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Abstract
The Protoplanetary Discussions conference — held in Edinburgh, UK, from 7th–11th March 2016 — in-

cluded several open sessions led by participants. This paper reports on the discussions collectively concerned
with the multiphysics modelling of protoplanetary discs, including the self-consistent calculation of gas and
dust dynamics, radiative transfer and chemistry. After a short introduction to each of these disciplines in
isolation, we identify a series of burning questions and grand challenges associated with their continuing de-
velopment and integration. We then discuss potential pathways towards solving these challenges, grouped by
strategical, technical and collaborative developments. This paper is not intended to be a review, but rather
to motivate and direct future research and collaboration across typically distinct fields based on community
driven input, to encourage further progress in our understanding of circumstellar and protoplanetary discs.

Keywords: Protoplanetary discs — Planetary Systems: Formation — Chemistry — Dust —
Radiative Transfer — Hydrodynamics

1 INTRODUCTION

For the first time in history, spatially resolved observa-
tions of the structures within protoplanetary discs are
being obtained (see review by Casassus 2016). This has
revealed a wealth of sub-structure, including rings and
gaps (ALMA Partnership et al. 2015; Andrews et al.
2016; Canovas et al. 2016), spirals (e.g. Garufi et al.
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2013; Benisty et al. 2015; Wagner et al. 2015), warps
(e.g. Casassus et al. 2015), shadows (e.g. Stolker et al.
2016), cavities (e.g. Andrews et al. 2011) and dust traps
(e.g. van der Marel et al. 2013, 2016). These recent
observations, combined with the huge diversity of exo-
planetary systems discovered over recent years (Winn &
Fabrycky 2015), has stimulated a new wave of rapid de-
velopment in the modelling of protoplanetary discs, to
better understand their evolution, along with their con-
nection to the planet formation process (e.g. Papaloizou
& Terquem 2006).

Understanding the evolution of discs, the structures
that we are observing within them and the planet for-
mation process presents a substantial challenge to mod-
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2 T. J. Haworth et al.

ellers. Discs are composed of non-primordial material
spanning conditions ranging from cold, extremely dense
and molecular, through to diffuse, hot and ionised. Den-
sities and temperatures vary by ∼ 10 and 3 orders of
magnitude, respectively. The basic chemical composi-
tion of discs alone is the subject of at least four complex
research fields distinguished by the local matter condi-
tions and radiation field: dust grains, gas-grain chem-
istry, photon dominated chemistry and photoionisation
(e.g. Gorti & Hollenbach 2009; Thiabaud et al. 2015;
Walsh et al. 2015; Gorti et al. 2015). The situation is
even more challenging since the observational determi-
nation of a disc’s composition is often degenerate, mak-
ing direct comparison between observations and theory
(and thus validation of our models) difficult (e.g. Mei-
jer et al. 2008; Woitke et al. 2016; Miotello et al. 2016;
Boneberg et al. 2016; Kama et al. 2016).

The dynamics of protoplanetary discs are also ex-
tremely challenging. The gravitational potential from
the parent star, self-gravity of the disc, hydrodynamic
torques in the disc, radiation from the parent star
or other nearby stars, dust, and (non-ideal) magneto-
hydrodynamics all play important roles (Bodenheimer
1995; Dullemond et al. 2007; Lodato 2008; Armitage
2011, 2015). Furthermore, the dynamical evolution of
dust grains with moderate Stokes numbers St & 0.01
must be solved in addition to the gas dynamics (for
a recent review, see Testi et al. 2014). Discs are also
not necessarily in a steady state, and can be subject
to a range of instabilities, such as gravitational frag-
mentation (Durisen et al. 2007; Young & Clarke 2015;
Forgan et al. 2015; Meru 2015; Takahashi et al. 2016),
the streaming instability (Youdin & Goodman 2005),
Rossby wave instability (e.g. Lovelace et al. 1999; Tag-
ger 2001; Lyra et al. 2008b, 2009), baroclinic and ver-
tical shear instabilities, which can form and grow vor-
tex structures (Lyra & Klahr 2011; Lesur & Papaloizou
2010; Nelson et al. 2013; Richard et al. 2016), the
magneto-rotational instability (e.g. Balbus & Hawley
1991; Reyes-Ruiz et al. 2003) and dust-settling induced
vortices (Lorén-Aguilar & Bate 2015, 2016). The local
environment can also significantly modify disc evolu-
tion via mass transfer from the ambient medium onto
the disc (Vorobyov et al. 2015; Lomax et al. 2015),
nearby radiation sources (e.g. Bally et al. 2000; Henney
et al. 2002; Smith et al. 2003; Adams et al. 2004; Wright
et al. 2012; Facchini et al. 2016) and tidal encounters
(e.g. Clarke & Pringle 1993; de Juan Ovelar et al. 2012;
Rosotti et al. 2014; Vincke et al. 2015; Dai et al. 2015;
Vincke & Pfalzner 2016). A summary of some of the
key processes (local, not environmental) that modellers
attempt to capture in discs is given in Figure 1.

This physically rich environment is made even more
complex given that most of these dynamic, magnetic,
radiative and chemical processes are interlinked. For ex-

ample, the effect of magnetic fields depend upon the ion
density, which in turn is determined by the composition,
which in turn depends upon the radiation field (e.g.
due to photoionisation of atoms, photodissociation of
molecules and determination of the thermal properties
through processes such as line and continuum cooling).
Another distinct coupling is the interaction between the
gravitational instability and the magnetorotational in-
stability, which has been well-studied in the disc com-
munity using semi-analytic models as the cause of an
accretion limit cycle causing protostellar outburst phe-
nomena (Armitage et al. 2001), but is only now being
investigated with self-consistent hydrodynamic simula-
tions (e.g. Bae et al. 2014). Another example is that
the radiation field in a disc is sensitive to the distri-
bution of small dust grains (the motions of which may
also be influenced by the radiation field, e.g. Hutchison
et al. 2016) which in turn is sensitive to dynamical ef-
fects such as shadowing caused by warping of the inner
disc (Marino et al. 2015; Stolker et al. 2016). Further-
more, radiative heating increases the gas sound speed,
and hence the amount of turbulent motion transferred
to dust grains via gas-dust coupling, which influences
grain-grain collisions and therefore the growth and frag-
mentation of dust (e.g. Testi et al. 2014). As a final
example, gravitational instability and fragmentation in
discs is sensitive to radiation (e.g. Meru & Bate 2010;
Forgan & Rice 2013) and magnetic fields (Price & Bate
2007; Wurster et al. 2016), and can induce dramatic ef-
fects in the chemical composition of discs (see section
3, Ilee et al. 2011; Evans et al. 2015).

Given the importance of these links, ultimately one
wishes to identify which physical processes affect each
other in a non-negligible fashion, and to model all of
them simultaneously. The modelling of protoplanetary
discs is therefore a daunting task — what might be
termed a grand challenge. Each physical mechanism re-
quires sufficient rigour and detail that modelling them
constitutes an active field of protoplanetary disc re-
search in their own right (for reviews of physical pro-
cesses in protoplanetary discs, see e.g. Hartmann 1998;
Armitage 2011; Williams & Cieza 2011; Armitage 2015).
In practice, we have neither the numerical tools nor
computational resources to achieve such multiphysics
modelling of protoplanetary discs at present (nor in the
immediate future). However, we can set out a roadmap
towards this goal while outlining the more achievable
milestones along the way.

In this paper, motivated by group discussion sessions
at the “Protoplanetary Discussions” conference in Ed-
inburgh1, we ultimately aim to stimulate progress in the
multiphysics modelling of protoplanetary discs in order
to deepen our understanding of them. This paper is pre-
sented in parallel with a second paper which focuses on

1http://www-star.st-and.ac.uk/ppdiscs/
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Grand challenges in protoplanetary disc modelling 3

Figure 1. A protoplanetary disc schematic highlighting some of the key disc mechanisms and physics we are required to model

to capture them (in parentheses). These physical ingredients are hydrodynamics (HD), magnetohydrodynamics (MHD), radiation
hydrodynamics (RHD), radiative transfer (RT), chemistry (CHEM) and dust dynamics (DD). The background image is a subset of a

Hubble observation of R136, credit: NASA, ESA, and F. Paresce (INAF-IASF, Bologna, Italy), R. O’Connell (University of Virginia,

Charlottesville), and the Wide Field Camera 3 Science Oversight Committee.

the observations required to advance our understand-
ing of discs (Sicilia-Aguilar & et al. prep). Although
our focus here is new numerical methods and the ques-
tions they might answer, it is important to remember
that there are still many unsolved problems that can
be tackled with existing techniques. Additionally, new
numerical methods are likely to be computationally ex-
pensive so there will be many problems that are bet-
ter tackled using existing techniques (e.g. parametric
models used to interpret observations Williams & Best
2014). Furthermore this paper is not exhaustive, there
will certainly be fruitful avenues of theoretical research
into protoplanetary discs that are not discussed here (in
particular regarding magnetic fields and the details of
planet formation itself).

The structure of this paper is as follows - in Section
2 we provide an overview of some core ingredients of

disc modelling. In Section 3 we then present a series
of mid and long term challenges to motivate future de-
velopment. Finally in Sections 4–6 we discuss pathways
towards meeting the challenges in terms of strategical,
technical and collaborative developments.

2 AN OVERVIEW OF CURRENT
TECHNIQUES

We begin by providing a overview of some of the core
ingredients of protoplanetary disc modelling, to intro-
duce concepts and provide context for the rest of the
paper. This is by no means intended to be a compre-
hensive review, rather it should provide some basic plat-
form from which a reader unfamiliar with certain con-
cepts can proceed through the rest of the paper. Fig-
ure 2 illustrates the four core disciplines that comprise

PASA (2016)
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GAS & DUST  
DYNAMICS

MAGNETIC  
FIELDS CHEMISTRY

RADIATIVE 
TRANSFER
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e.g.

e.g.

RHD equations 
Line Transfer

e.g.
Shocks 

Heating & Cooling

Photoionisation 
Zeeman effect

e.g.
Charge density 
Cosmic ray flux

e.g.
Photodissociation 

Opacities & emissivitiesMHD equations

Figure 2. An illustration of the core disciplines in protoplanetary disc modelling: gas & dust dynamics, magnetic fields, radiative

transfer, and chemistry. Each discipline is a field in its own right, subject to intensive study. However, they are all closely interlinked,
affecting each other in a number of ways, of which we illustrate a few representative examples. It is this interdependence between fields

that necessitates the drive towards multiphysics modelling of protoplanetary discs.

the majority of protoplanetary disc modelling: gas and
dust dynamics, magnetic fields, radiative transfer and
chemistry. As shown, these topics are all fundamentally
linked. It is this interdependence that raises the pos-
sibility that multiphysics modelling will be important
and is hence a key focus of this paper.

2.1 (Magneto-) Hydrodynamics

Solving for the motion of fluids as a function of time is
a key ingredient for understanding the evolution of pro-
toplanetary discs. Numerical hydrodynamics is a rela-
tively mature field. Numerical solvers are either Eule-
rian or Lagrangian in character. Eulerian solvers trace
flows across fixed discrete spatial elements, while La-
grangian solvers follow the motion of the flow. In pro-
tostellar disc simulations, the majority of hydro solvers
are either Eulerian/Lagrangian grid based simulators,
or the fully Lagrangian Smoothed Particle Hydrody-
namics.

Depending on the resolution requirements, solvers are
either global, in that the entire disc extent is simulated
together, or local, where a region in the disc is sim-
ulated at high resolution, with appropriate boundary
conditions to reflect the surrounding disc environment.
Which construction is best used is dependent upon the
problem being studied, as we discuss below.

2.1.1 Global disc simulations

Historically, the primary challenge for global simula-
tions of protoplanetary discs with Eulerian codes was
the Keplerian flow — advection of material at super-
sonic speeds across a stationary mesh is a recipe for high
numerical diffusion. This has now been overcome with,
for example, the fargo algorithm (Masset 2000), im-
plemented in both the fargo (Masset 2000; Baruteau
& Masset 2008; Beńıtez-Llambay & Masset 2016) and
pluto (Mignone et al. 2007) codes. Eulerian codes per-
form best when the flow is aligned with the grid. This
means that cylindrical or spherical grids are prefer-
able which, when applicable, offer the best accuracy
currently possible of any technique for a given level
of computational expense or resolution. However, this
means that adaptive mesh refinement (Berger & Colella
1989), which is mainly (but not exclusively) developed
for Cartesian meshes, is not typically used (an exam-
ple exception is Paardekooper & Mellema 2004). Fur-
thermore, simulating warped, twisted or broken discs
remains difficult (e.g. Fragner & Nelson 2010).

Lagrangian schemes such as smoothed particle hydro-
dynamics (SPH, for reviews see e.g. Monaghan 1992;
Price 2012) are well suited to more geometrically com-
plex global disc simulations because advection is com-
puted exactly, angular momentum can be exactly con-
served (e.g. an orbit can be correctly simulated with one
particle) and there is no preferred geometry. Numeri-
cal propagation of warps using SPH has been shown
to closely match the predictions by Ogilvie (1999) of

PASA (2016)
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α-disc theory (Lodato & Price 2010). In particular, a
generic outcome of discs that are misaligned with re-
spect to the orbits of central binaries or companions is
that the disc ‘tears’ (Nixon et al. 2012, 2013; Nealon
et al. 2015) or breaks (Nixon & King 2012; Facchini
et al. 2013; Doğan et al. 2015). Such behaviour is well
modelled by SPH codes, and appears to be relevant
to observed protoplanetary discs, including HK Tau
(Stapelfeldt et al. 1998), KH15D (Lodato & Facchini
2013), and HD142527 (Casassus et al. 2015). A limita-
tion of the SPH approach is that the particles adaptively
trace the densest regions, low density components of the
disc, e.g. gaps and the disc upper layers, can therefore
be under-resolved (e.g. de Val-Borro et al. 2006).

2.1.2 Local simulations

The most common technique utilised for local simula-
tions of discs is the Cartesian shearing box (Hawley
et al. 1995; Guan & Gammie 2008). This imposes the
shear flow in a subset of a disc and allows for high
resolution simulations of disc microphysics in a Carte-
sian geometry, well suited to most Eulerian codes. This
means that all the sophistication of modern Godunov-
based hydrodynamics can be applied (there are many
textbooks covering grid based hydrodynamics, e.g. Toro
2013). This approach has been used almost exclusively
for simulating the magnetorotational (see Balbus 2003,
and references within) and other instabilities — in par-
ticular the streaming instability (e.g. Youdin & Good-
man 2005; Youdin & Johansen 2007; Johansen et al.
2007; Bai & Stone 2010b) — in discs. Though other ap-
plications include the study of magnetically driven disc
winds (e.g. Suzuki & Inutsuka 2009; Suzuki et al. 2010).

By contrast, at present there is no particular advan-
tage to using Lagrangian schemes for local disc simula-
tions. The cost for comparable results in cartesian boxes
is up to an order of magnitude higher in SPH compared
to Eulerian codes (e.g. Tasker et al. 2008; Price & Fed-
errath 2010), mainly due to the additional costs associ-
ated with finding neighbouring particles, and the algo-
rithms tend to be more dissipative than their grid-based
counterparts, particularly when the flow is well matched
to the grid geometry. However, Lagrangian techniques
can accommodae open boundary conditions more nat-
urally, so may offer advantages for certain problems in
the future.

2.1.3 Other codes

In recent years several new hydrodynamic solver meth-
ods have appeared. This broad class of Arbitrary La-
grangian Eulerian methods (ALE) offer the user the
ability to switch between Lagrangian and Eulerian for-
malisms smoothly, in some cases during simulation run-
time. Such ALE solvers include moving mesh codes
(Springel 2010, 2011; Duffell & MacFadyen 2011) and
meshless codes (Maron et al. 2012; McNally et al. 2012;

Hopkins 2015). This extreme flexibility in approach ap-
pears to offer highly conservative schemes and adap-
tive resolution while capturing mixing and shear insta-
bilities with high fidelity. The relative youth of these
techniques (at least, in their application to computa-
tional astrophysics) means the full extent of weaknesses
and strengths in these approaches remains to be seen
(e.g. the “grid noise” encountered during mesh regular-
isation; Mocz et al. 2015) although early applications
to protostellar discs appear to be promising (see e.g.
Muñoz et al. 2014).

Another recent development in numerical astrophys-
ical fluid dynamics is the use of discontinuous Galerkin
methods (which have a long history of application in
the mathematical community). These grid based tech-
niques offer accurate, high order solutions in a manner
that is readily applied to adaptive meshes, and that
scale efficiently on modern high performance comput-
ing facilities. In the astrophysical community, discontin-
uous Galerkin algorithms have now been implemented
in both Cartesian (e.g. the tenet code; Schaal et al.
2015) and moving Voronoi mesh (e.g. the arepo code;
Mocz et al. 2014) frameworks.

2.1.4 Magnetic fields

The above hydrodynamic solvers are able to include
the evolution of the magnetic field in their fundamen-
tal equations. This has been most easily incorporated
in Eulerian solvers, with mature magnetohydrodynamic
(MHD) implementations in, for example, the athena
(Stone et al. 2008), enzo (Bryan et al. 2014a), fargo
(Beńıtez-Llambay & Masset 2016), pluto (Mignone
et al. 2007) and pencil (Brandenburg & Dobler 2002)
codes. SPH and other meshless codes can now also in-
corporate MHD (see review by Price 2012), provided
that the ∇ ·B = 0 condition can be sustained, for ex-
ample using divergence cleaning techniques (Tricco &
Price 2012). Note however, that MHD with SPH is not
a mature approach and is therefore somewhat less ro-
bust than Eulerian MHD at present (e.g. Lewis et al.
2016).

While ideal MHD disc simulations have been con-
ducted for some time (see Balbus 2003, and references
within), particularly important for protostellar discs is
the role of non-ideal MHD, ever since the idea of a ‘dead
zone’ was proposed by Gammie (1996). More recently,
the interplay between the Hall effect, ambipolar diffu-
sion and Ohmic diffusion is yielding new turbulent be-
haviour (Sano & Stone 2002; Simon et al. 2015), new
forms of instability and zonal flows in both MRI-active
and ‘dead zone’ regions (e.g Kunz & Lesur 2013; Bai
& Stone 2014), not to mention addressing the so-called
magnetic braking catastrophe that suppresses disc for-
mation in ideal MHD (Tsukamoto et al. 2015; Wurster
et al. 2016) (see recent review by Tsukamoto 2016, this
volume).

PASA (2016)
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6 T. J. Haworth et al.

For more general modelling of young stellar systems,
global simulations are particularly important for mod-
elling the launching of magnetised winds from the star
and/or disc, and jets from the central star (e.g. Casse
et al. 2007; Bai 2014; Lovelace et al. 2014; Suzuki &
Inutsuka 2014; Staff et al. 2016).

2.1.5 Remarks on hydrodynamics

In summary, there are a number of options available as
to how to model the (magneto-)hydrodynamical evolu-
tion of a disc - the problem one is addressing determines
which method is most appropriate. This “horses for
courses” approach is important, and is likely to extend
to efforts which hope to further include elements from
the other disciplines of disc modelling such as chemistry
and radiation transport.

2.2 Dust-gas dynamics

The dynamics of small dust grains (Stokes number� 1)
is typically well coupled to that of the gas. For larger
grains, however, the dust and gas dynamics can be de-
coupled. Properly modelling these decoupled motions is
important both for disc dynamics, but also for interpret-
ing observations. This latter point is particularly pru-
dent given that some of the most important disc obser-
vations in recent years are millimetre continuum obser-
vations (i.e. of dust). For example, decoupled dust and
gas dynamics is apparently important for understand-
ing the symmetric gaps observed in discs (e.g. Dipierro
et al. 2015b; Jin et al. 2016; Rosotti et al. 2016).

Approaches for modelling the dynamics of dust grains
that are decoupled from the motions of the gas are often
distinguished by whether they use a single or two fluid
approach, both of which we discuss below.

2.2.1 Two fluid or ‘hybrid’ schemes

In an SPH framework, the two-fluid approach sees the
dust and gas as separate particle populations, the dy-
namics for which are solved separately (Monaghan &
Kocharyan 1995; Barrière-Fouchet et al. 2005; Laibe
& Price 2012a,b; Lorén-Aguilar & Bate 2014; Booth
et al. 2015). In grid-based methods the dust is typically
simulated as a particle population, with the hydrody-
namics computed on the grid (e.g. Paardekooper 2007;
Lyra et al. 2008a; Miniati 2010; Bai & Stone 2010a;
Flock et al. 2015; Baruteau & Zhu 2016; Yang & Jo-
hansen 2016) — hence usually referred to as a ‘hybrid’
approach. The ‘hybrid’ or ‘two fluid’ approaches are
best suited to decoupled grains with Stokes number & 1,
where the interaction can be computed explicitly.

The traditional difficulty when dust is modelled by
a separate set of particles is that short timesteps are
required for small grains (Stokes numbers� 1), requir-
ing implicit timestepping schemes (Monaghan 1997; Bai
& Stone 2010a; Miniati 2010; Laibe & Price 2012b).

However, Laibe & Price (2012a) showed that simulat-
ing tightly coupled grains this way leads to ‘overdamp-
ing’ of the mixture, becoming increasingly inaccurate
for small Stokes numbers, caused by the need to spa-
tially resolve the ‘stopping length’ l ∼ csts (where cs is
the sound speed and ts is the stopping time). A similar
issue was noted by Miniati (2010) in the context of grid
based codes, finding only first order convergence in the
‘stiff’ regime when the stopping time is shorter than the
Courant timestep. However, by making use of the ana-
lytical solutions for the motion under drag forces that
respect the underlying problem this dissipation can be
substantially reduced (or entirely avoided in the limit
of negligible dust mass, Lorén-Aguilar & Bate 2014).

2.2.2 Single fluid schemes

In the single fluid approach the dust parameters (dust to
gas ratio, relative velocity) are properties of the ‘mix-
ture’. In SPH this means that a single population of
SPH particles is used, representing the total fluid mass,
with dust properties updated on each ‘mixture’ par-
ticle (Laibe & Price 2014a,b,c; Price & Laibe 2015;
Hutchison et al. 2016). The same approach on a grid
means evolving the dust density on the grid (called
a ‘two fluid’ approach by Miniati 2010 — though not
to be confused with the two fluid approach mentioned
above — to distinguish it from the ‘hybrid’ grid-plus-
particles method). This is sometimes achieved using the
approach suggested by Johansen & Klahr (2005) based
on the ‘short friction time’ or ‘terminal velocity approx-
imation’ for small grains. Here the dust continuity equa-
tion is solved and the dust velocity is set equal to the
gas velocity plus the stopping time times the differential
forces between the gas and dust mixture. This is sim-
ilar to the ‘diffusion approximation for dust’ derived
by Laibe & Price (2014a) and implemented in SPH by
Price & Laibe (2015) with an important caveat – that
this formulation is only valid when the dust fraction is
small (since it assumes that the gas velocity equals the
barycentric velocity of the mixture). This assumption
can easily be relaxed, at no additional computational
expense, as shown by (Laibe & Price 2014a).

An attraction of fluid based dust models is that
within their domain of validity they provide a high de-
gree of accuracy for their computational cost, while par-
ticle approaches typically suffer from sampling noise.
However, the fluid approach is equivalent to using a
moment based method for solving the radiative trans-
fer equations (see Section 2.3) where all moments of
order greater than unity (or even zero in the short-
friction time approach) are discarded. This means that
in cases where the dust velocity becomes multi-valued
the result may converge to the wrong answer. Possible
examples of when this can occur include settling (for

St > 1), turbulent motion (St & R
−1/2
e ∼ 10−4 in astro-

PASA (2016)
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Grand challenges in protoplanetary disc modelling 7

physical flows, although Reynolds nymbers, Re & 103,
are rarely achieved numerically Falkovich et al. 2002;
Ormel & Cuzzi 2007), strong gravitational scattering,
and in convergent flows at curved shocks. By including
higher order moments, the fluid approximation could
be extended to support multi-valued flows and thus sup-
port both large and small grains (Chalons et al. 2010a,b;
Yuan & Fox 2011; Yuan et al. 2012).

2.2.3 Dust post-processing approaches

While the dynamical evolution of discs is clearly of
importance to many problems, there are many cases
in which the dynamic time-scales are very different to
other processes (see also Section 5.3 of this paper).
For example, the short radiative time-scale in discs
has led to the standard approach of treating them as
isothermal. Similarly, since dust growth often occurs on
much longer timescales (> 104 yr) the approach of post-
processing the dust evolution according to some average
over the short term dynamics can be viable. For exam-
ple Brauer et al. (2008) and Birnstiel et al. (2010) evolve
the gas disc until a steady state is reached and then
evolve the dust against this steady gas background.

This approach has also been applied to transition
discs and discs with massive planets embedded, in par-
ticular following the growth of large particles trapped
inside pressure maxima (Pinilla et al. 2015, 2016). Sim-
ilarly, Dipierro et al. (2015a) applied this approach to
self-gravitating discs in order to predict scattered light
images. Miyake et al. (2016) have also studied the mo-
tions of dust grains against a fixed gas background
for the scenario of magneto-rotationally driven winds.
However, we note that this approach can be fraught
with difficulty, since it is difficult to know a priori
what the representative average of the disc should be
within which to evolve the dust. For example, particles
with St ∼ 1 can become trapped in the spiral arms of
self-gravitating discs (or other pressure maxima), mak-
ing azimuthal averaging unreliable. Similarly, although
Rosotti et al. (2016) showed that azimuthal averaging
works well for transition discs formed by planets of or-
der a Jupiter mass or less, ignoring the gas-dynamics
completely would predict an incorrect surface density
profile and thus also incorrect growth rates. However,
when the effects of combined dust-gas dynamics are
taken properly into account (e.g. the short-friction time
approximation can be used with hydrodynamic models
to predict the evolution of dust grains 1 mm or smaller
in transition discs), the post-processing approach will
undoubtedly continue to provide important insights.

Conversely, coupling to live simulations of the
dust/gas dynamics may prove to be essential for under-
standing some phenomena. For example, Gonzalez et al.
(2015b) showed that by incorporating grain growth, ra-
dial drift and feedback that self-induced dust traps may

arise (to be explored in more detail in Gonzalez et al.
prep). There will be many other important cases that
likely require live simulations, for example, understand-
ing whether planet formation can occur via the stream-
ing instability in dust traps will require models that
can show whether grains can grow to the required sizes
without destabilizing the trap (e.g. Kato et al. 2012;
Taki et al. 2016).

2.2.4 Remarks on dust dynamics

To date there are virtually no simulations where both
small and large grains are directly simultaneously
evolved alongside the gas, in 3D, including the back-
reaction on the gas (though considerable progress to-
wards this has been made by Paardekooper 2007; Lyra
et al. 2008a; Gonzalez et al. 2015a,b). Such a combina-
tion is important, because the grains, particularly when
the dust-to-gas ratio becomes high, exert a backreac-
tion on the gas, which in turn modifies the dynam-
ics of the other grain species. For example, Laibe &
Price (2014c) showed that under certain conditions ef-
fects from the dynamics of multiple grain species could
lead to the outward rather than inward migration of
pebble-sized grains in discs. While the large grain pop-
ulations with St & 1 are more interesting dynamically
because they are more decoupled from the gas, mod-
elling the small grains is necessary for coupling with
radiative transfer and thus for comparison with obser-
vations. Paardekooper (2007) and Lyra et al. (2008a) do
model a distribution of grain sizes using a particle ap-
praoch, but not in regimes where the backreaction on to
the gas is accounted for. Another often used approach
is to perform a series of single grain-size simulations,
and merge the results (e.g. Gonzalez et al. 2012; Dip-
ierro et al. 2015b). While these approaches neglect any
feedback that the grain species have on the gas dynam-
ics, they have proved a useful tool for direct comparison
with observations.

From the perspective of dust dynamics, a long term
goal would be to model the dynamics of the whole grain
population in discs simultaneously, in 3D, including the
effects of the dust on the gas dynamics. Some progress
towards this was made by Bai & Stone (2010a); Laibe &
Price (2014c), showing how multiple grain species can
be treated simultaneously within a one-fluid approach,
but this is not yet implemented in any numerical code.
Modelling the entire grain population would open the
possibility of coupling the dust dynamics directly to the
radiative transfer. In turn, the radiative transfer could
then be used to set the gas temperature profile in the
disc, allowing for thermodynamic feedback between the
grain dynamics and the gas and the coupling to chem-
istry.
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2.3 Radiative transfer

The transport of radiation through matter is important
for three primary reasons. Firstly, radiation can modify
the composition and thermal properties of matter. For
example, changing the composition and heating through
mechanisms such as photoionisation and photodissocia-
tion and cooling it through the escape of line emission.
Radiation can also set the dust temperature, which is
determined by radiative equilibrium between thermal
emission from the grains and the local radiation field
(there are a number of textbooks with extensive dis-
cussion of these topics, such as Spitzer 1978; Rybicki &
Lightman 1979; Osterbrock & Ferland 2006). This im-
pact on the composition and thermal structure drives
many macroscopic processes in discs (see e.g. section
1, Figure 1). Secondly, radiation pressure can directly
impart a force upon matter, altering the dynamics. Fi-
nally, radiation is what is actually observed. Radiative
transfer is therefore required to make the most meaning-
ful and robust comparisons between theoretical models
and observations.

Since radiative transfer is fundamentally coupled to
matter (influencing the composition and temperature,
which in turn modifies opacities and emissivities), the
coupling of radiation transport and chemistry is already
an established field, which will be discussed further in
section 2.4.

For purely dynamical applications the only quanti-
ties of interest from radiative transfer are a tempera-
ture/pressure estimate and/or a radiation pressure es-
timate. To this end, popular techniques are flux lim-
ited diffusion (FLD) and similar moment methods, ow-
ing to their relatively minimal computational expense
compared with more detailed radiative transfer meth-
ods (e.g. Levermore & Pomraning 1981; Whitehouse &
Bate 2004; Whitehouse et al. 2005). In FLD schemes,
the directional properties of the radiation field are re-
placed by angle averaged ones and the radiative trans-
fer problem is solved using a diffusion equation. FLD
has long been applied in optically thick regimes with-
out sharp density contrasts, but can generate spurious
results where this is not the case (Owen et al. 2014;
Kuiper & Klessen 2013). Most modern applications of
FLD account for this failure at low optical depth by
using boundary conditions (e.g. Mayer et al. 2007), or
using hybrid methods to allow the system to radiate en-
ergy away from optically thin regions (e.g. Boley et al.
2007; Forgan et al. 2009). Other approximate temper-
ature prescriptions have also been developed that are
tailored to model the effect of higher energy extreme
ultraviolet (EUV) and X-ray photons from the parent
star on the disc evolution (e.g. Alexander et al. 2006a,b;
Owen et al. 2010, 2011, 2012; Haworth et al. 2016b).

More rigorous radiation transport methods have his-
torically typically been confined to computing synthetic

observables, where the density structure is based on
snapshots from dynamical models, hydrostatic equilib-
rium in a simple disc, or a parametric model. Perhaps
the most popular method in this context is Monte Carlo
radiative transfer (Lucy 1999), which is used by the
well known codes radmc-3d (Dullemond 2012), mc-
max (Min et al. 2009), hyperion (Robitaille 2011),
mcfost (Pinte et al. 2006) and torus (Harries 2015,
also discussed below). Monte Carlo radiation trans-
port typically involves breaking the energy from ra-
diative sources into discrete packets, which are prop-
agated through space in a random walk akin to the
propagation of real photons through matter (e.g. in-
cluding scattering and absorption/re-emission events).
This provides an estimate of the mean intensity every-
where which can be used, for example, to solve for the
ionisation state of a gas, the dust radiative equilbrium
temperature, or to generate synthetic observations. The
Monte Carlo approach naturally accounts for the pro-
cessed radiation field (scatterings, recombination pho-
tons), works in arbitrarily geometrically complex me-
dia and also treats multi-frequency radiation transport
(conversely FLD approaches typically assume that the
opacity is frequency independent).

In addition to the Monte Carlo approach, other well
known methods are also the pure (e.g. Abel & Wan-
delt 2002) and short characteristic (e.g. Davis et al.
2012) ray tracing schemes. Recently intermediate ex-
pense hybrid-methods have been developed which com-
bine FLD and other (e.g. ray–tracing) methods to offer
a better balance between the accuracy of a more so-
phisticated scheme and the speed of FLD for dynamical
applications (Kuiper & Klessen 2013; Owen et al. 2014;
Ramsey & Dullemond 2015).

2.4 Chemistry

Molecular line observations play a central role in deter-
mining both the conditions within, and kinematics of,
protoplanetary discs. In particular, CO and its isotopo-
logues are popular tracers which are relatively abun-
dant, have a permanent dipole moment and estimates
of canonical abundances in the interstellar medium
(ISM). CO synthetic observations can therefore be gen-
erated relatively easily in discs by assuming the canon-
ical abundance and that local thermodynamic equilib-
rium (LTE) applies, in which case the level populations
are set analytically by the Boltzmann distribution (e.g.
Williams & Best 2014). However such a simple approach
is not always valid. For example in discs there is evi-
dence of departure from the canonical CO abundance
(e.g. Favre et al. 2013) and the relative abundance of
isotoplogues does not necessarily scale as in the ISM
(Miotello et al. 2014b). Furthermore, dust grain evolu-
tion and dynamical processes such as instabilities and
planet-disc interactions can also affect the chemistry
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(e.g. Boley et al. 2007; Ilee et al. 2011; Evans et al. 2015;
Öberg et al. 2015a,b; Cleeves et al. 2015; Huang et al.
2016). Although simple CO parameterisations yield use-
ful insights into the global properties of discs (such as
the disc mass, e.g. Miotello et al. 2016; Williams &
McPartland 2016) they are substantially more limited
when it comes to probing the local properties. Given
the above, more substantial chemical models will play
an important role in the interpretation of modern pro-
toplanetary disc observations. Furthermore, such mod-
els would support observations using molecules other
than CO that are less easily parameterised, but could be
better suited for probing certain components of a disc.
In addition to interpreting observations, understanding
the chemical evolution of discs will also have astrobi-
ological implications in the connection to the chemical
composition of planets themselves.

To date, almost 200 molecules have been detected in
interstellar or circumstellar environments2. The abun-
dances of these molecules can be subject to change via
a large number of chemical reactions (see Caselli 2005;
Henning & Semenov 2013, for reviews). In order to ac-
curately model the evolution of even a small number
of these molecules, complex computational networks of
chemical reactions are needed in the form of coupled or-
dinary differential equations (ODEs). Several research
groups have compiled publicly-available databases of
both these chemical reaction networks, and data on
the rates of individual chemical reactions themselves
- including the UMIST Database for Astrochemistry3

(UDfA; Millar et al. 1997; Woodall et al. 2007; McEl-
roy et al. 2013), the Ohio State University networks4,
and the Kinetic Database for Astrochemistry5 (KIDA;
Wakelam et al. 2012). Databases either contain these
rates explicitly, or include how such a rate depends on
local properties in the form of a parametrised expres-
sion (often via the Arrhenius-Kooij equation, Arrhenius
1889; Kooij 1893).

Chemical reactions fall into several categories and
can involve a variety of reactants. Table 1 lists the
common types of astrophysical reactions. While the
majority of reactions are concerned with gas phase
species or their interaction with photons, dust grain
surfaces provide a location for further chemistry to oc-
cur. Gas phase molecules attach themselves to the sur-
faces of dust grains (a process known as adsorption)
via two mechanisms: physisorption (involving weak van
der Waals forces) or chemisorption (due to chemical va-
lence bonds). Once species are adsorbed, they produce
layers of ices on the surface of dust grains, which allows
more complex surface chemistry to occur (Herbst & van
Dishoeck 2009). An example of this is the process of

2http://www.astro.uni-koeln.de/cdms/molecules
3http://udfa.ajmarkwick.net
4http://faculty.virginia.edu/ericherb/research.html
5http://kida.obs.u-bordeaux1.fr

Table 1 Common gas-grain reactions in astrophysical environ-
ments. Species are all considered to be in the gas phase, unless

shown as Xgr, which are considered to be located on the ice man-

tles of dust grains. Photons are shown as γ and cosmic rays are
shown as γcr. Adapted from Caselli (2005).

Reaction Process

Neutral-neutral A + B → C + D
Three-body A + B + M → C + D + M
Radiative association A + B → AB + hν
Ion-neutral A+ + B → C+ + D
Dissociative recomb. AB+ + e− → A + B
Charge transfer A+ + B → A + B+

Photodissociation AB + γ → A + B
Photoionisation A + γ → A+ + e−

Cosmic-ray ionisation A + γcr → A+ + e−

Adsorption A → Agr

Desorption Agr → A
Grain surface Agr → Bgr

hydrogenation, by which hydrogen reacts quickly with
other surface species (including itself) to produce satu-
rated molecules such as methane. Of particular interest
for this paper is that the composition of ices on dust
grains (e.g. CO-coated versus H2O-coated) can also af-
fect the subsequent evolution of the dust by affecting
the sticking efficiency and coagulation and fragmenta-
tion efficiencies (not discussed in detail here, but see e.g.
Kouchi et al. 2002; Blum & Wurm 2008; Johansen et al.
2014; Musiolik et al. 2016, for further information). Re-
gions that are well shielded from incident stellar radi-
ation (such as the disc midplane) might be thought to
be chemically inert, as there is not sufficient energy to
overcome reaction activation barriers. However, in such
regions, ionisations caused by cosmic rays can induce
ion-molecule reaction sequences that dominate much
of the gas-phase chemistry, including the production of
secondary cosmic-ray-induced photons. Increased den-
sities in the disc midplane also mean that three-body
reactions in the gas phase will begin to have an im-
portant effect on the chemistry. In these cases, a third
body (M, the most abundant species, often molecular
hydrogen) acts an a non-reacting catalyst.

In addition to (closely coupled to) the computation
of abundances is the computation of the temperature.
This is determined by the heating and cooling rates,
which are themselves set by, to name just a few: ra-
diative processes (e.g. photoionisation heating and line
cooling), dust/PAH’s (e.g. PAH heating and grain ra-
diative cooling), chemical processes (e.g. exothermic re-
actions), hydrodynamic work/viscous heating and cos-
mic rays (a review is given by Woitke 2015). Many of
these heating/cooling terms are linked to the composi-
tion of the gas, requiring chemical and thermal calcu-
lations to be solved iteratively. In principle, since the
heating and cooling is also set by the dust and radia-
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Figure 3. Left : The three-dimensional evolution of a tracer particle in a self–gravitating disc, colour coded with temperature changes,

overlaid on the final column density snapshot of the disc. Right : The corresponding chemical evolution of particle, showing gas-phase
CO and H2CO, and CO ice (gCO). The shocks induced by the self–gravity of the disc have a significant impact on the chemical

composition of the disc material (see Boley et al. 2007; Ilee et al. 2011; Evans et al. 2015).

tion field, it might also be necessary to iterate over the
(decoupled dust-gas) dynamics and radiative transfer.

Somewhat distinct from gas–grain chemistry are the
photoionisation and photon dominated region (PDR)
regimes, where the radiation field plays a significant
role in setting the composition and temperature of a
medium. Photoionised gases are composed exclusively
of atoms and ions and are typically modelled more
in a radiative transfer context than a chemical one.
Photoionisation models are usually concerned with the
transfer of EUV photons and X–rays to solve for the
ionisation balance and thermal structure of a gas of as-
sumed gas and dust abundances. Despite not requiring
chemical networks, this can include a variety of pro-
cesses that are not trivially captured such as resonant
line transfer and inner shell ionisations of atoms by X–
rays (the liberation of multiple electrons by a single pho-
ton). Some examples of famous photoionisation codes
are cloudy (Ferland et al. 2013) and mocassin (Er-
colano et al. 2003). The photoionised regime only ap-
plies to disc winds, the very surface layers/inner edge
of discs and, if the disc is externally irradiated by high
energy photons (e.g. from a nearby O star), components
of the flow from the disc outer edge.

The PDR regime applies at the transition between
photoionisation and gas–grain dominated regimes; be-
tween predominantly ionised and molecular gasses. For
example in surface layers of the disc, but generally
wherever matter is not optically thick to far ultravio-
let (FUV) radiation. PDR modelling, like the gas–grain
regime, requires a chemical network to be solved. It is
also further complicated because cooling by line pho-

tons can be very important. This means that although
the local radiation energy density (exciting the gas) is
a single parameter, the escape probability of the line
photons depends upon the extinction in all directions,
i.e. it depends on the 3D structure of the surrounding
space. Many PDR codes therefore compute this escape
probability in one direction only, either working in 1D
(e.g. models such as those in Röllig et al. 2007) or mak-
ing some assumption about the dominant direction (e.g.
vertically in the disc). Of the latter type, so called 1+1D
models are particularly popular, which assume that at
any given radial distance from the star the disc is in
hydrostatic balance and escaping photons only consider
the vertical distribution of gas at that radius (e.g. Gorti
et al. 2009; Woitke et al. 2016). Recently, multidimen-
sional numerical approaches to solving PDR chemistry
have appeared that do compute the 3D escape probabil-
ities (Bisbas et al. 2012, 2015b) which they do efficiently
using healpix (Górski et al. 2005)

2.4.1 Remarks on chemistry and radiative transfer

Chemical networks are used in conjunction with radia-
tive transfer models to compute chemical abundances
in various astrophysical environments. In general, the
abundances are functions of temperature, density and
local radiation field, though many other parameters can
play a role (in particular in the regime where line cooling
is important, a measure of the extinction in all direc-
tions is ideally required). Often, the chemical networks
are integrated to equilibrium in regions where the phys-
ical conditions are not thought to change significantly
with time. However, in many cases, the microphysical
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conditions are functions of both space and time and
are therefore not independent of dynamical processes
(an example of this is given in Figure 3, see also Boley
et al. 2007; Ilee et al. 2011; Evans et al. 2015; Droz-
dovskaya et al. 2016).

Recent work has seen an increase in performing chem-
ical evolution calculations alongside the radiative trans-
fer calculations (e.g. Bruderer et al. 2009; Woitke et al.
2009). Furthermore, chemistry is now being coupled di-
rectly with hydrodynamic calculations: in the context
of star forming regions there are the full hydrodynamic
models of Glover et al. (2010) and in a 1+1D disc frame-
work there are models such as those by Gorti et al.
(2009) which also include radiative transfer. Such cou-
pling is particularly important in the regions of the
discs where the gas is not thermally coupled to the
dust (i.e. in the upper layers of the disc, or within the
dust sublimation radius), since the gas temperature, gas
abundances and level populations are strongly corre-
lated. Unfortunately, it is in these regions of importance
that 1+1D models become less applicable due to devi-
ations from hydrostatic equilibrium (for example ther-
mally driven winds are not hydrostatic, e.g. Clarke &
Alexander 2016). Dynamically, some chemical regimes
(in particular, the PDR regime) are definitely important
for understanding certain processes. For example PDR
physics is required to model FUV driven photoevapo-
rative flows from the outer edge of discs (Adams et al.
2004; Facchini et al. 2016; Haworth et al. 2016a). The
dynamical importance of gas–grain chemistry in cooler
regions of the disc is currently yet to be determined,
for example presently unidentified chemically induced
dynamical instabilities could potentially arise (see the
burning questions, section 3.1).

Aside from the coupling of chemistry with new
physics such as dynamics, it is very important to stress
that our base understanding of astrochemistry is con-
stantly and rapidly evolving, with new species, reactions
and regimes being identified that can only be studied in
a dedicated manner (for example Penteado et al. prep,
use 10,000 models to study the sensitivity of single point
chemical models to binding energies). It is important
that such focused study continues.

Considering again the dust, there is no obvious con-
sensus at present as to the best way to perform self-
consistent dusty radiation hydrodynamics calculations
of protoplanetary disc evolution. Schemes such as the
short characteristics Variable Eddington Tensor (VET)
method implemented in the Athena code by Davis
et al. (2012), or the hybrid approach by Kuiper &
Klessen (2013) show promise for bridging the gap be-
tween FLD and ray-tracing, but still require accurate
modelling of the small grain dust population to deter-
mine the opacities before they can be applied in the
context of protoplanetary discs (see Section 2.2).

With respect to magnetic fields, there are now also
some approaches capable of modelling both radiation
and magneto-hydrodynamics (e.g. Flock et al. 2013; To-
mida et al. 2015)

Based on the above, we are already making excel-
lent progress in cross-disciplinary modelling of discs,
but most of this progress is very recent. There are still a
number of highly coupled processes that cannot yet be
modelled. As we will now discuss, there is a long, but
fruitful journey ahead of multiphysics disc modellers.

3 BRIDGING THE GAPS - CHALLENGES

The interconnectedness of different processes in discs
means that to be able to answer many of the outstand-
ing theoretical and observational questions regarding
protoplanetary discs we will require a combination of
three-dimensional, global, multi-phase simulations with
radiation hydrodynamics, dust dynamics and size evo-
lution, and chemistry computed self-consistently (see
Figure 2).

3.1 Burning questions

Some examples of ‘burning’ science questions raised ei-
ther during our discussion sessions, or by members of
the community commenting on this manuscript, which
might motivate improved multiphysics modelling of
discs, included:

• What are the main drivers of global disc evolution?
In particular, what is the main driver of the mass
accretion rate in protoplanetary discs?

• Alongside magnetic fields, what other processes
govern or control the launching of jets and out-
flows?

• What is the effect of environment on protoplane-
tary disc evolution? For example, discs close to O
stars are clearly heavily disrupted by high energy
photons (we observe such systems as proplyds),
but what is the role of comparatively modest ra-
diation fields?

• Do chemical–dynamical instabilities exist, i.e. is
there a chemical reaction that feeds back into the
dynamics (e.g. thermally) but responds to the dy-
namical change with a faster reaction rate?

• What happens to small grains at the surface of the
disc or in outflows/winds?

• What happens at high dust to gas ratios? How
important are streaming instabilities, or other in-
stabilities? How important are self–induced dust
traps? What happens to dust in shocks?

• How do magnetic fields in the disc affect the be-
haviour of charged dust grains, and how do the dy-
namics and ionisation chemistry of the grain pop-
ulation in turn affect the magnetic field evolution?
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• What are the conditions under which pebble accre-
tion (e.g. Ormel & Klahr 2010; Lambrechts & Jo-
hansen 2012; Morbidelli & Nesvorny 2012) might
operate, and how will this impact the diversity of
planetary systems formed in protoplanetary discs
(e.g. Bitsch et al. 2015; Chambers 2016; Ida et al.
2016)?

• What is the nature of fragmentation in self-
gravitating discs? Is there a well-defined parameter
space where fragmentation occurs (cf Meru & Bate
2011; Michael et al. 2012; Rice et al. 2012, 2014),
or can it occur stochastically through rare high-
amplitude density perturbations over long enough
timescales (Paardekooper 2012; Young & Clarke
2016)?

• What is the origin of rings, gaps, horseshoes and
cavities observed in mm-continuum emission? How
common are these features?

• How can the masses and properties of embedded
protoplanets be constrained from observations?

• How do planets affect observations of chemical
tracers?

• How do planets and circumplanetary discs af-
fect the evolution of the protoplanetary disc (e.g.
through thermal feedback or increased radiative
heating in gaps). Conversely, how does the disc
affect an embedded planet (e.g. the planetary at-
mosphere).

• Will dust discs fragment?
• What determines the scale height of the dust

layer? How is this set by different processes, for
example, coagulation (e.g. Krijt & Ciesla 2016)

• Under which conditions do warps develop in discs?
Can radiation pressure drive warping?

• What are the possible initial conditions of class
I/II/III discs and how do they influence the subse-
quent evolution? In particular how does the early
evolution of discs affect the chemistry and grain
distribution (e.g. Miotello et al. 2014a)? What is
inherited from the star formation process?

• The vertical component of the magnetic field con-
trols the mass flux of winds and the saturation
level of MRI-driven turbulence. How does the
competition between accretion (drawing the ver-
tical field in towards smaller radii) and diffusivity
(pushing it outwards towards larger radii) cause
this component of the field to vary with time? In
particular what is the magnitude of the diffusiv-
ity term, which is set by microphysics (e.g. Lubow
et al. 1994; Rothstein & Lovelace 2008; Takeuchi
& Okuzumi 2014)?

• How turbulent are protoplanetary discs (e.g. Fla-
herty et al. 2015; Teague et al. 2016)?

• What is the process by which a protoplanetary disc
becomes a debris disc? Transition discs; those with
inner holes, are typically attributed to the action of

photoevaporation by the host star (see e.g. Owen
2016), or planets (e.g. Zhu et al. 2011). But which,
if either, of these is the dominant process (exam-
ples of models including both are Alexander & Ar-
mitage 2009; Rosotti et al. 2015)? Are there other
processes that contribute significantly to disc dis-
persal, such as magneto–thermal winds (Bai et al.
2016)? What are the initial conditions of debris
disc models (e.g. Takeuchi et al. 2005; Thilliez &
Maddison 2015)?

Some of these questions might only be addressed by
combining all of the physical ingredients of protoplane-
tary disc modelling. However, several will only require
consideration of a smaller fraction. These smaller steps
will be extremely valuable in bridging the gaps between
fields, and will undoubtedly inform the production of a
fully comprehensive modelling approach. We manifest
these steps as a series of challenges, outlined below.

3.2 Grand challenges for gas modelling

C1: Model the pressure and temperature effects of
photochemistry in multidimensional, fully
hydrodynamic models

This challenges us to account for the (non–hydrostatic)
dynamical impact of gas whose composition and tem-
perature is set by photodissociation region processes.
Specifically, the temperature should be accurately com-
puted to within ∼ 15 per cent of a standard PDR net-
work (which is the level of accuracy typically attained
by reduced networks, see section 5.1.1).

C2: Model the pressure and temperature effects of
gas-grain chemistry in multidimensional, fully
hydrodynamic models

Similar to challenge C1, this challenges us to account
for the (non–hydrostatic) dynamical impact of chemi-
cal processes in optically thick regions of discs. There
is a caveat to this challenge in that the dynamical im-
portance of gas-grain chemistry is currently unknown.
This therefore also (first) challenges us to determine
what features of gas–grain chemistry might actually be
dynamically important – such as chemically induced
dynamical instabilities (see also the burning questions;
section 3.1).

C3: Incorporate the radiation field self-consistently
while computing a multidimensional hydrodynamic
model which satisfies challenges C1/C2

Challenges C1 and C2 are likely to be met by mak-
ing simplifying assumptions about the incident radi-
ation and cosmic ray background. The next step is
then to properly account for the radiation field: set by
the central protostar, the disc material and any sur-
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rounding environment (e.g. the envelope or neighbour-
ing stars/clouds/associations). This challenge will play
a crucial role in understanding environmental influences
on disc lifetimes.

C4: Model magnetic fields that can couple
self-consistently to a realistic population of
participating species

Models constructed to meet challenges C1-C3 that di-
rectly compute the composition of matter will deliver
self-consistent populations of electrons, ions and neu-
tral species. The formation and evolution of magneti-
cally active and dead zones, and the activation of MRI,
is fundamental to the disc’s ability to accrete onto the
star, as well as the launching of jets and outflows. We
must therefore be able to couple the magnetic field evo-
lution to the above gas-grain chemistry (see also chal-
lenge C9). Typically, MHD simulations that model the
principal non-ideal processes (the Hall effect, Ohmic
dissipation and ambipolar diffusion) use simplified mod-
els for ion/grain mass and charge, often assuming single
values for these properties. In practice, ion masses and
charges will vary tremendously depending on the gas
composition and the ambient radiation field.

In this challenge, non-ideal MHD models must be
made flexible enough to accept arbitrary populations
of a wide variety of ions (and grains, see C9) as input
for computing subsequent magnetic field structure (c.f.
the recent use of a reduced network by Tomida et al.
2015).

C5: Assemblage of gas modelling challenges

This essentially challenges us to model all components
of the gas phase, i.e. to couple both C1 and C2, while
incorporating C3 and C4. This challenge has two tiers.
The lower tier involves accounting for all of the dynam-
ical effects, without necessarily directly modelling the
composition. Conversely the higher tier does involve di-
rect computation of the dynamically (and observation-
ally) relevant chemical species.

3.3 Grand challenges for dust-gas modelling

Simultaneously compute the dynamics and size evo-
lution of the entire grain population, coupled to self-
consistent modelling of the gas and radiation field in
the disc in global, 3D simulations. This can be broken
into a series of smaller challenges, as follows:

C6: Model the dynamics of the entire grain
population in a global disc simulation

Develop the means to accurately and efficiently model
the dynamics of solids spanning an entire grain size dis-
tribution in global, three dimensional, disc simulations,
including the effect of embedded companions and with
feedback from the dust grains to the gas.

C7: Model the growth and fragmentation of solids

Develop an accurate prescription for growth and frag-
mentation of grains and incorporate it into 3D dynami-
cal models of dust and gas evolution in global disc, with
feedback from the dust grains to the gas.

C8: Radiative equilibrium and radiation pressure

Compute the radiative equilibrium temperature, as well
as the radiation pressure force, in global 3D dynamical
protoplanetary disc simulations, using multi-frequency
radiative transfer.

C9: Coupling to MHD

Allow the dust grain population, along with the radia-
tion field, to determine the ionisation chemistry in the
disc and use this to self-consistently model the develop-
ment of jets, outflows and MRI turbulence in both local
and global disc models

C10: Assemblage of dust modelling challenges

Similar to C5, this challenges us to combine C6 –C9.
That is, to have a method of computing the motions
of a whole grain distribution, including the evolution
of grain sizes and the effects of radiation and magnetic
fields.

C11: The grandest challenge (in this paper)

Develop a single model capable of reproducing multi-
tracer, resolved, observations of a given protoplanetary
disc. That is, perform a global disc simulation that
solves for the gas and dust dynamics, as well as the
dust and chemical evolution of the disc, that then pre-
dicts (to within a reasonable degree of accuracy) all ob-
served properties of a given disc at a resolution compa-
rable to that of current observational instrumentation.
The model should retrieve the continuum morphology
and intensity for wavelengths probing a range of grain
sizes, whilst also reproducing molecular line observa-
tions of different tracers (for example C18O, HCO+,
12CO, which probe different components of the disc and
can be sensitive to different chemical effects).

Doing so will require simultaneous completion of
many of the above challenges. It is therefore a long term
goal, but one which should be achievable given progress
made on the other challenges stated above.

4 DISCUSSION - STRATEGIC STEPS
TOWARDS THE FUTURE

The grand challenges discussed in the previous section
are in a sense a strategic pathway towards long term
future development. In practice models of discs are cur-
rently much more focused, but could still be improved
by the integration of previously uncoupled physics. In
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Table 2 A qualitative summary of the effect of different components of disc modelling on the intrinsic physical properties of protoplan-
etary discs – “3” implies that an ingredient is identified as important, “?” implies that the importance is uncertain, “7” implies that

an ingredient is likely unimportant. It is our hope that such a summary would eventually become more quantitative, with the relative

importance of different processes more formally assessed.

PROCESSES
Accretion Planet Winds Disc dispersal/ Jets/ Observations . . .

formation lifetimes Outflows

IN
G

R
E

D
IE

N
T

S

Hydrodynamics 3 3 3 3 3 3 . . .
Self-gravity 3 3 7 ? ? 3 . . .

Dust dynamics ? 3 ? ? ? 3 . . .
Magnetic fields 3 ? 3 3 3 3 . . .

Radiation transport ? 3 3 3 3 3 . . .
(Proto)-Stellar Evolution 3 ? 3 3 3 3 . . .

Photoionisation ? 7 3 3 3 3 . . .
PDR chemistry ? 7 3 3 ? 3 . . .

Gas-grain chemistry 7 3 7 7 ? 3 . . .
...

...
...

...
...

...
...

this section we discuss broad strategy for the immedi-
ate future of more general disc modelling. More specific
technical developments are discussed in the next sec-
tion.

4.1 Which problems are the most pressing to
solve and what physics is required to
solve them?

It is inefficient to develop new software, or exhaust sub-
stantial CPU hours on an intensive state of the art mul-
tiphysics calculation, if the results have no value. A key
strategic step, therefore, is to identify the combination
of physics required to answer well motivated, well for-
mulated, key problems.

Table 2 provides an example of a strategic overview.
Such an overview can guide/motivate the development
of numerical methods to include all of the physics es-
sential to solve a given problem. It would also motivate
us to understand whether the uncertain features really
do play an important role.

In addition to identifying the processes that might
contribute to a problem (such as in Table 2), one could
possibly then order the contributing physical processes
in a hierarchy of importance to determine which are the
most important features to include in a model (similar
to the way that the dynamical importance of micro-
physics on H ii region expansion was categorised by Ha-
worth et al. 2015). For example, consider the generation
of synthetic molecular line observations. At the most ba-
sic level radiative transfer is required, as it is photons
that are observed by astronomers, as well as some esti-
mate of the density, temperature, molecular abundance
and molecular level populations. This can initially be
done assuming some simple static disc structure, as-
suming an abundance of molecules and level popula-

tions determined analytically by the Boltzmann distri-
bution. This could then be improved with proper non lo-
cal thermodynamic equilibrium (NLTE) statistical equi-
librium calculations, which could be improved upon by
using chemical networks/direct abundance calculations,
which can be improved upon by further solving the dy-
namics/thermal balance, decoupled dust transport and
so on. In order to do this one would first need to define
some measure of importance. For example if interested
in accretion a hierarchy of importance would place pro-
cesses resulting in the largest contribution to the accre-
tion rate at the top.

Deciding which problems are most pressing to ad-
dress should also be informed by recent and upcom-
ing observations. For example, which questions might
be addressed by models in tandem with data from
the Square Kilometer Array (SKA, which among other
things will probe grain growth and disc chemistry Testi
et al. 2015), James Webb Space Telescope (JWST) or
the European–Extremely Large Telescope (E–ELT, e.g.
Hippler et al. 2009)?

Another key strategic point is to stress that on the
path towards multiphysics modelling of significantly in-
terdependent physics it is essential that all individual
fields continue to develop as they are presently. Inte-
gration should be complementary to our current ap-
proaches. There are (at least) two key reasons for this.
One reason is that an integrated approach is likely to
be substantially more computationally expensive, which
limits the parameter space of a given problem that
can be studied. This also strongly limits the ability
to quickly interpret observations (e.g. with parametric
models). The other reason is that each field is continuing
to evolve, with the development of new algorithms and
the identification of new important mechanisms. This
focussed field-by-field progression will likely answer a
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number of the burning questions and the techniques
developed will ultimately feed back into multiphysics
models of the future.

5 TECHNICAL STEPS TOWARDS THE
FUTURE

We now discuss possible near-term developments of our
numerical methods towards resolution of the grand chal-
lenges, focussing on the coupling of physical ingredients
with a particular emphasis on chemistry.

5.1 Simplified chemistry for dynamics

We currently identify three possible approaches to in-
cluding chemistry in dynamical simulations: direct cal-
culation of a full network and heating/cooling rates,
direct calculation of a reduced network, or implementa-
tion of pre-computed look-up tables. We discuss these
further below

5.1.1 Reduced chemical networks

Reduced chemical networks prioritise only the species
and reactions of most importance to a given aim. For
example, if prioritising dynamics, then an ideal re-
duced network would be one that yields a tempera-
ture/pressure to within an acceptable degree of accu-
racy (say 10–15 per cent). The established method of
generating a reduced network is to start with a com-
prehensive one and systematically remove components,
checking that it does not have a substantial impact
on the resulting quantity of interest. There are already
codes available capable of computing chemistry based
on very large networks, such as prodimo (Woitke et al.
2009), dali (Bruderer 2013), ucl-chem (Viti et al.
2004, 2011), ucl-pdr (Bell et al. 2005, 2006) and the
models of Walsh et al. (2012). Any of these networks
could be analysed to determine which processes are es-
sential for dynamics, and then reduced accordingly. Ad-
ditionally, it is also possible to optimise calculations of
large networks (e.g. Grassi et al. 2013). It is likely that
a combined approach of reduction and optimisation will
yield the most efficient results.

PDR chemistry is important in surface layers and the
disc outer edge if the disc is externally irradiated. Re-
duced PDR networks already exist (e.g. Röllig et al.
2007). Such a network is already used in dynamical
models by torus-3dpdr (see section 5.2). However ex-
isting reduced PDR networks are predominantly moti-
vated by studies of star forming regions/the interstellar
medium. New reduced networks tailored for discs would
be extremely valuable for future dynamical models in-
cluding PDR chemistry.

In the same vein as reduced chemical networks, there
are also some recent promising developments concern-

ing the relatively computationally cheap determination
of the ionisation state in dense, dusty, optically thick re-
gions of discs (in particular where dust-phase recombi-
nation dominates over the gas-phase) which is particu-
larly important for MHD and evolution of the dust pop-
ulation (e.g. regarding coagulation). Ivlev et al. (2016)
present an analytic model that yields the ionisation
state of such dusty media, which could be incorporated
into non-ideal MHD codes – offering an imminently
achievable significant advance.

5.1.2 Lookup tables and functional
parameterisations

An alternative to direct computation of the chem-
istry/temperature using a “full” or reduced network is
to tabulate temperatures or heating/cooling rates as a
function of local properties in a disc. For example, Owen
et al. (2010) prescribe the temperature of gas optically
thin to X–rays as a function of local ionisation parame-
ter (i.e. the density, distance from the source and stellar
X–ray luminosity) where the function (itself only pub-
lished in full in Haworth et al. 2016b) was computed
by the dedicated photoionisation code mocassin (Er-
colano et al. 2003, 2008). A similar approach to obtain-
ing PDR or gas-grain chemistry temperatures, where
lookup tables are computed prior to run-time, could
vastly reduce the potential computational expense of
dynamical models.

Unfortunately, chemistry (both gas-grain and PDR)
is not generally so easily parametrised as a simple func-
tion of the local properties. In order to include all rele-
vant effects of heating and cooling, such a look-up table
could easily grow very large. Below we briefly list sev-
eral example quantities that would need to be included,
along with a typical dimensionality for each in paren-
thesis (I. Kamp, private communication):

• The temperature of dust grains (1).
• The dust grain size(s), including second moment

of the size distribution for grain surface chemistry
and collisional gas-grain coupling (2).

• The dust grain density (1).
• The gas density (1).
• Column densities towards the central star of key

species (H, C, CO) for evaluating the amount of
shielding (3).

• The cosmic ray ionisation rate (though this can
perhaps be approximated as constant throughout
the disc) (1).

• The strength of the radiation field in several bands,
including X-Ray, UV and optical (10).

• The optical depth of the dust in direction of closest
escape (1).

• The fractional abundance of polycyclic aromatic
hydrocarbons (PAHs) and further details if also
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using PAHs as an opacity source (3). Again, these
parameters may be constants throughout the disc.

• Column densities of all species to be considered,
both toward the radiation source, and the direc-
tion of closest escape (&10).

Given that the above list is by no means exhaustive,
it is easy to see that such a look-up table may reach a di-
mensionality of 30–40. One of the key factors accounting
for this issue is that the local chemistry depends upon
the 3D non–local density distribution, because this sets
photon escape probabilities, i.e. the chemistry at some
point in space cares about the gas distribution in all di-
rections from that point. It is therefore not solely depen-
dent upon local properties, even if the local radiation
field from external sources has been computed.

However, many of these quantities are likely not en-
tirely independent, and relations between them could be
identified in a statistically robust manner using grids of
simulations. This may allow a reduction in the number
of dimensions required. Of further note is that a “sim-
plified” thermodynamic prescription based on chemical
modelling was developed by Woitke et al. (1996a,b);
Schirrmacher et al. (2003) for application to pulsat-
ing stars, which might offer some guidance on how to
streamline some of the aforementioned dependencies.

5.2 Direct hybridisation

Historically the approach to including more physics in
dynamical models is to use a hydrodynamical code as
the foundation and incorporate simplified physics mod-
ules subsequently. For example Glover et al. (2010) and
Dzyurkevich et al. (2016) patch reduced chemical net-
works into zeus-mp and ramses respectively. Flock
et al. (2013) also present an extension of the pluto code
that includes both magnetic fields and an FLD radiation
transport scheme. There is another approach, which
is to start with a state of the art chemistry/radiative
transfer code and subsequently incorporate somewhat
more simple hydrodynamics. An example of this lat-
ter approach is the torus radiation transport and hy-
drodynamics code. This code began its life solely as
a Monte Carlo radiative transfer code (Harries 2000)
but now includes hydrodynamics, so can perform radi-
ation hydrodynamic simulations with all the features of
a dedicated radiation transport code (e.g. detailed pho-
toionisation, dust radiative equilibrium and radiation
pressure in arbitrarily complex system geometries, etc.;
Haworth & Harries 2012; Harries 2015; Haworth et al.
2015). Furthermore, torus-3dpdr is an extension of
torus that also includes PDR chemistry with 3D ex-
tinction and escape probabilities (Bisbas et al. 2015b).
The UV radiation field everywhere is computed using
the Monte Carlo radiation transport and the escape
probabilities are estimated in 3D using an algorithm

based on healpix (Górski et al. 2005). torus-3dpdr
is capable of directly modelling the role of far ultraviolet
(FUV) photons dynamically in non-hydrostatic scenar-
ios, such as the external irradiation of discs by FUV
radiation that has only been possible semi-analytically
in the past (Adams et al. 2004; Facchini et al. 2016;
Haworth et al. 2016a). It could also be used to test the
validitiy of escape probability methods that assume a
single dominant trajectory (the 1+1D methods).

One argument in favour of adding hydrodynamics
to a radiative transfer/chemistry code is development
time, since a simple but effective hydrodynamics algo-
rithm is usually much more straightforward to develop
than a radiative transfer/chemistry algorithm (though
of course care must be taken to ensure that the hydro-
dynamics algorithm is appropriate for any given appli-
cation). The obvious argument against this coupling of
state of the art physics models with hydrodynamics is
that they are not necessarily well streamlined and can
be very computationally expensive (though this is not
necessarily a problem if the code is optimised and/or
highly scalable, as is the case for torus, Harries 2015).

Constructing a dedicated photochemical-dynamical
code from scratch is another possible option, but po-
tentially requires a lot of development time (e.g. the
recent PDR-dynamical code of Motoyama et al. 2015).

Another promising avenue is the development of di-
verse, flexible self-consistent physics libraries that can
be ported into other numerical (and therefore poten-
tially hydrodynamical) codes. The krome code is an
excellent example of this approach, which quickly solves
arbitrary chemical networks and can also calculate heat-
ing and cooling terms (Grassi et al. 2014). Spectral
codes, which solve partial differential equations flexi-
bly and efficiently, could also offer a powerful means
of combining other physical ingredients in a relatively
straightforward manner. Spectral codes appear not to
have featured in multiphysics disc modelling to date,
but options for doing so include the dedalus (Burns
et al. 2016) and snoopy (Lesur 2015) codes.

5.3 Temporal and spatial resolution

A very specific problem is that (in particular for non-
equilibrium chemical-dynamics) we have to determine
what the spatial and temporal scales are that we have
to resolve in a given scenario. As an example, chemical
timescales in the disc upper layers (that is, in the PDR
regions) are rather short, whereas timescales deeper in
the disc are usually much longer (for example, the case
of CO being converted into CH4 on timescales even
longer than protoplanetary discs lifetimes). The time
steps required to model the upper layers may there-
fore eventually be limited by the chemical timescales
(in non-equilibrium scenarios) rather than the dynam-
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ical timescales, which might drastically increase com-
putational expense. In such a regime where the chem-
ical timescale is very small (much smaller than the
dynamical timescale) we may be able to alleviate the
problem somewhat with chemical sub-stepping - run-
ning multiple chemical updates per hydrodynamic up-
date. Conversely if the chemical/thermal timescales (re-
action/heating/cooling rates) are very long, many dy-
namical steps can be taken between the more expensive
chemical updates, improving the computation time sub-
stantially.

Alternatively, if the system is expected to reach a
steady state, and all that is desired is an accurate model
of this steady state (rather than the pathway to reach-
ing the steady state) it may be possible to run chem-
ical calculations very infrequently even if the chemical
timescale is very short.

In addition to the above timescale arguments, res-
olution also needs to be considered. For example some
chemical features may only arise if the spatial resolution
(e.g. around shocks) is sufficiently high - capturing such
processes will of course increase computational expense.

5.4 Scaling

A key technical consideration is the scaling of the vari-
ous physical ingredients in terms of both elements (cells,
rays, chemical species, reactions etc.) and computa-
tional resources (number of cores), since a calculation
is going to be limited by its least tractable component.
Different numerical approaches to computing a given in-
gredient can scale very differently. For example, in the
case of radiative transfer, Monte Carlo radiation trans-
port and treecol (see Clark et al. 2012, for details of
the latter) scale much more efficiently than long charac-
teristic ray tracing. There are therefore multiple scaling
options per ingredient.

For applications comprising two or more ingredi-
ents that scale very differently, there will likely be
idle cores/inefficient CPU usage in the components
of the code that do not scale so well. Furthermore
some techniques have specific constraints on the num-
ber/configuration of cores which may vary for differ-
ent calculation ingredients. For example if the hydrody-
namic component of a calculation were confined to i dis-
tributed memory MPI threads (plus an arbitrary num-
ber of shared memory openMP threads), but the radia-
tive transfer to j > i MPI threads, there will be unused
MPI threads during each hydrodynamics step. This is a
situation where dynamically optimising between shared
and distributed memory processes is worthwhile, set-
ting the otherwise idle MPI threads to contribute to
openMP or other useful tasks.

5.5 Hardware developments

It is also important to assess new and projected hard-
ware developments. We are approaching a time in which
access to large numbers of processors increasingly out-
weighs the developments in performance of the proces-
sors themselves. Efficiently scalable numerical methods,
such as Monte Carlo radiation transport and discontin-
uous Galerkin hydrodynamics solvers, will therefore be
extremely advantageous in the near future.

Another significant realisation (only recently for as-
tronomers) is that graphics processings units (GPUs)
can offer significant speedup per core. A relatively small
(but growing) fraction of astrophysical codes have a
GPU implementation, and those that do are often those
used for cosmological applications (e.g. Schive et al.
2010; Bryan et al. 2014b). However, a GPU implemen-
tation of the fargo disc-modelling code was developed
by Beńıtez-Llambay & Masset (2016), where they quote
a typical speedup per core of a factor 40. It is beyond the
scope of this paper to discuss GPU programming in de-
tail, but we note that GPUs are fundamentally different
architectures to CPUs and are therefore programmed
in a somewhat different manner (taking time to learn),
typically using either the cuda (Nickolls et al. 2008) or
opencl (Stone et al. 2010) standards. The high speeds
of GPUs make them a powerful tool for the future of
astronomy, where applicable, and they are likely to fea-
ture much more frequently in astronomy in the com-
ing years, especially with the advent of directive-based
GPU acceleration using the OpenACC standard6.

A final example, mentioned here only in passing, is
the introduction of new types of processor such as the
Intel Xeon Phi (e.g. Jeffers & Reinders 2013) - which
combines some of the performance advantages of GPUs
with an easier programming framework.

In general the writing of new codes, or adapting old
ones, to take advantage of hardware developments will
be important. Given that more specialised hardware
might continue to appear over time, it would also be
advantageous if codes could be developed in such a fash-
ion that they are easily ported, but it is unclear (to us
at least) exactly how this might work in practice. This
is an area where increased collaboration between astro-
physicists and computer scientists will be advantageous.
Interaction with computer scientists could also lead to
other benefits such as improved efficiency of our codes
and the promotion of better coding practice.

6 COLLABORATIVE STEPS TOWARDS
THE FUTURE

As already mentioned, the components that we want to
couple in the future of disc modelling are themselves

6http://www.openacc.org

PASA (2016)
doi:10.1017/pas.2016.xxx

http://www.openacc.org


18 T. J. Haworth et al.

already established and complex fields. It is therefore
clear that these challenges are a whole-community ef-
fort, and substantial progress will only be made via col-
laboration. To this end, we have identified several key
collaborative steps that we discuss below.

6.1 Workshops

Workshops are likely to be essential for stimulating
cross-disciplinary collaboration. While a typical confer-
ence setting will be important for each sub-discipline to
discuss their work generally, events with ample time for
break-out sessions and collaborative spaces are likely to
be very productive. Such events allow large-scale discus-
sion, but also allow for specific problems to be tackled
one-on-one or in small groups in an ‘unconference’ set-
ting (for example, the dotAstronomy7 or Astropy8 con-
ference series). The identification of key ingredients to
be swapped between respective fields will be important
to establish, e.g. heating and cooling rates are likely to
be of interest to those running dynamic models, while
detailed abundance results may not be required.

6.2 Benchmarking

In addition to workshops, it is important for each field
to develop an agreed set of benchmark problems, with
the aim of transparency and reproducibility. Code com-
parison projects are key, but can require a lot of work
for a small number of publications (albeit high impact,
e.g. de Val-Borro et al. 2006; Röllig et al. 2007; Pinte
et al. 2009; Iliev et al. 2009).

A good example of a successful comparison project
is the recent StarBench code comparison workshops9

(Bisbas et al. 2015a). These workshops aimed at test-
ing radiation hydrodynamics codes used to study prob-
lems in star formation, with an emphasis on doing so
in a positive and friendly environment. The workshops
involved attendees running tests before arrival, which
spanned a range of complexity. In the first meeting at
the University of Exeter in 2013, every code passed the
purely hydrodynamic shock tests without issue. How-
ever the instant that radiative transfer/photoionisation
was introduced into the dynamical problem we gener-
ally had poor agreement, even for the simplest case of
tracking the time evolution of the extent of an ionised
region about a star in a uniform density medium com-
posed solely of hydrogen. The origin of the inconsistency
between codes was that they were all running slightly
different models (e.g. inconsistent recombination rates)
and, after extremely careful rewriting of the specifica-
tions of this simple test, were subsequently able to get

7http://dotastronomy.com/
8http://www.astropy.org/
9https://www.astro.uni-bonn.de/sb-ii/

truly excellent agreement between the codes. This pro-
cess highlighted to the community all of the things that
should be explicitly stated in a paper in order to make
it truly reproducible. Last but not least, in the case of
an expanding H ii region we actually discovered that al-
though the codes all agreed perfectly, they did not agree
with the classic analytic solution that everyone would
compare with in their numerical methods paper and
suggest that they get “good enough” agreement with
— validating their approach. Following re-investigation,
as a result of code comparison, a direct improvement in
our understanding of this fundamental analytic problem
has been established (Bisbas et al. 2015a). In summary,
code comparison

• Verifies that codes are working as desired
• Informs the community what needs to be speci-

fied in papers to make them reproducible — a key
factor, especially since there are likely to be many
more ingredients in disc models of the future than
there were in the relatively straightforward Star-
Bench tests.

• Improves our understanding of each other’s nu-
merical methods, including relative strengths and
weaknesses. This can be done in a friendly way.

• Highlights the importance of careful numerics (e.g.
understanding resolution dependency and which
techniques are appropriate for a given scenario).

• Results in high impact publications.
• Leads to an improvement in our understanding of

the underlying more fundamental (even analytic)
problems.

Key to a successful comparison is active feedback be-
tween participants and iteration towards understanding
the origin of any differences encoutered. This can often
be achieved just as easily with a comparison involv-
ing just two or three codes performed by a relatively
small team (e.g. Bate & Burkert 1997; Commerçon et al.
2008; Price & Federrath 2010; Hubber et al. 2013).
Such an approach avoids much of the friction associated
with large-scale comparison projects while achieving the
same objectives.

6.3 Open source software

A more applied collaborative practice is to develop soft-
ware in an open source format (e.g. using GitHub10).
This is potentially very useful for both transparency
and distributed development (i.e. international con-
tributors). Examples taking such an approach are the
krome (Grassi et al. 2014) and lime (Brinch & Hoger-
heijde 2010) projects.

10https://github.com/
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Although the open source mentality is desirable, it
should not be imposed since there may be legitimate
reasons to protect intellectual interests. For example,
if an early-career researcher invests substantial time
into code development, the current academic culture
requires a period where they are able to see a return
on their time investment, in terms of first author pub-
lications where they lead astrophysical research (in the
current culture, this is more important than a number
of co-authored publications). There is no reason that
their code cannot be shared collaboratively during such
a phase of research. More widespread access can subse-
quently be yielded once the developers have seen suffi-
cient return.

7 SUMMARY

Protoplanetary discs are a key focus of modern astron-
omy, being subject to extensive modelling including the
dynamics of gas and dust, magnetic fields, radiation
transport and chemistry. These facets of physics re-
quired to model discs are, however, not independent, so
as we proceed into the future we must consider their
coupling in multiphysics modelling of discs. In par-
ticular, we perceive that it will be important to self-
consistently model decoupled gas and dust dynamics,
with radiative transfer, dust growth/fragmentation and
different chemical regimes (gas-grain, PDR). This pa-
per aims to stimulate this development and consisted
of the following components.

Firstly, to establish a platform from which to dis-
cuss the coupling of different disciplines, we provide an
overview of each in isolation, as well as the progress
made towards multiphysics modelling to date. Using
this, we have identified a series of challenges for the
future of protoplanetary disc modelling, which are sup-
posed to act as milestones towards the ultimate goal
of a self-consistent gas, dust, radiation transport and
chemistry model mentioned above. Our first category
of challenges regards gas modelling, with a particular
focus on composition (e.g. gas-grain and photochem-
istry) coupled with dynamics. Our second category of
challenges regards dust, including modelling of an entire
grain size distribution as well as growth and fragmenta-
tion of grains and any additional physics (such as radi-
ation) that alters the dust dynamics. We also discuss
pathways towards addressing these challenges, which
are grouped by whether they are strategic (e.g. iden-
tifying what needs to be done), technical (e.g. working
out how to do it) and collaborative (working together
to do it).

We finish by noting that, as a further motivational
strategy, appropriate agents mights offer prize(s) for
completing more rigorously defined versions of one or
more of the challenges presented here.
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Commerçon B., Hennebelle P., Audit E., Chabrier G.,
Teyssier R., 2008, A&A, 482, 371

Dai F., Facchini S., Clarke C. J., Haworth T. J., 2015,
MNRAS, 449, 1996

Davis S. W., Stone J. M., Jiang Y.-F., 2012, ApJS, 199,
9

Dipierro G., Pinilla P., Lodato G., Testi L., 2015a, MN-
RAS, 451, 974

Dipierro G., Price D., Laibe G., Hirsh K., Cerioli A.,
Lodato G., 2015b, MNRAS, 453, L73
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