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Abstract 

Ultrasounds are often used in cancer treatment protocols, e.g. to collect tumor tissues in the right location using 
ultrasound-guided biopsy, to image the region of the tumor using more affordable and easier to use apparatus than 
MRI and CT, or to ablate tumor tissues using HIFU. The efficacy of these methods can be further improved by combin-
ing them with various nano-systems, thus enabling: (i) a better resolution of ultrasound imaging, allowing for exam-
ple the visualization of angiogenic blood vessels, (ii) the specific tumor targeting of anti-tumor chemotherapeutic 
drugs or gases attached to or encapsulated in nano-systems and released in a controlled manner in the tumor under 
ultrasound application, (iii) tumor treatment at tumor site using more moderate heating temperatures than with 
HIFU. Furthermore, some nano-systems display adjustable sizes, i.e. nanobubbles can grow into micro-bubbles. Such 
dual size is advantageous since it enables gathering within the same unit the targeting properties of nano bubbles 
via EPR effect and the enhanced ultrasound contrasting properties of micro bubbles. Interestingly, the way in which 
nano-systems act against a tumor could in principle also be adjusted by accurately selecting the nano-system among 
a large choice and by tuning the values of the ultrasound parameters, which can lead, due to their mechanical nature, 
to specific effects such as cavitation that are usually not observed with purely electromagnetic waves and can poten-
tially help destroying the tumor. This review highlights the clinical potential of these combined treatments that can 
improve the benefit/risk ratio of current cancer treatments.

Keywords: Nanomaterials, Nanotechnology, Nanomedicine, Nano-oncology, Cancer, Ultrasound, High intensity 
ultrasounds, Contrast agent, Sonodynamic therapy
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Introduction
Cancer mortality rate increases with population aging 
or exposure to risk factors such as alcohol, tobacco con-
sumption, obesity, or the presence of a pandemic like 
COVID-19, which limits access to patient care, [1]. These 
trends tend to be particularly pronounced in the least 
medicalized countries and for advanced or difficult to 
treat cancers, [2]. While nanotechnology often appears 
as an all-encompassing and abstract term, it may in fact 
have the potential to significantly lower this rate, e.g. by 
making cancer treatments less expensive and thus acces-
sible for people living in countries without social security, 
by making certain heavy operations such as general anes-
thesia unnecessary, or by improving the benefit to risk 
ratio of cancer treatments, [3]. Among the different types 
of nanotechnologies that could be considered for such 
purpose, the combination of nano-systems with ultra-
sounds is especially appealing. Indeed, it gathers a series 
of advantages. First, it might allow localized cancer treat-
ment at tumor site by enabling therapeutic nano-systems 
to specifically target tumors via passive, magnetic, or 
active targeting, [4]. Second, it can also improve the sen-
sitivity of tumor detection by enabling either high reso-
lution ultrasound imaging, e.g. nano/micro bubbles can 
help visualizing blood vessels irrigating the tumors, [5], 
or the combination of standard US detection methods 
with other imaging methods such as PA, MRI, or CT, [6]. 
Ultrasounds can in some cases help to achieve such tar-
geting by permeabilizing certain barriers such as those 
of the brain or skin through which nano-systems should 

diffuse before reaching the tumor, [7, 8]. They can also 
serve as a source of excitation to activate nano-systems 
in the tumor in several manner, e.g. through cellular 
internalization of nano-systems in tumor cells, [9], or via 
thermal or immune activation, [10], or controlled drug 
release, [11]. This review highlights the advantages of 
these combined cancer treatments compared with more 
commonly used un-paired therapeutic or diagnostic 
ultrasounds.

Ultrasound parameters used for cancer therapy
Ultrasounds are mechanical waves that oscillate periodi-
cally at a frequency f, which is larger than that of audible 
sounds, i.e. f > 20 kHz. These waves are usually produced 
by a transducer, which converts an electric signal in a 
mechanical displacement. Compared with other types of 
radiations such as lasers, ultrasounds present the advan-
tage of penetrating more deeply in tissues, leading to 
their non-invasive use in humans. One can distinguish 
high intensity focused ultrasounds (HIFU), operating at 
high intensities i, i.e. i ~ 0.1–10  kW/cm2, [12], from low 
intensity ultrasounds (LIU), which are often less focused 
than HIFU, and generate ultrasounds of lower intensity, 
i.e. i < 1–5 W/cm2, [13]. On the one hand, HIFU enables 
to specifically target a tumor region and to rapidly reach 
the temperature of thermal ablation of typically 80 °C in 
this region, resulting in coagulative tumor cell death, [14]. 
While HIFU is relatively well suited to treat small tumors, 
it faces some difficulties for the treatment of large or 
hyper-vascularized tumor volumes, for which numerous 
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heating spots may be requested for efficient treat-
ment, necessitating a long treatment time and the use 
of numerous MRI images to locate the various emplace-
ments of the tumor region that need to be heated, [15], 
possibly using volumetric heating techniques, [16]. On 
the other hand, LIU may treat with one application a 
larger portion of the tumor volume than HIFU but may 
not enable reaching the temperature of thermal ablation, 
[17]. For safety reasons, ultrasound imaging should be 
carried out at intensities kept below ~ 0.05–0.50  W/cm2 
to avoid heating tissues, [18]. The basis of this recom-
mendation relies on the analysis of specific cases such as 
fetus imaging, which obviously requires the utmost safety 
considerations. While designing ultrasound imaging 
apparatus for tumor tissue, it is not certain that the same 
rules would apply. With regard to ultrasound frequencies 
f, they can be divided between relatively high frequencies 
of typically 3–60  MHz used in medical diagnosis, [19, 
20], medium frequency of 0.7–3.0 MHz serving in thera-
peutic medicine, [21], and low frequency of 20–200 kHz, 
which can improve drug delivery efficacy at relatively 
large penetration depth, [22]. To reach a desired out-
come, the ultrasound frequency and intensity should be 
adjusted skillfully, e.g. to increase US penetration depth, 
US frequency may be reduced, while to enhance US heat-
ing, US intensity may be increased, where US frequencies 
and intensities remain within a range of acceptable values 
in the medical field. In addition to frequency and inten-
sity, other ultrasound parameters such as ultrasound 
pressure (MPa), mechanical index, pulse length, pulse 
repetition frequency, duty cycle, total ultrasound applica-
tion time, have been adjusted to yield specific ultrasound 
properties in an organism, [23].

Different types of nano‑systems used for cancer treatment 
in the presence of ultrasounds
To improve the efficacy of therapeutic or diagnostic 
ultrasound, nano-systems acting as sonosensitizer or 
contrast agents were introduced. Concerning sonosen-
sitizers, they are often described as ROS enhancer, a 
view inspired from the definition of photosensitizers, 
which produce ROS under laser light irradiation. Since 
nano-systems exposed to ultrasounds may trigger other 
mechanisms such as cavitation, heating, or mechani-
cal displacements, I consider here that nano-systems 
are sonosensitizers when they enhance various types of 
sono-induced mechanisms, not only ROS production.

Figure 1 shows a schematic representation of the differ-
ent nano-systems (NS) considered for cancer treatment 
in the presence of ultrasound applications. It highlights 
the conception of NS, which are fabricated starting 
from a nano-metric backbone associated with different 
functional elements, which improve their therapeutic, 

imaging, or targeting efficacy. Furthermore, Table 1 sum-
marizes the properties of these materials such as their 
composition, their average size, their use as diagnos-
tic and/or therapy tools. In general, the backbone con-
sists of the following entities: (i) nano-bubbles, [24–26], 
or nano-droplets, [27–31, 52], i.e. hollow nanometric 
spheres filled with gases or liquids, whose external sur-
face is stabilized by polymers such as PMMA, PLGA, 
[30], or lipids or phospholipids, [32–40, 130], (ii) silica 
NP with different levels of porosity or meso-porosity, 
[40–44, 130], (iii) inorganic NP in the form of nanocrys-
tals or porous structures such as gold NP, [45, 46], iron 
oxide NP, [45, 47–49],  TiO2 NP, [50], Au-TiO2 NP, [51], 
MnOx NP, [52], bismuth NP, [53], ZnO NP, [54], (iv) nat-
ural NP such as those composed of heme-based pigment 
biliverdin, [55], or albumin, [36–38], (v) certain biologi-
cal structures such as exosomes, [56], membrane vesicles, 
[57], protein vesicles of bacterial origin, [58, 59], polym-
ersome, [60–62], self-assembled peptides, [63], which 
are either isolated from their original biological environ-
ment or copied from living material through chemical 
synthesis. In some interesting cases, nano-systems are 
associated with superstructures either to ensure their 
stability or sufficient concentration, e.g. for MnWOx 
NP attached to graphene sheets, [64], or to combine 
therapeutic and imaging functionalities together, e.g. 
for therapeutic magnetic NP attached to the surface of 
echogenic microbubbles, [47]. In general, functional ele-
ments are added to the backbone by being either bound 
to its external surface or incorporated inside its inner 
core, at concentrations that are theoretically larger than 
those, which would be obtained in macroscopic drugs 
with smaller surface/volume ratio. Such association often 
aims at preventing these functional elements from being 
degraded by the organism or lost before they reach the 
tumor. The first type of functional elements, which yields 
improved therapeutic efficacy, is made of: (i) chemother-
apeutic drugs such as DOX, [36–38, 65, 66], Cis-platin, 
[34, 35], or Docetaxel, [36–38], whose association with 
nano-systems should result in an enhanced drug con-
centration in the tumor and a synergy between chemo-
therapeutic and ultrasound anti-tumor effects, (ii) two 
types of gases, those which have a direct toxicity towards 
the tumor such as carbon monoxide (CO), nitric oxide 
(NO), hydrogen sulfide  (H2S), hydrogen  (H2), sulfur diox-
ide  (SO2), carbon dioxide  (CO2) and oxygen  (O2) that 
yields tumor oxygenation and enables chemotherapeu-
tic drug to overcome resistance observed under hypoxic 
tumor environment, [67], (iii) ROS enhancer such as 
protoporphyrin, [68–71], TAPP, [72], which are able to 
generate ROS under ultrasound application. The second 
category of functional elements, which confers to nano-
systems their ultrasound contrasting ability, consists of 
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a nanomaterial with a different acoustic impedance than 
that of its surrounding tumor tissue, hence enabling the 
acoustic wave to be reflected at nanomaterial surface 
and then to travel back to be detected. In most cases, it 
is made of gases such as sulfur hexafluoride  (SF6) or per-
fluorocarbon (PFC) contained in nano bubbles often able 
to expand into more echogenic microbubbles under cer-
tain conditions, [73]. Finally, the backbone can also be 
associated with an agent that favors its accumulation in 
the tumor. This agent can be a targeting moiety recogniz-
ing a tumor cell receptor such as anti-HER2 antibodies, 
[32], rabies virus glycoprotein peptides targeting neuro-
blastoma cells, anti-EGFR antibodies, [48, 49], folic acid, 
[6], cyclic arginine-glycine-aspartic pentapeptide, [71], 
antibody targeting epiregulin, [74]. It can also consist in a 
compound such as macrophage membrane, [75], or PEG, 
[48, 49], enabling nano-systems to avoid being captured 
by the immune system. In some cases, the backbone itself 
has certain functionalities, as it is the case for  TiO2 NP 

generating ROS under ultrasound application, for mag-
netic NP guided towards the tumor with a magnet, or 
for backbones with composition, geometry or size ena-
bling their passive diffusion towards the tumor via the 
EPR effect, [76]. To facilitate the pharmaceutical fabrica-
tion of these nano-systems in a reproducible manner, it 
may be easier to use a simple backbone which is devoid 
of a large number of additional functional elements than 
more complex structures. Some of the nano-systems pre-
sented in the literature display several building blocks. 
For example, NS made of PLGA NC (block 1) coated with 
a thin Silica layer (block 2) encapsulating perfluorocar-
bon (block 3), antitumor Ruthenium complex (block 4), 
and superparamagnetic  Fe3O4 NP (block 5) consist of 5 
distinct blocks, [44]. In a pharmaceutical production 
process, it would be necessary to demonstrate that each 
block is fabricated and assembled in sufficient quantity 
and reproducibly, without forgetting that a high purity 
level, a long-term stability, an endotoxin-free and sterility 

Fig. 1 A schematic diagram representing the various types of nano-systems (NS) that have been used for cancer treatment/diagnosis. NS are 
presented in a hierarchical order, starting from a backbone consisting of nano-bubbles/nano-droplets, mesoporous nano-complexes, nanocrystals, 
biological nanostructures, to which one or several functional element(s) is/are added. Such functional elements provide the backbone with a 
therapeutic, imaging, or targeting activity. In some cases, another radiation than ultrasound can be used, such as laser for PDT/PTT treatment or PA 
imaging, or a magnetic field to yield magnetic targeting when the backbone is made of metallic elements. A unique feature of these nano-systems, 
which is not often encountered in nano-systems not excited by ultrasounds, lies in their gaseous content, which can either be used for cancer 
treatment, e.g. through  O2 release to fight against tumor hypoxia, or for tumor imaging, e.g. by using microbubbles with a different acoustic 
impedance from that of the tissular environment
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of the product should also be achieved. Such hard task 
may be fulfilled by reducing the number of blocks, [77].

Diffusion of nano‑systems through physiological barriers 
favored by ultrasound application
To reach a tumor, nano-systems should cross certain 
physiological barriers, such as those that limit penetra-
tion through tissue or cell uptake, or induce variable cir-
culation/perfusion, extravasation, [78]. These barriers 
protect the organism against invasion by external agents. 
The application of ultrasounds has first been shown to 
favor the diffusion of nano-systems through the skin, in 
particular the stratum corneum, [9]. This mechanism is 
particularly efficient using low frequency ultrasounds of 
typically 20 kHz that penetrate deeply through the skin. 
Its efficacy was reported to rely on a combination of cavi-
tation [79, 80], thermal [81, 82], radiation force, convec-
tion [83], and lipid extraction [84] effects resulting from 
ultrasound application. Thus, nano-systems consisting 
of liposomes comprising siRNAs have been delivered to 
skin tumors through mouse epidermal and dermal lay-
ers under the application of 20  kHz ultrasounds. The 
treatment led to a reduction of melanoma tumors grown 
under the skin of the treated mice, [85]. The blood brain 
barrier (BBB) can also be temporarily disrupted by low 
frequency focused ultrasounds, resulting in efficient 
nano-system diffusion in the brain with a high preci-
sion, i.e. with a resolution below 1  mm, a phenomenon 
attributed to physical disturbances created by MB and to 
temperature increases, both effects yielding BBB permea-
bilization, potentially synergically, [86]. Hence, liposomes 
encapsulating DOX were shown to efficiently cross the 
BBB, leading to DOX delivery in the brain, [87].

Mechanisms involved in anti‑tumor activity
The various mechanisms of action responsible for the 
anti-tumor activity triggered by nano-systems exposed to 
ultrasounds are summarized in Fig. 2.

Heating
Heating can be beneficial in tumor treatment, e.g. 
through tumor ablation, increased blood vessel/tissue 
permeability, triggered drug release, [88]. Nano-systems 
(NS) could favor an ultrasound anti-tumor heat treat-
ment in two ways. First, metal-based NS can increase 
the amount of heat produced by ultrasounds, [89]. Such 
mechanism may be attributed to the presence of nano-
systems in the tumor, which enhances ultrasound atten-
uation at high ultrasound intensity and frequency, [90]. 
Thus, when Au, NGO or IONP NP were injected to 
tumors or Au NP were mixed in water and these mixed 
systems were exposed to ultrasounds, it yielded a more 
pronounced temperature increase by 15 to 40% for NP 
contained in tissue than for NP-free tissue, [45], and to 
a higher heating rate of 1.6 °C/min for Au NP dispersed 
in water than for free water, i.e. 0.4  °C/min, [45]. Such 
results were obtained for specific values of NP concen-
trations, i.e. 0.2 µg of NP per  mm3 of tissue, ultrasound 
intensity, i.e. i = 1–2  W/cm2, and ultrasound frequency, 
i.e. f = 1 MHz, [90]. To the author knowledge, the range 
of values of the various parameters, i.e. NP size, compo-
sition, concentration as well as ultrasound intensity, and 
frequency, which should yield an optimal enhancement 
of the thermal efficacy in the presence of NS, have not yet 
been reported.

Second, NS can consist of temperature sensitive phos-
pholipid or polymer membranes able to switch from a 

Fig. 2 A summary of the various mechanisms following which nano-systems can become active for tumor targeting, imaging, and treatment
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stable configuration at physiological temperature, where 
they maintain drug encapsulation, to an unstable state 
at a higher temperature resulting from ultrasound appli-
cation, which leads to membrane destruction and drug 
release. The transition occurs at the so-called transition 
temperature, which is typically within the range of mild 
hyperthermia (40–43 °C). Thermosensitive liposomes can 
be composed of phosphatidylcholines, [91], PEGylated 
phospholipids associated to DPPC/DSPC, [92], porous 
lisolipids membranes, [93]. They can trigger anti-tumor 
activity through a combination of temperature triggered 
anti-cancer drug release /activation and mild hyperther-
mia, [91]. A drawback that has slowed down the devel-
opment of these liposome lies in their relative instability, 
which can lead to their destruction before they reach the 
tumor, [94], and methods to overcome this lack of stabil-
ity have been developed using DPPGn lipids that are not 
leaky at normal body temperature, [95].

Cavitation
The most frequently described mechanical effect that 
can generate anti-tumor activity under ultrasound appli-
cation is cavitation. For the sake of clarity, it is common 
to separate it from the thermal effect described above. 
However, cavitation and thermal mechanisms are related 
to each other, i.e. cavitation can create a temperature 
increase while a temperature variation can affect cavi-
tation. NS may act as nuclei of cavitation bubbles and 
therefore potentially enhance the level of cavitation 
resulting from ultrasound application, [9]. In general, two 
types of cavitation can be distinguished, i.e. stable and 
inertial ones. In stable cavitation, gas pockets are formed, 
which oscillate periodically in size through so-called 
acoustic compression and decompression cycles, which 
generate fluid streaming and mechanical stresses, which 
have been reported to be able to destroy cancer cells, [9]. 
By contrast, inertial cavitation is an unstable phenome-
non, in which bubbles generated by ultrasounds expand 
and collapse, potentially leading to high temperatures 
(> 5000  K), pressures (> 800  atm), and ROS production, 
[9]. Nano-systems associated with cavitation phenomena 
have been reported to be either nano-bubbles or micro-
bubbles, with some systems transiting between these two 
states. In general, two types of micro/nano bubbles can 
be distinguished, those endogenous whose formation 
results from ultrasound application, and those exogenous 
that are administered on purpose in the organism. The 
existence and nature of cavitation therefore does not only 
depend on the type of nano-system, but also on ultra-
sound parameters such as ultrasound frequency, pres-
sure, intensity, pulse sequence, or duration of application. 
Thus, the behavior of micro/nano bubbles was reported 
to depend on negative acoustic pressure, which can 

trigger nano/micro bubbles growth or expansion. While a 
relatively low negative acoustic pressure associated with 
mechanical indexes MI of typically 0.1 < MI < 0.3 could 
favor stable cavitation, a higher negative acoustic pres-
sure associated with MI larger than typically 0.3–0.6 
may  more easily result in nano/micro bubble disrup-
tion and unstable cavitation, [96]. In fact, the formula, 
which provides an expression of MI as the ratio between 
the negative acoustic pressure and the square root of the 
ultrasound frequency, [5], does not seem to take into 
account other parameters that can influence MI val-
ues, such as: (i) the medium through which ultrasounds 
travel, i.e. for the same acoustic parameters, the mechani-
cal index was shown to differ in water and blood, [97], or 
(ii) the acoustic wave pulsation length, [98]. Furthermore, 
it was also reported to use a high ultrasound frequency 
to reduce MI and avoid unstable cavitation, [98]. As an 
example, polymeric NP containing porphyrins, which 
were exposed to ultrasounds of frequencies maintained 
below 20  MHz and high-pressure of amplitude up to 
120 MPa were shown to induce cavitation on an in-vitro 
neuroblastoma model, [99]. Ultrasound MI is often var-
ied to obtain the desired treatment mechanism. The 
effects of cavitation are thus diverse, ranging from the 
destruction of cells to the creation of pores in or between 
cells, to the enhancement of endocytosis, depending 
on the ultrasound setting parameters, [100]. One of the 
main challenges with cavitation lies in its highlighting 
through the visualization or measurement of the bubbles 
that it generates, specifically in an organism, which is a 
difficult task, [101]. Some studies have overcome this dif-
ficulty, publishing results on cavitation monitoring, [102]. 
Furthermore, clinical trials were launched, which used 
cavitation as an underlying mechanism, [103].

Sonoluminescence
Sonoluminescence (SL), which results from cavitation, 
is characterized by flashes of light emitted by cavitation 
bubbles, [104]. It can possibly result in the apparition of 
an electron/hole pair and subsequently the generation 
of ROS species. For example, when microbubbles were 
produced by the application of ultrasounds, nonther-
mal cavitation was reported to occur, possibly result-
ing in sonoluminescent light exciting C-doped  TiO2 
NP. When these NP decayed back to their ground state, 
energy could be transferred to oxygen to generate ROS, 
which might then trigger tumor cell death, [105]. How-
ever, such cascade mechanisms should remain hypo-
thetical in the absence of a method enabling to directly 
measure or observe them. Sonoluminescence may also 
be responsible for the activation of light-sensitive drugs 
(LSD) through the light that it triggers. Hence, it cre-
ates a bridge between Photodynamic and Sonodynamic 
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therapy, where Sonodynamic therapy displays the advan-
tage of exciting LSD at a larger depth than PDT, since 
ultrasounds usually penetrate more deeply than laser 
light, [104].

Sonoporation
Although separated from the cavitation section for the 
sake of clarity, sonoporation, which may also be desig-
nated as sonopermeation, could be associated with the 
formation of pores in cell membranes under ultrasound 
exposure and therefore result from cavitation, [106]. It 
can favor the diffusion of NS through the cell membrane, 
via a mechanism called Sonoporation, [107–109], ena-
bling the capture of NS and their associated functional 
elements by tumor cells. This mechanism can be trig-
gered by: (i) intracellular interactions between micro-
bubbles trapped inside cells and cell membranes, (ii) 
micro-jetting, (iii) micro-streaming, (iv) shock-waves, 
and (iv) diffusion of microbubbles through cells, [9]. 
Intracellular interactions can be characterized by back-
ward and forward movements of microbubbles, which 
apply a mechanical force on cell membrane that is suffi-
ciently strong to permeabilize it. In general, jets, streams, 
shockwaves occur under ultrasound application even 
in the absence of micro-bubbles, [110]. The addition 
of micro-bubbles should result in the location of these 
mechanisms around or near these bubbles. Micro-
streaming is associated with the fluid movement around 
bubbles, resulting from the energy being transferred 
from the ultrasounds to the fluid. In some cases, sonopo-
ration was reported to be a relatively mild effect, due to 
non-inertial cavitation, which enhances cell permeabil-
ity and favors NS or drug displacement without signifi-
cantly damaging cells, [111], enabling for example blood 
vessel permeabilization, [112–114]. In some other cases, 
sonoporation was described as a mechanism inducing 
cytotoxicity and the mechanical destruction of cell mem-
brane in the presence of NP, [115, 116], possibly due to 
NP interactions with cell membrane, [117, 118]. Further-
more, sonoporation mechanism was reported to occur 
for a wide range of different ultrasound frequencies, i.e. 
typically comprised between 0.02 and 6 MHz, [119, 120], 
and low intensities, i.e. typically below 1  W/cm2, [120], 
suggesting that this method can relatively easily be trans-
posed clinically, [121], given the easily achievable ultra-
sound parameters that it requires.

Controlled drug release from nano‑systems under ultrasound 
application
When they are used without being exposed to a source 
of radiation, NS often suffer from a lack of control over 
the anti-tumor activity that they trigger. Such drawback 
can be overcome by exposing certain NS to ultrasounds 

to achieve drug release/activation on demand. For exam-
ple, it was shown that drugs/bio-active molecules could 
be released from polymer-based NS, [122], hydrogels, 
[123], microbubbles following ultrasonic excitation, lead-
ing to significant drug accumulation in tumor tissues and 
then to tumor growth inhibition, [124]. Such mechanism 
displays a number of advantages. It allows repetitive drug 
release by applying ultrasounds several times, [123]. It 
prevents permanent drug damages by using mild ultra-
sound treatment parameters. It prevents drug release in 
the absence of ultrasound application. It leads to a reduc-
tion of detrimental side effects of toxic chemotherapeutic 
drugs. It decreases drug leakage in blood circulation. It 
yields controlled drug release in the tumor, hence limit-
ing healthy tissue exposure [125–128].

Gases activated against the tumor
Certain gases have been reported to be involved in anti-
tumor activity, [129]. Firstly, they could be inserted inside 
nano/micro bubbles, and released in a controlled man-
ner in the tumor under ultrasound application. Secondly, 
they could undergo a transformation to become active, 
e.g. through in situ conversion of  H2O2 to  O2. In fact, the 
tumor micro-environment often displays high levels of 
 H2O2, which can be converted to  O2 by catalase enzymes 
or inorganic systems mimicking enzyme activity, as 
observed for catalase associated to iron oxide nanopar-
ticles that produced  O2 bubbles in tumors under HIFU 
application, [130]. The way in which gases act against the 
tumor depends on their nature. When present in tumor, 
Oxygen  (O2) can help overcoming tumor hypoxia, which 
undermines chemotherapy efficacy, nitric oxide (NO) can 
yield the production of highly reactive ROS, i.e. perox-
ynitrites  (ONOO−), [131–133], hydrogen sulfide  (H2S) 
can lead to selective ROS activation, [134], sulfur dioxide 
 (SO2) can help regulating redox balance in tumor, [75, 
135],  CO2 can favor drug release, [136]. The use of NS 
to deliver gases enables overcoming the problem asso-
ciated with their low solubility and irritability through 
their encapsulation in nano/micro bubbles. Moreover, 
when they are associated with nano-systems, gases can 
either be selectively released in the tumor microenviron-
ment (TME), [137], or be produced in TME, [138]. Such 
gases can also help to visualize and release drugs, [139], 
to starve tumor cells through CO generation that blocks 
nutrients, e.g. glucose or  O2, [140], or to create tumor 
embolization using nano-bubbles filled with  SF6 and 
thrombin exposed to ultrasounds, [141].
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Micro to nano or nano to micro size conversion
One of the most appealing features of treatments com-
bining ultrasound and NS comes from the adjustment of 
NS sizes that they allow. This is essentially achieved with 
nano/micro bubbles/droplets, which can either increase 
in size from being nanometric to being micrometric 
or inversely decrease in size from being micrometric to 
being nanometric, [142]. On the one hand, such mecha-
nism can be due to the mechanical nature of the acous-
tic wave, which enables applying a positive/compressive 
and/or negative/expansive pressure on these NS. On the 
one hand, it can come from vaporization of nanodro-
plets, i.e. a transition from a liquid to a gaseous state of 
the droplet that yields its expansion, [143, 144]. While the 
first mechanism is purely acoustic, the second one can 
be generated by other radiations than ultrasounds such 
as laser, [145, 146]. Such duality in NS sizes enables bub-
bles/droplets to combine a good echogenicity achieved 
under micrometric sizes with a faculty to passively diffuse 
towards the tumor via EPR effect resulting from their 
nanometric dimensions, [147]. For example, a nanodrop-
let made of biodegradable block copolymer of PEG/PLLA 
with a low boiling temperature of 29  °C encapsulating 
DOX and PFP, displayed the capacity to: (i) vaporize 
upon heating to physiologic temperatures and be trans-
formed into a microbubble acting as ultrasound contrast 
agent, (ii) extravasate into a mouse tumor following its iv 
injection due to its nanometric size during its transport 
towards the tumor, (iii) release DOX in the tumor to yield 
significant chemotherapeutic efficacy, [148]. At the oppo-
site of this transformation, lies the transition of MB from 
micrometric to nanometric sizes. As a first example, MB 
consisting of porphyrin-phospholipid shell encapsulat-
ing perfluoropropane gas can transform into smaller 
porphyrin NP under ultrasound application, and lead to 
high accumulation of porphyrin at tumor site, [149]. As 
a second example, MB loaded with siRNA could be con-
verted into NP upon ultrasound exposure, hence lead-
ing to efficient anti-tumor efficacy among tumor-bearing 
mice receiving this MB/ultrasound combined treatment, 
an effect which was attributed to an improved XIAP 
gene silencing and cleaved caspase-3 activation, [150]. In 
order for these methods to be fully efficient, ultrasounds 
should be applied at the right moment, i.e. after and not 
before bubbles/droplets have reached the tumor, and a 
too strong or stringent interaction between ultrasounds 
and bubbles/droplets should be avoided to prevent their 
destruction, [151].

Preclinical studies preceding the use of nano‑systems 
in the clinic
The clinical use of nano-systems could be foreseen to 
improve the imaging and/or therapeutic ultrasound 

capability. Such prediction largely relies on preclinical 
data, which have been obtained. Figure 3 presents several 
schemes, which were drawn based on preclinical results. 
They illustrate the ways in which NS could be used to 
treat and image a tumor following ultrasound applica-
tion, which parameters may influence ultrasound treat-
ment efficacy, and NS biodistribution potentially yielding 
NS elimination following treatment.

In vivo tumor imaging
NS could be used for ultrasound tumor imaging. First, 
microbubbles, which are commonly used ultrasound 
contrast agents, [152], may enable super resolution ultra-
sound microscopy, [153]. For example, MB were sent to 
blood vessels irrigating tumors, they could serve as US 
contrast agents to image these vessels with a resolution, 
which is below the acoustic diffraction limit, [154]. Sec-
ond, various nano-systems can be excited by laser light, 
producing their thermal expansion and an acoustic wave, 
which is further detected by an ultrasound detector, a 
method called photo-acoustic (PA) imaging that can 
potentially be applied for the visualization of deep tumor 
tissues, [155]. Advantageously, this method can easily be 
combined with laser-based tumor treatment techniques 
such as PDT and PTT. For example, tumor-bearing mice, 
which received intravenously DPP-TPA NP followed by 
passive tumor targeting of the NS as highlighted through 
PA imaging, displayed the successful destruction of their 
tumor via PDT and PTT treatments, [156]. Third, the use 
of NS enables combining echography with other imaging 
methods such as CT or MRI, [157]. Thus, mice bearing 
hepatocellular carcinoma (HCC) tumors injected intra-
venously with ND loaded with iodine could be followed 
by ultrasound and CT imaging, where the presence of 
iodine enabled reaching a CT resolution close to that 
of MRI, [27]. This result appears important since CT is 
often left besides in the profit of MRI due to its lack of 
resolution. However, given CT low cost, easiness to use, 
and frequent implantation in hospitals, there may be an 
interest to remedy this situation by using such NS.

Whereas MB remain the main types of NS described 
for in vivo tumor imaging, recent studies have described 
the emergence of new NS usable as US contrast agents 
such as silica-based micro/nanoplatforms, [158], gas-sta-
bilizing nanoparticles, [159], re-chargeable nanobubbles 
on amine-functionalized ZnO nanocrystals, [54], polyte-
trafluoroethylene nanoparticles, [160], where cavitation 
induced by exposing such NS to ultrasounds can possibly 
lead to enhanced ultrasound contrast.

In vitro anti‑tumor efficacy
Combined NS/US treatments were tested in  vitro 
on different cell lines to determine the values of the 
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parameters, i.e. NS concentration, NS incubation time, 
ultrasound intensity and frequency yielding optimal 
tumor cell destruction, pore formation and endocytosis, 
[161]. Thus, tumor cell death was reported to increase 
with increasing quantity of NS, for NS concentrations 
comprised between 0.004 and 0.4 µg/mL, [34], 0.05 and 
8 µg/mL, [6], 0.06 and 12 µM, [162], or 12 and 200 µg/
mL, [52], with longer incubation time, typically var-
ied between 24 and 72  h, [144], with increasing ultra-
sound intensities, typically comprised between 1 and 
6 Watt, [56]. An interesting in vitro study reported that 
a decrease of ultrasound frequency from 55 to 40  MHz 
resulted in an enhancement in the production of •OH and 
a decrease in cell viability from 20% at 55  MHz to 13% 
at 40 MHz, suggesting that the adjustment of the ultra-
sound frequency does not only affect the ultrasound pen-
etration depth, but also the production of ROS. However, 
such observations were made at rather high frequencies. 
It is not certain that such behaviors would occur at lower 
frequencies (< 10 MHz), which are more frequently used 
in therapy. Furthermore, several studies reported an 
enhanced cytotoxicity when cells were exposed to both 

laser and ultrasound instead of ultrasound alone, [68–
70], suggesting the existence of a true synergy between 
these two types of radiations, which may be attributed to 
their different and complementary contributions. Ultra-
sounds may favor mechanical displacements of NS or the 
bubbles/gas that they generate while laser might induce 
plasmon resonance waves at the NP surface. However, 
these mechanisms appear not to be comparatively dis-
cussed in the literature. In vitro cytotoxicity experiments 
were also used to highlight certain mechanisms of tumor 
cell death induced by these combined NS /US systems, 
such as NS internalization, [28, 29, 52], specific tumor 
cell targeting, [32], chemotherapeutic drug release, [129], 
or cellular apoptosis, [163, 164]. A very interesting study 
attempted to correlate the level of cavitation induced by 
US application with the damage that it could produce at 
cellular level, [165]. Gels mimicking tissues were filled 
with NS and exposed to HIFU, yielding MB observed 
by phase array scanning probe measurements. Similar 
treatments applied to tissues led to tissue ablation with 
a sharp increase in the ablated volume and a decrease 
in the peak negative pressure necessary to induce tissue 

Fig. 3 Schematic diagrams representing: a the therapeutic outcome of tumor treatments obtained on mice administered with nano-systems and 
exposed to ultrasounds, b the strength of various parameters (temperature increase, drug release, ROS production) influencing anti-tumor activity 
as a function of ultrasound intensity, as reported in some specific cases, c the different imaging modalities that could be implemented during a 
cancer treatment with NS exposed to ultrasounds, d NS biodistribution ending by NS elimination, as reported in some specific cases
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ablation in the presence of NS. Hence, an indirect cause-
and-effect link between cavitation and tumor tissue abla-
tion was established, [165]. Recently, a nano-scalpel effect 
was reported as resulting from acoustic shock waves and 
associated mechanical damages applied on adenocarci-
noma or leukemia cancer cells in the presence of various 
metal oxide nanoparticles, [166–168].

In vivo anti‑tumor efficacy
Anti-tumor activity of different nano-systems has been 
assessed on various subcutaneous tumors, i.e. essentially 
glioblastoma U87, [24], ovarian SKOV3, [31], breast 4T1/
MDA-MB-231, [34], head and neck SCC7, [51], cervical 
HeLa, [44], neuroblastoma N2a, [169], colon CT26, [35], 
fibrosarcoma HT-1080, [170], tumors of typical sizes of 
15 to 300  mm3, which were injected with 0.1 to 2 mg of 
NS and exposed to ultrasounds of various parameters, 
10 min to 24 h following NS injection, (Table 1). The val-
ues of the ultrasound frequency and intensity used dur-
ing the treatments vary a lot depending on the study, 
i.e. 40  kHz < f < 12  MHz and 2  W/cm2 < i < 257  W/cm2 
(Table  1). It seems that low frequency/intensity favor 
sonoporation, [171], or drug release, [172], whereas high 
frequency/intensity are more likely to be used when a 
temperature increase is desired, [173]. Furthermore, 
ultrasound frequency and intensity will affect the depth 
of ultrasound penetration, as well as other parameters 
such as the size, number, type of bubbles, or amplitude of 
temperature increase, where these other parameters also 
depend on each other and on the medium through which 
ultrasounds travel, the distance between the tumor and 
transducer surface, the geometry of the transducer deter-
mining ultrasound trajectory, as well as the nature or 
composition of nano-systems. The parameters associated 
with NS injection and ultrasound application are summa-
rized in Table 1. While most studies employed an intrave-
nous injection, it was shown in one case that anti-tumor 
efficacy could be reached at a lower NS dose (by a factor 
of 4) using an intratumor instead of an intravenous injec-
tion mode, [52], suggesting that intratumor injection can 
potentially yield anti-tumor activity at lower NS injec-
tion dose than intravenous injection. The most described 
short-term treatment outcome is growth tumor retar-
dation observed within 15 min to 30 days following the 
beginning of the treatment. To the author knowledge, 
the absence of tumor regrowth following treatment 
was not reported. It may however be achievable under 
conditions of optimized treatment parameters. It was 
deduced from preclinical studies that anti-tumor activ-
ity was due to controlled drug release in the tumor, [174], 
ROS production, [51], release or generation of gases in 
the tumor, [60], an increase of tumor temperature, [53], 
anti-tumor immune reactions, [75], or a combination of 

several of these mechanisms, [39]. Although some stud-
ies report cavitation measurements on small animals, 
[175], the in vivo detection of cavitation can be difficult, 
notably due to small gas bubbles that cavitation may cre-
ate in vivo. In some studies, ultrasounds were only used 
to image the tumor in the presence of NS, and the treat-
ment was carried out by applying other types of irradia-
tions such as the laser for PDT, [30, 31], or PTT, [31]. To 
highlight immune mechanisms, two approaches were 
followed. First, CT26 subcutaneous tumors were grown 
on two mouse flanks. NS containing immune modulator 
MPLA or imiquimod were used as adjuvant and injected 
in the primary tumor located on a first mouse flank. This 
tumor was then exposed to ultrasound and radiofre-
quency to yield thermal ablation, i.e. tumor temperature 
above ~ 60 °C. It induced an immune response character-
ized notably by the activation of dendritic and long-term 
immune memory T cells and de-activation of  Treg cells, 
which resulted in a size reduction of the untreated tumor 
located on the second flank 80 days following treatment 
of the primary tumor, [10]. Second, 4T1 subcutaneous 
metastatic tumors received iv a NS able to produce ·O2 
and CO in the tumor, which leads to tumor cell apopto-
sis, as well as an immune agent NLG919 that blocks the 
indoleamin 2,3-dioxygenase signal pathway. Such com-
bined treatment resulted in T cell activation and  Treg 
inhibition, which prevented the growth of lung metasta-
ses, [75].

Clinical uses of nano/micro‑systems exposed to ultrasound 
for tumor treatment
One of the most striking features of medical ultrasounds 
lies in the large variety of tumor types that they allow 
to treat using a broad range of different approaches. 
Ultrasound parameters are usually adjusted to reach the 
desired effect, e.g. to typical intensity/frequency val-
ues of i ~ a few mW/cm2 and f ~ 1.5–50  MHz for tumor 
imaging, [176], i < 1  W/cm2 and f ~ 0.5–1  MHz for per-
meabilization of BBB, [177], and i ~  103 to  104  W/cm2 
and f ~ 20  kHz to 200  MHz for HIFU tumor destruc-
tion, [178]. Other advantages of ultrasounds come from 
the moderate cost and compactness of most equipment 
used to generate them compared with CT, MRI, and 
radiation therapy apparatus, [179]. Thus, a large num-
ber of ultrasound clinical applications have been devel-
oped in the oncology field, which are at various stages 
of development. They include: (i) the improvement of 
current tumor detection methods such as mammogra-
phy, [180, 181], to either replace or complement them, 
(ii) the imaging of tumors before proceeding to a can-
cer treatment such as surgery, [182], (iii) the visualiza-
tion of recurrent lymph nodes following head and neck 
tumor treatment, [183], which paves the way towards the 
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use of echography to monitor tumor recurrence, (iv) the 
guidance of surgery or cryoablation during breast cancer 
operation to ensure that the treatment takes place in the 
right location, [176, 184], (v) the disruption of blood–
brain barrier to yield enhanced chemotherapeutic drug 
delivery to brain tumor, [177], (vi) the production of heat 
within tumors using HIFU, resulting in ablation of pros-
tate, [178], breast, [185], or brain tumors, [186], (vii) the 
use of endoscopic ultrasound to guide thermal ablation 
during pancreatic cancer treatment, [187], and (viii) the 
exposure of microbubbles containing nano-medicines 
to enhance the delivery and release of such drugs in the 
tumor, [88].

To improve the imaging resolution of standard echo-
graphs, ultrasound contrast agents (UCA) have been 
developed. The commercialized ones consist of 1 to 4 µm 
in diameter vesicles, which are stabilized by an exter-
nal layer made of proteins (Optison) or phospholipids 
(Definity or Sonovue), filled with a gas acting as a con-
trast agent, which is either  C3F8 for Option and Definity 
or  SF6 for Sonovue, [188]. Most interestingly, some stud-
ies have shown that such contrast agents could be used 
not only to improve ultrasound imaging resolution, but 
also the efficacy of anti-cancer drugs, as demonstrated 
when gemcitabine was injected in combination with US 
treatment, leading to enhanced anti-tumor activity com-
pared with a treatment using gemcitabine alone, [189]. 
It was also shown in clinical trial NCT02343991 that the 
disruption of the BBB in the presence ultrasounds could 
be facilitated in the presence of MB, improving the deliv-
ery of DOX to brain tumors. Clinical trial NCT02181075 
involving patients with liver tumors showed that admin-
istration to these patients of thermosensitive liposomes 
encapsulating DOX (ThermoDOX) followed by ultra-
sound application successfully enhanced the amount of 
DOX accumulating in the tumor, [190].

Applicability of Ultrasounds Contrast Agents for treating 
various cancers and paths towards clinical trials
Combining ultrasounds with nanomaterials in a cancer 
treatment is an approach, which is at a more advanced 
stage than it appears. Indeed, different types of thera-
peutic ultrasounds are already used in the clinic such as 
HIFU employed to treat liver, [190], thyroid, [191], breast 
cancer, [185], or low-intensity ultrasound to permeabi-
lize the BBB, enable the diffusion of anti-cancer drugs 
through this barrier, and then let anti-cancer drugs tar-
get brain tumors such as glioblastoma, [191]. In addi-
tion, various nanomaterials are already injected into 
humans and used clinically, i.e. mainly iron-based NP 
and liposomes, [192]. Finally, the combination of ultra-
sound contrast agents with therapeutic ultrasounds 
has been tested, for example by exposing MB to HIFU 

to treat pancreatic  tumors, [189], or for enabling drug 
release from liposomes in tumors, [193]. Treatments 
combining nanomaterials and therapeutic ultrasounds 
therefore hold great promise. To make them succeed, one 
can rely on regulatory developments, which have already 
enabled clinical validation of therapeutic ultrasounds 
and/or NM and choose a suitable combination of NM 
and ultrasound modality that should achieve a favorable 
benefit risk ratio based on preclinical predictions. This 
combined approach should improve the benefit/risk ratio 
in various ways depending on the type of UCA/US pair 
that is chosen, i.e. notably by enabling moderate tumor 
heating, specific tumor targeting of the anti-tumor active 
principle, and localized treatment at TME location. Such 
approach should yield a more efficient and less toxic can-
cer treatment compared with the use of ultrasounds or 
NM alone.

Conclusion
Here, the use of various combinations of ultrasounds and 
nano-systems for cancer treatment has been reviewed. 
Whereas ultrasounds of low intensities are privileged for 
imaging to avoid heating effects, i.e. typically a few mW/
cm2, more intense ultrasound beams are selected for 
tumor treatment, i.e. typically of a few W/cm2 for treat-
ment involving moderate heating and up to 1000–5000 W/
cm2 for HIFU. While high frequencies are often used to 
improve imaging resolution or the level of ultrasound beam 
focalization, low frequencies are chosen to achieve high 
penetration depth of ultrasounds in tissues. Ultrasounds 
alone are already largely used in the clinic, e.g. to carry out 
biopsies of tumor tissues using apparatus such as ExactVu, 
[194], or for treatments of prostate, [178], or breast tumors, 
[195], with HIFU. These methods can be further improved 
by using nano-systems, which should enable: (i) a bet-
ter imaging sensitivity, [196], (ii) an enhancement in the 
magnitude of the temperature increase, [197], (iii) a better 
anti-tumor efficacy through the various anti-tumor mecha-
nisms that nano-systems can trigger such as cavitation or 
the delivery in the tumor of a chemotherapeutic drug, spe-
cial gases, heat, or ROS, (Table  1). The diversity of these 
mechanisms is not only due to the mechanical nature of 
the ultrasound beam but also to the existence of various 
types of nano-systems, which behave differently, e.g. nano/
micro bubbles yield ultrasound contrasting imaging prop-
erties while liposomes enable chemotherapeutic drugs to 
be either encapsulated within their core or attached at their 
surface. With nano-systems, it is also possible to achieve 
therapeutic activity locally at tumor site. This can be due to 
NS targeting tumors through passive, active, or magnetic 
targeting, or to NS crossing certain physiological barriers 
such as the BBB by permeabilizing them. It can also come 
from NS transiting from a nanometric size, enabling NS to 
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passively target tumors, to a micrometric size, employed 
for high resolution ultrasound imaging. Finally, it may 
arise from anti-tumor compounds being released or acti-
vated from NS under ultrasound activation or from NS 
being incorporated in tumor cells by sonoporation. A large 
number of pre-clinical studies carried out on tumor bear-
ing mice have validated these approaches, demonstrating 
a more pronounced anti-tumor activity using a combined 
ultrasound/nano-system treatment than ultrasound or NS 
alone. Clinical trials are ongoing, notably with Thermodox, 
to further validate the use of such combined therapies in 
humans, [198].

A series of NS could be used for ultrasound applica-
tion, deriving from those that are already approved for 
human injection, i.e.: (i) Acuitas ALC-0315 liposomes 
used as adjuvants in COVID-19 vaccines, [199], (ii) iron 
oxide NP, e.g. Venofer, used for the treatment of iron ane-
mia disease, [200], (iii) iron oxide NP, e.g. Nanotherm, 
employed for magnetic hypermetherma treatment of 
solid tumors, [201], or Ferumoxytol serving to enhance 
MRI contrast, [202], (iv) Au NP such as Auroshell for the 
treatment of tumors by PTT, [203], (v) Microbubble such 
as Definity for enhancing ultrasound contrast, [204]. The 
existence of several NP compositions/structures compat-
ible with human injection bodes well for the development 
of new ultrasonic contrast agents.
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