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Optimal influence budget allocation for viral marketing using a multiple
virus SIS model∗

Olivier Lindamulage De Silva, Vineeth S. Varma, Irinel-Constantin Morărescu, and Samson Lasaulce1

Abstract— In the problem addressed in this paper, a firm
proposes a service/product to customers that are spread over
several geographical regions (e.g., countries, provinces, or
states). Each region has its own characteristics in terms of
service propagation and is subject to the influence of several
firms. The service propagation is modeled by a (marketing)
virus process whose effective spreading rate depends on the in-
fluence exerted by the firms. The considered overall dynamical
system thus involves multiple competing firms whose individual
influence over their customers is modeled by a virus and
multiple regions. One of the goals of the paper is to know how a
firm should allocate its budget among the regions to maximize
its market share. The corresponding optimization problem is
studied by assuming a Susceptible-Infected-Susceptible (SIS)
multiple virus model. In this setting, it is shown under which
conditions the so-called ”winner takes all” viral marketing
strategy is optimal. More generally, the best strategy is derived
and its performance is shown to outperform the uniform
allocation strategy and advanced strategies like those derived
from a Colonel Blotto approach.

Index Terms— SIS model, viral marketing, resource alloca-
tion.

I. INTRODUCTION

Viral marketing (VM) is a popular method of market
outreach and customer communication that can reach a huge
audience quickly and efficiently. Indeed, consumers’ pur-
chasing decisions are heavily influenced by suggestions and
recommendations from family, friends, and colleagues rather
than popular companies. One of the most famous examples
of a very simple VM comes from Hotmail. The company
provides free email addresses and services to its users, and
each email sent by a Hotmail user promotes the firm’s
services. As a result, Hotmail’s subscribers grew from zero to
12 million users in just eighteen months, with an advertising
budget of just 50, 000 $ [1]. In the literature, it becomes
more and more common to use epidemic models to describe
the VM phenomenon. Indeed, when an advertising message
goes viral, it is very similar to an epidemic, as it is a human-
to-human transmission that spreads through a population.
When several products or services are competitively trying
to spread over a network, a competitive SIS model can be
applied to study the spread of these products. Such a model
has been proposed and studied in [2]. The main result of
that paper is the so called “winner takes all”, which has also
been verified on real data with some popular examples like
Facebook and Myspace.

Marketing campaigns that rely on viral approaches to dis-
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semination are generally considered to have advantages over
conventional mass campaigns, including cost-effectiveness
issues and the ability to reach specific customer groups. In
[3], authors deal with the problem of opinion dynamics,
in which social network agents (such as consumers) are
influenced not only by their neighbors but also by external
influencing entities called marketers. Marketers allocate a
budget to campaigns over social networks to try to influence
public opinion. Similarly, in [4], the authors introduced a
duopoly model which accounts for the knowledge of opinion
dynamics through a social network and shows that firms
should influence users with a significant enough influence
on other users to capture a larger market share. Unlike these
works that take advantage of the node centrality (network
topology) but rely on linear opinion dynamic models for
the service spreading, we assume here a uniform spreading
using epidemiological nonlinear models. This setup is more
suitable for certain types of products/services such as video
streaming platforms for instance.

Our goal is to determine the optimal budget allocation
policy allowing a given firm to maximize its market share.
The methodology builds on existing multi-virus epidemic
results [2], [5], [6]. We consider a relatively simple model
in which the budget allocated by a firm to a certain region
modifies the spreading rate of the associated service in
that region. Additionally, we assume that the spreading in
different regions is uncorrelated (or weakly correlated) and
each region has a similar contribution to the overall revenue
of the firm. Under this assumption, the ”winner takes all”
result holds true yielding a decoupled investment analysis for
each region. It is worth noting that the firm has an overall
fixed budget that must be allocated to each region. From
the mathematical point of view, the problem is formulated
as the determination of a constrained best-response to given
strategies for its competitors.

The optimal budget allocation problem introduced and
addressed in this paper differs from the existing ones for
several key reasons. In [7], a dynamic optimization problem
under budget capacity is formulated to control a single-
virus SIS model. In [8], optimal control of joint multi-
virus infection and information dissemination is consid-
ered for the sensitive-warned-infected-recovered-susceptible
(SWIRS) model, without budget constraints. The differences
between the present work and the existing results on epi-
demic control (e.g., [9], [10], [11], [12], [13]) are mainly
related to the fact that we handle a multi-virus SIS epidemic
model and we consider budget constraints. The closest work
to the present one is [14] in which the authors formulate



a static and strategic form game to deal with a bi-virus
SIS epidemic model over a single region without a budget
constraint.

The key contributions of this paper can be summarized as
follows:

• We propose a revenue model for a company that
employs VM to spread its product or service over
a network comprised of several disconnected regions,
while in competition with other products. The company
must allocate a finite budget across regions to improve
the product quality/diversity in that region.

• We convert the original optimization problem (OP)
related to a discontinuous revenue function into a
convex OP over several mutually exclusive subsets of
the optimization domain and provide an algorithm that
solves the OP.

This paper is structured as follows. In Sec. II, the con-
sidered multi-virus SIS model is described. The proposed
optimal allocation problem to implement by a given firm
is provided. In Sec. III, the characterization of the optimal
allocation problem is established. In Sec. IV, we conduct
a numerical performance analysis for our theoretical results
for a bi-virus case and we compare the optimal allocation
strategy to conventional strategies like uniform allocation and
the best responses for a classical Colonel Blotto game.

II. PROBLEM STATEMENT
We consider a set of M > 1 firms competing over a set

of K > 1 regions (e.g., countries, provinces, or states) to
get a larger market share. Let K := {1, . . . ,K} and M :=
{1, . . . ,M} be the set of regions and firms, respectively. For
a given region k ∈ K and a firm m ∈ M, we respectively
denote by (i) γm

k the spreading rate of the service of provider
m in the region k; (ii) the value δmk is the churn rate at which
the individual from Region k decides to dispense with the
services of provider m. We assume that γm

k is a control
variable since it can be modified by the firm m through
new technological updates or price control. On top of this,
we assume that firm m has a given budget Bm to allocate
between the K regions in order to maximize the number of
its subscribers.

We denote by γm := (γm
1 , . . . , γm

K ) ∈ RK
≥0 the action

profile of the firm m and γ := (γ1, γ2, . . . , γM ) ∈ RMK
≥0 the

vector collecting the action profiles for all the firms. We will
also use the notation γ−m to refer the reduced action profile
γ−m := (γ1, . . . , γm−1, γm+1, . . . , γM ).

Problem: Find the optimal resource allocation γm,∗ of the
firm m that maximizes the revenue um(γm, γ−m) defined
latter in (2).

The rest of this section provides both the model that we
consider for the viral marketing dynamics (Sec. II-A) and
the optimisation problem that each firm would solve (Sec.
II-B).

A. Viral marketing model

The control action γm
k is assumed to be constant on

the working phase [0,+∞]. In practice, it is sufficient to
consider a working interval [0, T ] where T is a sufficiently

large horizon to ensure the practical convergence of the VM
dynamics.

The fractions of individuals in Region k ∈ K who
subscribe to the services of firm m ∈ M are denoted by
xm
k ∈ [0, 1]. In contrast, the proportion of individuals in

Region k ∈ K who have not subscribed to any services is
denoted by sk ∈ [0, 1]. With these notations, the continuous-
time VM dynamic in Region k ∈ K is assumed to be given
by:

dsk
dt

= −sk(t)

M∑
m=1

[
γm
k xm

k (t)
]
+

M∑
m=1

δmk xm
k (t),

dx1
k

dt
= sk(t)γ

1
kx

1
k(t)− δ1kx

1
k(t),

...
dxM

k

dt
= sk(t)γ

M
k xM

k (t)− δMk xM
k (t),

sk(t) +
∑M

m=1 x
m
k (t) = 1,

(1)

where the initial values verify s0k > 0, xm
k ≥ 0 ∀m ∈ M.

For the sake of simplicity, we assume that the control
imposed in Region k by firm m (namely, γm

k ) affects the
subscribers of firm m in Region k who are in contact with
all susceptibles of Region k, i.e., γm

k is the controlled rate
at which the subscribers of firm m in Region k influence
the susceptibles in Region k. In practice, it would be quite
difficult to measure its value or to assign it a prescribed
value. Then, we assume that each firm would apply a strategy
close enough to the abstract quantity γm. In what follows
we denote by xm,∞

k := lim
t→∞

xm
k (t) ∀k ∈ K and ∀m ∈

M. Note that in the literature, VM dynamics without a
network formulation has been conducted in [15] where influ-
ence effects are incorporated into the (Susceptible-Infected-
Recovered) SIR model when all consumers in a region are
all interconnected with each other. Thus the approximation
of decoupled dynamics between regions is reasonable.

B. Revenue definition and optimization problem

As previously stated, we want to solve the allocation
problem for a given firm m ∈ M that maximizes a revenue
under the global budget (denoted by Bm) constraint when
the parameters γ−m of its competitors are fixed and known.
This is formalized as the following optimization problem
(OP). Let m ∈ M and γ−m ∈ R(M−1)K

≥0 :

max
γm∈ΓM

um(γm, γ−m):=max
γm

K∑
k=1

pmk xm,∞
k (γ)

s.t. γm
k ≥ 0, ∀k ∈ K∑K
k=1 γ

m
k ≤ Bm

(2)

where: pmk is the winning price for firm m concerning
Region k and Bm is the budget of firm m. The reasoning
behind this choice is that: the quantity pmk xm,∞

k measures
the final revenue of firm m concerning Region k where the
competition (i.e., the action of each firm) appears implicitly
(w.r.t. the strategy profile γ) through the term xm,∞

k .
The term pmk represents the total potential revenue when all

individuals in Region k subscribe to the services of firm m,
whereas the budget Bm is imposed for economical reasons



(e.g., a firm has a given budget for investing). Hence, the aim
of this paper is to solve an optimal budget allocation problem
for a given firm m ∈ M in response to the strategies γ−m of
other competitors and under a limited capacity of investment.

III. PRELIMINARY RESULTS

In order to solve the problem stated previously, we first
need to characterize the equilibrium points of the VM
dynamics. The following Lemma provides the expression of
xm,∞
k .
Lemma 1: For any ε > 0 and for all k ∈ K:

(i) If for all m ∈ M,
γm
k

δmk
< 1, then xm,∞

k = 0.

(ii) If there exists m ∈ M such that
γm
k

δmk
≥ max

(
max

n∈M, n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
,

then xm,∞
k = 1− δmk

γm
k

and ∀n ̸= m, xn,∞
k = 0. □

Proof . The system in (1) can be reformulated such as:

dx1
k

dt
=

(
1−

M∑
n=1

xn
k

)
γ1
kx

1
k(t)− δ1kx

1
k(t),

...

dxM
k

dt
=

(
1−

M∑
n=1

xn
k

)
γM
k xM

k (t)− δMk xM
k (t).

(3)

Hence ∀m ∈ M and k ∈ K, the steady state of system (3)
is given by:

Case 1 - xm,∞
k = 0, ∀m ∈ M

Case 2 - There exists m ∈ M such that
xm,∞
k = 1− δmk

γm
k

and xn,∞
k = 0 ∀n ̸= m.

The component (m,n) of the Jacobian matrix Jk of
system (3) at the steady state point is [Jk]m,n :=, (1−

M∑
i=1

xi,∞
k )γm

k − γm
k xm,∞

k − δmk if m = n

−γm
k xm,∞

k otherwise.
To ensure the stability of the equilibrium points, we use a
well-known result in [16]. Precisely, the equilibrium is stable
if and only if the real parts of the eigenvalues of the Jacobian
matrix Jk are all negative.
In Case 1, the eigenvalues of Jk are

{γ1
k − δ1k, . . . , γ

M
k − δMk }.

Hence, the steady state
∀m ∈ M, xm,∞

k = 0

is stable if and only if ∀m ∈ M,
γm
k

δmk
< 1.

In Case 2, the eigenvalues of Jk are{
γ1
k

(
δmk
γm⋆

k

− δ1k
γ1
k

)
, . . . , γm−1

k

(
δmk
γm
k

−
δm−1
k

γm−1
k

)
,

−γm
k + δmk , γm+1

k

(
δmk
γm
k

−
δm+1
k

γm+1
k

)
,

. . . , γM
k

(
δmk
γm
k

− δMk
γM
k

)}
.

Hence, the steady state

xm,∞
k = 1− δmk

γm
k

and ∀n ̸= m xn,∞
k = 0

is stable if and only if
γm
k

δmk
≥ max

(
max

n∈M, n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
.

■IV. BUDGET ALLOCATION PROBLEM FOR VM
The analysis of the optimization problem in (2) appears

to be non-trivial since it is non-convex. In this section, we
exploit the steady state analysis given in the Lemma 1 and
propose a convex reformulation of the problem in (2) that
helps us to obtain a characterization of the optimal budget
allocation solution for a given firm.

A. Convex reformulation

Let ε > 0. In what follows, for a given m ∈ M and
Km ∈ 2K, we denote by Γ̃m

ε (Km) :={
γm ∈ RK

≥0 : ∀k ∈ K, γm
k ≥ 0

∀k ∈ Km,
γm
k

δmk
≥ max

(
max

n∈M n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
,

∀k ∈ K \ Km,
γm
k

δmk
≤ max

(
max

n∈M n ̸=m

γn
k

δnk
, 1

)}
.

The following proposition reformulates the original OP in
(2) into a convex OP.

Proposition 1: Let m ∈ M, γ−m ∈ RK(M−1)
≥0 and ε > 0.

The initial OP in (2) can be reformulated such as
max

Km∈2K
Fm
ε (Km) (P ⋆)

s.t. ∃γm ∈ Γ̃m
ε (Km) :

K∑
k=1

γm
k ≤ Bm

where
Fm
ε (Km) := max

γm∈Γ̃m
ε (Km)

∑
k∈Km

pmk

(
1− δmk

γm
k

)
(4)

s.t.
K∑

k=1

γm
k ≤ Bm.

□
Remark 1: It appears that, the condition

“∃γ ∈ Γ̃m
ε (K) :

K∑
k=1

γm
k ≤ Bm′′

is verified, if and only if∑
k∈Km

δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
≤ Bm.

□
Proof . Let us denote by Hm(k) :={
γm
k ∈ R≥0 :

γm
k

δmk
≥ max

(
max

n∈M, n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)}
.

According to Lemma 1, the original OP in (2) can be
reformulated such as

max
γm

K∑
k=1

pmk

(
1− δmk

γm
k

)
1Hm(k)(γ

m
k ) (P0)

s.t.
K∑

k=1

γm
k ≤ Bm,

where 1Hm(k)(γ
m
k ) = 1 if γm

k ∈ Hm(k) and 0 otherwise.
Next, we can rewrite (P0) in the following manner by
considering all possible cases of firm m winning in region k



or not.

max
γm

∑
Km∈2K

[ ∑
k∈Km

pmk

(
1− δmk

γm
k

)]
1Γ̃m

ε (Km)(γ
m) (P1)

s.t.
K∑

k=1

γm
k ≤ Bm,

where 1Γ̃m
ε (Km)(γ

m) = 1 if γm ∈ Γ̃m
ε (Km), and 0

otherwise.
Let γm, γ̂i ∈ Γm, Km, K̂m ∈ 2K such that Km ̸= K̂m

and 1Γ̃m
ε (Km)(γ

m) = 1Γ̃m(K̂m)(γ̂
m) = 1. Then, Γ̃m(Km)∩

Γ̃m(K̂m) = ∅ and (P1) can be reformulated such as

max
Km∈2K

[
max
γm

[ ∑
k∈Km

pmk

(
1− δmk

γm
k

)]
1Γ̃m

ε (Km)(γ
m)

]
(P2)

s.t.
K∑

k=1

γm
k ≤ Bm.

Furthermore, for a given Km there exits a strategy γm ∈
Γ̃m(Km) that verifies the budget constraint if and only if the
set Km verifies∑

k∈Km

δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
≤ Bm (5)

i.e., the less restrictive action from Γ̃m(Km) verifies the
budget constraint. Hence, by putting the indicator function
into the constraint set and by adding the new constraint (5)
among the feasibility sets of Km, the problem (P2) can be
rewritten such as in (P ⋆). ■

In what follows, we establish a characterization of the
solutions of the OP in (4).

B. Computation of Fm
ε

It appears that, for a given Km ∈ 2K, the OP given in (4)
corresponds to a multi-item inventory system with limited
capacity [17]. In what follows, we consider Km ∈ 2K as
feasible w.r.t. the OP in (P ⋆) i.e., we take Km that verifies
the condition in Remark 1∑

k∈Km

δmk max

(
max

n∈M n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
≤ Bm.

The goal of the next proposition is to characterize the
solution of (4).

Proposition 2: Let m ∈ M, Km ∈ 2K, γ−m ∈ R(M−1)K
≥0

and ε > 0. The solution γm,⋆ that maximizes the OP in (4)
is given by: γm,⋆

k =

0, if k ∈ K \ Km,

δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
if k ∈ Km \ K̃m,

√
pmk δmk

Bm−
∑

ℓ∈Km\K̃m

δmℓ max

(
max

n∈M n ̸=m

(
γn
ℓ

δnℓ
+ε

)
,1+ε

)
∑

ℓ∈K̃m

√
pmℓ δmℓ

,

if k ∈ K̃m,

where
K̃m ∈ argmax

K̃

∑
k∈Km

pmk

(
1− δmk

γm,⋆
k

)
s.t.

{
K̃ ∈ 2K

m

: ∀k ∈ K̃, 0 ≤
√
pmk δmk∑

ℓ∈K̃

√
pmℓ δmℓ

×

Bm −
∑

ℓ∈Km\K̃

δmℓ min

(
max

n∈M n ̸=m

(
γn
ℓ

δnℓ
+ ε

)
, 1 + ε

) ≤

δmk max

(
max

n∈M n̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
and

∑
k∈Km

γm,⋆
k = Bm.

}
(6)
□

Proof . Since the Optimization problem is convex with
constraints that satisfy the slater’s conditions, then the OP
has a unique solution. Let us exploit the KKT conditions by
first defining the Lagrangian

Lm
Km(γm, µm, µm, λm) :=

∑
k∈Km

pmk

(
1− δmk

γm
k

)
−
∑

k∈Km

µm
k

(
γm
k − δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

))
+
∑

k∈K\Km

µm
k

(
γm
k − δmk max

(
max

n∈M n ̸=m

γn
k

δnk
, 1

))

−λm

(
K∑

k=1

γm
k −Bm

)
+

∑
k∈K\Km

µm
k
γm
k .

Let us denote by γm,⋆
k , µm,⋆

k , λm,⋆ and µm,⋆
k

the variables
that verify the first-order optimality condition.

For all k ∈ K \ Km,
∂Lm

Km

∂γm
k

= −λm,⋆ − µm,⋆
k + µm,⋆

k
= 0.

⇐⇒ µm,⋆
k = 0, µm,⋆

k
= λm,⋆ > 0 and γm,⋆

k = 0.

For all k ∈ Km,
∂Lm

Km

∂γm
k

=
pmk δmk
(γm,⋆

k )2
− λm,⋆ − µm,⋆

k = 0

⇒ γm,⋆
k =

√
pmk δmk

(λm,⋆ + µm,⋆
k )

.

Let K̃m ∈ 2K
m

(that may be empty) such that,
K̃m ∈ {K̃ ∈ 2K

m

: ∀k ∈ K̃, µm,⋆
k = 0}.

For all k ∈ Km, the first-order optimality condition is
verified when:
∀k ∈ K̃m,

γm,⋆
k =

√
pmk δmk
λm,⋆

≤ δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
and ∀k ∈ Km \ K̃m,

γm,⋆
k = δmk max

(
max

n∈M n ̸=m

[
γn
k

δnk
+ ε

]
, 1 + ε

)
.



Since λm,⋆ > 0, it follows that,
K∑

k=1

γm,⋆
k = Bm.

Hence, ∑
ℓ∈K̃m

γm,⋆
ℓ = Bm −

∑
ℓ∈Km\K̃m

γm,⋆
ℓ ,

⇒
∑

ℓ∈K̃m

√
pmℓ δmℓ√
λm,⋆

= Bm −
∑

ℓ∈Km\K̃m

γm,⋆
ℓ

⇒
√
λm,⋆ =

∑
ℓ∈K̃m

√
pmℓ δmℓ

Bm −
∑

ℓ∈Km\K̃m

γm,⋆
ℓ

.

Finally, the optimal solution of Fm
ε (Km) in (4) is obtained

w.r.t. the KKT conditions by taking the best part K̃m ∈ 2K
m

that maximise the final revenue i.e., : K̃m verifies (6). ■
Having characterized the solutions of Fm

ε (Km) in (4), we
can combine the results of the propositions 1 and 2 to get
the optimal solution of the initial allocation problem stated
in (2).

C. Computational discussion

In Proposition 1 we showed that the initial OP in (2)
In view of the characterization of the solutions of (4) given

in Proposition 2, the OP in (4) can be solved numerically
with an exhaustive search algorithm with low cost computa-
tion. Indeed, to solve the OP in (4) (for a given Km ∈ 2K),
with an exhaustive search algorithm it requires

#Km∑
#K̃m=0

(
#Km

#K̃m

)
= 2#Km

elementary operations.

Hence, the total computational cost of an exhaustive search
algorithm to solve the OP in (P ⋆) is given by

C :=

K∑
#Km=0

( K

#Km

) #Km∑
#K̃m=0

(
#Km

#K̃m

) = 3K .

V. NUMERICAL PERFORMANCE ANALYSIS

k 1 2 3 4 5 6 6 8
pk 2 · 108 2.6 · 108 2.7 · 108 3.5 · 108 6 · 108 7 · 108 8 · 108 9 · 108
δk 0.8 0.5 0.4 0.3 0.15 0.1 0.08 0.05

TABLE I
PARAMETERS

We consider M = 2 competing firms over K = 8 com-
munities. For the numerical illustration we set the following
parameters values. The budget of firm 2 is B2 = 4; the small
quantity ε in (P ⋆) is equal to 10−5; the local awards for both
firms in each region k are p1k = p2k = pk and the churn rates
are δ1k = δ2k = δk, where the values of pk and δk are given
in Table. I.

In Fig. 1 we evaluate the potential revenue of firm 1
in response to a uniform strategy from firm 2 (i.e., ∀k ∈
K, γ2,unif

k = 1/2) by varying the budget B1 and by
applying:
(i) The best reply strategy that maximizes (2);

Fig. 1. Interpolation of Firm’s 1 revenue by varying the budget B1 (with
B2 = 4). We observe that: The upper bound of firm 1’s revenue (solid line)
≥ Firm 1’s best revenue in response to firm 2’s uniform strategy (cross-
marked curve) ≥ The revenue of firm 1 by applying the best response
of a classical Colonel Blotto game (e.g., see [18]) (circled-marked line)
≥ Firm’s 1 revenue by applying uniform strategy in response to uniform
strategy from firm 2 (dotted line).

Fig. 2. By exploring 1.3 million feasible strategies γ = (γ1, γ2)
(that verifies the budget constraint for both firms), the Pareto border of

(u1(γ), u2(γ)) is represented (with ∀m ∈ {1, 2}
K∑

k=1

γm
k ≤ Bm where

B1 = 2 and B2 = 4). First, we observe that, the best revenue of firm 1 in
response to a strategy γ2 are at the bottom right of the figure (blue cloud).
This means that firm 1 will tend to have a higher revenue than firm 2 if it
decides to optimize its strategy given the optimization problem in (2).

(ii) The uniform strategy (i.e., ∀k ∈ K, γ1,unif
k = B1/K);

(iii) The Blotto’s strategy (see [18]) that is solution of
max
γ1

∑K
k=1 p

1
k1γ1

k

δ1k
≥ max

(
1 + ε,

γ2
k

δ2k
+ ε

)
s.t.

∑K
k=1 γ

1
k ≤ B1

γ1
k ≥ 0.

(iv) The upper-bound revenue of firm 1 (i.e.,
max
γ2

max
γ1

u1(γ1, γ2) s.t. ∀m ∈ {1, 2},
∑K

k=1 γ
m
k ≤ Bm).

When firm 1’s budget is greater than 3, we observe that
firm 1’s best revenue in response to firm 2’s uniform



strategy tends toward the upper bound of firm 1’s revenue.
Furthermore, when the firm 1’s budget is greater than the
half budget of firm 2, the revenue of firm 1 by applying
the best response of a classical Colonel Blotto game is
strictly lower than the firm’s 1 revenue when it applies the
best strategy in response to a uniform strategy from firm
2. Finally, when the firm’s 1 budget is greater than B2,
applying the uniform strategy by firm 1 is better (in terms
of revenue for firm 1) but still worse than other strategies.

In Fig. 2, we set the budget of firm 1 as the half
budget of firm 2. By exploring 1.3 million feasible strategies
γ = (γ1, γ2) (i.e., by discretizing the action space into
1.3 million strategies verifying ∀m ∈ {1, 2},

∑K
k=1 γ

m
k ≤

Bm) we approximate the Pareto border [19] of the couple
(u1(γ), u2(γ)). When firm 2 applies the uniform strategy,
we observe that the best reply strategy solution of (2) in
response to a uniform strategy from firm 2, is more Pareto
efficient (closer strategy from the Pareto border) than the
other strategies listed in Fig. 1.

VI. CONCLUSION

In this paper, we propose a characterization of the optimal
allocation for a given firm in response to a strategy of its
competitors. We use an SIS model to capture the spread of
a firm’s product or service across various regions and the
competition of its products with other firms. We transform
the resulting dis-continuous cost and its related OP into
a convex continuous OP with additional constraints that
must be solved for several possible cases. Numerical results
show that the resulting optimal policy outperforms classical
strategies such as those from the Colonel Blotto games
literature. Future works will study the resulting game when
all firms make rational decisions and try to maximize their
individual revenues.
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Analysis and control of a continuous-time bi-virus model. IEEE
Transactions on Automatic Control, 64(12):4891–4906, 2019.
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