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Abstract

Inverse problems aim to find the causes of outcoming features knowing the consequences of
a model by calibrating the model’s parameters to fit data. In this paper, we present a method
that solves simultaneously the inverse problem and the state estimation problem associated with
reaction-diffusion models and showcase it on two examples: a Keller-Segel system used for the
chemotaxis, and a Turing system producing stable spatial patterns. The method is defined as an
optimization problem that minimizes the misfit formulated with three different types of errors: on
the modelling choices, on the initial state assumption, and on the difference between data and the
forward predictive model output. The resolution of those inverse problems rely on the rewriting of
the variational systems and leads to solving two systems of partial differential equations combined
with the cancel out of a vectorial function that describes the optimality of the coefficients. We solve
those inverse problems numerically to calibrate both vectors of state and parameters when given
sparse data in time. We use strategical numerical schemes to solve efficiently the resulting coupled
system rather than using a classic Newton algorithm. Numerical experiments have been performed
with synthetic data to evaluate the efficiency of the proposed method, but also to describe the
influence of hyperparameters on the inverse problem.

Keywords: Numerical Analysis, Inverse problems, Reaction-diffusion systems, Numerical simula-
tion

1 Introduction
The combination of the state and the parameter estimations refers to the simultaneous calibration of
the state variables of a model (the unknowns of a model) and of the coefficients in the input of the
same model. This type of problem is widely common in a variety of fields, e.g., in chemistry [Dochain,
2003], in vehicle system dynamics [Wenzel et al., 2006, Song et al., 2020] or in Oceanography [Simon
et al., 2015, Rafiee et al., 2011] to mention few. The usual strategy to address a combined problem
of state and parameter estimations is to use Kalman Filters [Chui and Chen, 2017]. This approach is
classic in Data Assimilation and Optimal Control and was designed initially with ordinary differential
equations (ODE), which are, in general, systems of differential equations with the variability on the
time only. It starts with KFs for linear dynamics, but improvements in the design of the filters led to
a better handling of nonlinear dynamics. For example, we refer to Unscented Kalman Filters (UKF)
[Wan and van der Menwe, 2000] and Ensemble Kalman Filters (EnKF) [Evensen, 2003].

While a lot of approaches in Data Assimilation rely on systems of ODEs, some of them are developed
based on systems of partial differential equations (PDE) , see for instance [Iglesias et al., 2013]. Reaction
and diffusion terms are present in many systems of PDEs governing real-world phenomenon. This is
the case in Biology, see [Murray, 2002, Jones et al., 2009], where the main interest of this paper frames
and where the need of solving problems using the data assimilation comes from the personalized
medicine. In practice, we are interested in using data from an individual to guide decisions for the
prevention, the diagnosis, and the treatment of a disease [NIH, 2022]. There are some research works,
in the mathematical setting, on joint state and parameter estimations based on PDE systems modelling
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tumour growth, see [Swanson et al., 2000, Konukoglu et al., 2010, Rochoux et al., 2018, Hogea et al.,
2008, Grenier et al., 2014].

In practice, counting the use of real data requires to build a methodology that works with sparse
data over time. Indeed, in that context, we do not expect to be able to have data when needed. For
instance, we cannot impose a Magnetic Resonance Imaging (MRI) on a patient everyday for a large
period. A common way to solve this issue, is to interpolate data over time to get the hypothesis of
infinite data, which is easier to work with. The remaining issue is then to perform data interpolation
as proposed [Collin et al., 2021].

Another problem for solving inverse problems based on PDE systems, is the computational com-
plexity of algorithms to obtain the output of the forward model. Indeed, the calibration the parameters
usually demands several evaluations of the forward model for accuracy check. One evaluation of the for-
ward model is already expensive for PDEs-based inverse problems, it is then effective to minimize or at
least control the total number of evaluations of the forward model. Various approaches can be indicated
to contribute to alleviating the total number of costly approximations of the forward model. Here we
refer to [Grenier et al., 2018], that shows an improved method of population parametrization combin-
ing the use of a classic algorithm in the field (Stochastic Approximation of Expectation-Maximization)
and kriging methods to restrict the number of needs of solving the forward predictive model.

In this work, we develop a method that solve inverse problems based on reaction-diffusion models,
without building data interpolation. The method calibrates a state vector (Ψ) and a set of parameters
(η) when the data are given as noisy measurements of the predictive forward model. Another strength
of the proposed method is that it counts also for the epistemic uncertainty by covering errors in
the modelling choices while in the most cases of approaches addressing an optimal control problem,
the formulation assumes that the forward modelling does not generate error. Yet, simplifications
in modelling complex system, such as the patterns formation, in characterizing some coefficients by
assuming its well-knowns can lead to slightly incorrect forward models. For those reasons, we address
a formulation that allows errors in the modelling, errors in the given of the initial state, additionally
of the observation errors.

The rest of this paper is organized as follows. In Section 2, we introduce the reaction-diffusion
systems, on which we detail the inverse problems, that are also clearly stated. Section 3 describes the
analytical approach developed to address the inverse problems associated to the Keller-Segel system
and to the patterns formation system. In Section 4, we perform the numerical experiments for the
inverse problems to showcase the efficiency of the presented approach for the two systems. We also
study the hyperparameters of the method in terms of variability of the errors of the state variables
and of the adjoint state estimation. We summarize the discussion and give some prospective research
lines for the future in Section 5.

2 Inverse problem formulation

2.1 Position of the problem
In this work, we are interested in performing combined state and parameter estimation problems
for Reaction-Diffusion systems. More specifically, we will be focused on Keller-Segel type systems
and around spatial pattern formation with reaction diffusion mechanisms. For sake of simplicity, the
analysis in the present paper treats two species systems, but stays valid for systems with a large number
of species. In the next section, we will introduce the two systems that we are interested in here.

2.1.1 Keller-Segel System

In Biology, Keller-Segel type systems are widely used to model chemotaxis, that describes the movement
of cells induced by a chemical signal. There is a large variety of such Keller-Segel type system,
see [Arumugam and Tyagi, 2020], and with several applications in Biology. For example, modelling
taxis toward Hydrogen gas by methanogen [Brileya et al., 2013], studying phenotypic heterogeneity in
chemotactic sensitivity for E. Coli [Salek et al., 2019], or aerotaxis around Bacillus subtilis [Menolascina
et al., 2017]. In this work, the Keller-Segel system models the chemotaxis between a cell population,
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denoted by u, and a chemical signal, namely c,
∂u
∂t −∇ · (D1∇u) +∇.(D1χu∇c) = g1(u, c,θ) ,∀(t,x) ∈ I × Ω,
∂c
∂t −∇ · (D2∇c) = g2(u, c,θ) ,∀(t,x) ∈ I × Ω,

u(t = 0,x) = u0(x), c(t = 0,x) = c0(x) ,∀x ∈ Ω,

D1∇u · n⃗−D1χu∇c · n⃗ = 0, D2∇c · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω.

(1)

We choose u to be the density of tumour cells, between 0 and 1, and c to be the concentration of the
chemical signal, we fixed it to be dioxygen (O2) for example. In that sense, we model the interaction
of tumour cells and O2 in a the time-space domain I × Ω. This model is a simplified version of the
one introduced in [Alonzo et al., 2021], that is used in practise for Glioblastoma Multiforme modelling.
Tumour cells diffuse naturally with a symmetric diffusion matrix D1, are attracted by the gradient of
O2 with a chemotaxis coefficient χ, and O2 diffuses naturally with a symmetric diffusion matrix D2.
We also consider reaction terms for both quantities that are given by the functions g1 and g2{

g1(u, c,θ) = ρu(1− u)− δu

g2(u, c,θ) = αu− βc− γuc
, with θ = (ρ, δ, α, β, γ) > 0. (2)

The function g1 models a logistic growth with a rate ρ, plus an apoptosis rate of δ. The function
g2 is given by the O2 production rate α by the tumour cells, the O2 degradation rate β, and the O2

consumption rate γ by the tumour cells.
System (1) is associated with an initial condition u0 and c0, for u and c respectively, and we add

an homogeneous zero-flux exchange on the boundary, which is a Neumann boundary condition.
In practice, the diffusion and sensitivity coefficients D1, D2, and χ are well determined in general,

whereas the reaction coefficients ρ, δ, α, β and γ, defined in Equation (2), are not known. So we intend
to calibrate θ = (ρ, δ, α, β, γ) using on line measurements.

2.1.2 Pattern Formation System

Some reaction-diffusion systems are known to produce stable spatial patterns during morphogenesis,
see the pioneer work [Turing, 1952]. Because spatial patterns are omnipresent in Life, studies around
Turing patterns arise in a lot of fields. The general process of patterns developing through diffusive
systems will not be detailed in this work, and we refer to [Murray, 2003] for a detailed description of the
process. To illustrate our method, we are interested in a dimensionless empirical substrate-inhibition
system from [Murray, 2003] modelling the pattern formation. The general form of such system is given
by 

∂A
∂t −∇

2A = µf1(A,B) ,∀(t,x) ∈ I × Ω
∂B
∂t − d∇2B = µf2(A,B) ,∀(t,x) ∈ I × Ω

A(t = 0,x) = A0(x), B(t = 0,x) = B0(x) ,∀x ∈ Ω

∇A · n⃗ = 0, ∇B · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω.

(3)

Here A and B are the concentration of the substrate oxygen and of the enzyme uricase respectively.
The isotropic diffusion in oxygen is normalized to 1, whereas, the isotropic diffusion in uricase is given
by the coefficient d > 1. The reaction terms are given by the functions f1 and f2, that have the general
form {

f1(A,B) = k1 −A− h(A,B),

f2(A,B) = k3(k2 −B)− h(A,B),
with h(A,B) =

k4AB

1 +A+ k5A2
, (4)

scaled with a coefficient µ > 0. The patterns exhibited by System (3) depend highly on the values of
d, µ and (ki)1≤i≤5. In System (3), we suppose that the coefficients d and µ are unknown, and we aim
to learn

ϑ = (d, µ), (5)

given measurements on A and B. This implies that the coefficients (ki)1≤i≤5 are available to us.
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2.2 Measurement of the forward function H

In our work, a measure is related to a time of inquisition ti in I, a set of m values interpreted as the
measurement data. The state vector Ψ stands for the solution (u, c) in System (1) and the solution
(A,B) in system (3).

Formally, a measure is a vector in Rsize(Ψ)m = R2m that gives the quantities measured of Ψ at time
ti. A set of Nmea measurements is a matrix Dmea ∈ RNmea×size(Ψ)m corresponding to a number of
Nmea time point values of measurements of Ψ at times (t1, t2, ..., tNmea

).
The function H is the link between the state vector and the observation, i.e., H (Ψ(ti, ·)) is the

quantity measured with Ψ(ti, ·).
For example, if a state vector would contain the height (h) and the weight (w) of an individual but

that we were measuring its Body Mass Index (BMI), the measurement function would be H (h,w) =
w
h2 . Then, two measures of B.M.I at two different times t1 and t2 could be dt1 = 26.7 and dt2 = 25.3.

Here, we only consider direct measurements, i.e., H (Ψ(ti, ·)) 7→ (Ψ(ti,xj))1≤j≤m, which is in R2m

due to the fact that Ψ(ti,xj) ∈ R2, but we could also consider any other measurement functions that
is enough smooth to use.

2.3 Formulation of the inverse problem
The idea is to find the parameter of interest θ for System (1), and ϑ for System (3), when given a set of
measurements. In that regard, we need to define a criterion that describes how well the coefficients fit
the system. Considering that errors come from the estimation of the initial state, from the accuracy of
the analytical model (epistemic uncertainty), and from the discrepancy between the real measurement
and the model predictions. The error when estimating the initial state could be a combination of the
other two errors. We aim to minimize those three errors.

The classical way to introduce errors in a model, is to add stochastic terms standing for the errors.

In our case, we add a stochastic term qt,x =
(
q
(1)
t,x, q

(2)
t,x

)⊤
following a centered Gaussian process

N (µq,Kqq) with

{
µq : (t,x) ∈ I × Ω 7→ E(qt,x) = (0, 0)

⊤
,

Kqq : (t, s,x,y) ∈ I2 × Ω2 7→ Cov(qt,x, qs,y) ∈ R2×2,

in the analytical term, where E denotes the expectancy and Cov the covariance matrix. Then, we add

ax =
(
a
(1)
x , a

(2)
x

)⊤
following a centred Gaussian process

N (µa,Kaa) with

{
µa : x ∈ Ω 7→ E(ax) = (0, 0)

⊤
,

Kaa : (x,y) ∈ Ω2 7→ Cov(ax,ay) ∈ R2×2,

in the initial condition and ϵ following a centered Gaussian law on R2m

N (µϵ,Σϵϵ) with

{
µϵ = E(ϵ) = 0R2m

Σϵϵ = V(ϵ) ∈ R2m×2m

in the measurement process. Where V denotes the variance of ϵ. More precisely, we consider that
we have an error ϵ, independent of the measurement time, associated with the observation di ∈ R2m

following the relation
H (Ψ(ti, ·)) = di + ϵ (6)

In that case, System (1) becomes
du−∇ · (D1∇u)dt+∇.(D1χu∇c)dt = g1(u, c,θ)dt+ q

(1)
t,xdt ,∀(t,x) ∈ I × Ω,

dc−∇ · (D2∇c)dt = g2(u, c,θ)dt+ q
(2)
t,xdt ,∀(t,x) ∈ I × Ω,

u(t = 0,x) = u0(x) + a
(1)
x , c(t = 0,x) = c0(x) + a

(2)
x ,∀x ∈ Ω,

D1∇u · n⃗−D1χu∇c · n⃗ = 0, D2∇c · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω,

(7)
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and identically System (3) becomes
dA−∇2Adt = µf1(A,B)dt+ q

(1)
t,xdt , ∀(t,x) ∈ I × Ω,

dB − d∇2Bdt = µf2(A,B)dt+ q
(2)
t,xdt , ∀(t,x) ∈ I × Ω,

A(t = 0,x) = A0(x) + a
(1)
x , B(t = 0,x) = B0(x) + a

(2)
x ,∀x ∈ Ω,

∇A · n⃗ = 0, ∇B · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω.

(8)

We can define the inverse of the previous covariance matrices that will be used later on. We denote
by K−1

qq ,K−1
aa and Σ−1

ϵϵ the inverse of the covariance matrix of Kqq, Kaa and Σϵϵ respectively, defined
by

∀(t1, t2) ∈ I2,∀(x1,x2) ∈ Ω2 :

∫
I

∫
Ω

K−1
qq (t1, s,x1,u)Kqq(s, t2,u,x2) du ds = δ(x1 − x2)δ(t1 − t2)I2,

(9)

∀(x1,x2) ∈ Ω2 :

∫
Ω

K−1
aa (x1,u)Kaa(u,x2) du = δ(x1 − x2)I2,

(10)

Σ−1
ϵϵ Σϵϵ = ΣϵϵΣ

−1
ϵϵ = I2m.

(11)

Under Gaussian assumptions, finding a maximum of the likelihood is equivalent to minimizing the
weighted quadratic errors associated. So we intend to minimize the following payoff function

J (Ψ,η) := e1(Ψ,η) + e2(Ψ,η) + e3(Ψ,η), (12)

where e1, e2 and e3 are defined in Equation (13), (16) and (17) respectively.
In Equation (12), Ψ is the state vector of a system i.e. Ψ = (Ψ1,Ψ2) = (u, c) for System (1) or

Ψ = (Ψ1,Ψ2) = (A,B) for System (3) and η is the unknown coefficients associated i.e. η = θ for
System (1) or η = ϑ for System (3). The quadratic error associated with the modelling uncertainty is
defined as

e1(Ψ,η) :=
1

2

∫∫
I

∫∫
Ω

E (Ψ,η)⊤(t,x)K−1
qq (t,x, s,y)E (Ψ,η)(s, y) dx dy dt ds . (13)

Operator E is the error of modelling, i.e., for System (7)

E (Ψ,η)(t,x) =

(
∂u
∂t −∇ · (D1∇u) +∇.(D1χu∇c)− g1(u, c,θ)

∂c
∂t −∇ · (D2∇c)− g2(u, c,θ)

)
, (14)

and for System (8)

E (Ψ,η)(t,x) =

(
∂A
∂t −∇

2A− µf1(A,B)
∂B
∂t − d∇2B − µf2(A,B)

)
. (15)

The quadratic error associated with the initial condition is

e2(Ψ,η) :=
1

2

∫∫
Ω

(Ψ0 −Φ0)
⊤(x)K−1

aa (x,y)(Ψ0 −Φ0)(y) dx dy . (16)

The quantity Ψ0 is Ψ(t0, ·) while Φ0 is the guessed initial condition, i.e., Φ0 = (u0, c0) for System (1)
and Φ0 = (A0, B0) for System (3). Finally,

e3(Ψ,η) :=
1

2

Nmea∑
i=1

(di −H (Ψ(ti, ·)))⊤Σ−1
ϵϵ (di −H (Ψ(ti, ·))), (17)

the quadratic error associated with the difference between measurements and predictions, and is known
to be the squared Mahalanobis distance.
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We can rewrite the sum from Equation (17) in a vector form with d =
(
d1 d2 · · · dNmea

)⊤,
H (Ψ) =

(
H (Ψ(t1, ·)) H (Ψ(t2, ·)) · · · H (Ψ(tNmea

, ·))
)⊤ and finally [K−1

ϵϵ ] is a block matrix in
MNmea×2m(R) composed of Nmea times the matrix K−1

ϵϵ on the diagonal and zeros otherwise, i.e.,

[K−1
ϵϵ ] =


K−1

ϵϵ 02m×2m · · · 02m×2m

02m×2m K−1
ϵϵ

. . .
...

...
. . . . . . 02m×2m

02m×2m . . . 02m×2m K−1
ϵϵ

 .

Lastly, we define the operators ◦ :=
∫
I

∫
Ω
·dx dt and ⋆ :=

∫
Ω
·dx to simplify notations. This enables

us to rewrite the payoff function J from Equation (12) as follows

J (Ψ,η) =
1

2
E ⊤ ◦K−1

qq ◦ E︸ ︷︷ ︸
e1(Ψ,η)

+
1

2
(Ψ0 −Φ0)

⊤ ⋆ K−1
aa ⋆ (Ψ0 −Φ0)︸ ︷︷ ︸

e2(Ψ,η)

+
1

2
(d−H (Ψ))⊤[K−1

ϵϵ ](d−H (Ψ))︸ ︷︷ ︸
e3(Ψ,η)

.

(18)
We conclude this section by saying that the purpose of our work is to find (Ψ,η) for each system that
minimizes the function J from Equation (18).

3 Resolution of the inverse problem
Some methods already exist on minimizing the misfit function J at (18). for instance, we can cite the
representer method from [Eknes and Evensen, 1997] or the use of genetic algorithmics in [Goldberg,
1989]. While those methods may be used for this problem, they are known to be extremely time-
consuming and usually rely on the assumption of no model and initial estimation errors, i.e., which
means that e1 = e2 = 0. The method that we will develop in this work do not rely on such assumptions,
but is inspired from [Evensen, 2009], that solves similar systems but for a uniform scalar state model.

3.1 Weak solution of the inverse Problem
Before defining the weak formulation of System (7) and (8), we need to handle the new stochastic
terms. In that regard, we define the adjoint variable associated with the state variable Ψ that will be
used later on.

Definition 1 (Adjoint variable λ). We define the variable λ = (λ1, λ2)
⊤ as

λ : (t,x) ∈ I × Ω 7→ K−1
qq (t, ·,x, ·) ◦ E (Ψ,η).

Let us remark that λ1 is the adjoint variable of Ψ1 (u or A) and λ2 is the adjoint variable of Ψ2 (c
or B). We now show one of the uses of the adjoint variable λ through this lemma.

Lemma 1 (Link between λ and Ψ). We have for all t ∈ I and x ∈ Ω

Kqq(t, ·,x, ·) ◦ λ := ((Kqqλ)1, (Kqqλ)2)
⊤

=

∫
I

∫
Ω

Kqq(t, s,x,y)λ(s,y) dy ds,

= E (Ψ,η)(t,x).

Proof. We just need to replace λ by its expression

Kqq(t, ·,x, ·) ◦ λ =

∫
I

∫
Ω

Kqq(t, s,x,y)λ(s,y) dy ds,

=

∫
I

∫
Ω

Kqq(t, s,x,y)K
−1
qq (s, ·,y, ·) ◦ E (Ψ,η) dy ds,

=

∫
I

∫
Ω

∫
I

∫
Ω

Kqq(t, s,x,y)K
−1
qq (s, r,y,u)E (Ψ,η)(r,u) du dr dy ds,
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and then perform the integration over u and s to use the relation between the covariance matrix Kqq

and its inverse K−1
qq given in Equation (10),

Kqq(t, ·,x, ·) ◦ λ =

∫
I

∫
Ω

δ(t− r)δ(x− y)I2E (Ψ,η)(r,y) dy dr,

= E (Ψ,η)(t,x).

Consequently, we can rewrite System (7) as follows
∂u
∂t −∇ · (D1∇u) +∇.(D1χu∇c) = g1(u, c,θ) + (Kqqλ)1 ,∀(t,x) ∈ I × Ω
∂c
∂t −∇ · (D2∇c) = g2(u, c,θ) + (Kqqλ)2 ,∀(t,x) ∈ I × Ω

u(t = 0,x) = u0(x) + a
(1)
x , c(t = 0,x) = c0(x) + a

(2)
x ,∀x ∈ Ω

D1∇u · n⃗−D1χu∇c · n⃗ = 0, D2∇c · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω,

(19)

and System (8) as follows
∂A
∂t −∇

2A = µf1(A,B) + (Kqqλ)1 ,∀(t,x) ∈ I × Ω
∂B
∂t − d∇2B = µf2(A,B) + (Kqqλ)2 ,∀(t,x) ∈ I × Ω

A(t = 0,x) = A0(x) + a
(1)
x , B(t = 0,x) = B0(x) + a

(2)
x ,∀x ∈ Ω

∇A · n⃗ = 0, ∇B · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω.

(20)

With the notation (Kqqλ)1 and (Kqqλ)2 defined in Lemma 1.
Observe that System (19) and (20) do not need the Gaussian process qt,x anymore. At this step,

we still have the Gaussian process ax explicitly in the initial conditions, yet, we will show later that
it is not needed. We can now define the variational formulation of System (19) and (20) given the
adjoint state λ and Lemma 1.

Definition 2 (Weak solution of System (19)). Given λ such that ((Kqqλ)1, (Kqqλ)2)
⊤ ∈ (L2(Ω))2 and

the trajectories a
(1)
x , a

(2)
x ∈ L2(Ω), the weak solution associated with System (19) is, for almost every

t ∈ I, u(t, ·) ∈ H1(Ω) ∩ L∞(Ω) and c(t, ·) ∈ H1(Ω) with g1(u, c,θ) and g2(u, c,θ) ∈ L2(Ω) according
to the following variational form

d

dt

∫
Ω

uv dx+

∫
Ω

D1∇u · ∇v dx−
∫
Ω

χD1u∇c · ∇v dx =

∫
Ω

g1(u, c,θ)v dx+

∫
Ω

(Kqqλ)1v dx ,∀v ∈ H1(Ω)

d

dt

∫
Ω

cw dx+

∫
Ω

D2∇c · ∇w dx =

∫
Ω

g2(u, c,θ)w dx+

∫
Ω

(Kqqλ)2w dx ,∀w ∈ H1(Ω)

u(t = 0) = u0 + a
(1)
x ,∀x ∈ Ω

c(t = 0) = c0 + a
(2)
x ,∀x ∈ Ω

(21)

The existence of weak solutions and investigating the optimal setting of the spaces are out of the
scope of this paper. Mainly, we have chosen those spaces to ensure that every term in Equation (21)
has a meaning, and we refer to [Osaki et al., 2002, Bendahmane et al., 2007, Blanchet et al., 2006] for
the existence of weak solutions associated with Keller Segel model.

Definition 3 (Weak solution of System (20)). Given λ such that ((Kqqλ)1, (Kqqλ)2)
⊤ ∈ (L2(Ω))2 and

the trajectories a
(1)
x , a

(2)
x ∈ L2(Ω), the weak solution associated with System (20) is, for almost every

t ∈ I, A(t, ·) ∈ H1(Ω) and B(t, ·) ∈ H1(Ω) with f1(A,B), f2(A,B) ∈ L2(Ω) according to the following

7



variational form

d

dt

∫
Ω

AV dx+

∫
Ω

∇A · ∇V dx =

∫
Ω

µf1(A,B)V dx+

∫
Ω

(Kqqλ)1V dx ,∀V ∈ H1(Ω)

d

dt

∫
Ω

BW dx+

∫
Ω

d∇B · ∇W dx =

∫
Ω

µf2(A,B)W dx+

∫
Ω

(Kqqλ)2W dx ,∀W ∈ H1(Ω)

A(t = 0) = A0 + a
(1)
x ,∀x ∈ Ω

B(t = 0) = B0 + a
(2)
x ,∀x ∈ Ω

(22)

3.2 Minimization of J

Let us recall that the main objective is to minimize the function (Ψ,η) 7→J (Ψ,η) given by

J (Ψ,η) =
1

2
E ⊤ ◦K−1

qq ◦ E +
1

2
(Ψ0 −Φ0)

⊤ ⋆ K−1
aa ⋆ (Ψ0 −Φ0) +

1

2
(d−H (Ψ))⊤[Σ−1

ϵϵ ](d−H (Ψ))

on the space E := (H1(Ω))2 × (R+)#η. This optimization problem has some good properties because
J is a sum of quadratic functions. We know that the function J has a global minima on E, but
it may not be unique due to the nonlinearity of the model, and also J can possess local minima. A
minimum (Ψ∗,η∗) of J on E follows

dJ (Ψ∗,η∗) · (δΨ, δη) = 0, for all directions (δΨ, δη) in E, (23)

where δΨ and δη are the infinitesimal variations of Ψ and η, respectively. Now, we need to calculate
the differential of J . We recall the chain rule for differential functions: the differential of a function
h with variables Ψ and η for directions δΨ and δη is given by

dh(Ψ,η) · (δΨ, δη) =
∂h

∂Ψ
(Ψ,η) · δΨ+

∂h

∂η
(Ψ,η) · δη. (24)

Using the chain rule, the differential of each reaction function from Equation (2) is given by
dg1(u, c,θ) · (δu, δc, δθ) =

[
−2ρu+ ρ− δ 0

] [δu
δc

]
+

[
u(1− u) −u 0 0 0

]
δθ,

dg2(u, c,θ) · (δu, δc, δθ) =
[
α− γc −β − γu

] [δu
δc

]
+

[
0 0 u −c −uc

]
δθ,

(25)

for System (7), and the ones from Equation (4) are given by
df1(A,B) · (δA, δB) = −

[
(1 + ∂h

∂A (A,B)) ∂h
∂B (A,B)

] [δA
δB

]
,

df2(A,B) · (δA, δB) = −
[
∂h
∂A (A,B) (k3 +

∂h
∂B (A,B))

] [δA
δB

]
,

(26)

for System (8).
The operator E , defined in Equation (14), is quadratic for the Keller Segel system. Thus, the

differential of E reads to

dE (u, c,θ) · (δu, δc, δθ) =
(

∂δu
∂t −∇ · (D1∇δu) +∇ · (D1χδu∇c) +∇ · (D1χu∇δc)− dg1(u, c,θ) · (δu, δc, δθ)

∂δc
∂t −∇ · (D2∇δc)− dg2(u, c,θ) · (δu, δc, δθ)

)
,

(27)

for System (7). For the pattern formation system, due to the linearity of the diffusion terms, one gets

dE (A,B,ϑ) · (δA, δB, δϑ) =

(
∂δA
∂t −∇

2δA− µdf1(A,B) · (δA, δB)− δµf1(A,B)
∂δB
∂t − d∇2δB − δd∇2B − µdf2(A,B) · (δA, δB)− δµf2(A,B)

)
. (28)
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If the measurement is direct, i.e., the function H is H (Ψ(t, ·)) = (Ψ(t,xj))1≤j≤m, then the
differential of H reads

dH (Ψ) · (δΨ(t, ·)) = (δΨ(t,xj))1≤j≤m,

=

∫
I

∫
Ω

δΨ(s,y)× (δ(t− s)δ(xj − y)1≤j≤m)︸ ︷︷ ︸
:=H (δt)

ds dy,

where × denotes the usual Cartesian product. This enables us to rewrite the differential of H in an
integral form with the notation

δΨ ◦H (δt) :=

∫
I

∫
Ω

δΨ(s, u)×H (δt)(s, u) ds du . (29)

Equation (29) is crucial for our methodology because to solve the inverse problem, we rely on the
reformulation of the differential of J in the integral form.

Proposition 1 (Differential of J ). The differential of the misfit function J is

dJ (Ψ,η) · (δΨ, δη) = dE (Ψ,η)⊤ · (δΨ, δη) ◦ λ
+ δΨ⊤(t = 0) ⋆ K−1

aa ⋆ (Ψ0 −Φ0)− δΨ⊤ ◦H (δt)[Σ
−1
ϵϵ ](d−H (Ψ)), (30)

where λ is associated to Ψ and η as stated in Definition 1.

Proof. From Equation (18), the differential of J is the sum of the differential of e1, e2 and e3,

dJ (Ψ,η) · (δΨ, δη) = de1(Ψ,η) · (δΨ, δη) + de2(Ψ,η) · (δΨ, δη) + de3(Ψ,η) · (δΨ, δη),

where the functions e1, e2 and e3 are quadratic. Therefore the differential of the sum of e1(Ψ,η),
e2(Ψ,η) and e3(Ψ,η) is given by

dE (Ψ,η)⊤ · (δΨ, δη) ◦K−1
qq ◦ E (Ψ,η)︸ ︷︷ ︸

de1(Ψ,η)·(δΨ,δη)

+ δΨ⊤
0 ⋆ K−1

aa ⋆ (Ψ0 −Φ0)︸ ︷︷ ︸
de2(Ψ,η)·(δΨ,δη)

− dH (Ψ)⊤ · (δΨ)[Σ−1
ϵϵ ](d−H (Ψ))︸ ︷︷ ︸

de3(Ψ,η)·(δΨ,δη)

.

With λ associated with Ψ and η at Definition 1, the differential of e1 can be rewritten using Lemma
1 as

de1(Ψ,η) · (δΨ, δη) = dE (Ψ,η)⊤ · (δΨ, δη) ◦ λ.

Finally, we use the notation introduced in Equation (29) in the differential of e3 to conclude the proof
of the proposition.

Looking λ as the adjoint variable, we observe that it appears explicitly when finding the minimum
of J on E. The main difficulty is that the writing of λ depends only on the state vector Ψ. However,
denoting (Ψ∗,η∗) be a minimum of J , we will explore another way to define λ. The adjoint variable
λ∗ corresponding to (Ψ∗,η∗), according to Definition 1, comes as the solution of a system of PDEs.
The idea is to detail the adjoint system to get an easier expression of λ∗.

Definition 4 (Weak solution of λ associated to System (19)). Given ∇c ∈ (L2(Ω))d, u ∈ L∞(Ω),
∂
∂ug1(u, c,θ) ∈ L∞(Ω), ∂

∂cg1(u, c,θ) ∈ L∞(Ω), ∂
∂ug2(u, c,θ) ∈ L∞(Ω), ∂

∂cg2(u, c,θ) ∈ L∞(Ω) and
C (u, c) = (C (u, c)1,C (u, c)2)

⊤ := (1, 1)
⊤ ◦H (δ)[Σ−1

ϵϵ ](d −H (u, c)) ∈ (L2(Ω))2. We define the fol-
lowing variational problem: for almost every t ∈ I, find λ(t, ·) = (λ1(t, ·), λ2(t, ·))⊤ ∈ (H1(Ω))2 such
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that 

d

dt

∫
Ω

λ1v dx+

∫
Ω

D1∇λ1 · ∇v dx−
∫
Ω

D1χ∇c · ∇λ1v dx

= −
∫
Ω

∂g1
∂u

λ1v dx−
∫
Ω

∂g1
∂c

λ2v dx−
∫
Ω

C (u, c)1v dx

,∀v ∈ H1(Ω) ∩ L∞(Ω)

d

dt

∫
Ω

λ2w dx+

∫
Ω

D2∇λ2 · ∇w dx−
∫
Ω

D1χu∇λ1 · ∇w dx

= −
∫
Ω

∂g2
∂u

λ1w dx−
∫
Ω

∂g2
∂c

λ2w dx−
∫
Ω

C (u, c)2w dx

,∀w ∈ H1(Ω)

λ1(t = tf ,x) = 0, λ2(t = tf ,x) = 0 ,∀x ∈ Ω.

Similarly in Definition 2, the function spaces used in Definition 4 are not optimal. The setting is so
that every term in the above weak form has a sense. If λ(t, ·) = (λ1(t, ·), λ2(t, ·))⊤ is a weak solution
associated to System (19), according to Definition 4, then we have

∂λ1

∂t −∇ · (D1∇λ1)−D1χ∇c · ∇λ1 = −∂g1
∂u λ1 − ∂g1

∂c λ2 − C (u, c)1 , a.e.(t,x) ∈ I × Ω
∂λ2

∂t −∇ · (D2∇λ2) +∇ · (D1χu∇λ1) = −∂g2
∂u λ1 − ∂g2

∂c λ2 − C (u, c)2 , a.e.(t,x) ∈ I × Ω

λ1(t = tf ,x) = λ2(t = tf ,x) = 0 , a.e.(x) ∈ Ω

(D1∇λ1 −D1χλ1∇c) · n⃗ = (D2∇λ2 −D1χu∇λ1) · n⃗ = 0 , a.e.(t,x) ∈ I × ∂Ω.

(31)

Definition 5 (Weak solution of λ associated to System (20)). Given ∂
∂Af1(A,B) ∈ L∞(Ω), ∂

∂B f1(A,B) ∈
L∞(Ω), ∂

∂Af2(A,B) ∈ L∞(Ω), ∂
∂B f2(A,B) ∈ L∞(Ω) and C (A,B) = (C (A,B)1,C (A,B)2)

⊤
=

(1, 1)
⊤ ◦ H (δ)[Σ−1

ϵϵ ](d − H (A,B)) ∈ (L2(Ω))2. We define the following variational problem: for
almost every t ∈ I, find λ(t, ·) = (λ1(t, ·), λ2(t, ·))⊤ ∈ (H1(Ω))2 such that



d

dt

∫
Ω

λ1V dx+

∫
Ω

∇λ1 · ∇V dx

= −
∫
Ω

µ
∂f1
∂A

λ1V dx−
∫
Ω

µ
∂f1
∂B

λ2V dx−
∫
Ω

C (A,B)1V dx

,∀V ∈ H1(Ω)

d

dt

∫
Ω

λ2W dx+

∫
Ω

d∇λ2 · ∇W dx

= −
∫
Ω

µ
∂f2
∂A

λ1W dx−
∫
Ω

µ
∂f2
∂B

λ2W dx−
∫
Ω

C (A,B)2W dx

,∀W ∈ H1(Ω)

λ1(t = tf ,x) = 0, λ2(t = tf ,x) = 0 ,∀x ∈ Ω.

If λ(t, ·) = (λ1(t, ·), λ2(t, ·))⊤ is a weak solution associated to System (20), according to Definition
5, then we have

∂λ1

∂t −∇
2λ1 = −µ∂f1

∂A λ1 − µ∂f1
∂B λ2 − C (A,B)1 , a.e.(t,x) ∈ I × Ω

∂λ2

∂t − d∇2λ2 = −µ∂f2
∂A λ1 − µ∂f2

∂B λ2 − C (A,B)2 , a.e.(t,x) ∈ I × Ω

λ1(t = tf ,x) = λ2(t = tf ,x) = 0 , a.e.(x) ∈ Ω

∇λ1 · n⃗ = ∇λ2 · n⃗ = 0 , a.e.(t,x) ∈ I × ∂Ω.

(32)

Proposition 2 (Solution of the inverse problem). Let (Ψ∗,η∗) be a minimum of J and associate
with λ∗ that is given in Definition 1, a solution of System (19) (resp. System (20)) is a weak solution
(Ψ∗,η∗) as defined by Definition 4 (resp. Definition 5), and the triplet (η∗,Ψ∗,λ∗) cancels out the
vector function G (η∗,Ψ∗,λ∗) defined in Equation (KS 3)(resp. F (η∗,Ψ∗,λ∗) defined in Equation
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(PF 3)). This can be summarized to (u∗, c∗,λ∗,θ∗) being a solution of this coupled system
∂u
∂t −∇ · (D1∇u) +∇.(D1χu∇c) = g1(u, c,θ) + (Kqqλ)1 ,∀(t,x) ∈ I × Ω,
∂c
∂t −∇ · (D2∇c) = g2(u, c,θ) + (Kqqλ)2 ,∀(t,x) ∈ I × Ω,

u(t = 0,x) = u0(x) + (Kaaλ
0)1, c(t = 0,x) = c0(x) + (Kaaλ

0)2 ,∀x ∈ Ω,

D1∇u · n⃗−D1χu∇c · n⃗ = 0, D2∇c · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω,

(KS 1)


∂λ1

∂t −∇ · (D1∇λ1)−D1χ∇c · ∇λ1 = −∂g1
∂u λ1 − ∂g1

∂c λ2 − C (u, c)1 , a.e.(t,x) ∈ I × Ω,
∂λ2

∂t −∇ · (D2∇λ2) +∇ · (D1χu∇λ1) = −∂g2
∂u λ1 − ∂g2

∂c λ2 − C (u, c)2 , a.e.(t,x) ∈ I × Ω,

λ(t = tf ,x) = 0 , a.e.x ∈ Ω,

(D1∇λ1 −D1χλ1∇c) · n⃗ = (D2∇λ2 −D1χu∇λ1) · n⃗ = 0 , a.e.(t,x) ∈ I × ∂Ω,

(KS 2)

G (θ, u, c,λ) =

∫
I

∫
Ω

[
∂g1
∂ρ

∂g1
∂δ

∂g1
∂α

∂g1
∂β

∂g1
∂γ

∂g2
∂ρ

∂g2
∂δ

∂g2
∂α

∂g2
∂β

∂g2
∂γ

]⊤

·
[
λ1

λ2

]
dt dx = 0R5 , (KS 3)

and to (A∗, B∗,λ∗,ϑ∗) being a solution of this coupled system
∂A
∂t −∇

2A = µf1(A,B) + (Kqqλ)1 ,∀(t,x) ∈ I × Ω,
∂B
∂t − d∇2B = µf2(A,B) + (Kqqλ)2 ,∀(t,x) ∈ I × Ω,

A(t = 0,x) = A0(x) + (Kaaλ
0)1, B(t = 0,x) = B0(x) + (Kaaλ

0)2 ,∀x ∈ Ω,

∇A · n⃗ = 0,∇B · n⃗ = 0 ,∀(t,x) ∈ I × ∂Ω,

(PF 1)


∂λ1

∂t −∇
2λ1 = −µ∂f1

∂A λ1 − µ∂f1
∂B λ2 − C (A,B)1 , a.e.(t,x) ∈ I × Ω,

∂λ2

∂t − d∇2λ2 = −µ∂f2
∂A λ1 − µ∂f2

∂B λ2 − C (A,B)2 , a.e.(t,x) ∈ I × Ω,

λ1(t = tf ,x) = λ2(t = tf ,x) = 0 , a.e.(x) ∈ Ω,

∇λ1 · n⃗ = ∇λ2 · n⃗ = 0 , a.e.(t,x) ∈ I × ∂Ω,

(PF 2)

F (ϑ, A,B,λ) =

∫
I

∫
Ω

[
0 f1(A,B)
∇2B f2(A,B)

]⊤
·
[
λ1

λ2

]
dt dx = 0R2 , (PF 3)

where
(
(Kaaλ

0)1, (Kaaλ
0)2

)⊤
:= Kaa(x, ·) ⋆ λ(t0, ·).

Proof. We will expose the proof of the proposition for the Keller Segel system, the same reasoning
leads to the result for the pattern formation system, will be omitted for sake of simplicity.

The result comes from writing the condition in Equation (23) with the differential of the misfit
function J stated in Equation (30), which gives

dE ⊤(Ψ∗,η∗) · (δΨ, δη) ◦ λ∗︸ ︷︷ ︸
M1

+ δΨ∗⊤
0 ⋆ K−1

aa ⋆ (Ψ∗
0 −Φ0)︸ ︷︷ ︸

M2

− δΨ∗⊤ ◦H (δ)Σ−1
ϵϵ (d−H (Ψ∗))︸ ︷︷ ︸

M3

= 0,∀(δΨ,η) ∈ E.

We extend the integrals over space and time and drop the asterisk notation for readability, to get

M11 =

∫
I

∫
Ω

(
∂δu

∂t
−∇ · (D1∇δu) +∇ · (D1χδu∇c)

+∇ · (D1χu∇δc)− dg1(u, c,θ) · (δu, δc, δθ))λ1 dx dt,

M12 =

∫
I

∫
Ω

(
∂δc

∂t
−∇ · (D2∇δc)− dg2(u, c,θ) · (δu, δc, δθ)

)
λ2 dx dt,

when developing M1 = (M11,M12)
⊤. Then, we get

M2 =

∫
Ω

δΨ⊤
0

(
K−1

aa ⋆ (Ψ0 −Φ0)
)
dx,
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and
M3 =

∫
I

∫
Ω

δΨ(t,x)×H (δt)[Σ
−1
ϵϵ ](d−H (Ψ)) dt dx .

The main idea now is to factorize each term by δΨ or δη and remove every differential operators
on δΨ and δη. This is done by performing integration by parts, in time and space when needed, and
using the weak formulations of the state variable and the adjoint variable equations to cancel out some
terms. This leads to independent conditions to come up with the system governing λ. We have

M11 =

∫
I

∫
Ω

∂δu

∂t
λ1 dx dt︸ ︷︷ ︸

M1
11

−
∫
I

∫
Ω

∇ · (D1∇δu)λ1 dx dt︸ ︷︷ ︸
M2

11

+

∫
I

∫
Ω

∇ · (D1χδu∇c)λ1 dx dt︸ ︷︷ ︸
M3

11

+

∫
I

∫
Ω

∇ · (D1χu∇δc)λ1 dx dt︸ ︷︷ ︸
M4

11

−
∫
I

∫
Ω

[
−2ρu+ ρ− δ 0

] [δu
δc

]
λ1 dx dt︸ ︷︷ ︸

M5
11

−
∫
I

∫
Ω

[
u(1− u) −u 0 0 0

]
δθλ1 dx dt︸ ︷︷ ︸

M6
11

.

The terms M 5
11 and M 6

11 are in the integral form that we expect, we need to modify the other ones
due to the presence of derivatives on δu or δc.

We perform an integration by parts in time to handle M 1
11 which gives

M 1
11 =

∫
Ω

δu(tf )λ1(tf ) dx−
∫
Ω

δu(t0)λ1(t0) dx−
∫
I

∫
Ω

∂λ1

∂t
δudx dt .

Finally, we integrate two times by parts in space the terms M 2
11, M 3

11 and M 4
11 to write

M 2
11 =

∫
I

∫
Ω

∇ · (D1∇δuλ1) dx dt−
∫
I

∫
Ω

D1∇δu · ∇λ1 dx dt,

=

∫
I

∫
∂Ω

D1∇δu · n⃗λ1 dx dt+

∫
I

∫
Ω

∇ · (D1∇λ1)δudx dt−
∫
I

∫
∂Ω

D1∇λ1 · n⃗δudx dt,

M 3
11 =

∫
I

∫
Ω

∇ · (D1χδu∇cλ1) dx dt−
∫
I

∫
Ω

D1χδu∇c · ∇λ1 dx dt,

=

∫
I

∫
∂Ω

D1χ∇c · n⃗λ1δudx dt−
∫
I

∫
Ω

D1χδu∇c · ∇λ1 dx dt,

M 4
11 =

∫
I

∫
Ω

∇ · (D1χu∇δcλ1) dx dt−
∫
I

∫
Ω

D1χu∇δc · ∇λ1 dx dt,

=

∫
I

∫
∂Ω

D1χuλ1∇δc · n⃗dx dt+

∫
I

∫
Ω

∇ · (D1χu∇λ1)δcdx dt−
∫
I

∫
∂Ω

D1χu∇λ1 · n⃗δcdx dt .

Thanks to the weak formulation of the Keller Segel system from Equation (21), we have∫
I

∫
∂Ω

D1∇δu · n⃗λ1 dx dt−
∫
I

∫
∂Ω

D1χuλ1∇δc · n⃗dx dt = 0, (33)

which implies that each term in M11 is well factorized. With similar reasoning, we can show that

M12 =

∫
Ω

δc(tf )λ2(tf ) dx−
∫
Ω

δc(t0)λ2(t0) dx−
∫
I

∫
Ω

∂λ2

∂t
δcdx dt

−
∫
I

∫
Ω

∇ · (D2∇λ2)δcdx dt+

∫
I

∫
∂Ω

D2∇λ2 · n⃗δcdx dt

−
∫
I

∫
Ω

[
α− γc −β − γu

] [δu
δc

]
λ2 dx dt−

∫
I

∫
Ω

[
0 0 u −c −uc

]
δθλ2 dx dt .
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Finally, we can gather every term previously given with their specific factorization. For both
equations on λ1 and λ2, we have the factorization on the space solution at time tf (34) and the space
solution at time t0 (35)∫

Ω

δΨ(tf )
⊤λ∗(tf ) = 0, ∀δΨ(tf ), (34)∫

Ω

δΨ(t0)
⊤(K−1

aa ⋆ (Ψ⋆
0 −Φ0)− λ∗(t0)) = 0, ∀δΨ(t0). (35)

To complete, we have the boundary conditions over time,∫
∂Ω

∫
I

δu ((D1∇λ1 −D1χλ1∇c) · n⃗) = 0,∀δu on I × ∂Ω, (36)∫
∂Ω

∫
I

δc ((D2∇λ2 −D1χu∇λ1) · n⃗) = 0,∀δc on I × ∂Ω, (37)

the partial differential system over time and space followed by λ1 and λ2∫
I

∫
Ω

δu

(
∂λ1

∂t
−∇ · (D1∇λ1)−D1χ∇c · ∇λ1 −

∂g1
∂u

λ1 −
∂g1
∂c

λ2 − C (u, c)1

)
= 0,∀δu on I × Ω,

(38)∫
I

∫
Ω

δc

(
∂λ2

∂t
−∇ · (D2∇λ2) +∇ · (D1χu∇λ1)−

∂g2
∂u

λ1 −
∂g2
∂c

λ2 − C (u, c)2

)
= 0,∀δc on I × Ω.

(39)

Moreover, we have the factorization by δθ∫
I

∫
Ω

(λ1
∂g1
∂θ

+ λ2
∂g2
∂θ

)⊤ dx dt δθ = 0,∀δθ. (40)

Since the equations (34), (36), (37), (38) and (39) hold for all δu and δc on the appropriate spaces,
we conclude that λ1 and λ2 are a solution of System (KS 2).

Equation (35) leads to
K−1

aa ⋆ (Ψ0 −Φ0)− λ(t0) = 0, on Ω,

which, by multiplying by Kaa⋆, is equivalent to

Ψ0 = Φ0 +Kaa ⋆ λ(t0), on Ω.

This implies that Ψ is a solution of (KS 1).
Lastly, Equation (40) leads to∫

I

∫
Ω

(λ1
∂g1
∂θ

+ λ2
∂g2
∂θ

)⊤ dx dt = 0,

that is, (Ψ,θ,λ) follows Equation (KS 3).

We conclude by stating that the solution of our inverse problem is also the solution of the System
(KS 1)-(KS 3), for the Keller-Segel problem, and (PF 1)-(PF 3) for the Pattern Formation system.
What remain, is to show the numerical solvability of those systems. In the next section, we address
this issue.

4 Numerical resolution of the inverse problem

4.1 Numerical scheme
In this section, we address the numerical approximations of System (KS 1)-(KS 3) and System (PF 1)-
(PF 3), that are nonlinear with explicit and implicit forms of the state variables and of the input
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parameters in each equation. Then applying classical Newton methods to solve numerically System
(KS 1)-(KS 3) or System (PF 1)-(PF 3) is unlikely to achieve convergence due to the complexity and
the dimensionality of the discrete associated system.

Here, we propose an efficient strategy for the numerical approximation of the systems. The main
idea is to decouple the unknown variables and use an iterative method to come up with a numerical
solution. Specifically, we start by fixing a value of η, then we get the value of Ψ(η) and λ(η), associated
with η, using the iterative method described in Algorithm 4.2. Once we get (Ψ(η),λ(η),η), we give a
better estimation of η by using a projected Newton-Raphson method with the function G for System
(KS 1)-(KS 3) or the function F for System (PF 1)-(PF 3). With this new estimation of η, we iterate
the previous process until η is well calibrated as described in Algorithm 4.1.

Algorithm 4.1: Projected Newton-Raphson method to calibrate the coefficients in η.
Data: lb, ub, Cineq, bineq, the function F (resp.G ), 0 < h≪ 1
input : η0 ← An initial guess of η
output: The final guess of η, minimizing J and solving (KS 3) or (PF 3)

Check that η0 ∈ K = {x ∈ R#η : lb ≤ x ≤ ub and Cineqx ≤ bineq};
m← 0;
while (ηk)k≥0 has not converged do

/* Approximating the Jacobian matrix of F around ηk */
for i, j ← 1 to #η do

˜Jac[i, j]← e⊤i (
F(ηk+h×ej)−F(ηk)

h ); /* ei = [δij ]1≤j≤#η */
/* F (η) is calculated using Algorithm 4.2 to get Ψ(η) and λ(η) */

end
/* Projected Newton-Raphson method */
η̃k+1 solves ˜Jac× (η̃k+1 − ηk) = −F (ηk); /* Newton-Raphson method */
ηk+1 ← pK(η̃k+1) ; /* projection of η̃k+1 on K */
k ← k + 1;

end
η ← ηk;

Algorithm 4.2: Iterative method to get Ψ and λ associated with a value of η.
input : η ← A set of coefficients
output: Ψ,λ← Numerical approximation of Ψ and λ associated with η

/* Initialization */
Ψ0 solves System (1) or (3);
m← 0; /* m is the number of iteration of the process */
/* We decouple Ψ and λ from System (KS 1)-(KS 3) or (PF 1)-(PF 3) */
while (Ψm)m≥0 and (λm)m≥0 has not converged do

λm solves System (KS 2) or (PF 2) with Ψ = Ψm; /* see Algorithm A */
Ψm+1 solves System (KS 1) or (PF 1) with λ = λm; /* see Algorithm B */
m← m+ 1;

end
(Ψ,λ)← (Ψm,λm);

In Algorithm 4.2, iterations of Ψm and λm are performed using a Finite Difference as detailed
in Appendix A and B in Algorithm (A.1), (A.2), (B.1), and (B.2). Convergence of (Ψ(m),λ(m))m≥0,
while being not provided in this work, is observed in practise.

To help the search of η, it is usual to assume some prior-knowledge on the feasible values of it.
Then we suppose that there is a lower and upper bound value for each coefficient, i.e., there exists
lb > 0 ∈ R#η and ub > 0 ∈ R#η such that lb ≤ η ≤ ub and a positive number of Nc linear inequality
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constraints, i.e., there exists Cineq ∈ RNc×#η and bineq ∈ RNc such that Cineq × η ≤ bineq.
Then, we can define the constraint space as follows

K = {η ∈ R5 : lb ≤ η ≤ ub and Cineqη ≤ bineq},

and its associated orthogonal projector is denoted by pK .

4.2 Example of numerical resolutions
In this section, we show one example of numerical results for the Keller-Segel System and the Pattern
Formation System. The purpose is to showcase how the numerical resolution performs in term of
accuracy and convergence of the calibrated parameters. Although there are a lot of hyperparameters
including in the continuous and discrete settings, they will be tuned in this section. Their study and
impact analysis will be deferred until Section 4.3.

4.2.1 Keller-Segel problem

Because there is an increase of the tumour cells and the O2 concentration over time for the Keller-Segel

system, we deal with ρ > δ and α > β, that is, Cineq =

[
−1 1 0 0 0
0 0 −1 1 0

]
and bineq =

[
−1e− 8
−1e− 8

]
.

For our test, we choose lb = [0.07, 0.06, 0.07, 0.009, 0.05] and ub = [0.6, 0.5, 0.4, 0.06, 0.2] to bound
the search of θ, where the vector of the true parameters is θex = [0.2; 0.1; 0.1; 0.03; 0.08].

Our numerical simulations are performed on a uniform mesh with N = 100 points on the unit
interval [0, 1], and for time variables varying from t0 = 0 to tf = 7.1, with an uniform time-step
∆t = 0.01. We consider measurement at each space point (m = N) and every hundred time steps
which gives Nmea = 8. The initial conditions for u and c are{

u0(x) = exp
(
1− 1

1−y(x)2

)
× 1[0.5,0.7](x), y(x) = x−0.6

0.1 ,

c0(x) = 0.5× u0(x).
(41)

We deal with the following values for the diffusion coefficients D1 = 5 · 10−5, D2 = 1 · 10−3 and for the
chemotaxis coefficient χ = 1 · 101. The covariance matrices are given by

Σϵϵ = σ2
ϵ × INmea ,

Kaa(x, y) = σ2
a × δ(x− y)× I2,

Kqq(t, x, s, y) = σ2
q ×min(t, s)× δ(x− y)× I2,

(42)

where the standard deviation errors σϵ, σa and σq are given by σ2
ϵ = (10−

1
2 )2, σ2

a = 10−2 and (σq)
2 =

(10−2)2. In practise, since we are more likely to make an error in the power of 10, we numerically
calibrate log10(θ) rather than θ itself.

We start by performing simulation of the forward problem with an initial guess θ0 ≈ [0.2864, 0.0647, 0.3075, 0.0529, 0.1281]
that is given by the uniform law on the constraint space K. In Figure 1, we can see the values of
Ψ1 = u and Ψ2 = c associated with that first guess. Those can be compared with their exact values
obtained with θexact, and the values of λ1 and λ2 that implicitly highlights the error between Ψ and
Ψexact. We observe that θ0 is not the right value for the inverse problem. Indeed, we can visually see
difference of shape between u and uexact, and more clearly between c and cexact. This is also reported
in the value of λ1 and λ2 through the maximum amplitude of λ, which is here, around 0.1.

The last guess given by Algorithm 4.1 is displayed in Figure 2. Here, there is no visual difference
between (u, c) and their exact values, which suggests that the value of θ is correct. This is strengthened
by the estimated magnitude of λ being low, around 10−8.

In our example, Algorithm 4.1 has converged after 36 iterations. Those iterations are displayed in
Figure 3. We can see that the coefficients do converge to their exact values. The convergence of some
coefficient can be faster than other as we can see from Figure 3 that the parameters ρ and δ converge
within 10 iterations.
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Figure 1: Solutions of the Keller-Segel System without solving the inverse problem. In
the left column, we have the numerical solution of System (1) associated with θ0 ≈
[0.2864, 0.0647, 0.3075, 0.0529, 0.1281], compared to the expected solution in the middle column ob-
tained with θ = θex. In the last column, we have the adjoint variable of the poorly calibrated state
vector.

Figure 2: Solution of the Keller-Segel inverse problem solving System (KS 1)-(KS 3) starting with the
first guess θ0. In the left column, we have the final state vector predicted, compared to the exact
state vector in the middle column. In the last column, we have the adjoint variable associated to the
calibrated state vector.
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Figure 3: (θk)k≥0: calibrations of θ in terms of the number of iterations, during the numerical process
from Algorithm 4.1.

4.2.2 Pattern Formation problem

For the Pattern Formation system, there is no prior-knowledge in the relationship between d and µ.
For our test, we choose lb = [15, 25] and ub = [25, 35] to delineate the search area of ϑ, with the true
parameters being ϑex = [20; 30]. Here also, the numerical simulations are performed in a uniform mesh
with N = 100 points on the unit interval [0, 1], and from the initial time t0 = 0 to the terminal time
tf = 2 with an uniform time-step ∆t = 0.001. We also use measurement at each point (m = N), and
every hundred time steps, that gives Nmea = 21. The initial space conditions for A and B are given
by f1(A,B) = f2(A,B) = 0 with some additional noise, given by{

A0(x) = 9.9338 + 0.01× cos(πx),

B0(x) = 9.2892 + 0.01×N (0, 1)(x).

We fix the coefficients (ki)i=1,··· ,5 as k1 = 92, k2 = 64, k3 = 1.5, k4 = 18.5 and k5 = 0.1 and we
consider the covariance matrices given by

Σϵϵ = σ2
ϵ × INmea

,

Kaa(x, y) = σ2
a × δ(x− y)× I2,

Kqq(t, x, s, y) = σ2
q ×min(t, s)× δ(x− y)× I2,

(43)

where the standard deviation errors σϵ, σa and σq are given by σ2
ϵ = (10−1)2, σ2

a = (10−4)2 and
σ2
q = (10−4)2. Here the dimensionality of the parameter of interest ϑ drops from five to two, that speed

up the numerical resolution compared to the Keller-Segel model. This enables further investigations
on the applicability of this technique to calibrate coefficients.

An example of calibration starts with the first guess (d0, µ0) ≈ (23.23, 26.75), that is given by a
uniform law on the constraint space K. The state estimation associated with this first guess is depicted
in Figure 4. At first glance, the values of A and B seem to be close to their exact values. However,
they are mismatched as highlighted by the magnitude of λ around 0.1. The final estimation leads to
the values of A and B given in Figure 5 and look correct visually, according to the exact values. Yet,
the magnitude of λ is around 10−5. In this example, convergence was observed after eight calibrations
to the exact coefficients. The values of ϑ in terms of the number of iterations through the process are
represented in Figure 6.
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Figure 4: Solutions of the Pattern Formation System without solving the inverse problem. In the left
column, we have the numerical solution of System (3) associated with ϑ0 = [23.23; 26.75], compared
to the expected solution in the middle column obtained with ϑ = ϑex. In the last column, we have
the adjoint variable of the poorly calibrated state vector.

Figure 5: Solution of the Keller-Segel inverse problem solving System (PF 1)-(PF 3) starting with the
first guess ϑ0. In the left column, we have the final state vector predicted, compared to the exact
state vector in the middle column. In the last column, we have the adjoint variable associated to the
calibrated state vector.
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Figure 6: (ϑk)k≥0: calibrations of ϑ in terms of the number of iterations, during the numerical process
from Algorithm 4.1.

4.3 Impact of the hyperparameters on the numerical resolution
The performance of the numerical simulation in terms of accuracy and convergence of the numerical
solution depends on the choice of the hyperparameters that are fixed prior to the numerical approx-
imation. We give here the list of numerical hyperparameters can affect the numerical resolution in
practise. We have

• the choice of the covariance matrices Σϵϵ, Kaa and Kqq: while other expression can be chosen,
we can first study the impact of the values of σϵ, σa and σq as defined in Equations (42) and
(43).

• the amount of data available during the measurement process: we distinguish the number of
measurements Nmea extracted and the number of data m that is extracted at each observation.
Nmea is directly linked to the time between two consecutive measurements ∆m that is supposed
to be constant during the process.

• the presence or absence of the modelling uncertainty: there is error inherent to the modelling pro-
cess that would be characterized by the Gaussian process qt,x, or the lack of complete knowledge
about some coefficients in the model. If the error is in the initial condition, the characterization
is thorough the Gaussian noise ax and the Gaussian error ϵ if the error is from the measurement
process.

• the range of the constraint space K use to restrain the search of the coefficients. This works by
choosing lb and ub.

We investigate the impact of each of the identified hyperparameters. For the sake of simplicity, we
present only results for the Pattern Formation System due to the fast forward simulation time. We
perform 21 different simulations where each one is dedicated to the analysis of the impact of a single
hyperparameter. Each simulation starts with the same first guess ϑ0 and the same initial condition
(A0, B0) as chosen in the previous section. The set up of those simulations are detailed in Table 2 in
Appendix C.

To study the impact of hyperparameters, we report in Table 1 the errors on the substrate oxygen
concentration ||A−Aex||L∞(t0,tf ,L2(Ω)), on the enzyme uricase concentration ||B−Bex||L∞(t0,tf ,L2(Ω)),
on the adjoint variable of A ||λ1||L∞(t0,tf ,L2(Ω)), on the adjoint variable of B ||λ2||L∞(t0,tf ,L2(Ω)), the
number of iterations used in Algorithm (4.1) to calibrate η, and the error on the vector of coefficients
|η − ηex|∞ for each simulation as described in Table 2.
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Table 1: Quantities of interest for every simulation described in Table 2.
||A−Aex|| ||B −Bex|| ||λ1|| ||λ2|| calibrations |η − ηex|∞
L∞(I, L2(Ω)) L∞(I, L2(Ω)) L∞(I, L2(Ω)) L∞(I, L2(Ω))

1 4.9931 10−4 9.3711 10−5 0.1427 0.0263 5 0.0019
2 1.6887 10−5 1.9228 10−6 0.5232 0.0930 5 6.9554 10−5

3 4.9977 10−4 9.3187 10−5 0.0014 2.6345 10−4 5 0.0018
4 1.6513 10−5 1.9279 10−6 0.0051 9.1024 10−4 5 6.3318 10−5

5 5.0180 10−4 9.2631 10−5 0.1444 0.0265 5 0.0017
6 4.9102 10−4 9.3452 10−5 0.1395 0.0257 5 0.0020
7 4.9248 10−4 9.3843 10−5 0.1399 0.0258 5 0.0020
8 6.2518 0.8789 6.2589 10+3 572.6649 2 5.0000
9 1.3992 10−4 3.3861 10−5 0.0337 0.0050 10 0.0019
10 2.7143 10−4 4.7258 10−5 0.0251 0.0040 5 0.0025
11 3.7811 10−5 8.8072 10−6 3.7620 10−4 6.8078 10−5 5 4.9928 10−4

12 4.6437 0.5457 0.5151 0.0908 3 5.0000
13 3.2559 10−5 9.1306 10−6 0.0031 5.7046 10−4 5 4.1640 10−4

14 0.3846 0.1743 80.4624 8.1984 5 0.6745
15 0.0959 0.0442 12.5195 1.3404 5 0.1884
16 8.0603 10−4 1.1286 10−4 0.1606 0.0170 5 0.0029
17 0.0065 9.5257 10−4 1.3231 0.1363 5 0.0170
18 0.0355 0.0049 3.6368 0.3718 5 0.0670
19 0.1611 0.0402 3.8503 0.3581 4 2.0268
20 4.1736 10−4 8.6558 10−5 0.0715 0.0123 6 0.0026
21 6.3127 10−6 1.5385 10−6 5.2645 10−4 7.6921 10−5 8 8.4519 10−5

4.3.1 Influence of σϵ

Simulations 1, 2 and 3 only differ according to the value σϵ. We can observe the impact of that
hyperparameter in Figure 7. This hyperparameter does not impact the number of calibrations required
to get η, because it only affects the magnitude of λ. Indeed, when the value of σϵ decreases, the
magnitude of λ increases. This comes from the PDE governing the dynamic of λ in System (PF 2) as
the term C (A,B) is linear in σ−1

ϵ .
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Figure 7: Comparison of errors in time in Simulations 1, 2 and 3 associated with the values σϵ =
10−2, 10−1, 100 of the standard deviation, respectively. The yellow and red curves, while being distinct,
are really close for the state variable errors (first and second plots in the first line).

4.3.2 Influence of σa

Simulations 1, 4 and 5 only differ according to the value of the standard deviation σa. The impact of
that hyperparameter is observed in Figure 14, from which, we see that the hyperparameter does not
impact the number of calibrations required to get η, but it impacts the importance of fitting correctly
the initial condition. Indeed, in Table 1, the values of ||A−Aex(t0, ·)||L2(Ω) and ||B −Bex(t0, ·)||L2(Ω)

decrease as σa decreases.

4.3.3 Influence of σq

The value of the standard deviation σq is the only difference in the simulations 1, 6 and 7. From Table
1, we observe that the hyperparameter does not impact at all the numerical resolution. This comes
from the fact that we use synthetic data, i.e., measurements are produced directly from the model
with the correct coefficients in η. Thus, there is no modelling error in the process, which implies that
the calibrations in η fit easily the model.

However, we expect this hyperparameter to have an importance when using real data where the
underlying model can be inaccurate.

4.3.4 Influence of the time between measurements

The only difference in simulations 1, 8 and 9 is the time step between two consecutive measurements
∆m. The effects of the hyperparameter are presented in Figure 8. That hyperparameter impacts
directly the efficiency of the calibration in Algorithm 4.1. Indeed, if we have insufficient measurements
(Simulation 8 with ∆m = 200∆t) the calibration fails because the vector of coefficients η is evaluated
at the boundary of the constraint space K. In that case, there is a need of large enough number of
measurements to get a correct calibration of η. However, having too many measurements is counter-
productive because more iterations in the calibration are requested when ∆m = 50∆t than the case
with ∆m = 100∆t, despite both calibrations are correct.
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Figure 8: Evolution of the errors in time between simulations 1, 8 and 9 according to the hyperparam-
eter ∆m.

4.3.5 Influence of m, the dimensionality of an observation

In simulations 1, 10, 11 and 12 the only parameter that is changing is the number m of data points
of each measurement. We observe in Figure 9 the effects of that hyperparameter on the errors of the
state variables A and B, the error of the parameter of interest, and the approximation of the adjoint
variables. As ∆m, this hyperparameter directly impacts the efficiency of the calibration. Having not
enough data points (Simulation 12 with m = 1) leads to a poor calibration of η, while too many data
points can be counterproductive even though the calibration is correct because the magnitude of λ
increases as m increases.

It is worth mentioning that ∆m and m do not have the same role in the calibration. Indeed,
when analysing the calibration according to the total volume data (linear with m

∆m ), we see that some
calibrations can not work despite having a high number of data. For example, Simulations 8 and 10
have the same amount of data, but calibration in Simulation 8 fails, while it performs well in Simulation
10.
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Figure 9: Comparison of results between Simulation 1, 10, 11 and 12.

4.3.6 Influence of the modelling errors

Simulations 1, 13, 14 and 15 differ according to the error in the modelling choices. The impact of that
hyperparameter is observed in Figure 10. We consider two distinct sources of error in the modelling:
one is the additive Gaussian noise (following a Wiener process) to pollute the exact solution (Simulation
13), the second one consists in changing the value of k4 for the exact solution. Those two type of errors
do not impact the numerical resolution in the same way. Indeed, adding a Gaussian noise does not
impact the calibration while modifying the value of k4 leads to a calibration that gives coefficients
different to the expected ones: the further away k4 is from its right value, the further away the
calibration is to the expected coefficients.

In practise, there is a risk that the modelling errors can not be spotted looking at the adjoint variable
λ (see the visual impact in Figure 13 as comparison). This means that in practise the modelling error
can not be quantified because only the adjoint variable is available.
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Figure 10: Comparison of results between Simulation 1, 13, 14 and 15.

4.3.7 Influence of errors in the initial condition

The error in estimating the initial condition is the only hyperparameter that is changing between
Simulations 1, 16 and 17. We observe the impact of that hyperparameter in Figure 11. This hy-
perparameter does not impact the number of calibration required to get η, nor the efficiency of the
calibration. Indeed, the characterization of the error using a Gaussian form in the calibration, induces
a spike at the initial time t0 of the errors ||A − Aex||L2(Ω) and ||B − Bex||L2(Ω). Like the modelling
error in Section 4.3.6, a poor estimation of the initial state cannot be seen in the adjoint variable λ.

Figure 11: Comparison of results between Simulation 1, 16 and 17.
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4.3.8 Influence of errors in the measurement process

Simulations 1, 18 and 19 only differ according to the error in the measurement process. Figure 12
depicts the impact of that hyperparameter in the simulation outputs. This hyperparameter affects the
calibration’s results. Indeed, The higher the error ϵ is, the further away the calibration is from the
expected values, as one can see the errors in the measurements’ process in Figure 12. Those errors are
apparent in the evolution of the adjoint variable λ: the curves of t 7→ ||λ1(t, ·)||L2(Ω), t 7→ ||λ2(t, ·)||L2(Ω)

are less smooth. This implies that this type of errors can be spotted in practise.

Figure 12: Comparison of results between Simulation 1, 18 and 19.

4.3.9 Influence of the range between lb and ub

The error in the measurement process changes between the simulations 1, 18 and 19. We can observe
the impact of that hyperparameter in Figure 13. It affects the efficiency of the calibration: the wider
the constraint space is (distance between lb and ub is higher), the more iterations are requested for the
calibration. In practise this means that knowledge over the order of magnitude of the parameter of
interest η leads to a faster calibration. However, a good calibration can be performed without some
prior-knowledge on the parameter of interest η.
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Figure 13: Comparison of results between Simulation 1, 20 and 21.

5 Conclusion
In this work, we have developed a method to solve inverse problems brought on by a reaction-diffusion
model. This method relies on solving two PDE systems (corresponding to the direct model and its
adjoint system) and the cancel out of a vectorial function with the same dimension as the number of
coefficients that is needed to be calibrated. While the complete inverse problem looks complicated to
solve, it has the benefits of being a deterministic system, i.e., it does not require statistical observations.
Moreover, we have shown that those inverse problems can be numerically solved and that the combined
state and parameter estimation was successful with synthetic data. The inverse problem formulation
comes from the rewriting of an optimization problem by manipulating the variational form of the
forward model. The optimization problem takes into account the errors in the modelling choices, the
estimation of the initial state, and the observation measurement that stands as the difference between
the data and the output of the predictive forward model. Each system of PDE has its associated
inverse problem. Hyperparameters of the inverse problems are fitted according to the practical frame
of each of the systems.

One future consideration would be the analysis of this methodology with real data to assert its
robustness on real-world applications.
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A Algorithm 3

A.1 Keller-Segel System

Algorithm A.1: Numerical resolution of System (KS 2)

Data: N , ∆t, P =
tf−t0
∆t + 1

input : A guess (ρ, δ, α, β, γ) of θ and an approximation of (u, c) ∈MN,P (R) solving (KS 1)
output: An approximation of (λ1, λ2) ∈MN,P solving (KS 2)

G = D1∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ; H = D2∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ;

λP ← 0;
m← P − 1;
while m ≥ 1 do

/* Runge-Kutta 4 numerical scheme */

Define hm : (λ1, λ2) ∈ (RN )2 7→
[
diag(∂ug1(u

m, cm)) diag(∂cg1(u
m, cm))

diag(∂ug2(u
m, cm)) diag(∂cg2(u

m, cm))

]
·
[
λ1

λ2

]
;

k1 = hm(um, cm); k2 = hm((um, cm) + ∆t
2 k1);

k3 = hm((um, cm) + ∆t
2 k2); k4 = hm((um, cm) + ∆tk3);[

λ
m+ 1

2
1

λ
m+ 1

2
2

]
=

[
λm+1
1

λm+1
2

]
− ∆t

6 (k1 + k2 + k3 + k4);

/* λ1 resolution */

Mv =


−1 1 0
−1 0 1

. . . . . . . . .
−1 0 1

0 −1 1

 ; V m = 1
2hMvc

m; Mconv = D1χ∆t
2h diag(V m)Mv;

λm
1 solves (−G+Mconv)λ

m
1 = −λm+ 1

2
1 −∆tC (um, cm)1;

/* λ2 resolution using λm
1 */

/* Upwind scheme for the convective term in λ1 */
Nm

conv =

D1χ∆t
h2



−(λ1(1)− λ1(2))
− (λ1(1)− λ1(2))

+ 0
. . . . . . . . .

(λ1(i)− λ1(i− 1))+ −(λ1(i)− λ1(i− 1))− − (λ1(i)− λ1(i+ 1))− (λ1(i)− λ1(i+ 1))+

. . . . . . . . .
0 (λ1(N)− λ1(N − 1))+ −(λ1(N)− λ1(N − 1))−

;

if there is a measurement available then
λm
2 solves −Hλm

2 = −λm+ 1
2

2 −Nm
conv · um −∆tC (um, cm)2;

else
λm
2 solves −Hλm

2 = −λm+ 1
2

2 −Nm
conv · um;

end
m← m− 1;

end[
λ1

λ2

]
←

[
λ1
1 λ2

1 . . . λP
1

λ1
2 λ2

2 . . . λP
2

]
;
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A.2 Pattern Formation System

Algorithm A.2: Numerical resolution of System (PF 2)

Data: N , ∆t, P =
tf−t0
∆t + 1

input : A guess (d, µ) of ϑ and an approximation of (A,B) ∈MN,P (R) solving (PF 1)
output: An approximation of (λ1, λ2) ∈MN,P solving (PF 2)

G = ∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ; H = d∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ;

λP ← 0;
m← P − 1;
while m ≥ 1 do

Mat11 = µ∆tdiag(−∂Af1(Am, Bm));
Mat12 = µ∆tdiag(−∂Bf1(Am, Bm));
Mat21 = µ∆tdiag(−∂Af2(Am, Bm));
Mat22 = µ∆tdiag(−∂Bf2(Am, Bm));
if there is a measurement available then

λm solves
[
−G−Mat11 −Mat12
−Mat21 −H −Mat22

]
λm = λm+1 −∆t

[
C (Am, Bm)1
C (Am, Bm)2

]
else

λm solves
[
−G−Mat11 −Mat12
−Mat21 −H −Mat22

]
λm = λm+1

end
m← m− 1;

end[
λ1

λ2

]
←

[
λ1
1 λ2

1 . . . λP
1

λ1
2 λ2

2 . . . λP
2

]
;
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B Algorithm 4

B.1 Keller-Segel System

Algorithm B.1: Numerical resolution of System (KS 1)

Data: N , ∆t, P =
tf−t0
∆t + 1

input : A guess (ρ, δ, α, β, γ) of θ and an approximation of (λ1, λ2) ∈MN,P (R) solving
(KS 2)

output: An approximation of (u, c) ∈MN,P solving (KS 1)

G = D1∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ; H = D2∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ;

u1 ← u0 + (Kaaλ
1)1; c1 ← c0 + (Kaaλ

1)2; /* Initial conditions */
m← 2;
while m+ 1 ≤ P do

/* Runge-Kutta 4 numerical scheme */

k1 =

[
gm1 (um, cm)
gm2 (um, cm)

]
; k2 =

[
gm1 ((um, cm) + ∆t

2 k1)
gm2 ((um, cm) + ∆t

2 k1)

]
;

k3 =

[
gm1 ((um, cm) + ∆t

2 k2)
gm2 ((um, cm) + ∆t

2 k2)

]
; k4 =

[
gm1 ((um, cm) + ∆tk3)
gm2 ((um, cm) + ∆tk3)

]
;[

um+ 1
2

cm+ 1
2

]
=

[
um

cm

]
+ ∆t

6 (k1 + k2 + k3 + k4);

/* Finite Difference to get cm+1 */
cm+1 solves Hcm+1 = (cm+ 1

2 +∆t(Kqqλ
m+1)2);

/* Getting um+1 using cm+1 */
/* Upwind scheme for the convective term in cm+1 */
Nm+1

conv =

D1χ∆t
h2



−(c(1)− c(2))− (c(1)− c(2))+ 0
. . . . . . . . .

(c(i)− c(i− 1))+ −(c(i)− c(i− 1))− − (c(i)− c(i+ 1))− (c(i)− c(i+ 1))+

. . . . . . . . .
0 (c(N)− c(N − 1))+ −(c(N)− c(N − 1))−

;

/* Finite Difference scheme to get um+1 */
um+1 solves (G−Nm+1

conv )u
m+1 = (um+ 1

2 +∆t(Kqqλ
m+1)1));

m← m+ 1;
end[
u
c

]
←

[
u1 u2 . . . uP

c1 c2 . . . cP

]
;
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B.2 Pattern Formation System

Algorithm B.2: Numerical resolution of System (PF 1)

Data: N , ∆t, P =
tf−t0
∆t + 1

input : A guess (d, µ) of ϑ and an approximation of (λ1, λ2) ∈MN,P (R) solving (PF 2)
output: An approximation of (A,B) ∈MN,P solving (PF 1)

G = ∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ; H = d∆t
h2


1 −1 0
−1 2 −1

. . . . . . . . .
−1 2 −1

0 −1 1

+ IN ;

A1 ← A0 + (Kaaλ
0)1; B1 ← B0 + (Kaaλ

0)2;
m← 1;
while m+ 1 ≤ P do

/* Runge-Kutta 4 numerical scheme */

k1 =

[
f1(A

m, Bm)
f2(A

m, Bm)

]
; k2 =

[
f1((A

m, Bm) + ∆t
2 k1)

f2((A
m, Bm) + ∆t

2 k1)

]
;

k3 =

[
f1((A

m, Bm) + ∆t
2 k2)

f2((A
m, Bm) + ∆t

2 k2)

]
; k4 =

[
f1((A

m, Bm) + ∆tk3)
f2((A

m, Bm) + ∆tk3)

]
;[

Am+ 1
2

Bm+ 1
2

]
=

[
Am

Bm

]
+ ∆t

6 (k1 + k2 + k3 + k4);

/* Finite Difference scheme */
Am+1 solves GAm+1 = Am+ 1

2 +∆t(Kqqλ
m+1)1;

Bm+1 solves HBm+1 = Bm+ 1
2 +∆t(Kqqλ

m+1)2;
m← m+ 1;

end[
A
B

]
←

[
A1 A2 . . . AP

B1 B2 . . . BP

]
;
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C Summary of simulations performed in Section 3.3

Table 2: Description of the simulations performed to study the impact of hyperparameters.
Simulation’s
number

Description of the simulation

1 reference simulation with σϵ = 10−1, σa = 10−4, σq = 10−4, ∆m = 100∆t,
m = N , qt,x = 0, ax = 0, ϵ = 0, lb = [15, 25], and ub = [25, 35].

2 As in simulation 1 but with σϵ = 10−2.
3 As in simulation 1 but with σϵ = 10−0.
4 As in simulation 1 but with σa = 10−3.
5 As in simulation 1 but with σa = 10−5.
6 As in simulation 1 but with σq = 10−3.
7 As in simulation 1 but with σq = 10−5.
8 As in simulation 1 but with ∆m = 200∆t.
9 As in simulation 1 but with ∆m = 50∆t.
10 As in simulation 1 but with half measure points, i.e., m = N

2 , randomly chosen.
11 As in simulation 1 but m = 10 points evenly spaced.
12 As in simulation 1 but with m = 1 point at the center of the interval of study.
13 As in simulation 1 but with a Wiener process in the exact simulation with a

standard deviation of 10−4.
14 As in simulation 1 but the value of k4 is set to 18.7 for the exact solution.
15 As in simulation 1 but the value of k4 is set to 18.55 for the exact solution.
16 As in simulation 1 but there is a Gaussian noise added in the initial condition with

a standard deviation of 10−4.
17 As in simulation 1 but there is a Gaussian noise added in the initial condition with

a standard deviation of 10−3.
18 As in simulation 1 but there is a Gaussian noise added in the measurement process

with a standard deviation of 10−1.
19 As in simulation 1 but there is a Gaussian noise added in the measurement process

with a standard deviation of 100.
20 As in simulation 1 but we set lb to [10, 20] and ub to [30, 40].
21 As in simulation 1 but we set lb to [0, 0] and ub to [+∞,+∞].
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D Plots related to the influence of σa

Figure 14: Comparison of results between Simulation 1, 4 and 5. The blue and red curves, while being
distinct, are close in every plot.

E Plots related to the influence of σq

Figure 15: Comparison of results between Simulation 1, 6 and 7. All curves, while being distinct, are
close in every plot.
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