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Abstract

We provide a combinatorial and self-contained proof that for all graphs G
embedded on a surface S, the Colin de Verdière parameter µ(G) is upper bounded
by 7 − 2χ(S).

1 Introduction
In this short note we establish an upper bound for the Colin de Verdière’s graph parameter
µ for graphs that can be embedded on a fixed surface. This parameter was introduced by
Colin de Verdière [CdV90] in analogy with the multiplicity of the second eigenvalue of
Schrödinger operators on a Riemannian surface. The exact definition of µ(G) resorts to
a transversality condition between the space of so-called discrete Schrödinger operators
on a graph G = (V, E) and a certain stratification of the space of symmetric matrices
of dimension V × V . This Strong Arnold Hypothesis (SAH), as coined by Colin de
Verdière [CdV88], expresses a stability property and ensures that µ is minor-monotone.
It can thus be applied to the graph minor theory of Robertson and Seymour. We refer to
the survey by van der Holst, Lovász and Schrijver [VdHLS99] for more properties on µ
and the definition of the strong Arnold hypothesis.

Here, we are interested in an upper bound for the parameter µ of the minor-closed
family of graphs that can be embedded on a surface S. It is relatively easy to show that
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µ(Kn) = n − 1 for Kn the complete graph with n vertices [VdHLS99]. On the other hand,
the largest n such that Kn embeds on S is known as the Heawood number

γ(S) =

7 +
√

49 − 24χ(S)
2

 ,

where χ(S) is the Euler characteristic of S. Colin de Verdière [CdV87] conjectured that
the maximum of µ for all graphs that can be embedded in S is attained at Kγ(S). In
other words, µ is upper bounded by γ(S) − 1. In practice, the known upper bounds have
been proved in the realm of Riemannian surfaces where µ is defined for each Riemannian
metric as the maximum multiplicity of the second eigenvalue of Schrödinger differential
operators (based on the Laplace-Beltrami operator associated to the given metric). In this
framework, Besson [Bes80] obtained the bound 7−2χ(S). When the Euler characteristic is
negative, this bound was further decreased by 2 by Nadirashvili [Nad88], who thus showed
the upper bound 5 − 2χ(S). Sévennec [Sév02] eventually divided by two the dependency
in the characteristic to obtain the upper bound 5 − χ(S). Note that all those bounds
are linear in the genus of S and remain far from the square root bound in the conjecture
of Colin de Verdière. It can be proved that any upper bound for µ in the Riemannian
world holds for graphs, cf. [CdV98, Th. 6.3] and [CdV87, Th. 7.1]. However, the proof
relies on the construction of Schrödinger differential operators from combinatorial ones
and is not particularly illuminating from the combinatorial viewpoint. To our knowledge
no purely combinatorial self-contained proof has yet appeared in a peer-reviewed journal.
The goal of this note is to partially fill this gap by proving the bound of Besson in the
combinatorial framework of graphs.

Theorem 1. Let G be a graph that can be embedded on a surface S, then

µ(G) ≤ 7 − 2χ(S).

Our proof completes and slightly simplifies a proof of Pendavingh that appeared in his
PhD thesis [Pen98]. Before describing the general strategy of the proof, we provide some
relevant definitions and basic facts.

2 Background
Schrödinger operators and µ. Let G = (V, E) be a connected simplicial1 graph with
at least two vertices. A Schrödinger operator on G, sometimes called a generalized
Laplacian, is a symmetric V ×V matrix such that for i ̸= j ∈ V , its ij coefficient is negative
if ij ∈ E and zero otherwise. (There is no condition on the diagonal coefficients.) It
follows from Perron–Frobenius theorem that the first (smallest) eigenvalue of a Schrödinger
operator L has multiplicity one [CdV94]. Now, if λ2 is the second eigenvalue of L, then the
first eigenvalue of L − λ2Id is negative and its second eigenvalue is zero. This translation
by −λ2Id does not change the sequence of multiplicities of the eigenvalues of L, nor the
stability of L with respect to the strong Arnold hypothesis. Consequently, we can safely
restrict to Schrödinger operators whose second eigenvalue is zero. We can now define µ(G)

1A graph is simplicial, or simple, if it has no loops or multiple edges.
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as the maximal corank (dimension of the kernel) of a Schrödinger operator satisfying the
strong Arnold hypothesis. As a fundamental property, µ is minor-monotone.

Theorem 2 ([CdV90]). If H is a minor of G, then µ(H) ≤ µ(G).

It also characterizes planar graphs.

Theorem 3 ([CdV90]). A graph G is planar if and only if µ(G) ≤ 3.

We view a vector of RV as a discrete map V → R, so that a Schrödinger operator
acts linearly on the set of discrete maps. For f : V → R, we denote by V +

f , V 0
f , V −

f the
subsets of vertices where f takes respectively positive, null and negative values. The
support of f is the subset V +

f ∪ V −
f of vertices with nonzero values. As a simple property

of Schrödinger operators we have

Lemma 4 ([VdHLS99]). Let L be a Schrödinger operator of G and let f ∈ ker L. Then, a
vertex v ∈ V 0

f is adjacent to a vertex of V +
f if and only if v is adjacent to a vertex of V −

f .

A discrete version of the nodal theorem of Courant reads as follows.

Theorem 5 ([CdV94, VdH95]). Let L be a Schrödinger operator of G and let f ∈ ker L
be a nonzero map with minimal support. Then, the subgraphs of G induced respectively by
V +

f and V −
f are nonempty and connected.

Surfaces and Euler characteristic By a surface of finite type we mean a topological
space homeomorphic to a compact two dimensional manifold minus a finite number of
points. A surface may have nonempty boundary and each of the finitely many boundary
components is homeomorphic to a circle. We shall only consider surfaces of finite type
and omit to specify this condition. A closed surface means a compact surface without
boundary. By a triangulation of a surface, we mean a simplicial complex together with a
homeomorphism between its underlying space and the surface.

Say that a topological space has finite homology if it has finitely many nontrivial
homology groups2 and each of these are finitely generated. The Euler characteristic
χ(X) of a space X with finite homology is the alternating sum of its Betti numbers. When
X is a finite simplicial complex (and more generally a finite CW complex), this definition
coincides with the alternating sum of the numbers of cells of each dimension. The Euler
characteristic is homotopy invariant: two spaces with the same homotopy type have the
same Euler characteristic.

Proposition 6 (Inclusion-exclusion formula [Spa89, p.205]). Let Y, Z ⊂ X be spaces with
finite homology such that X = Int Y ∪ Int Z, then

χ(X) = χ(Y ) + χ(Z) − χ(Y ∩ Z).

Note that this formula might be false if we do not make the assumption that X is the
union of the interiors of Y and Z. As a counter-example one can take X a line segment,
Y a point of X and Z = X \ Y .

2In general, one should consider singular homology for non triangulated spaces.
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Corollary 7. Let X be a triangulated compact surface and let Y be a subcomplex of X.
Then

χ(X) = χ(Y ) + χ(X \ Y ).
Proof. Note that Y is closed in X and is a deformation retract of some open subsurface
Z ⊂ X. Morever, Z ∩ (X \ Y ) is a union of disjoint annuli or Möbius bands whose Euler
characteristic is null. By proposition 6 and the homotopy invariance of χ we conclude
χ(X) = χ(Z) + χ(X \ Y ) = χ(Y ) + χ(X \ Y ).

3 Overview of the proof of Theorem 1
Let G be a graph embedded on a surface S, which we can assume closed without loss of
generality. We may also assume that S is not homeomorphic to a sphere as otherwise
Theorem 1 follows directly from Theorem 3. In a first step, we remove an open disk
D ⊂ S \ G whose boundary avoids G and build a graph H embedded in S \ D such that
C1. H triangulates S \ D and subdivides ∂D into a cycle of µ(G) − 1 edges,

C2. G is a minor of H, and

C3. the length of the shortest closed walk in H that is non-contractible in S \ D, i.e. the
edgewidth of H in S \ D, is µ(G) − 1.

We denote by W the set of vertices of H. We next choose a Schrödinger operator L for H
whose corank achieves µ(H). Condition C2 and the monotonicity of µ imply µ(H) ≥ µ(G)
so that ker L has dimension at least µ(G). It thus contains a nonzero vector f that cancels
on the µ(G) − 1 vertices of ∂D by C1. We pick such an f with minimal support so that
by Theorem 5 the subsets of vertices W +

f and W −
f induce connected subgraphs of H. We

connect the vertices of ∂D by inserting µ(G) − 4 edges in D to obtain a graph H ′ with
the same vertices as H and that triangulates S. We can now extend f linearly on each
face of H ′ to get a piecewise linear map f̄ : S → R. Let S+

f , S0
f , S−

f denote the subspaces
of S where f̄ is respectively positive, null, and negative. By Theorem 5, S+

f and S−
f are

connected open subsurfaces of S, while S0
f is a closed subcomplex of some subdivision of

the triangulation induced by H ′. We can thus apply Corollary 7 to write
χ(S) = χ(S0

f ) + χ(S+
f ∪ S−

f ) = χ(S0
f ) + χ(S+

f ) + χ(S−
f ).

By the classification of surfaces, we have χ(S+
f ) ≤ 1 and χ(S−

f ) ≤ 1. It ensues that
χ(S0

f) ≥ χ(S) − 2. The goal is now to upper bound χ(S0
f) in terms of µ(G) in order

to obtain an upper bound for µ(G). To this end, we build a graph Γ with larger Euler
characteristic than S0

f by contracting its two dimensional parts. We then argue that the
two dimensional part K containing D has a non-contractible boundary in S \ D. It follows
that this boundary has length at least the edgewidth of H, hence at least µ(G) − 1 by
condition C3. Thanks to Lemma 4 we may infer that K contracts to a vertex of degree at
least µ(G) − 1 in Γ . We also argue thanks to Lemma 4 that Γ has no vertex of degree
one. We easily deduce that χ(Γ ) ≤ (3 − µ(G))/2. We finally conclude that

(3 − µ(G))/2 ≥ χ(S0
f ) ≥ χ(S) − 2,

hence µ(G) ≤ 7 − 2χ(S). In the remainder of the paper, with provide the details of this
sketch of proof.
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4 Triangulation with prescribed edgewidth
An isometric filling of the cycle graph of length n is a subdivision F of a disk so that F
has n vertices on its boundary and so that every path in the 1-skeleton of F connecting
two vertices of ∂F contains at least as many edges as the shortest path in ∂F between
these two vertices. The isometric filling is triangulated when every face of F is a triangle.

Lemma 8. For every n ≥ 3, the cycle graph of length n has a triangulated isometric
filling.

Proof. First suppose that n = 2m is even. We use the following construction of Cos-
sarini [Cos18]. Consider a simple arrangement A of m lines in the plane, where any two
lines intersect and no three lines have a common intersection3. The dual subdivision A∗

has one vertex per face of the arrangement and one edge for each pair of adjacent faces.
The union of the bounded faces of A∗ defines a quadrangulation Q of a disk with 2m
vertices on its boundary. See Figure 1. This quadrangulation is an isometric filling of the

Figure 1: Left, an arrangement of 4 lines and its dual subdivision. Right, an isometric
filling of the cycle graph of length 9.

cycle graph of length n. Indeed, let p : u ; v be a simple path of length at most m on
the boundary of Q. Each edge of p intersects a unique line of A that separates u from v
in the plane. It follows from the Jordan curve theorem that any path q from u to v in Q
also crosses this line. Hence, q contains an edge dual to some edge of A included in this
line. As this is true for every edge of p it ensues that p is no longer than q. In order to
get a triangulation, we simply star every quadrangle of Q from an interior point.

When n = 2m+1 is odd, we start with the same quadrangulation Q as above and insert
one vertex on one of its boundary edges. As a result all the faces are quadrangles except
for one pentagon. We can nonetheless apply the same triangulation procedure as above by
starring each face from an interior point. As this starring defines triangulated isometric
filling for a quadrilateral as well as for a pentagon, we obtain this way a triangulated
isometric filling of the cycle graph of length 2m + 1.

Remark that an isometric filling F remains so even after identifying some vertices and
edges on the boundary of F . Formally, if π : F → F/ ∼ is the corresponding quotient
map, a shortest path in π(∂F) is no longer than any path between the same endpoints in
F/ ∼.

3In fact, any pseudo-line arrangement will do.
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Proposition 9. Let G be a graph embedded on a closed surface S that is not a sphere,
and let D ⊂ S \ G be an open disk whose boundary avoids G. For every integer k ≥ 3,
there exists a graph H, of which G is a minor, that triangulates S \ D, subdividing ∂D
into a cycle of k edges, and with edgewidth k in S \ D.

Proof. We may construct H as follows. We first add a loop edge along the unique boundary
component ∂D of S \ D and insert other edges to form a cellularly embedded graph G′

including G and the loop edge as subgraphs. We next insert k − 1 vertices in each edge
of G′ to subdivide it into k subedges. Trivially, the resulting graph G′′ has edgewidth at
least k. In fact, it has edgewidth exactly k as ∂D is a non-contractible cycle of length k in
S \ D. It remains to triangulate every face of G′′ with an isometric filling as in Lemma 8.
We can take for H the 1-skeleton of the resulting triangulation of S \ D. Indeed, by
substituting paths interior to the faces of G′′ by no longer paths on their boundaries we
see that every non-contractible closed walk in H is homotopic to a no longer closed walk
in G′′, hence has length at least k.

It is easily seen that the triangulation in the proposition is simplicial.

5 Proof of Theorem 1
As explained in the proof overview, we may assume that G is embedded on a closed surface
S that is not a sphere. We may also assume that µ(G) ≥ 7 for otherwise Theorem 1
is trivially true. We consider an open disk D in S \ G. By Proposition 9, there is a
graph H of edgewidth µ(G) − 1, having G as a minor, that triangulates S \ D with
µ(G) − 1 vertices on ∂D. Let L be a Schrödinger operator for H with corank µ(H) and
let f ∈ ker L of minimal support that cancels on the vertices of ∂D. We triangulate D by
inserting µ(G) − 4 edges with endpoints on ∂D. The union of this triangulation with the
triangulation of S \ D by H defines a triangulation of S whose graph is denoted by H ′.
Note that H and H ′ have the same set of vertices that we denote W . Let f̄ : S → R be
the piecewise linear extension of f and let S0

f = f̄−1(0). As argued in Section 3, we have

χ(S0
f ) ≥ χ(S) − 2 (1)

The intersection of S0
f with a closed triangle of H ′ may be either the whole triangle, a

segment connecting two points on the triangle boundary (either vertices or edge interior
points), or one vertex of the triangle. See Figure 2. S0

f can thus be decomposed into

0 0

0

-
0

0

+/

0

-+/

- +/ -+/

- +/

- +/

0

-+/-+/

Figure 2: Intersection of the set with a triangle.

a two dimensional part made of triangles of H ′ and a one dimensional part. The two
dimensional part is a subsurface of S with singular vertices where several triangles meet
at a vertex but do not form a contiguous sequence in the star of the vertex. See Figure 3,

6



left. We blow up every singular vertex by locally separating the contiguous sequences of
triangles and connecting them with a small star graph as on Figure 3, right. This does

+

-

0

0
0

0

0

+

+

-

0

0
0

0

0

+

Figure 3: Left, the star of a singular vertex. Right, blowing up the vertex.

not change the homotopy type of the zero set S0
f and remove all the singularities of the

two dimensional part. Note that this blowup operation neither changes the homotopy (in
fact homeomorphism) type of S+

f and S−
f . We denote by P, Z, N the respective modified

sets S+
f , S0

f , S−
f after blowing up all the singular vertices. Note that Z is a triangulated

complex. Now, every two dimensional component of Z is a compact subsurface with
nonempty boundary, hence has Euler characteristic at most one. Moreover, every vertex
v on the boundary of such a component is incident to the one dimensional part of Z.
Indeed, if v results from a blowup operation, then this is true by construction. Otherwise,
v is a vertex of H ′ and Lemma 4 implies that v is adjacent to both W +

f and W −
f (recall

that these are the subsets of vertices of H ′ where f is respectively positive and negative).
As a consequence the link of v intersects Z in at least two components. Since v is not
singular at most one of those components is not reduced to a vertex. In particular there
must be a vertex component corresponding to a segment of Z incident to v.

We next form a graph Γ from Z by contracting each two dimensional component C
of Z to a vertex vC . By the previous discussion, replacing C by vC , may only increase
the Euler characteristic, so that χ(Γ ) ≥ χ(Z). Moreover, the degree of vC in Γ is at least
the number of vertices on the boundary of C. In particular, this degree is at least three
since H ′ has no loop nor multiple edge (cf. the comment after the proof of Proposition 9).
Also, it follows from Lemma 4 that Γ has no isolated vertices or vertices of degree one.
Hence every vertex of Γ has degree at least two.

We now consider the two dimensional component K of Z that contains D. Let c be
a boundary component of K. We claim that c is non-contractible in S \ D. By way of
contradiction, suppose that c is contractible, hence bounds an open disk B in S \ D. This
disk cannot contain ∂D since it is non-contractible in S \ D. It follows that ∂D, hence K,
is contained in the complement of B in S. On the other hand, by Lemma 4 every vertex
of c is in the closure of both P and N . Since P, N are both connected by Theorem 5,
we deduce that P and N are fully contained in B. We are thus in the situation of two
disjoint open sets, P and N , contained in a disk B and whose closures have at least three
vertices x, y, z (from c) in common. One can then extract a tripod K1,3 in P with leaves
x, y, z, and similarly for N . We connect these two tripods in B by a path p intersecting
the tripods only at its extremities. We have thus obtained an embedding in the planar
region B ∪ c of the union of the two tripods with p and with c. This is however impossible
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as this union graph contains K5 as a minor as illustrated on Figure 4. This ends the proof

x

y

z

p

u

v
t

s

x

y

z

Figure 4: Left, two tripods in a disk and a connecting path. Right, a K5 minor obtained
after contracting the edges su and tv.

of the claim. The boundary cycle c of K thus corresponds to a non-contractible closed
walk c′ in H with the same number of edges as c. It ensues that c has length at least
µ(G) − 1, the edgewidth of H. In turn, this implies that vK has degree at least µ(G) − 1
in Γ . By the handshaking lemma, we have

2|E(Γ )| ≥ µ(G) − 1 + 2(|V (Γ )| − 1).

It follows that

χ(Γ ) = |V (Γ )| − |E(Γ )| ≤ |V (Γ )| − (|V (Γ )| + µ(G) − 3
2 ).

We infer
χ(S0

f ) = χ(Z) ≤ χ(Γ ) ≤ 3 − µ(G)
2 .

In conjunction with the above inequality (1), we conclude χ(S) − 2 ≤ (3 − µ(G))/2, or
equivalently µ(G) ≤ 7 − 2χ(S) as desired.
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