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Local search (LS) algorithms are efficient metaheuristics to solve vehicle routing problems (VRP). They are often used either individually or integrated into evolutionary algorithms. For example, the Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) can be enhanced with a local search replacing the mutation step based on a single move operator traditionally. LS are based on an efficient exploration of the neighborhoods of solutions. Many methods have been developed over the years to improve the efficiency of LS. In particular, the exploration strategy of the neighborhood and the pruning of irrelevant neighborhoods are important concepts that are frequently considered when designing a LS. In this paper, we focus on a bi-objective vehicle routing problem with time windows (bVRPTW) where the total traveling cost and the total waiting time have to be minimized. We propose two neighborhood strategies to improve an existing LS, efficient on the single-objective VRPTW. First, we propose a new strategy to explore the neighborhood of a solution. Second, we propose a new strategy for pruning the solution neighborhood that takes into account the second criterion of our bVRPTW namely the waiting time between customers. Experiments on Solomon's instances show that using LS with our neighborhood strategies in the MOEA/D gives better performance. Moreover, we can achieve some best-known solutions considering the traveling cost minimization only.

Introduction

Local search (LS) are known to be powerful algorithms used in evolutionary algorithms to improve their performance [START_REF] Knowles | Local-search and hybrid evolutionary algorithms for Pareto optimization[END_REF]. Indeed, LS are able to intensify the search by focusing on a specific region of the space. LS are based on neighborhood operators that link solution together and a neighborhood exploration strategy define how the neighbors are explored and when the exploration is stopped. Here, we are mainly interested in the Vehicle Routing Problem with Time Windows (VRPTW). It is a routing problem where time is considered as an important resource and where customers must be served within a fixed time interval. Some LS have been developed for this problem and consequently many neighborhoods are available. For our study, we consider the same neighborhood as defined in [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF]. The operators are: relocate, swap and 2-opt * . These operators are commonly used in routing problems, since they are simple operators and they are able to produce a large neighborhood. However the LS steps are time-consuming, that is why different strategies exist to speed-up the search and reduce the time allocated to the neighborhood exploration. First LS can be applied following a probability, that is a parameter of the final algorithm. Indeed, not applying the LS may have a positive impact since it brings more diversity to the solutions. Second, the exploration of the neighborhood can be done entirely with strategy best, or partially with strategy first. For the strategy best, all neighbors are considered and the best one is selected. For the strategy first, the neighbor are evaluated one by one and the exploration is stopped as soon as an improving neighbor is found and selected. Since routing problems produce large neighborhood pruning techniques have been designed to avoid irrelevant moves. The most common one is probably the granular search [START_REF] Toth | The granular tabu search and its application to the vehicle-routing problem[END_REF]. It is based on the idea that two distant clients have a low chance to produce a relevant arc.

In this paper, we study a Bi-objective VRPTW (bVRPTW), that is a Multiobjective Combinatorial Optimization Problems (MoCOPs) [5]. Such problems are frequent in the industry where decision-makers are interested in optimizing several conflicting objectives at the same time. The objectives considered are the total traveling cost (a classical objective in routing problems), and the total waiting time incurred when drivers arrive before the opening of the time window. Although this objective has not received much attention in the literature [START_REF] Castro-Gutierrez | Nature of realworld multi-objective vehicle routing with evolutionary algorithms[END_REF][START_REF] Zhou | A local search-based multiobjective optimization algorithm for multiobjective vehicle routing problem with time windows[END_REF], it is relevant when considering the transportation of people or medical goods. Indeed, when a patient has a medical appointment, we do not want that he waits too much. Note that, here we only consider the minimum possible waiting time incurred by time windows. Moreover, in real problems, there is more than one way to link two customers considering the traveled distance, and the traveling time. However in the Solomon's instances, that are used for our experiments, the traveling time between two customers corresponds to the distance between them, which is a strong hypothesis.

To solve this problem, we use MOEA/D, a Multi-Objective Evolutionary Algorithm based on Decomposition [START_REF] Zhang | Moea/d: A multiobjective evolutionary algorithm based on decomposition[END_REF] where the mutation step is replaced by a local search. The contribution of the paper is to present neighborhood strategies that are better adapted to the bVRPTW. First, we present a new strategy to explore the neighborhood of bVRPTW solutions inspired from state of the art for permutation flowshop. Second, we propose a pruning technique that considers not only the distance between the clients, but also their respective time window.

The remaining of the paper is structured as follows. After a brief presentation of multi-objective problems, the bVRPTW studied is described in Section 2, as well as related works. Section 3 first focuses on the MOEA/D based framework used for this study, and then presents the different mechanisms proposed to improve the local search step. Section 4 describes the benchmark and how the algorithms were tuned. Then our experimental protocol is presented. Section 5 compares the results obtained for each combination of the mechanisms for the local search. Section 6 compares the results obtained with the best variant from Section 5, and the results obtained with state of the art algorithms for the VRPTW. Finally, Section 7 concludes and presents perspectives for this work.

2 Bi-Objective Routing Problem with Time Windows

Multi-Objective Optimization

In the following we formalize Multi-objective Combinatorial Optimization Problems (MoCOPs) [5]:

(M oCOP ) = Optimize F (x) = (f 1 (x), f 2 (x), . . . , f n (x)) s.t. x ∈ D, (1) 
where n is the number of objectives (n ≥ 2), x is the vector of decision variables, D is the (discrete) set of feasible solutions and each objective function f i (x) has to be optimized (i.e. minimized or maximized). In multi-objective optimization the objective function F defines a so-called objective space denoted by Z. For each solution x ∈ D there exists a point in Z defined by F (x).

A dominance criterion is defined to compare solutions together: a solution x dominates a solution y, in a minimization context, if and only if for all i ∈ [1 . . . n], f i (x) ≤ f i (y) and there exists j ∈ [1 . . . n] such that f j (x) < f j (y). A partial order is defined on the solutions by x < y if and only if x dominates y.

Then a set of non dominated solutions is called a Pareto front. A feasible solution x * ∈ D is called Pareto optimal if and only if there is no solution x ∈ D such that x dominates x * . Resolving a MoCOP involves finding all the Pareto optimal solutions which form the Pareto optimal set. The true Pareto front of the problem is the image of the Pareto optimal set by the objective function.

Over the years, many metaheuristics based on local search techniques or using evolutionary algorithms [START_REF] Blot | Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation[END_REF] have been designed to solve multi-objective problems. Moreover, many tools [START_REF] Riquelme | Performance metrics in multiobjective optimization[END_REF] have been developed to assess and compare the performance of multi-objective algorithms. In this paper, we use the unary hypervolume (HV) [START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF], which is a metric defined relatively to a reference point Z ref . This indicator evaluates accuracy, diversity, and cardinality of the front, and it is the only indicator with this capability. Moreover, it can be used without knowing the true Pareto front of the problem. It reflects the volume covered by the members of a non dominated set of solutions. Thus, the larger the hypervolume, the better the set of solutions.

bVRPTW and Related Works

The bVRPTW [START_REF] Toth | Vehicle routing: problems, methods, and applications[END_REF] considered in this work is defined on a graph G = (V, E), where V = {0, 1, . . . , N } is the set of vertices and E = {(i, j) | i, j ∈ V } is the set of arcs. It is possible to travel from i to j, incurring in a travel cost c ij and a travel time t ij . Vertex 0 represents the depot where a fleet of K identical vehicles with limited capacity Q is based. Vertices 1, . . . , N represent the customers to be served, each one having a demand q i , a time window [a i , b i ] during which service must occur, and a service time s i estimating the required time to perform the delivery. Vehicles may arrive before a i . In that case, the driver has to wait until a i to accomplish service incurring in a waiting time. Arriving later than b i is not allowed. It is assumed that all inputs are nonnegative integers. We recall that a route r is an elementary cycle on G that contains the depot (that is vertex 0) and can be expressed as a sequence of vertexes r = (v 0 , v 1 , . . . , v R , v R+1 ) where v 0 = v R+1 = 0 and vertexes v 1 , . . . , v R are all different. The cost c r of a route r is then given as the sum of traveling costs on arcs used to visit subsequent vertexes, that is R i=0 c vi,vi+1 . A solution x can be represented as a set of (possibly empty) K routes, that is x = {r 1 , . . . , r K }, and its cost is expressed as:

f 1 (x) = K k=1 c r k (2) 
The waiting time W i at a customer i is given as the maximum between 0 and difference between the opening of the TW a i and the arrival time

T i at location i, that is W i = max{0, a i -T i }. Note that each route r = (v 0 , v 1 , . . . , v R , v R+1
) can be associated with a feasible (i.e., consistent with traveling times and TWs) arrival time vector T r = (T v0 , T v1 , . . . , T v R , T v R+1 ) and the total waiting time W r (T r ) on route r, with respect to T r is given by W r (T r ) = R i=1 W vi . Thus the total waiting time of a solution x = {r 1 , . . . , r K } on a graph G, given a time arrival vector for each route in the solution, i.e. T x = (T r1 , . . . , T r K ), is given by the following formula:

f 2 (x, T x ) = K k=1 W r k (T r k ) (3) 
The bVRPTW calls for the determination of at most K routes such that the traveling cost and waiting time are simultaneously minimized and the following conditions are satisfied: (a) each route starts and ends at the depot, (b) each customer is visited by exactly one route, (c) the sum of the demands of the customers in any route does not exceed Q, (d) time windows are respected. Note that a solution is represented as a permutation of the customers, and it is evaluated with the split algorithm detailed in [START_REF] Prins | A simple and effective evolutionary algorithm for the vehicle routing problem[END_REF].

The VRPTW, where only the traveling cost is minimized, received many interests in the literature. Nowadays, all Solomon's instances (of size 100) can be optimally solved using an exact algorithm [START_REF] Pecin | New enhancements for the exact solution of the vehicle routing problem with time windows[END_REF], however the computational cost grows exponentially with the size of the instances (e.g. it takes 64105 seconds to solve the instance R208). In practice meta-heuristic algorithms can obtain a "good enough" solution in a short time and have the capacity to solve the largescale complex problems, which is more suitable for applications. The NBD algorithm from Nagata et al. [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows[END_REF] is considered as a state of the art metaheuristic for the problem. Moreover, Schneider et al. [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF] proposed different granular neighborhoods to improve an existing local search. Considering the multi-objective approaches the literature is more sparse. The second objective often minimized in the literature is the number of vehicles. Qi et al. [START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF] proposed a memetic algorithm based on MOEA/D to solve a bi-objective VRPTW. More recently, Moradi [START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF] integrated a learnable evolutionary model into a pareto evolutionary algorithm. The integration of learning mechanisms is known to be successful in both single-objective [START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF] and multi-objective algorithms [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF]. In the following, we assume that the learning mechanism proposed is relevant for the studied problem, according to previous works [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF].

3 Neighborhood Strategies

The Baseline MOEA/D

The MOEA/D [START_REF] Zhang | Moea/d: A multiobjective evolutionary algorithm based on decomposition[END_REF] is a genetic algorithm that approximates the Pareto front by decomposing the multi-objective problem into several scalar objective subproblems, as illustrated in Figure 1. MOEA/D is a simple algorithm that has already been studied a lot in the literature [START_REF] Xu | A survey of multiobjective evolutionary algorithms based on decomposition: variants, challenges and future directions[END_REF], making it a good candidate for our study. More precisely, the objective function of the i-th subproblem is defined with a weight vector w i = (w i 1 , w i 2 ), such that w i 1 + w i 2 = 1, and is expressed as:

g i = w i 1 • f 1 + w i 2 • f 2 ,
with f 1 and f 2 being the two objectives defined in Section 2.2. In the following we consider a uniform distribution on the weight vectors, and we assume that is enough to obtain diverse subproblems. Moreover an external archive stores nondominated solutions found during the search. These solutions are returned once the termination criteria is reached.

However, we do not use the basic MOEA/D, but a variant where learning is integrated. We will refer to this algorithm as A. This algorithm contains four major mechanisms. Two of them belong to the genetic aspect (crossover and mutation), while the two others belong to the learning aspect (injection and extraction).

The crossover is a Partially Mapped Crossover (PMX) [START_REF] Varun Kumar | A study of crossover operators for genetic algorithms to solve vrp and its variants and new sinusoidal motion crossover operator[END_REF], that occurs with probability p cro . It is performed between two solutions taken from close subproblems. Among the two solutions produced only one solution is randomly selected to undergo the injection step, which is a costly step.

The mutation, replaced here by the LS, is applied following a probability p mut . Three neighborhood operators are applied: Relocate, Swap and 2-opt * , generating the same neighborhood as described in [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF]. The operators are shuffled before applying them, so that they are not always applied in the same order. Two possible strategies are considered to explore the neighborhoods and will be described in Section 3.2. To perform an efficient exploration of the neighbors, we use sequences as defined in [START_REF] Vidal | A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows[END_REF]. Once a local optimum has been reached for an operator, the next one is applied and so on, until all have been applied.

In order to present the extraction and injection steps, we have to briefly present the integrated learning mechanism. We refer to [START_REF] Legrand | Enhancing moea/d with learning: Application to routing problems with time windows[END_REF] for a complete description of the mechanism. The learning mechanism uses learning groups, noted G i . The learning group G i is associated to the subproblem with weight vector w i . Each group gathers knowledge that is relevant for its associated subproblem.

The learning groups are updated when the extraction step occurs. However, to ensure that knowledge is extracted from local optima only, the extraction can occur only when the local search has been applied during the iteration. In addition to that, the extraction occurs with probability p ext . The extraction step is quite similar to the one performed in PILS [START_REF] Arnold | Exploring highorder neighborhoods by pattern mining and injection[END_REF]. Given one solution x = {r 1 , . . . , r K }, patterns can be extracted from routes r 1 , . . . , r K . These patterns are sequences of consecutive customers (not including the depot). The patterns have a size between 2 and M axSize, which is a parameter of the algorithm.

Finally the injection step, following a probability p inj , uses the knowledge stored in the groups to diversify the solutions. More precisely, any solution that undergoes the injection step will receive at most N Injected patterns from one learning group randomly chosen. A pattern is kept only if it improves the solution. Each pattern is selected as follows. First the size of the pattern is randomly chosen, and then it is selected among the N F requent most frequent patterns of the same size in the corresponding group. Figure 2 illustrates how the injection is performed. First the pattern is formed by deleting adjacent vertices, and then the pieces of route created are put together to form the best possible solution.

Algorithm 1 presents the framework of A. Initially the external archive is empty as well as the learning groups. The initial population is randomly generated, and undergo the LS (still with its own probability). Then, until the termination criteria is reached, subproblems are solved one at a time. The crossover is the first operator applied, followed by the injection and the LS. The extraction is performed only if the LS occurred. Then neighboring subproblems have their solutions updated if necessary, as well as the archive. 

K ← Extraction(x ′ ) 16 G1, . . . , GM ← update with K 17 for j ∈ N (i) do 18 if gj(x ′ ) ≤ gj(x j ) then 19 x j ← x ′ 20 Obj j ← F (x ′ ) 21 A ← U pdate(A, x ′ ) 22 return A

Strategy of Exploration

In this section we give more details about the two exploration strategies considered in the local search. In routing problems, the most commonly used neighborhood exploration strategy is the classical best strategy, where the best move found by the operator is applied. That is why, we consider this strategy as the reference. Although this exploration allows a fast convergence towards a local optimum it requires an entire exploration of the neighborhoods before applying a single move, that is time consuming.

Here we propose a first-best strategy, which is inspired from [START_REF] Ruiz | A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem[END_REF]. This method is commonly used to solve flowshop problems. Algorithm 2 gives the pseudo-code of the first-best procedure. The procedure requires a neighborhood operator (e.g. Swap, Relocate or 2-opt * ), and the solution x which undergoes the LS. For the given operator we try to insert each customer to its best location, considering the possible moves allowed by the operator. These moves are given through the procedure generate moves (l.7 of Algorithm 2). We repeat the process until no more improving moves are found for any customer.

The two strategies considered, best and first-best, lead to two variants of the algorithm A, that are respectively A best and A f irst-best Algorithm 2: The F irst -Best procedure. 

Granularity and Pruning of Neighborhoods

In routing problems, many moves of a neighborhood operator can be a priori classified as irrelevant, and thus should not be considered during the neighborhood exploration. Most of the time these moves consider customers that are "far" distant. Having a method that restricts the neighborhood to relevant moves is interesting to spare time and resources during the LS. However, such a method requires a way to quantify the closeness between customers. In [START_REF] Toth | The granular tabu search and its application to the vehicle-routing problem[END_REF], the closeness between two customers is evaluated according to the distance between them. If it is enough for single-objective problems, it might not be adapted for multiobjective problems. In particular for our bi-objective VRPTW, close customers can incur a big waiting time if they are visited in the same route. Once a metric between customers is defined, a natural way to prune the neighborhood is to consider moves including the δ nearest customers for the metric defined.

For our study we compare two different metrics. The first metric, called d 1 , is the classical metric used in single-objective routing problems: the distance between two customers is simply the euclidean distance between them. The second metric, d 2 , is an aggregation of both objectives. More precisely, each subproblem generated in MOEA/D, with weight vector w = (w 1 , w 2 ), has its own metric that is defined as:

d w 2 (u, v) = w 1 • distance(u, v) + w 2 • W T (u, v). The value W T (u, v) is the waiting time incurred by going to v from u. If [a u , b u ] (resp. [a v , b v ]
) is the time window of customer u (resp. v), s u the service time of customer u and t uv the traveling time from u to v, then W T is expressed as follows: W T (u, v) = max(0, a v -(a u + s u + t uv )).

The strategies presented in this section lead to four variants of A following the exploration strategy and the distance metrics used by the neighborhood operators: A best d1 , A f irst-best d1 , A best d2 , and A f irst-best d2 .

4 Experimental Setup

The Solomon's Benchmark

We use the Solomon's instances [START_REF] Solomon | Algorithms for the vehicle routing and scheduling problems with time window constraints[END_REF] to evaluate the performance of the four variants presented in Section 3. The set contains 56 instances divided into three categories according to the type of generation used, either R (random), C (clustered) or RC (random-clustered). The generation R randomly places customers in the grid, while the generation C tends to create clusters of customers. The generation RC mixes both generations. Each category is itself divided into two classes, either 1XX or 2XX, according to the width of time windows. Instances of class 1XX have wider time windows than instances of class 2XX, meaning that instances 2XX are more constrained. All 56 instances exist in three sizes: 25, 50 and 100. However, instances of size 25 and 50 are restrictions of instances of size 100. For our experiments instances of size 25 are discarded, since they are too small. Although this set was originally created to evaluate single-objective algorithms, it is used in the literature to evaluate the performance of multiobjective algorithms [START_REF] Ghoseiri | Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm[END_REF][START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF][START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF].

Setup and Tuning

We recall that the four variants compared are:

A best d1 , A f irst-best d1 , A best d2 and A f irst-best d2
. Note that the algorithm A best d1 will be our referent algorithm during the experiments, since it uses state of the art mechanisms.

Each algorithm is tuned to find a good setting of the parameters. To perform the tuning, we generated 96 new instances of sizes 50 and 100, by using the method described by Uchoa et al. [START_REF] Uchoa | New benchmark instances for the capacitated vehicle routing problem[END_REF] to mimic the Solomon's instances.

Each variant uses 10 parameters: M , the number of subproblems considered and m the size of the neighborhood of each subproblem. The four probabilities associated to each mechanism: p cro , p inj , p mut , p ext . The granularity parameter δ used to prune the neighborhood during LS. The maximal size M axSize of the patterns extracted, and the number N Injected of patterns injected, chosen among the N F requent most frequent patterns. The parameters obtained after tuning are reported in Table 1.

The experiments are performed on two computers "Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz", with 24 cores each, in parallel (with slurm). The variants have been implemented using the jMetalPy framework [START_REF] Benitez-Hidalgo | jmetalpy: A python framework for multi-objective optimization with metaheuristics[END_REF]. 1. The configurations returned by irace for each variant and for both sizes of instance.

A best d 1 A f irst-best d 1 A best d 2 A f irst-

Experimental Protocol

In our experimentation, we investigate the efficiency of the mechanisms proposed, and their impact on the quality of the solutions returned.

To that aim, all the variants use a same termination criteria, being the maximum running time allowed. It is fixed to N ×6 seconds, where N is the size of the instance. Each variant is executed 30 times on each instance of the Solomon's benchmark (56 instances of size 50, and 56 instances of size 100). For each algorithm, the k-th run of an instance is executed with the same seed being 10 × (k -1). To compare the results obtained, we use the hypervolume metric, since we do not know the true Pareto fronts of the instances. Note that, for the experiments we use the same values to normalize the objectives of the solutions returned by all variants. These values are simply the best and worst values for each objective, obtained among all the executions.

To complete the results obtained, the gap between the best-known and the best solution found by each algorithm is given, as well as the average gap over the 30 runs. The optimal solutions are available on CVRPlib.

Finally we compare our best variant, considering the results obtained, to state of the art single-objective algorithms: the T S tw from Schneider et al. [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF] and NBD from Nagata et al. [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows[END_REF], but also to competitive multi-objective algorithms: the M-MOEAD from Qi et al. [START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF] and the MODLEM from Moradi [START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF].

Analysis of Neighborhood Strategies

The Table 5 regroups the average hypervolume obtained on all classes of instance for all the variants. One can see that two variants stand out from the others: A f irst-best d1 and A f irst-best d2 . Meaning that the exploration strategy has a positive impact on the performance of the algorithm, and thus it is better than the strategy best. However the variant A f irst-best d1 returns slightly higher hypervolumes than A f irst-best d2 on most instances, and clearly outperforms A f irst-best d2 on few instances (e.g. RC1 of size 50 and C1 of size 100). Indeed, the subproblems which mainly focus on the waiting time will "forget" the distance between customers. That can worsen the hypervolume since we would like to obtain the minimal cost with the minimal possible waiting time in our Pareto front. Knowing that, the d 2 metric can be improved.

Now we analyze the gaps between the best solutions returned for the total cost objective and the best-knowns. The gaps obtained on instances of size 100 are reported in Table 3 (R instances), Table 4 (RC instances) and Table 5 (C instances). For each variant, the first column is the gap between the best-known and the best solution returned, while the second column is the average gap considering the solutions returned on all 30 runs. One can notice that the variants A f irst-best d1 and A f irst-best d2 still outperform the two other variants. However, this is the variant A f irst-best d2 which returns the best results on most instances. 

Class Size A best d 1 A f irst-best d 1 A best d 2 A f irst-

Comparison with State of the Art Algorithms

Considering the results obtained in the former section, we decide to compare the variant A f irst-best d2 to the other state-of-the-art algorithms. Table 6 compares the average value of the best traveling cost obtained by different algorithms on each class of instance of size 100. We recall that, there are two single-objective algorithms: TS tw [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF] and NBD [START_REF] Nagata | A penalty-based edge assembly memetic algorithm for the vehicle routing problem with time windows[END_REF], and two multi-objective algorithms: M-MOEA/D [START_REF] Qi | A decomposition based memetic algorithm for multi-objective vehicle routing problem with time windows[END_REF] and MODLEM [START_REF] Moradi | The new optimization algorithm for the vehicle routing problem with time windows using multi-objective discrete learnable evolution model[END_REF]. Note that MODLEM integrates a learning mechanism, which is a learnable evolution model based on decision trees. Moreover, the algorithms that solve the VRPTW in a single-objective context, first minimize the number of vehicles and then the traveled distance. To be fair, we add in brackets the average number of vehicles contained in the solutions returned by our algorithm. Since our algorithm did not focus on the number of vehicles, it seems normal that the average number of vehicles used in the solutions returned is much higher than the one found by other algorithms. However, our algorithm is able to reach competitive results on C instances.

Instance Size Reference A best d 1 A f irst-best d 1 A best d 2 A f irst-

Conclusion

LS are commonly used in evolutionary algorithms to improve their performance. In this paper, we considered an LS from [START_REF] Schneider | Designing granular solution methods for routing problems with time windows[END_REF], adapted to the VRPTW, that uses a best strategy for exploration. That strategy has been compared to a first-best strategy inspired by ones used for other combinatorial problems like flow shops. Through our experiments, conducted on Solomon's instances, we showed that the adapted first-best strategy performs better than the best strategy, on the bVRPTW. We also investigated a new method for pruning the solution neighborhood taking into account the second criterion of our bVRPTW, being the waiting times. Our pruning method is able to reach similar results to the original one, but with smaller neighborhoods. The experimental results show also the benefit of our pruning method to reach better solutions when considering the first criterion only. The performance compared to state-of-the-art algorithms for both single-and bi-objective VRPTW shows the interest of our new neighborhood strategies. Future works will investigate the neighborhood exploration strategy for other variants of routing problems. Moreover, we will analyze the impact of the weights of our pruning method on the Pareto front.

Fig. 1 .Fig. 2 .Algorithm 1 : 4 N 6
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Table 6 .

 6 R1 1210.34 (11.9) 1220.83 (11.9) 1216.73 (12.4) 1210.40 (11.9) 1196.22 (13.Comparison of the average of the best-traveling cost obtained on instances of size 100 between four state-of-the-art algorithms and our algorithm A f irst-best d 2. The corresponding average number of vehicles used is given in brackets.

	Instance Size Reference	A best d 1	A f irst-best d 1	A best d 2	A f irst-best d 2
	RC101	100 1619.8	2.4	4.0	1.5	3.2	1.3	4.2	1.6	3.2
	RC102	100 1457.4	2.5	4.8	2.4	3.5	2.1	5.2	2.3	4.2
	RC103	100 1258.0	7.2	10.3	7.6	9.5	7.5	11.0	7.3	9.2
	RC104	100 1132.3	2.7	8.9	4.9	8.9	6.6	10.5	5.5	9.1
	RC105	100 1513.7	4.6	7.0	3.4	5.5	3.3	6.7	2.4	5.3
	RC106	100 1372.7	5.4	8.2	3.2	5.6	4.2	7.9	3.7	6.2
	RC107	100 1207.8	6.9	11.0	5.6	10.0	8.0	12.1	4.8	10.4
	RC108	100 1114.2	5.9	10.3	4.3	10.0	4.8	12.8	5.5	10.7
	Mean gap		4.7	8.1	4.1	7.0	4.7	8.8	4.1	7.3

Instance Size Reference

A best 5. Gaps (%) obtained for the total cost objective, relatively to the best-known on instances of class C. For each algorithm, the first column gives the gap with the best solution found. The second column contains the average gap over the 30 runs.