
HAL Id: hal-04009988
https://hal.science/hal-04009988

Submitted on 15 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New Neighborhood Strategies for the Bi-objective
Vehicle Routing Problem with Time Windows

Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, Marie-Eléonore Kessaci

To cite this version:
Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, Marie-Eléonore Kessaci. New Neighborhood
Strategies for the Bi-objective Vehicle Routing Problem with Time Windows. MIC 2022 - Meta-
heuristics International Conference, Jul 2022, Ortigia-Syracuse, Italy. pp.45-60, �10.1007/978-3-031-
26504-4_4�. �hal-04009988�

https://hal.science/hal-04009988
https://hal.archives-ouvertes.fr


New Neighborhood Strategies for the
Bi-Objective Vehicle Routing Problem with

Time Windows

Clément Legrand1, Diego Cattaruzza2, Laetitia Jourdan1, and
Marie-Eléonore Kessaci1

1 Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
clement.legrand4.etu, laetitia.jourdan,

marie-eleonore.kessaci@univ-lille.fr
2 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

diego.cattaruzza@centralelille.fr

Abstract. Local search (LS) algorithms are efficient metaheuristics to
solve vehicle routing problems (VRP). They are often used either individ-
ually or integrated into evolutionary algorithms. For example, the Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
can be enhanced with a local search replacing the mutation step based
on a single move operator traditionally. LS are based on an efficient
exploration of the neighborhoods of solutions. Many methods have been
developed over the years to improve the efficiency of LS. In particular, the
exploration strategy of the neighborhood and the pruning of irrelevant
neighborhoods are important concepts that are frequently considered
when designing a LS. In this paper, we focus on a bi-objective vehicle
routing problem with time windows (bVRPTW) where the total travel-
ing cost and the total waiting time have to be minimized. We propose
two neighborhood strategies to improve an existing LS, efficient on the
single-objective VRPTW. First, we propose a new strategy to explore
the neighborhood of a solution. Second, we propose a new strategy for
pruning the solution neighborhood that takes into account the second
criterion of our bVRPTW namely the waiting time between customers.
Experiments on Solomon’s instances show that using LS with our neigh-
borhood strategies in the MOEA/D gives better performance. Moreover,
we can achieve some best-known solutions considering the traveling cost
minimization only.

Keywords: VRP · Multi-Objective Optimization · MOEA/D · Local
Search.

1 Introduction

Local search (LS) are known to be powerful algorithms used in evolutionary
algorithms to improve their performance [7]. Indeed, LS are able to intensify
the search by focusing on a specific region of the space. LS are based on neigh-
borhood operators that link solution together and a neighborhood exploration



2 C. Legrand et al.

strategy define how the neighbors are explored and when the exploration is
stopped. Here, we are mainly interested in the Vehicle Routing Problem with
Time Windows (VRPTW). It is a routing problem where time is considered as
an important resource and where customers must be served within a fixed time
interval. Some LS have been developed for this problem and consequently many
neighborhoods are available. For our study, we consider the same neighborhood
as defined in [16]. The operators are: relocate, swap and 2-opt∗. These opera-
tors are commonly used in routing problems, since they are simple operators
and they are able to produce a large neighborhood. However the LS steps are
time-consuming, that is why different strategies exist to speed-up the search and
reduce the time allocated to the neighborhood exploration. First LS can be ap-
plied following a probability, that is a parameter of the final algorithm. Indeed,
not applying the LS may have a positive impact since it brings more diversity
to the solutions. Second, the exploration of the neighborhood can be done en-
tirely with strategy best, or partially with strategy first. For the strategy best, all
neighbors are considered and the best one is selected. For the strategy first, the
neighbor are evaluated one by one and the exploration is stopped as soon as an
improving neighbor is found and selected. Since routing problems produce large
neighborhood pruning techniques have been designed to avoid irrelevant moves.
The most common one is probably the granular search [18]. It is based on the
idea that two distant clients have a low chance to produce a relevant arc.

In this paper, we study a Bi-objective VRPTW (bVRPTW), that is a Multi-
objective Combinatorial Optimization Problems (MoCOPs) [5]. Such problems
are frequent in the industry where decision-makers are interested in optimizing
several conflicting objectives at the same time. The objectives considered are
the total traveling cost (a classical objective in routing problems), and the total
waiting time incurred when drivers arrive before the opening of the time window.
Although this objective has not received much attention in the literature [4,25],
it is relevant when considering the transportation of people or medical goods.
Indeed, when a patient has a medical appointment, we do not want that he waits
too much. Note that, here we only consider the minimum possible waiting time
incurred by time windows. Moreover, in real problems, there is more than one
way to link two customers considering the traveled distance, and the traveling
time. However in the Solomon’s instances, that are used for our experiments,
the traveling time between two customers corresponds to the distance between
them, which is a strong hypothesis.

To solve this problem, we use MOEA/D, a Multi-Objective Evolutionary
Algorithm based on Decomposition [24] where the mutation step is replaced by a
local search. The contribution of the paper is to present neighborhood strategies
that are better adapted to the bVRPTW. First, we present a new strategy to
explore the neighborhood of bVRPTW solutions inspired from state of the art
for permutation flowshop. Second, we propose a pruning technique that considers
not only the distance between the clients, but also their respective time window.

The remaining of the paper is structured as follows. After a brief presentation
of multi-objective problems, the bVRPTW studied is described in Section 2, as



New Neighborhood Strategies for the bVRPTW 3

well as related works. Section 3 first focuses on the MOEA/D based framework
used for this study, and then presents the different mechanisms proposed to
improve the local search step. Section 4 describes the benchmark and how the
algorithms were tuned. Then our experimental protocol is presented. Section 5
compares the results obtained for each combination of the mechanisms for the
local search. Section 6 compares the results obtained with the best variant from
Section 5, and the results obtained with state of the art algorithms for the
VRPTW. Finally, Section 7 concludes and presents perspectives for this work.

2 Bi-Objective Routing Problem with Time Windows

2.1 Multi-Objective Optimization

In the following we formalize Multi-objective Combinatorial Optimization Prob-
lems (MoCOPs) [5]:

(MoCOP ) =

{
Optimize F (x) = (f1(x), f2(x), . . . , fn(x))

s.t. x ∈ D,
(1)

where n is the number of objectives (n ≥ 2), x is the vector of decision
variables, D is the (discrete) set of feasible solutions and each objective function
fi(x) has to be optimized (i.e. minimized or maximized). In multi-objective
optimization the objective function F defines a so-called objective space denoted
by Z. For each solution x ∈ D there exists a point in Z defined by F (x).

A dominance criterion is defined to compare solutions together: a solution
x dominates a solution y, in a minimization context, if and only if for all i ∈
[1 . . . n], fi(x) ≤ fi(y) and there exists j ∈ [1 . . . n] such that fj(x) < fj(y). A
partial order is defined on the solutions by x < y if and only if x dominates y.

Then a set of non dominated solutions is called a Pareto front. A feasible
solution x∗ ∈ D is called Pareto optimal if and only if there is no solution x ∈ D
such that x dominates x∗. Resolving a MoCOP involves finding all the Pareto
optimal solutions which form the Pareto optimal set. The true Pareto front of
the problem is the image of the Pareto optimal set by the objective function.

Over the years, many metaheuristics based on local search techniques or
using evolutionary algorithms [3] have been designed to solve multi-objective
problems. Moreover, many tools [14] have been developed to assess and com-
pare the performance of multi-objective algorithms. In this paper, we use the
unary hypervolume (HV) [26], which is a metric defined relatively to a reference
point Zref . This indicator evaluates accuracy, diversity, and cardinality of the
front, and it is the only indicator with this capability. Moreover, it can be used
without knowing the true Pareto front of the problem. It reflects the volume
covered by the members of a non dominated set of solutions. Thus, the larger
the hypervolume, the better the set of solutions.



4 C. Legrand et al.

2.2 bVRPTW and Related Works

The bVRPTW [19] considered in this work is defined on a graph G = (V,E),
where V = {0, 1, . . . , N} is the set of vertices and E = {(i, j) | i, j ∈ V } is the
set of arcs. It is possible to travel from i to j, incurring in a travel cost cij and a
travel time tij . Vertex 0 represents the depot where a fleet of K identical vehicles
with limited capacity Q is based. Vertices 1, . . . , N represent the customers to be
served, each one having a demand qi, a time window [ai, bi] during which service
must occur, and a service time si estimating the required time to perform the
delivery. Vehicles may arrive before ai. In that case, the driver has to wait until
ai to accomplish service incurring in a waiting time. Arriving later than bi is not
allowed. It is assumed that all inputs are nonnegative integers. We recall that a
route r is an elementary cycle on G that contains the depot (that is vertex 0)
and can be expressed as a sequence of vertexes r = (v0, v1, . . . , vR, vR+1) where
v0 = vR+1 = 0 and vertexes v1, . . . , vR are all different. The cost cr of a route r is
then given as the sum of traveling costs on arcs used to visit subsequent vertexes,
that is

∑R
i=0 cvi,vi+1. A solution x can be represented as a set of (possibly empty)

K routes, that is x = {r1, . . . , rK}, and its cost is expressed as:

f1(x) =

K∑
k=1

crk (2)

The waiting time Wi at a customer i is given as the maximum between 0 and
difference between the opening of the TW ai and the arrival time Ti at location
i, that is Wi = max{0, ai − Ti}. Note that each route r = (v0, v1, . . . , vR, vR+1)
can be associated with a feasible (i.e., consistent with traveling times and TWs)
arrival time vector Tr = (Tv0 , Tv1 , . . . , TvR , TvR+1

) and the total waiting time

Wr(Tr) on route r, with respect to Tr is given by Wr(Tr) =
∑R

i=1 Wvi . Thus
the total waiting time of a solution x = {r1, . . . , rK} on a graph G, given a time
arrival vector for each route in the solution, i.e. Tx = (Tr1 , . . . , TrK ), is given by
the following formula:

f2(x, Tx) =

K∑
k=1

Wrk(Trk) (3)

The bVRPTW calls for the determination of at most K routes such that the
traveling cost and waiting time are simultaneously minimized and the following
conditions are satisfied: (a) each route starts and ends at the depot, (b) each
customer is visited by exactly one route, (c) the sum of the demands of the
customers in any route does not exceed Q, (d) time windows are respected.
Note that a solution is represented as a permutation of the customers, and it is
evaluated with the split algorithm detailed in [12].

The VRPTW, where only the traveling cost is minimized, received many in-
terests in the literature. Nowadays, all Solomon’s instances (of size 100) can be
optimally solved using an exact algorithm [11], however the computational cost
grows exponentially with the size of the instances (e.g. it takes 64105 seconds
to solve the instance R208). In practice meta-heuristic algorithms can obtain a



New Neighborhood Strategies for the bVRPTW 5

“good enough” solution in a short time and have the capacity to solve the large-
scale complex problems, which is more suitable for applications. The NBD algo-
rithm from Nagata et al. [10] is considered as a state of the art metaheuristic for
the problem. Moreover, Schneider et al. [16] proposed different granular neigh-
borhoods to improve an existing local search. Considering the multi-objective
approaches the literature is more sparse. The second objective often minimized
in the literature is the number of vehicles. Qi et al. [13] proposed a memetic
algorithm based on MOEA/D to solve a bi-objective VRPTW. More recently,
Moradi [9] integrated a learnable evolutionary model into a pareto evolutionary
algorithm. The integration of learning mechanisms is known to be successful
in both single-objective [1] and multi-objective algorithms [8]. In the following,
we assume that the learning mechanism proposed is relevant for the studied
problem, according to previous works [8].

3 Neighborhood Strategies

3.1 The Baseline MOEA/D

The MOEA/D [24] is a genetic algorithm that approximates the Pareto front by
decomposing the multi-objective problem into several scalar objective subprob-
lems, as illustrated in Figure 1. MOEA/D is a simple algorithm that has already
been studied a lot in the literature [23], making it a good candidate for our
study. More precisely, the objective function of the i-th subproblem is defined
with a weight vector wi = (wi

1, w
i
2), such that wi

1 + wi
2 = 1, and is expressed

as: gi = wi
1 · f1 + wi

2 · f2, with f1 and f2 being the two objectives defined in
Section 2.2. In the following we consider a uniform distribution on the weight
vectors, and we assume that is enough to obtain diverse subproblems. More-
over an external archive stores nondominated solutions found during the search.
These solutions are returned once the termination criteria is reached.

However, we do not use the basic MOEA/D, but a variant where learning is
integrated. We will refer to this algorithm as A. This algorithm contains four
major mechanisms. Two of them belong to the genetic aspect (crossover and
mutation), while the two others belong to the learning aspect (injection and
extraction).

The crossover is a Partially Mapped Crossover (PMX) [21], that occurs with
probability pcro. It is performed between two solutions taken from close subprob-
lems. Among the two solutions produced only one solution is randomly selected
to undergo the injection step, which is a costly step.

The mutation, replaced here by the LS, is applied following a probability
pmut. Three neighborhood operators are applied: Relocate, Swap and 2-opt∗,
generating the same neighborhood as described in [16]. The operators are shuffled
before applying them, so that they are not always applied in the same order.
Two possible strategies are considered to explore the neighborhoods and will be
described in Section 3.2. To perform an efficient exploration of the neighbors,
we use sequences as defined in [22]. Once a local optimum has been reached for
an operator, the next one is applied and so on, until all have been applied.



6 C. Legrand et al.

In order to present the extraction and injection steps, we have to briefly
present the integrated learning mechanism. We refer to [8] for a complete de-
scription of the mechanism. The learning mechanism uses learning groups, noted
Gi. The learning group Gi is associated to the subproblem with weight vector wi.
Each group gathers knowledge that is relevant for its associated subproblem.

The learning groups are updated when the extraction step occurs. However,
to ensure that knowledge is extracted from local optima only, the extraction
can occur only when the local search has been applied during the iteration. In
addition to that, the extraction occurs with probability pext. The extraction
step is quite similar to the one performed in PILS [1]. Given one solution x =
{r1, . . . , rK}, patterns can be extracted from routes r1, . . . , rK . These patterns
are sequences of consecutive customers (not including the depot). The patterns
have a size between 2 and MaxSize, which is a parameter of the algorithm.

Finally the injection step, following a probability pinj , uses the knowledge
stored in the groups to diversify the solutions. More precisely, any solution that
undergoes the injection step will receive at most NInjected patterns from one
learning group randomly chosen. A pattern is kept only if it improves the solu-
tion. Each pattern is selected as follows. First the size of the pattern is randomly
chosen, and then it is selected among the NFrequent most frequent patterns of
the same size in the corresponding group. Figure 2 illustrates how the injection
is performed. First the pattern is formed by deleting adjacent vertices, and then
the pieces of route created are put together to form the best possible solution.

Algorithm 1 presents the framework of A. Initially the external archive is
empty as well as the learning groups. The initial population is randomly gener-
ated, and undergo the LS (still with its own probability). Then, until the termi-
nation criteria is reached, subproblems are solved one at a time. The crossover is
the first operator applied, followed by the injection and the LS. The extraction
is performed only if the LS occurred. Then neighboring subproblems have their
solutions updated if necessary, as well as the archive.

aggregation

unknown front

solution

Objective 1

Objective 2

Fig. 1. A bi-objective problem decom-
posed into five scalar problems with
MOEA/D.

Size 2

Size 3

...

Learning 

Group

Injection

Fig. 2. Injection of a frequent pattern of
size 3 in a VRPTW solution.



New Neighborhood Strategies for the bVRPTW 7

Algorithm 1: The A framework.

Input: M weight vectors w1, . . . , wM and the size m of each neighborhood.
Output: The external archive A
/* Initialisation */

1 A← ∅
2 P ← random initial population (xi for the i-th subproblem)
3 for i ∈ {1, . . . ,M} do
4 N (i)← indexes of the m closest weight vectors to wi

5 xi ← LS(xi)

6 Obji ← F (xi)
7 Gi ← ∅
/* Core of the algorithm */

8 while not stopping criteria satisfied do
9 for i ∈ {1, . . . ,M} do

10 (k, l)← select randomly two indexes from N (i)

11 xc ← Crossover(xk, xl)
12 xinj ← Injection(s, xc)
13 x′ ← LS(xinj)
14 if LS applied then
15 K ← Extraction(x′)
16 G1, . . . ,GM ← update with K
17 for j ∈ N (i) do
18 if gj(x

′) ≤ gj(x
j) then

19 xj ← x′

20 Objj ← F (x′)

21 A← Update(A, x′)

22 return A

3.2 Strategy of Exploration

In this section we give more details about the two exploration strategies consid-
ered in the local search. In routing problems, the most commonly used neigh-
borhood exploration strategy is the classical best strategy, where the best move
found by the operator is applied. That is why, we consider this strategy as the
reference. Although this exploration allows a fast convergence towards a local
optimum it requires an entire exploration of the neighborhoods before applying
a single move, that is time consuming.

Here we propose a first-best strategy, which is inspired from [15]. This method
is commonly used to solve flowshop problems. Algorithm 2 gives the pseudo-code
of the first-best procedure. The procedure requires a neighborhood operator (e.g.
Swap, Relocate or 2-opt∗), and the solution x which undergoes the LS. For the
given operator we try to insert each customer to its best location, considering
the possible moves allowed by the operator. These moves are given through the



8 C. Legrand et al.

procedure generate moves (l.7 of Algorithm 2). We repeat the process until no
more improving moves are found for any customer.

The two strategies considered, best and first-best, lead to two variants of the
algorithm A, that are respectively Abest and Afirst−best

Algorithm 2: The First−Best procedure.

Input: A solution x and a neighborhood operator N
Output: A local optimum

1 improve← True
2 while improve do
3 improve← False
4 indexes← shuffle([1 . . . N ])
5 for customer ∈ indexes do
6 x′ ← remove customer from x
7 moves← generate moves(customer, N )
8 x′ ← best solution obtained by applying a move from moves
9 if g(x′) < g(x) then

10 x← x′

11 improve← True

12 return x

3.3 Granularity and Pruning of Neighborhoods

In routing problems, many moves of a neighborhood operator can be a priori
classified as irrelevant, and thus should not be considered during the neighbor-
hood exploration. Most of the time these moves consider customers that are “far”
distant. Having a method that restricts the neighborhood to relevant moves is
interesting to spare time and resources during the LS. However, such a method
requires a way to quantify the closeness between customers. In [18], the closeness
between two customers is evaluated according to the distance between them. If
it is enough for single-objective problems, it might not be adapted for multi-
objective problems. In particular for our bi-objective VRPTW, close customers
can incur a big waiting time if they are visited in the same route. Once a metric
between customers is defined, a natural way to prune the neighborhood is to
consider moves including the δ nearest customers for the metric defined.

For our study we compare two different metrics. The first metric, called d1,
is the classical metric used in single-objective routing problems: the distance
between two customers is simply the euclidean distance between them. The
second metric, d2, is an aggregation of both objectives. More precisely, each
subproblem generated in MOEA/D, with weight vector w = (w1, w2), has its
own metric that is defined as: dw2 (u, v) = w1 · distance(u, v) + w2 · WT (u, v).
The value WT (u, v) is the waiting time incurred by going to v from u. If [au, bu]



New Neighborhood Strategies for the bVRPTW 9

(resp. [av, bv]) is the time window of customer u (resp. v), su the service time
of customer u and tuv the traveling time from u to v, then WT is expressed as
follows: WT (u, v) = max(0, av − (au + su + tuv)).

The strategies presented in this section lead to four variants of A following
the exploration strategy and the distance metrics used by the neighborhood
operators: Abest

d1
, Afirst−best

d1
, Abest

d2
, and Afirst−best

d2
.

4 Experimental Setup

4.1 The Solomon’s Benchmark

We use the Solomon’s instances [17] to evaluate the performance of the four
variants presented in Section 3. The set contains 56 instances divided into three
categories according to the type of generation used, either R (random), C (clus-
tered) or RC (random-clustered). The generation R randomly places customers
in the grid, while the generation C tends to create clusters of customers. The
generation RC mixes both generations. Each category is itself divided into two
classes, either 1XX or 2XX, according to the width of time windows. Instances
of class 1XX have wider time windows than instances of class 2XX, meaning
that instances 2XX are more constrained. All 56 instances exist in three sizes:
25, 50 and 100. However, instances of size 25 and 50 are restrictions of instances
of size 100. For our experiments instances of size 25 are discarded, since they are
too small. Although this set was originally created to evaluate single-objective
algorithms, it is used in the literature to evaluate the performance of multi-
objective algorithms [6,13,9].

4.2 Setup and Tuning

We recall that the four variants compared are: Abest
d1

, Afirst−best
d1

, Abest
d2

and

Afirst−best
d2

. Note that the algorithm Abest
d1

will be our referent algorithm during
the experiments, since it uses state of the art mechanisms.

Each algorithm is tuned to find a good setting of the parameters. To perform
the tuning, we generated 96 new instances of sizes 50 and 100, by using the
method described by Uchoa et al. [20] to mimic the Solomon’s instances.

Each variant uses 10 parameters: M , the number of subproblems considered
and m the size of the neighborhood of each subproblem. The four probabilities
associated to each mechanism: pcro, pinj , pmut, pext. The granularity parameter
δ used to prune the neighborhood during LS. The maximal size MaxSize of the
patterns extracted, and the number NInjected of patterns injected, chosen among
the NFrequent most frequent patterns. The parameters obtained after tuning are
reported in Table 1.

The experiments are performed on two computers “Intel(R) Xeon(R) CPU
E5-2687W v4 @ 3.00GHz”, with 24 cores each, in parallel (with slurm). The
variants have been implemented using the jMetalPy framework [2].



10 C. Legrand et al.

Abest
d1

Afirst−best
d1

Abest
d2

Afirst−best
d2

Parameters 50 100 50 100 50 100 50 100

M 13 68 31 50 42 15 29 15
m 4 26 8 15 6 4 11 4
δ 21 51 25 75 16 19 36 31
pcro 0.94 0.30 0.88 0.86 0.93 0.35 0.94 0.67
pmut 0.06 0.05 0.42 0.55 0.05 0.06 0.11 0.21

pext 0.50 0.96 0.48 0.60 0.55 0.90 0.86 0.83
MaxSize 2 3 5 5 2 4 2 5
pinj 0.70 0.88 0.83 0.93 0.89 0.59 0.86 0.70
NFrequent 73 165 74 135 52 175 66 115
NInjected 33 80 17 74 10 63 18 31

Table 1. The configurations returned by irace for each variant and for both sizes of
instance.

4.3 Experimental Protocol

In our experimentation, we investigate the efficiency of the mechanisms proposed,
and their impact on the quality of the solutions returned.

To that aim, all the variants use a same termination criteria, being the maxi-
mum running time allowed. It is fixed to N×6 seconds, where N is the size of the
instance. Each variant is executed 30 times on each instance of the Solomon’s
benchmark (56 instances of size 50, and 56 instances of size 100). For each
algorithm, the k-th run of an instance is executed with the same seed being
10× (k − 1). To compare the results obtained, we use the hypervolume metric,
since we do not know the true Pareto fronts of the instances. Note that, for the
experiments we use the same values to normalize the objectives of the solutions
returned by all variants. These values are simply the best and worst values for
each objective, obtained among all the executions.

To complete the results obtained, the gap between the best-known and the
best solution found by each algorithm is given, as well as the average gap over
the 30 runs. The optimal solutions are available on CVRPlib.

Finally we compare our best variant, considering the results obtained, to state
of the art single-objective algorithms: the TStw from Schneider et al. [16] and
NBD from Nagata et al. [10], but also to competitive multi-objective algorithms:
the M-MOEAD from Qi et al. [13] and the MODLEM from Moradi [9].

5 Analysis of Neighborhood Strategies

The Table 5 regroups the average hypervolume obtained on all classes of instance
for all the variants. One can see that two variants stand out from the others:
Afirst−best

d1
and Afirst−best

d2
. Meaning that the exploration strategy has a positive

impact on the performance of the algorithm, and thus it is better than the strat-
egy best. However the variant Afirst−best

d1
returns slightly higher hypervolumes

http://vrp.galgos.inf.puc-rio.br/index.php/en/


New Neighborhood Strategies for the bVRPTW 11

than Afirst−best
d2

on most instances, and clearly outperforms Afirst−best
d2

on few
instances (e.g. RC1 of size 50 and C1 of size 100). Indeed, the subproblems which
mainly focus on the waiting time will “forget” the distance between customers.
That can worsen the hypervolume since we would like to obtain the minimal
cost with the minimal possible waiting time in our Pareto front. Knowing that,
the d2 metric can be improved.

Now we analyze the gaps between the best solutions returned for the total
cost objective and the best-knowns. The gaps obtained on instances of size 100
are reported in Table 3 (R instances), Table 4 (RC instances) and Table 5 (C
instances). For each variant, the first column is the gap between the best-known
and the best solution returned, while the second column is the average gap
considering the solutions returned on all 30 runs. One can notice that the variants
Afirst−best

d1
and Afirst−best

d2
still outperform the two other variants. However, this

is the variant Afirst−best
d2

which returns the best results on most instances.

Class Size Abest
d1

Afirst−best
d1

Abest
d2

Afirst−best
d2

R1 50 0.716 0.768 0.729 0.783
R2 50 0.666 0.747 0.690 0.743
R1 100 0.773 0.842 0.720 0.833
R2 100 0.626 0.760 0.615 0.747

RC1 50 0.604 0.760 0.611 0.689
RC2 50 0.637 0.682 0.647 0.692
RC1 100 0.682 0.758 0.631 0.739
RC2 100 0.658 0.766 0.662 0.769

C1 50 0.519 0.574 0.523 0.550
C2 50 0.404 0.408 0.414 0.403
C1 100 0.881 0.945 0.846 0.882
C2 100 0.899 0.967 0.858 0.954

Table 2. Average hypervolume obtained with the four variants on all classes of instance
of both sizes.

6 Comparison with State of the Art Algorithms

Considering the results obtained in the former section, we decide to compare the
variant Afirst−best

d2
to the other state-of-the-art algorithms. Table 6 compares

the average value of the best traveling cost obtained by different algorithms on
each class of instance of size 100. We recall that, there are two single-objective
algorithms: TStw [16] and NBD [10], and two multi-objective algorithms: M-
MOEA/D [13] and MODLEM [9]. Note that MODLEM integrates a learning
mechanism, which is a learnable evolution model based on decision trees. More-
over, the algorithms that solve the VRPTW in a single-objective context, first
minimize the number of vehicles and then the traveled distance. To be fair,



12 C. Legrand et al.

Instance Size Reference Abest
d1

Afirst−best
d1

Abest
d2

Afirst−best
d2

R101 100 1637.7 0.2 0.9 0.1 0.2 0.1 0.8 0.1 0.2
R102 100 1466.6 0.7 2.0 0.5 1.0 0.4 2.0 0.0 1.0
R103 100 1208.7 2.2 4.6 1.5 3.6 2.3 4.7 1.9 3.4
R104 100 971.5 4.7 8.4 4.8 7.5 5.3 9.2 3.6 7.2
R105 100 1355.3 0.6 2.2 0.4 1.4 0.4 2.4 0.4 1.4
R106 100 1234.6 0.9 4.1 2.3 3.6 2.6 4.2 1.3 3.4
R107 100 1064.6 1.9 6.2 2.5 6.0 4.2 7.2 3.4 5.3
R108 100 932.1 4.1 8.3 5.1 7.2 5.0 9.3 4.8 7.4
R109 100 1146.9 2.7 5.7 1.6 3.1 2.1 6.2 0.9 3.6
R110 100 1068.0 4.7 7.5 3.7 5.7 6.0 9.2 3.9 6.3
R111 100 1048.7 3.7 7.3 3.1 5.6 5.1 7.5 2.5 5.8
R112 100 948.6 4.0 8.6 4.0 7.7 4.6 10.6 3.5 8.1

Mean gap 2.5 5.5 2.5 4.4 3.2 6.1 2.2 4.4

R201 100 1143.2 4.2 9.5 2.2 5.1 3.3 6.9 2.9 4.9
R202 100 1029.6 6.2 9.6 3.8 6.5 1.5 8.6 3.1 6.0
R203 100 870.8 6.0 11.4 3.4 6.3 3.6 9.0 1.7 6.4
R204 100 731.3 3.3 9.6 3.0 5.9 1.9 9.0 3.4 5.6
R205 100 949.8 3.4 7.1 0.9 4.9 3.5 7.2 0.8 4.0
R206 100 875.9 3.4 6.8 2.6 5.3 2.7 6.9 2.3 6.2
R207 100 794.0 5.0 8.9 3.7 6.0 2.7 9.2 1.8 5.9
R208 100 701.0 4.8 8.4 3.0 6.2 3.7 8.4 2.3 6.2
R209 100 854.8 2.8 7.0 2.2 4.9 3.8 6.8 1.7 4.6
R210 100 900.5 6.1 9.6 4.1 6.6 4.2 8.4 3.0 6.7
R211 100 746.7 5.5 8.6 2.4 5.2 5.4 9.9 2.5 5.9

Mean gap 4.6 8.8 2.8 5.7 3.3 8.2 2.3 5.7

Table 3. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class R. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.

we add in brackets the average number of vehicles contained in the solutions
returned by our algorithm.

Since our algorithm did not focus on the number of vehicles, it seems normal
that the average number of vehicles used in the solutions returned is much higher
than the one found by other algorithms. However, our algorithm is able to reach
competitive results on C instances.

7 Conclusion

LS are commonly used in evolutionary algorithms to improve their performance.
In this paper, we considered an LS from [16], adapted to the VRPTW, that uses
a best strategy for exploration. That strategy has been compared to a first-best
strategy inspired by ones used for other combinatorial problems like flow shops.
Through our experiments, conducted on Solomon’s instances, we showed that
the adapted first-best strategy performs better than the best strategy, on the



New Neighborhood Strategies for the bVRPTW 13

Instance Size Reference Abest
d1

Afirst−best
d1

Abest
d2

Afirst−best
d2

RC101 100 1619.8 2.4 4.0 1.5 3.2 1.3 4.2 1.6 3.2
RC102 100 1457.4 2.5 4.8 2.4 3.5 2.1 5.2 2.3 4.2
RC103 100 1258.0 7.2 10.3 7.6 9.5 7.5 11.0 7.3 9.2
RC104 100 1132.3 2.7 8.9 4.9 8.9 6.6 10.5 5.5 9.1
RC105 100 1513.7 4.6 7.0 3.4 5.5 3.3 6.7 2.4 5.3
RC106 100 1372.7 5.4 8.2 3.2 5.6 4.2 7.9 3.7 6.2
RC107 100 1207.8 6.9 11.0 5.6 10.0 8.0 12.1 4.8 10.4
RC108 100 1114.2 5.9 10.3 4.3 10.0 4.8 12.8 5.5 10.7

Mean gap 4.7 8.1 4.1 7.0 4.7 8.8 4.1 7.3

RC201 100 1261.8 2.0 7.5 2.0 4.2 2.3 6.8 1.2 3.9
RC202 100 1092.3 2.4 8.7 2.0 4.0 1.6 7.7 1.4 3.8
RC203 100 923.7 5.5 11.4 2.5 5.7 4.8 9.3 2.1 5.5
RC204 100 783.5 4.1 8.3 1.3 5.0 2.1 7.0 1.5 4.3
RC205 100 1154.0 4.9 10.7 2.3 5.7 2.6 7.6 0.5 4.6
RC206 100 1051.1 3.8 8.0 2.5 5.3 2.9 7.0 2.0 4.7
RC207 100 962.9 1.3 6.9 1.0 5.2 3.5 6.7 2.9 5.0
RC208 100 776.1 4.5 7.8 2.5 5.3 5.0 8.4 0.8 5.3

Mean gap 3.6 8.7 2.0 5.0 3.1 7.6 1.5 4.6

Table 4. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class RC. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.

Instance Size Reference Abest
d1

Afirst−best
d1

Abest
d2

Afirst−best
d2

C101 100 827.3 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0
C102 100 827.3 0.0 1.7 0.0 0.2 0.0 0.6 0.0 1.0
C103 100 826.3 0.0 7.3 0.1 5.1 0.0 12.0 0.0 9.3
C104 100 822.9 0.1 10.5 1.6 12.4 0.9 16.7 0.4 12.1
C105 100 827.3 0.0 2.3 0.0 0.0 0.0 0.9 0.0 1.0
C106 100 827.3 0.0 1.4 0.0 0.0 0.0 1.0 0.0 1.4
C107 100 827.3 0.0 2.2 0.0 0.2 0.0 3.0 0.0 2.4
C108 100 827.3 0.0 1.7 0.0 0.6 0.0 5.5 0.0 2.7
C109 100 827.3 0.0 2.7 0.0 1.5 0.0 5.8 0.0 4.4

Mean gap 0.0 3.4 0.2 2.2 0.1 5.1 0.0 3.8

C201 100 589.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C202 100 589.1 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0
C203 100 588.7 0.0 1.4 0.0 0.8 0.0 1.9 0.0 1.4
C204 100 588.1 0.6 5.2 0.0 2.1 1.1 7.2 0.0 2.5
C205 100 586.4 0.0 0.7 0.0 0.1 0.0 0.4 0.0 0.1
C206 100 586.0 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0
C207 100 585.8 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0
C208 100 585.8 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0

Mean gap 0.1 1.0 0.0 0.4 0.1 1.4 0.0 0.5

Table 5. Gaps (%) obtained for the total cost objective, relatively to the best-known
on instances of class C. For each algorithm, the first column gives the gap with the
best solution found. The second column contains the average gap over the 30 runs.



14 C. Legrand et al.

Class NBD [10] TStw [16] M-MOEA/D [13] MODLEM [9] Afirst−best
d2

R1 1210.34 (11.9) 1220.83 (11.9) 1216.73 (12.4) 1210.40 (11.9) 1196.22 (13.8)
R2 951.03 (2.7) 959.86 (2.7) 924.18 (3.1) 916.95 (4.6) 892.85 (5.0)
RC1 1384.16 (11.5) 1392.54 (11.5) 1390.35 (11.9) 1384.17 (11.5) 1387.11 (13.8)
RC2 1119.24 (3.3) 1140.13 (3.3) 1119.93 (3.4) 1074.67 (4.0) 1015.76 (5.8)
C1 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 828.38 (10.0) 827.02 (10.0)
C2 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 589.86 (3.0) 587.38 (3.0)

Table 6. Comparison of the average of the best-traveling cost obtained on instances
of size 100 between four state-of-the-art algorithms and our algorithm Afirst−best

d2
. The

corresponding average number of vehicles used is given in brackets.

bVRPTW. We also investigated a new method for pruning the solution neigh-
borhood taking into account the second criterion of our bVRPTW, being the
waiting times. Our pruning method is able to reach similar results to the orig-
inal one, but with smaller neighborhoods. The experimental results show also
the benefit of our pruning method to reach better solutions when considering
the first criterion only. The performance compared to state-of-the-art algorithms
for both single- and bi-objective VRPTW shows the interest of our new neigh-
borhood strategies. Future works will investigate the neighborhood exploration
strategy for other variants of routing problems. Moreover, we will analyze the
impact of the weights of our pruning method on the Pareto front.

References

1. Arnold, F., Santana, Í., Sörensen, K., and Vidal, T. Pils: Exploring high-
order neighborhoods by pattern mining and injection. Pattern Recognition (2021).

2. Benitez-Hidalgo, A., Nebro, A. J., Garcia-Nieto, J., Oregi, I., and
Del Ser, J. jmetalpy: A python framework for multi-objective optimization with
metaheuristics. Swarm and Evolutionary Computation 51 (2019), 100598.

3. Blot, A., Marmion, M., and Jourdan, L. Survey and unification of local search
techniques in metaheuristics for multi-objective combinatorial optimisation. J.
Heuristics 24, 6 (2018), 853–877.

4. Castro-Gutierrez, J., Landa-Silva, D., and Pérez, J. M. Nature of real-
world multi-objective vehicle routing with evolutionary algorithms. In 2011 IEEE
International Conference on Systems, Man, and Cybernetics (2011), IEEE.

5. Coello, C. A. C., Dhaenens, C., and Jourdan, L. Multi-objective combinato-
rial optimization: Problematic and context. In Advances in multi-objective nature
inspired computing. Springer, 2010, pp. 1–21.

6. Ghoseiri, K., and Ghannadpour, S. F. Multi-objective vehicle routing problem
with time windows using goal programming and genetic algorithm. Applied Soft
Computing 10, 4 (2010), 1096–1107.

7. Knowles, J. D. Local-search and hybrid evolutionary algorithms for Pareto opti-
mization. PhD thesis, University of Reading Reading, 2002.

8. Legrand, C., Cattaruzza, D., Jourdan, L., and Kessaci, M.-E. Enhancing
moea/d with learning: Application to routing problems with time windows. In
Proceedings of the GECCO companion (2022).



New Neighborhood Strategies for the bVRPTW 15

9. Moradi, B. The new optimization algorithm for the vehicle routing problem
with time windows using multi-objective discrete learnable evolution model. Soft
Computing 24, 9 (2020), 6741–6769.

10. Nagata, Y., Bräysy, O., and Dullaert, W. A penalty-based edge assembly
memetic algorithm for the vehicle routing problem with time windows. Computers
& operations research 37, 4 (2010), 724–737.

11. Pecin, D., Contardo, C., Desaulniers, G., and Uchoa, E. New enhancements
for the exact solution of the vehicle routing problem with time windows. INFORMS
Journal on Computing 29, 3 (2017), 489–502.

12. Prins, C. A simple and effective evolutionary algorithm for the vehicle routing
problem. Computers & operations research 31, 12 (2004), 1985–2002.

13. Qi, Y., Hou, Z., Li, H., Huang, J., and Li, X. A decomposition based memetic
algorithm for multi-objective vehicle routing problem with time windows. Com-
puters & Operations Research 62 (2015), 61–77.

14. Riquelme, N., Von Lücken, C., and Baran, B. Performance metrics in multi-
objective optimization. In 2015 Latin American computing conference (CLEI)
(2015), IEEE, pp. 1–11.

15. Ruiz, R., and Stützle, T. A simple and effective iterated greedy algorithm for
the permutation flowshop scheduling problem. European journal of operational
research 177, 3 (2007), 2033–2049.

16. Schneider, M., Schwahn, F., and Vigo, D. Designing granular solution meth-
ods for routing problems with time windows. European Journal of Operational
Research 263, 2 (2017), 493–509.

17. Solomon, M. M. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations research 35, 2 (1987), 254–265.

18. Toth, P., and Vigo, D. The granular tabu search and its application to the
vehicle-routing problem. Informs Journal on computing 15, 4 (2003), 333–346.

19. Toth, P., and Vigo, D. Vehicle routing: problems, methods, and applications.
SIAM, 2014.

20. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian,
A. New benchmark instances for the capacitated vehicle routing problem. European
Journal of Operational Research 257, 3 (2017), 845–858.

21. Varun Kumar, S., and Panneerselvam, R. A study of crossover operators
for genetic algorithms to solve vrp and its variants and new sinusoidal motion
crossover operator. International Journal of Computational Intelligence Research
13, 7 (2017), 1717–1733.

22. Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. A hybrid genetic
algorithm with adaptive diversity management for a large class of vehicle routing
problems with time-windows. Computers & operations research 40, 1 (2013).

23. Xu, Q., Xu, Z., and Ma, T. A survey of multiobjective evolutionary algorithms
based on decomposition: variants, challenges and future directions. IEEE Access
8 (2020), 41588–41614.

24. Zhang, Q., and Li, H. Moea/d: A multiobjective evolutionary algorithm based
on decomposition. IEEE Transactions on evolutionary computation 11, 6 (2007).

25. Zhou, Y., and Wang, J. A local search-based multiobjective optimization algo-
rithm for multiobjective vehicle routing problem with time windows. IEEE Systems
Journal 9, 3 (2014), 1100–1113.

26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and Da Fonseca,
V. G. Performance assessment of multiobjective optimizers: An analysis and re-
view. IEEE Transactions on evolutionary computation 7, 2 (2003), 117–132.


	New Neighborhood Strategies for the Bi-Objective Vehicle Routing Problem with Time Windows

