.1. (ω, ω X , k)-subharmonic functions. 1.1.1. Definition. Let U ⊂ X be an open subset and γ a hermitian form in U . A function h ∈ C 2 (U, R) is called γ-harmonic if dd c h ∧ γ n-1 = 0 pointwise in U.
We let H γ (U ) denote the set of all γ-harmonic functions in U . A function u : U → R ∪ {-∞} is γ-subharmonic if it is upper semicontinuous and for every D ⊂ U and every h ∈ H γ (D) the following implication holds

u ≤ h on ∂D =⇒ u ≤ h in D.
As shown in [HL13, Section 9] the γ-subharmonicity can be equivalently defined using viscosity theory: u is γ-subharmonic in U if and only if the inequality dd c u ∧ γ n-1 holds in the viscosity sense in U . The latter condition means that for every x 0 ∈ U and every C 2 function χ defined in a neighborhood V of x 0 , the following implication holds:

[u(x) ≤ χ(x), ∀x ∈ V and u(x 0 ) = χ(x 0 )] =⇒ dd c χ ∧ γ n-1 ≥ 0 at x 0 . When u ∈ C 2 (U ), it is γ-subharmonic if and only if dd c u ∧ γ n-1 ≥ 0 pointwise.
Definition 1.2. We let SH γ (U ) denote the set of all γ-subharmonic functions in U that are locally integrable. where ess sup B(x,r) u is the essential supremum of u in the ball B(x, r).

Definition 1.3. A function ϕ : U → R ∪ {-∞} is quasi-γ-subharmonic if locally ϕ = u + ρ where u is γ-subharmonic and ρ is smooth.
We say that a function ϕ is (ω, γ)-subharmonic if it is quasi-γ-subharmonic and (ω + dd c ϕ) ∧ γ n-1 ≥ 0 in the sense of distributions on X.

We let SH γ (U, ω) denote the set of all (ω, γ)-subharmonic functions in U .

If u ∈ C 2 (U, R) then u ∈ SH γ (U, ω) if and only if (ω + dd c u) ∧ γ n-1 ≥ 0 pointwise.
In general this inequality holds in the viscosity sense:

Lemma 1.4. If ϕ ∈ SH γ (U, ω) and χ is a C 2 function such that ϕ -χ attains a local maximum at x 0 ∈ U , then (ω + dd c χ) ∧ γ n-1 ≥ 0 at x 0 .
Proof. Fix a > 1. Let ρ be a quadratic function such that dd c ρ = aω(x 0 ). By continuity of ω, we have dd c ρ ≥ ω in a small ball B around x 0 . The function ρ + ϕ is then γ-subharmonic in B and the function ρ + ϕ -(ρ + χ) attains a local maximum at x 0 . It thus follows that, at x 0 ,

(aω + dd c χ) ∧ γ n-1 = dd c (ρ + χ) ∧ γ n-1 ≥ 0.
The conclusion follows by letting a ց 1.

Fix an integer 1 ≤ k ≤ n, and let Γ k (ω X ) denote the set of all (1, 1)-forms α such that α j ∧ ω n-j X > 0, j = 1, ..., k. By Gårding's inequality [START_REF] Gårding | An inequality for hyperbolic polynomials[END_REF]

, if α, α 1 , ..., α k-1 ∈ Γ k (ω X ) then α ∧ α 1 ∧ ... ∧ α k-1 ∧ ω n-k X > 0. In particular, α 1 ∧ ... ∧ α k-1 ∧ ω n-k X is a strictly positive (n -1, n -1)-form on X. By [Mic82], one can write α 1 ∧ ... ∧ α k-1 ∧ ω n-k X = γ n-1
, for some hermitian form γ. We let F k (ω X ) denote the set of all such hermitian forms.

Definition 1.5. A function ϕ : U → R ∪ {-∞} is (ω, ω X , k)-subharmonic if it is (ω, γ)-subharmonic in U for all γ ∈ F k (ω X ).
We let SH ω X (U, ω, k) denote the set of all (ω, ω X , k)-subharmonic functions on U which are locally integrable in U .

If u is of class C 2 in U then, by [Gar59], u is (ω, ω X , k)-subharmonic if and only if ω + dd c u ∈ Γ k (ω X ).
We refer the reader to [START_REF] Blocki | Weak solutions to the complex Hessian equation[END_REF] and [KN16, Section 2.3] for basic properties of (ω, ω X , k)-sh functions; they easily extend to our context.

Since ω X is fixed once and for all in this note, we let SH(X, ω, k) denote the set of (ω, ω X , k)-sh functions; they form a nested sequence

SH(X, ω) ⊃ • • • SH(X, ω, k -1) ⊃ SH(X, ω, k) ⊃ • • • ⊃ P SH(X, ω), where SH(X, ω) = SH(X, ω, 1) is the set of ω-sh functions, while P SH(X, ω) = SH(X, ω, n) is the set of ω-psh functions, for which ω + dd c ϕ ≥ 0 is a positive current of bidegree (1, 1) (see [GZ17, Chapter 8]). Observe that SH(X, ω, k) ⊂ SH(X, ω ′ , k) if ω ≤ ω ′ .
Since ω ≤ Aω X for some A > 0, any (ω, ω X , k)-sh function is also (Aω X , 1)-sh. We thus have the following compactness result (see [KN16, Lemma 3.3], [GN18, Section 9]).

Proposition 1.6. The set of normalized (ω, ω X , k)-subharmonic functions is compact in the L 1 -topology. In particular, there exists C > 0 such that for all ϕ ∈ SH(X, ω, k) normalized by sup X ϕ = 0,

X (-ϕ)ω n X ≤ C.
1.1.2. Smooth approximation.

Theorem 1.7. If ω is hermitian, any (ω, k)-subharmonic function is the pointwise limit of a decreasing sequence of smooth (ω, k)-subharmonic functions.

This result is a slight extension of [KN16, Lemma 3.20], which itself extends [LN15, Theorem 1.2] from the Kähler to the hermitian setting. We propose below an alternative and more direct proof.

Proof. Let u be a smooth function on X and let f be a smooth positive density such that

(ω + dd c u) k ∧ ω n-k X ≤ f ω n X .
For j ≥ 1, we solve the complex Hessian equation

(ω + dd c ϕ j ) k ∧ ω n-k X = e j(ϕ j -u) f ω n X .
As shown in [START_REF] Ko Lodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF], the estimates established in [START_REF] Székelyhidi | Fully non-linear elliptic equations on compact Hermitian manifolds[END_REF] provide a smooth solution ϕ j which is (ω, k)-subharmonic on X. We want to prove that ϕ j converges uniformly to P ω,k (u), the largest (ω, k)-subharmonic function lying below u. The theorem follows from this fact, as shown in [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF][START_REF] Ko Lodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF].

The classical maximum principle ensures that ϕ j ≤ u, hence ϕ j ≤ P ω,k (u). Fix now ϕ ∈ SH(X, ω, k) such that ϕ ≤ u. Let x 0 ∈ X be a point where the function ϕ -(1 + 1/j)ϕ j attains its maximum on X. By definition ϕ belongs to SH γ (X, ω), where γ is the hermitian form such that

γ n-1 = (ω + dd c ϕ j ) k-1 ∧ ω n-k X .
From now on the computations are made at x 0 . It follows from Lemma 1.4 that

(ω + (1 + 1/j)dd c ϕ j ) ∧ γ n-1 ≥ 0.
From this and Gårding's inequality [START_REF] Gårding | An inequality for hyperbolic polynomials[END_REF] we obtain j + 1

j (ω + dd c ϕ j ) k ∧ ω n-k X ≥ 1 j ω ∧ (ω + dd c ϕ j ) k-1 ∧ ω n-k X ≥ 1 j e j(k-1) k (ϕ j -u) f (k-1)/k g 1/k ω n X ,
where

gω n X = ω k ∧ ω n-k X . Let b ∈ (0, 1) be a positive constant such that g ≥ b k f on X. The above inequality yields (1 + j)e j(ϕ j -u)/k ≥ b, hence ϕ j -u ≥ k(log b -log(1 + j)) j .
Thus, for some uniform constant C ≥ 1 we have

1 + 1 j ϕ j -u ≥ 1 + 1 j (ϕ j -u) + u j ≥ -C log j j .
Since ϕ ≤ u, we also obtain

ϕ -1 + 1 j ϕ j ≤ C log j j .
This inequality holds on X, as ϕ -(1 + 1/j)ϕ j attains its global maximum at x 0 . Since this is true for all ϕ ∈ SH(X, ω, k) lying below u, we obtain

P ω,k (u) -C ′ log j j ≤ ϕ j ≤ P ω,k (u),
for a uniform constant C ′ , proving that ϕ j converges uniformly to P ω,k (u).

1.2. The Hessian operator.

1.2.1. Hermitian forms. We assume in this subsection that ω is a hermitian form. For (ω, ω X , k)-subharmonic functions ϕ of class C 2 , the complex Hessian operator is defined by

H k (ϕ) = (ω + dd c ϕ) k ∧ ω n-k X .
By Theorem 1.7, one can pointwise approximate from above any (ω, ω X , k)-sh function ϕ by a decreasing sequence of smooth (ω, ω X , k)-sh functions ϕ j .

If ϕ is moreover continuous on X, then the convergence is uniform, and it was shown in [START_REF] Ko Lodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF] that the sequence of Hessian measures H k (ϕ j ) weakly converges to a unique positive Radon measure, independent of the approximants. One sets

H k (ϕ) := lim j→+∞ H k (ϕ j ) := (ω + dd c ϕ) k ∧ ω n-k X .
It is likely that one can define these operators for (ω, ω X , k)-sh functions that are merely bounded. This is indeed the case when ω X is closed, as one can proceed by induction and use integration by parts following Bedford-Taylor's construction [START_REF] Bedford | The Dirichlet problem for the complex Monge-Ampère operator[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. The situation is however delicate in the general hermitian setting, and more subtle than for the Monge-Ampère operator. Among the basic properties enjoyed by this operator are the following:

• ϕ → H k (ϕ) is continuous for the uniform topology;

• if u 1 , . . . , u k ∈ SH(X, ω, k) are continuous, the mixed Hessian operators

(ω + dd c u 1 )∧ • • •∧ (ω + dd c u k )∧ ω n-k X
are similarly defined and continuous;

• if u 1 , . . . , u k are smooth and (ω + dd c u j ) k ∧ ω n-k X = f j dV X then (1.1) (ω + dd c u 1 ) ∧ • • • ∧ (ω + dd c u k ) ∧ ω n-k X ≥ (f 1 • • • f k ) 1/k dV X .
These are a consequence of inequalities due to Gårding.

1.2.2. Big forms. We now no longer assume that ω is positive, but rather that it is semi-positive and big. Fix a quasi-plurisubharmonic function ρ : X → R ∪ {-∞} with analytic singularities such that ω + dd c ρ ≥ δω X , for some constant δ > 0.

We let Ω denote the Zariski open set where ρ is smooth. If ϕ ∈ SH(X, ω, k)∩L ∞ (X) is continuous in Ω, it follows from [KN16, Proposition 2.9] that for each smooth form γ, the mixed product (ω X +dd c ϕ) j ∧γ l-j ∧ω n-l X is a well-defined Radon measure in Ω with finite mass.

Definition 1.8. For ϕ ∈ SH(X, ω, k) ∩ L ∞ (X) ∩ C 0 (Ω) we set H k (ϕ) := k j=0 k j (ω X + dd c ϕ) j ∧ (ω -ω X ) k-j ∧ ω n-k X .
This operator is well-defined in Ω with finite total mass, so we consider its trivial extension to X. The definition is motivated by the identity

(ω + dd c ϕ) k ∧ ω n-k X = (ω X + dd c ϕ + ω -ω X ) k ∧ ω n-k X = k j=0 k j (ω X + dd c ϕ) j ∧ (ω -ω X ) k-j ∧ ω n-k X .
The operator H k is continuous along sequences that converge locally uniformly in Ω [KN16, Proposition 2.11]. The following result follows.

Proposition 1.9. If ϕ ∈ SH(X, ω, k) ∩ L ∞ (X) ∩ C 0 (Ω), then H k (ϕ) is a positive Radon measure.
Proof. Fix ε > 0 and approximate ϕ -using Theorem 1.7-by a decreasing sequence (ϕ j ) of (ω + εω X )-sh functions. Since (ω + εω

X + dd c ϕ j ) k ∧ ω n-k X ≥ 0, we infer from [KN16, Proposition 2.11] that (ω + εω X + dd c ϕ) k ∧ ω n-k X ≥ 0.
The conclusion follows by letting ε → 0, as we then obtain that (ω

+ dd c ϕ) k ∧ ω n-k X ≥ 0.
Lemma 1.10. Let ϕ, ψ be (ω, ω X , k)-sh functions which are continuous in Ω and bounded on X. Then

H k (max(ϕ, ψ)) ≥ 1 {ϕ>ψ} H k (ϕ) + 1 {ψ≥ϕ} H k (ψ).
In particular, if ϕ ≤ ψ then

1 {ψ=ϕ} H k (ϕ) ≤ 1 {ψ=ϕ} H k (ψ).
Proof. Fix t > 0. Since {ϕ < ψ + t} and {ψ + t < ϕ} are open in Ω, we have

H k (max(ϕ, ψ + t)) ≥ 1 {ϕ>ψ+t} (ω + dd c ϕ) k ∧ ω n-k X + 1 {ψ+t>ϕ} (ω + dd c ψ) k ∧ ω n-k X ≥ 1 {ϕ>ψ+t} (ω + dd c ϕ) k ∧ ω n-k X + 1 {ψ≥ϕ} (ω + dd c ψ) k ∧ ω n-k X .
Letting t ց 0 we obtain the first statement of the lemma. The second one follows straightforwardly from the first.

1.2.3. SH(X, ω, k)-envelopes. We consider two types of envelopes in this note.

Definition 1.11. If h : X → R is a continuous function, we set P ω (h) := sup {u ∈ P SH(X, ω), u ≤ h} , and P ω,k (h) := sup {u ∈ SH(X, ω, k), u ≤ h}.

Here is a list of basic properties of these envelopes.

• The measure (ω +dd c P ω (h)) n is concentrated on the set C = {P ω (h) = h}.

• The complex Hessian measure (ω +

dd c P ω,k (h)) k ∧ ω n-k X is concentrated on the contact set C k = {P ω,k (h) = h}. • If h is C 1,1 -smooth and ω is hermitian, then P ω (h) is C 1,1 -smooth and (ω + dd c P ω (h)) n = 1 C (ω + dd c h) n . • If h is C 1,1 -smooth and ω is hermitian, then P ω,k (h) is C 1,1 -smooth and (ω + dd c P ω,k (h)) k ∧ ω n-k X = 1 C k (ω + dd c h) k ∧ ω n-k X .
We refer the reader to [Ber19, Tos18, GLZ19, CZ19, CM21] for the proof of these results, as well as further information on these envelopes. 1.3. A priori estimates for the complex Monge-Ampère operator. We are going to use the following a priori estimates established in [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF].

Theorem 1.12. Let ω, ω 0 be semi-positive and big (1, 1)-forms such that ω ≥ ω 0 . Fix δ > 0 and g ∈ L 1+δ (dV X ) a non-negative density. If ϕ ∈ P SH(X, ω)∩L ∞ (X) satisfies (ω + dd c ϕ) n ≤ gdV X , then Osc X (ϕ) ≤ C for some C ∈ R + that depends on n, δ, ω 0 and an upper bound on ||g|| L 1+δ .

Since this result is not explicitly stated in [START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF], we briefly sketch its proof.

Proof. We normalize ϕ so that sup X ϕ = 0. It follows from Skoda's uniform integrability theorem [GZ17, Theorem 8.11] that for 0 < α small enough, X e -α (2+δ)(1+δ) δ ϕ dV X ≤ C α is bounded from above independently of ϕ. Setting g = e -αϕ g, Hölder inequality then shows that g ∈ L 1+δ/2 with

||g|| L 1+δ/2 ≤ C 1/q α ||g|| 1/p L 1+δ
, where p = 1+δ 1+δ/2 and q = 2 + 2/δ. [GL21, Lemma 3.3] shows the existence of c(δ, ω) > 0 and u ∈ P SH(X, ω) such that -1 ≤ u ≤ 0 and

(ω + dd c u) n ≥ c(δ, ω) gdV X ||g|| L 1+δ/2 ≥ e αu c(δ, ω) gdV X ||g|| L 1+δ/2 . The function v := u -α -1 log[c(δ, ω)/||g|| L 1+δ/2 ] ∈ P SH(X, ω) thus satisfies e -αv (ω + dd c v) n = e -αv (ω + dd c u) n ≥ gdV X ≥ e -αϕ (ω + dd c ϕ) n .
The comparison principle [GL21, Corollary 1.14] finally ensures that v ≤ ϕ. This provides a uniform lower bound on ϕ, which only depends on δ, ω and an upper bound on ||g|| L 1+δ .

Domination principle

Fix ω a big form, ρ an ω-plurisubharmonic function with analytic singularities such that ω + dd c ρ ≥ δω X , δ > 0, and set Ω := {ρ > -∞}.

We fix a constant B 1 > 0 such that for all x ∈ Ω,

-B 1 ω 2 ρ ≤ dd c ω ρ ≤ B 1 ω 2 ρ and -B 1 ω 3 ρ ≤ dω ρ ∧ d c ω ρ ≤ B 1 ω 3 ρ . The existence of B 1 is clear since dω = dω ρ , d c ω = d c ω ρ and -Bω 2 X ≤ dd c ω ≤ Bω 2 X and -Bω 3 X ≤ dω ∧ d c ω ≤ Bω 3 X for some B > 0. The following is an extension of [GL21, Theorem 1.11]. Theorem 2.1. Assume ω is big. If u is a bounded (ω, ω X , k)-subharmonic func- tion which is continuous in Ω, then X (ω + dd c u) k ∧ ω n-k X > 0.
Proof. Fix ρ and B 1 as above. We set m = inf Ω (u -ρ). For s > 0 we set

φ = max(u, ρ + m + s) and U := {u < φ} = {u < ρ + m + s}.
Observe that U is relatively compact in Ω, and it is non empty for all s > 0, by definition of m. It follows from [KN16, Corollary 2.4] that, for any 0

≤ j ≤ k -1, dd c (ω j u ∧ ω k-j-1 φ ∧ ω n-k X ) ≤ C 1 k-1 m=k-2 m l=0 ω l u ∧ ω m-l φ ∧ ω n-m X ,
where C 1 is a uniform constant. On the open set U since ω φ ≥ δω X , we thus have

(2.1) dd c (ω j u ∧ ω k-j-1 φ ∧ ω n-k X ) ≤ C 2 k l=0 ω l u ∧ ω k-l φ ∧ ω n-k X .
Since u ≤ φ, Lemma 1.10 ensures that

1 {u=φ} ω j u ∧ ω k-j φ ∧ ω n-k X ≥ 1 {u=φ} ω k u ∧ ω n-k φ .
Noting that X \ U = {u = φ} we can write

U (ω j u ∧ ω k-j φ ∧ ω n-k X -ω k u ∧ ω n-k X ) ≤ X (ω j u ∧ ω k-j φ ∧ ω n-k X -ω k u ∧ ω n-k X ) = X dd c (φ -u) ∧ k-j l=0 ω l u ∧ ω k-j-l φ ∧ ω n-k X = X (φ -u)dd c k-j l=0 ω l u ∧ ω k-j-l φ ∧ ω n-k X .
In the last line above, we have used Stokes theorem. Since 0 ≤ φ -u ≤ s, using (2.1) we can continue the above inequalities as follows:

U (ω j u ∧ ω k-j φ ∧ ω n-k X -ω k u ∧ ω n-k X ) ≤ C 3 s k l=0 U ω l u ∧ ω k-l φ ∧ ω n-k X .
Summing up the above inequalities for j = 0, ..., k, one gets

(1 -C 4 s) k l=0 U ω l u ∧ ω k-l φ ∧ ω n-k X ≤ (k + 1) U ω k u ∧ ω n-k X .
If ω k u ∧ ω n-k X = 0 then, for s > 0 small enough, the above inequality yields

U ω k φ ∧ ω n-k X = 0, hence U has Lebesgue measure 0, which is impossible. Theorem 2.2. Assume ω is hermitian, u, v are continuous (ω, ω X , k)-subharmonic functions such that ω k u ∧ ω n-k X = 0 on {u < v}. Then u ≥ v.
Proof. By replacing v with max(u, v) and noting that {u < v} = {u < max(u, v)}, we can assume that u ≤ v. Our plan is thus to show that u = v. For b ≥ 1, we set

φ b := P ω,k (bu -(b -1)v). It is a negative (ω, k)-sh function. Since bu -(b -1)v is continuous on X, so is φ b . Observe also that b -1 φ b + (1 -b -1 )v ≤ u
with equality on the contact set C := {φ b = bu -(b -1)v}. Now by Lemma 1.10

1 C b -k ω k φ b ∧ ω n-k X + (1 -b -1 ) k ω k v ∧ ω n-k X ≤ 1 C ω k u ∧ ω n-k X , while C H k (φ b ) = X H k (φ b ) > 0 by Theorem 2.1. Since H k (u) = 0 on {u < v},
it follows that C ∩ {u = v} contains at least one point, say x. We then have

φ b (x) = bu(x) -(b -1)v(x) = v(x) ≥ inf X v; in particular sup X φ b ≥ inf X v.
Note that φ b is decreasing in b since u ≤ v. The limit φ := lim b→+∞ φ b is a (ω, k)-sh function which is not identically -∞. For any a > 0,

φ b ≤ bu -(b -1)v ≤ v -ba on the open set {u < v -a}, thus φ = -∞ on this set. Since φ is integrable on X, the set {u < v -a} must be empty, hence letting a → 0 + gives u ≥ v. Corollary 2.3. Assume ω is hermitian, u and v are continuous (ω, ω X , k)- subharmonic functions such that ω k u ∧ ω n-k ≤ cω k v ∧ ω n-k on {u < v} for some c ∈ [0, 1). Then u ≥ v.
Proof. Take b so large that (1 -b -1 ) k ≥ c, and consider φ := P ω,k (bu -(b -1)v). Then b -1 φ + (1 -b -1 )v ≤ u with equality on the contact set

C := {φ = bu -(b -1)v}.
By Lemma 1.10 we have

1 C b -k ω k φ ∧ ω n-k X + (1 -b -1 ) k ω k v ∧ ω n-k X ≤ 1 C ω k u ∧ ω n-k X .
Multiplying with 1 {u<v} and using the assumption

ω k u ∧ ω n-k ≤ cω k v ∧ ω n-k on {u < v} and (1 -b -1 ) k ≥ c, we then see that 1 C∩{u<v} ω k φ ∧ ω n-k = 0. Since ω k φ ∧ ω n-k is supported on C, we thus have {φ<v} ω k φ ∧ ω n-k = {bu-(b-1)v<v} ω k φ ∧ ω n-k = {u<v} ω k φ ∧ ω n-k = 0.
Invoking the domination principle (Theorem 2.2) we then get

φ ≥ v. It thus follows that bu -(b -1)v ≥ φ ≥ v, hence u ≥ v.
Corollary 2.4. Assume ω is hermitian and u and v are continuous (ω, ω X , k)subharmonic functions. Then

e -v (ω + dd c v) k ∧ ω n-k X ≥ e -u (ω + dd c u) k ∧ ω n-k X =⇒ u ≥ v.
Proof. Fix a > 0. On the set {u < v -a} we have H k (u) ≤ e -a H k (v). By Corollary 2.3, u ≥ v -a. Since it holds for all a > 0, we obtain u ≥ v.

Proof of the main theorems

3.1. A priori estimates. In this section we prove Theorem B, which is an extension of the main result of Ko lodziej-Nguyen [KN16]:

Theorem 3.1. Let ω 0 , ω be semi-positive and big forms such that ω 0 ≤ ω. Let ϕ be a smooth (ω, ω X , k)-subharmonic function satisfying

(ω + dd c ϕ) k ∧ ω n-k X ≤ f dV X ,
where f ∈ L p (dV X ), p > n/k. Then

Osc X (ϕ) ≤ C,
where C > 0 depends on ω 0 , n, k, p and an upper bound for ||f || L p .

Proof. We can assume that sup X ϕ = 0. Let u := P ω (ϕ) be the largest ω-psh function lying below ϕ. Let C denote the contact set C := {u = ϕ}. Then u is (ω, ω X , k)-sh with u ≤ ϕ hence Lemma 1.10 yields

1 C (ω + dd c u) k ∧ ω n-k X ≤ 1 C (ω + dd c ϕ) k ∧ ω n-k X ≤ f dV X .
Observe that the smooth function h := ω n X /dV X ≥ δ 0 is positive on X. Recall that the Monge-Ampère measure (ω + dd c u) n of u is concentrated on the contact set C. We set g := (ω + dd c u) n /dV X . It follows from Gårding's inequalities (1.1) that δ

1-k/n 0 g k/n ≤ h 1-k/n g k/n ≤ f, hence g ≤ C 0 f n/k . Since f ∈ L p with p > n/k, we obtain g ∈ L 1+δ with δ > 0.
Theorem 1.12 therefore provides a uniform bound Osc X (u) ≤ M.

This provides a uniform bound on u ≤ 0 if we can bound sup X u from below. Let q ′ be the conjugate exponent to p ′ = pk/n > 1. We obtain a uniform lower bound on sup X u by using [GL22, Proposition 3.4] and Hölder inequality, via

v - M (ω)(-sup X u) 1/q ′ ≤ X |u| 1/q ′ (ω + dd c u) n ≤ X |ϕ|ω n 1/q ′ X f p ′ ω n 1/p ′ ≤ C,
as X |ϕ|ω n is bounded from above independently of ϕ by Proposition 1.6. Together with the uniform bound for Osc X (u), this yields a uniform bound for |u|. This implies a uniform bound for ϕ since u ≤ ϕ and sup X ϕ = 0. Remark 3.2. We also have a uniform a priori bound when f satisfies the weaker integrability condition

X f n/k | log f | n |h • log • log f | n dt < +∞
where h is an increasing continuous function such that +∞ dt/h(t) < +∞. It follows indeed that g satisfies then Ko lodziej's optimal integrability condition X g| log g| n |h • log • log g| n dt < +∞, which ensures a uniform bound on Osc X (u) by [Kol98, Theorem 2.5.2]. We actually need here the extension of Ko lodziej's result to the case of semi-positive and big forms [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF], as well as to the hermitian setting [START_REF] Dinew | Pluripotential estimates on compact Hermitian manifolds[END_REF][START_REF] Guedj | Quasi-plurisubharmonic envelopes 3: Solving Monge-Ampère equations on hermitian manifolds[END_REF].

The same proof thus applies with a minor modification: to obtain a lower bound for sup X u, we replace Hölder inequality by the additive Hölder-Young inequality. If w denotes the convex weight w(t) ∼ t(log t) n (h • log • log t) n , w * is its conjugate convex weight, and (w * ) -1 denotes the inverse of w * , we obtain this way a uniform upper bound

v - M (ω)(w * ) -1 (-sup X u) ≤ X (w * ) -1 (u)(ω + dd c u) n ≤ X w • f dV X + X (-u)dV X ≤ C.
3.2. Stability estimates. We strengthen Theorem B by establishing the following stability estimate: Theorem 3.3. Assume ω is hermitian and ω ≥ ω 0 for some semi-positive and big form ω 0 . Assume 0 ≤ f, g ∈ L p (dV X ) with p > n/k, ϕ, ψ are continuous (ω, ω X , k)-subharmonic functions such that

(ω + dd c ϕ) k ∧ ω n-k X ≥ e ϕ f ω n X , and (ω + dd c ψ) k ∧ ω n-k X ≤ e ψ gω n X . Then (3.1) ϕ ≤ ψ + C f -g 1/k
p for some C > 0 depending on ω 0 , n, k and upper bounds for ||f || p , ϕ ∞ , | inf X ψ|.

In particular if ϕ, ψ are solutions of the corresponding equations, then

||ϕ -ψ|| ∞ ≤ C f -g 1/k p , so that ϕ -ψ is uniformly small if f is close to g in L p .
Proof. Our proof uses a perturbation argument from [GLZ18, LPT21], which goes back to [START_REF] Ko Lodziej | Some sufficient conditions for solvability of the Dirichlet problem for the complex Monge-Ampère operator[END_REF]. We solve the complex Monge-Ampère equation

(ω + dd c u) n = bhω n X , where h = |f -g| n/k f -g n/k p + 1,
sup X u = 0 and b > 0 is a constant. The existence of a continuous solution u ∈ P SH(X, ω) follows from [START_REF] Ko Lodziej | Weak solutions to the complex Monge-Ampère equation on compact Hermitian manifolds[END_REF][START_REF] Ko Lodziej | Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds[END_REF]. We can assume without loss of generality that ω X is a Gauduchon metric (i.e.

dd c (ω n-1 X ) = 0) which dominates ω. Thus u is ω X -psh with (ω X + dd c u) n ≥ (ω + dd c u) n ≥ bω n X since h ≥ 1. The mixed Monge-Ampère inequalities (see [Ng16]) yield (ω X + dd c u) ∧ ω n-1 X ≥ b 1/n ω n X , hence b ≤ 1 since X (ω X + dd c u) ∧ ω n-1 X = X ω n
X by the Gauduchon condition. Since h ∈ L q with q = pk/n > 1 and b ≤ 1, Theorem 3.1 ensures that u ∞ is uniformly bounded. It thus follows from [GL22, Proposition 3.4] that b ≥ δ 0 > 0 is uniformly bounded from below.

If f -g 1/k p is not small, the stability inequality (3.1) is trivially obtained by adjusting the value of C. In the remainder of the proof, we can thus assume without loss of generality that ε := b -1/n f -g 1/k p e sup X ϕ/k ≤ 1/2. (3.2) Since ω ≤ ω j and ||c j f j || L p is uniformly bounded from above, it follows from Theorem 3.1 that the ϕ j 's are uniformly bounded:

-C 1 ≤ ϕ j ≤ 0, for a uniform constant C 1 . Extracting and using compactness in L 1 (X) of normalized (ω, ω X , k)-sh functions, we can thus assume that c j → c > 0 and ϕ j converges in L 1 (X) and almost everywhere to a bounded function ϕ which is (ω, ω X , k)-sh, as j → +∞.

We next prove that the convergence ϕ j → ϕ is locally uniform in Ω. We set g j := c j f j e -ϕ j and g = cf e -ϕ . By Hölder inequality, g j -g q → 0 for some q > n/k. Fix j < l large enough. Since ω j ≥ ω l , we have (ω j + dd c ϕ l ) k ∧ ω n-k X ≥ e ϕ l g l ω n X . By Theorem 3.3, we infer (3.3) ϕ l ≤ ϕ j + C 2 g j -g l 1/k q , for a uniform constant C 2 . We next consider ψ j := (1 -ε)ϕ j + ερ -(2k + C 1 )ε, where ε = δ -1 2 -j < 1/2 when j is large enough. Since ω + dd c ρ ≥ δω X , we have

ω l + dd c ψ j ≥ ω + εdd c ρ + (1 -ε)dd c ϕ j ≥ εδω X + (1 -ε)(ω j + dd c ϕ j ) -2 -j ω X = (1 -ε)(ω j + dd c ϕ j ).
It follows that ψ j ∈ SH(X, ω l , k) and (ω l + dd c ψ j ) k ∧ ω n-k X ≥ e ϕ j +k log(1-ε) g j ω n

X ≥ e ϕ j -2kε g j ω n X ≥ e ψ j g j ω n X holds in Ω. The function ψ j,l := max(ψ j , ϕ l ) is (ω l , k)-subharmonic and continuous on X. Lemma 1.10 yields (ω l + dd c ψ j,l ) k ∧ ω n-k X ≥ e ψ j,l min(g j , g l )ω n X . Applying Theorem 3.3 we then get ψ j,l ≤ ϕ l + C 3 min(g j , g l ) -g l 1/k q ≤ ϕ l + C 3 g j -g l 1/k q , for a uniform constant C 3 . Together with (3.3), this implies ϕ j + δ -1 2 -j ρ -(2k + C 1 )δ -1 2 -j ≤ ϕ l + C 3 g j -g l 1/k q ≤ ϕ j + C 1 g j -g l 1/k q . Therefore, ϕ j converges locally uniformly in Ω to ϕ. Thus ϕ is continuous in Ω where it solves the complex Hessian equation

(ω + dd c ϕ) k ∧ ω n-k X = cf ω n X .
Remark 3.4. When the form ω is hermitian, the solution ϕ that we construct is continuous on the whole of X. Continuity of ϕ at points where ω vanishes is a delicate issue, even in the case of complex Monge-Ampère equations. We refer the interested reader to [START_REF] Guedj | Continuity of singular Kähler-Einstein potentials[END_REF] for a recent account.

The uniqueness of ϕ is also a subtle problem in the hermitian setting, see [START_REF] Ko Lodziej | Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds[END_REF] for a partial result in the case of the complex Monge-Ampère equation.

  If u ∈ SH γ (U ) then, by [HH72, Theorème 1, p.136], dd c u ∧ γ n-1 ≥ 0 in the sense of distributions. Conversely, by [Lit83, Theorem A], the latter condition implies that u coincides a.e. with a unique function û ∈ SH γ (U ) defined by û(x) := ess lim sup y→x u(y) := lim rց0 ess sup B(x,r) u,
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By the mixed Monge-Ampère inequalities (1.1) we have

We set C 1 = 2k -inf X ϕ and

The function ψ ε belongs to SH(X, ω, k) ∩ C 0 (X); its Hessian measure satisfies

p , for some uniform constant C 2 , as desired.

3.3. Proof of Theorem A. We approximate f in L p by smooth and positive densities f j . For j ≥ 1 we consider the hermitian forms ω j = ω + 2 -j ω X . It follows from [START_REF] Zhang | Hessian equations on closed Hermitian manifolds[END_REF][START_REF] Székelyhidi | Fully non-linear elliptic equations on compact Hermitian manifolds[END_REF] that there exist unique constants c j > 0 and smooth (ω j , k)-sh functions ϕ j such that (ω j + dd c ϕ j ) k ∧ ω n-k X = c j f j ω n X , and sup X ϕ j = 0.

We claim that the constants c j stay uniformly bounded, as j increases to +∞. To prove the claim we use the solutions to the Monge-Ampère equations by Tosatti-Weinkove [START_REF] Tosatti | The complex Monge-Ampère equation on compact Hermitian manifolds[END_REF]:

is uniformly bounded from above, by [GL21, Lemma 3.3], there exists a constant c > 0 independent of j and a bounded ω-psh function u such that ω n u ≥ cf n/k j

. By [GL21, Corollary 1.13], b j ≥ c. It then follows from Gårding's inequality that

X . Corollary 2.3 thus ensures that c j ≥ c k/n is uniformly bounded from below by a positive constant.

We next bound c j from above. By Gårding's inequality we have

The functions ϕ j belong to SH(X, ω 1 ) and are relatively compact in L 1 , hence integrating over X and using that X f 1/k j ω n X → X f 1/k ω n X > 0, we obtain a uniform upper bound for c j .