
HAL Id: hal-04009729
https://hal.science/hal-04009729v1

Submitted on 1 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An undecidability result for Separation Logic with
theory reasoning

Mnacho Echenim, Nicolas Peltier

To cite this version:
Mnacho Echenim, Nicolas Peltier. An undecidability result for Separation Logic with theory reasoning.
Information Processing Letters, 2023, 182, pp.106359. �10.1016/j.ipl.2023.106359�. �hal-04009729�

https://hal.science/hal-04009729v1
https://hal.archives-ouvertes.fr

An Undecidability Result for Separation Logic With Theory
Reasoning.

Mnacho Echenima, Nicolas Peltiera

aUniv. Grenoble Alpes, CNRS, LIG, 700 Av. Centrale, 38000 Grenoble France

Abstract

We show that the entailment problem is undecidable in Separation Logic with inductively defined
spatial predicates, for rules satisfying the conditions given in [1], if theory reasoning is considered.
The result holds for a wide class of theories, even those with a very low expressive power. For
instance it applies to natural numbers with the successor function, or with the usual order relation.

Keywords: Separation Logic, Inductive Definition, Decidability

1. Introduction

Separation Logic (SL) [2, 3] is a formal system that was designed to reason about programs
that manipulate pointer-based data structures such as, e.g., linked lists or trees. Intuitively, this
logic permits to state properties of the heap on which a program dynamically allocates objects,
in a natural and concise way. Verifying the correctness of a program then boils down to testing
whether one formula in this logic entails another one. However, the considered entailment problem
is undecidable [4], and several works have been devoted to devising proof procedures for decidable
fragments of this logic. One such fragment was defined in [1], and it was recently established that
the entailment problem in this fragment is in 2-EXPTIME [5].

When working on the verification of actual programs, it is often necessary to combine reason-
ing tasks about the heap and about the data stored within the considered data structures. Such a
case could occur for example when considering a program that modifies binary trees with integers
labeling each node. The combination of SL with data constraints has already been considered by
several authors, see, e.g., [6, 7, 8]. On the other hand, the fragment defined in [1] contains no
theory other than equality, it is thus natural to investigate whether the above decidability result
extends to the case where theory reasoning is considered. In this paper, we show this is not the
case: the entailment problem is undecidable for a wide class of theories, including some with a
very low expressive power.

2. Separation Logic with Inductive Definitions and Theory Predicates

We consider a countably infinite set of variables denoted by V , along with two disjoint sets
of predicates: a set of T -predicates (or theory predicates) PT , denoting relations in an underlying
theory of locations, and a set of spatial predicates PS. Each symbol p ∈ PT ∪PS is associated with

Preprint submitted to Elsevier September 21, 2022

a unique arity #(p). Let κ be a fixed natural number. The set of SL-formulas (or simply formulas)
φ is inductively defined as follows:

φ := emp ∥ x 7→ (y1, . . . ,yκ) ∥ φ1 ∨φ2 ∥ φ1 ∗φ2∥ p(x1, . . . ,x#(p)) ∥ ∃x. φ1

where φ1,φ2 are SL-formulas, p ∈ PT ∪PS and x,x1, . . . ,x#(p),y1, . . . ,yκ are variables. The symbol
∗ is called the separating conjunction. In the following, formulas are considered modulo the asso-
ciativity and commutativity of ∨ and ∗, modulo the commutativity of existential quantifications,
modulo the neutrality of emp w.r.t. the separating conjunction, and modulo prenex form. A for-
mula of the form emp, p(x) or x 7→ (y) is called an atom. A substitution σ is a function mapping
variables to variables. For any expression (variable, tuple of variables or formula) e, we denote by
eσ the expression obtained from e by replacing every free occurrence of a variable x by σ(x). The
semantics of the predicates in PS is given by user-defined inductive rules. To ensure decidability
in the case where the theory only contains the equality predicate, these rules must satisfy some
additional conditions1 [1]:

Definition 1. A progressing and connected set of inductive rules (pc-SID) R is a finite set of rules
of the form p(x1, . . . ,xn)⇐ x1 7→ (y1, . . . ,yκ)∗φ, where φ is an SL formula and for all predicate
atoms q(z1, . . . ,z#(q)) in φ, we have z1 ∈ {y1, . . . ,yκ}.

Definition 2. For every formula φ, we write φ ⇐R ψ if ψ is obtained from φ by replacing an atom
p(x) with p ∈ PS occurring in φ by a formula γσ, and there exist a rule p(y) ⇐ γ in R and a
substitution σ such that yσ = x.

Let L be a countably infinite set of locations. An SL-structure is a pair (s,h), where s is a
store, i.e. a total function from V to L , and h is a heap, i.e. a partial finite function from L to Lκ

(written as a relation: h(ℓ) = (ℓ1, . . . , ℓκ) iff (ℓ,ℓ1, . . . , ℓκ) ∈ h). A location ℓ (resp. a variable x) is
allocated in a heap h (resp. in a structure (s,h)) if ℓ ∈ dom(h) (resp. s(x) ∈ dom(h)). Two heaps
h1,h2 are disjoint if dom(h1)∩dom(h2) = /0, and h1 ⊎h2 then denotes their union.

Definition 3. Let |=T be a satisfiability relation between stores and atoms p(x) with p ∈ PT .
Given a formula φ, a pc-SID R and a structure (s,h), we write (s,h) |=R φ and say that (s,h)
is an R -model (or simply a model if R is clear from the context) of φ if one of the following
conditions holds: (i) φ = x 7→ (y1, . . . ,yκ) and h = {(s(x),s(y1), . . . ,s(yκ))}; (ii) φ = p(x) with
p ∈ PT and s |=T φ; (iii) φ = φ1∨φ2 and (s,h) |=R φi, for some i = 1,2; (iv) φ = φ1 ∗φ2 and there
exist disjoint heaps h1,h2 such that h = h1 ⊎ h2 and (s,hi) |=R φi, for all i = 1,2; (v) φ = ∃x. φ

and (s′,h) |=R φ, for some store s′ coinciding with s on all variables distinct from x; (vi) φ = p(x)
with p ∈ PS and (s,h) |=R ψ for some ψ such that φ ⇐R ψ.

We emphasize that a T -formula is satisfied only in structures with empty heaps. Note that
Definition 3 is well-founded because every rule allocates at least one variable We write φ |=R ψ if
every R -model of φ is an R -model of ψ. It is well-known that ∗ distributes over ∨, hence every
formula φ can be transformed into a formula

∨n
i=1 φi where φi contains no disjunction. We denote

by dnf (φ) the set {φi | i = 1, . . . ,n}. We slightly adapt the notion of establishment [1]:

1For technical convenience we allow for disjunctions in the rules.

2

Definition 4. A pc-SID is established if for every atom α, every predicate-free formula φ such that
α ⇐∗

R φ, every ψ ∈ dnf (φ) and every existential variable x in ψ, ψ contains an atom of the form
x 7→ (y1, . . . ,yκ).

Note that in contrast to [1] equations are not taken into account; this yields a slightly more
restrictive condition hence strengthens our undecidability result. The entailment problem (writ-
ten φ ⊢R ψ) consists in determining, given two formulas φ and ψ and an established pc-SID
R , whether φ |=R ψ. A structure (s,h) is a countermodel of an entailment problem φ ⊢R ψ

iff (s,h) |=R φ and (s,h) ̸|=R ψ.

3. An Undecidability Result

The presented undecidability result relies on the use of a binary predicate symbol S ∈ PT ,
interpreted as a relation S. Intuitively, this relation will be used to relate distant locations α,α′ in
a heap, so that α′ is uniquely determined for a given α, which will permit to express conditions
involving both cells. In the simplest case, one may use any injective function S (e.g., the successor
function on natural numbers) and state that (α,α′) ∈ S. However, we also intend to capture
theories for which no such injective function exists, e.g., the natural numbers with only the usual
order ≤. To this aim, we provide a more complex condition. Instead of associating α′ with α

using an injective function, we associate α′ with a couple (α,α′′) in such a way that α′ is uniquely
determined when it satisfies the conditions α ̸= α′, (α,α′) ∈S and (α′′,α) ̸∈S. For example, if
L = N and S is ≤, the conditions entail α < α′ < α′′ and α′ is uniquely determined by letting
α′′ = α+ 2. The conditions in Theorem 5 are meant to ensure that this is feasible and that there
exists an infinite set of locations α,α′,α′′ such that (α,α′′) uniquely defines α′. The fact that the
set of locations is infinite is essential because it ensures that data structures of unbounded size may
be constructed.

Theorem 5. Assume that PT contains predicates S and S, where:
• S is interpreted as a relation S such that there exist 3 infinite sequences of locations αi, α′

i
and α′′

i (with i ∈ N) where:
– all the locations αi,α

′
i,α

′′
i (for i∈N) are pairwise distinct, i.e., we have, for all i, j ∈N:

αi ̸= α′
j ∧αi ̸= α′′

j ∧α′
i ̸= α′′

j ∧ (i ̸= j =⇒ αi ̸= α j ∧α′
i ̸= α′

j ∧α′′
i ̸= α′′

j);
– ∀i ∈ N,(αi,α

′
i) ∈S;

– ∀i ∈ N,(α′′
i ,α

′
i) ̸∈S;

– for all i ∈ N and for all locations ℓ ∈ {α j | j ∈ N}∪ {α′
j | j ∈ N}∪ {α′′

j | j ∈ N}, if
αi ̸= ℓ, (αi, ℓ) ∈S and (α′′

i , ℓ) ̸∈S, then ℓ= α′
i;

• S(x,y) and ¬S(x,y) are interpreted equivalently when x and y refer to distinct locations.
Then the entailment problem is undecidable for established pc-SID.

For instance, the hypotheses of Theorem 5 are satisfied if L =N and if S is either the successor
function or the usual order relation ≤ (in which case S is ≥). Indeed, it is sufficient to take αi = 3 · i,
α′

i = 3 · i+ 1, α′′
i = 3 · i+ 2 in both cases, since α′

i = ℓ exactly when ℓ is the successor of αi, and
αi ≤ ℓ∧α′′

i > ℓ∧ ℓ ̸= αi ⇒ α′
i = ℓ. More generally, the conditions hold if the domain is infinite

and S is any injective function f such that f (x) ̸= x. In this case, the sequences αi,α
′
i,α

′′
i may

3

be constructed inductively: for every i ∈ N, αi is any element e such that both e and f (e) do not
occur in {α j,α

′
j,α

′′
j | j < i}, α′

i is f (αi) and α′′
i is any element not occurring in {α j,α

′
j,α

′′
j | j <

i}∪ {αi,α
′
i}. Note that in this case the locations α′′

i are actually irrelevant, but these locations
play an essential rôle in the undecidability proof when S is ≤. We have {αi | i ∈ N}∪{α′

i | i ∈
N}∪{α′′

i | i ∈ N} ⊆ L , but we do not assume that the inclusion is strict.
The rest of the section is devoted to the proof of Theorem 5. It goes by a reduction from the

Post Correspondence Problem (PCP).

Definitions and Notations. We recall that the PCP consists in determining, given two sequences of
words λ= (λ1, . . . ,λn) and γ= (γ1, . . . ,γn), whether there exists a nonempty sequence (i1, . . . , ik)∈
{1, . . . ,n}k such that λi1. . . . ,λik = γi1 ,γik . It is well-known that this problem is undecidable.
We assume, w.l.o.g., that ∥λi∥ > 1 and ∥γi∥ > 1 for all i ∈ {1, . . . ,n}. A word w such that w =
λi1. . . . ,λik = γi1. . . . ,γik is called a witness. Positions within words of the sequences (λ1, . . . ,λn) or
(γ1, . . . ,γn) will be denoted by pairs (i, j), encoding the j-nth character of the word λi or γi. More
formally, if p = (i, j), and w ∈ {λ,γ}, then we denote by w(p) the j-th symbol of the word wi,
provided this symbol is defined. We write p◁q if both λ(p) and γ(q) are defined and λ(p) = γ(q).
Let m = max{∥λi∥,∥γi∥ | i ∈ {1, . . . ,n}}. We denote by P the set of pairs (i, j) where i ∈ {1, . . . ,n}
and j ∈ {1, . . . ,m}, and by B the set of pairs of the form (i,1). For w ∈ {λ,γ}, we denote by Ew the
set of pairs of the form (i,∥wi∥), where i ∈ {1, . . . ,n}, and we write (i, j)→w (i′, j′) when either
i′ = i, j < ∥wi∥ and j′ = j+1, or j = ∥wi∥, i′ ∈ {1, . . . ,n} and j′ = 1. Note that i′ is arbitrary in
the latter case (intuitively (i, j) →w (i′, j′) states that the character corresponding to the position
(i, j) may be followed in a witness by the character at position (i′, j′)).

Overview. We shall reduce the PCP to an entaillment problem φ⊢R ψ, where φ encodes a potential
solution of the problem, i.e., a pair of sequences (i1, . . . , ik) and (j1, . . . , jl) such that λi1. . . . ,λik =
γ j1. . . . ,γ jk′ , and ψ holds if both sequences (i1, . . . , ik) and (j1, . . . , jk′) are distinct. Thus φ ⊢R ψ

admits a countermodel iff the PCP admits a solution.

Left-hand side. This part of the encoding is straightforward, since the set of words w such that w=
λi1. . . . ,λik = γ j1. . . . ,γ jk′ , for some sequences (i1, . . . , ik) and (j1, . . . , jl) is regular. Let v be a vector
of variables. We assume that every p ∈ P is associated with a variable xp in v, in such a way that
the mapping p 7→ xp is injective (this is possible since P is finite). To simplify notations, we will
simply denote the variable xp by p. The vector v also contains a special variable ⊥, distinct from
the variables corresponding to p ∈ P. Potential witnesses are encoded by linked lists, with links
on the last argument, starting with a dummy element. Except for the first dummy element, each
location in the list refers to two locations associated with pairs p,q ∈ P denoting positions within
both sequences λ1, . . . ,λn and γ1, . . . ,γn respectively, and to three additional allocated locations the
rôles of which will be detailed below. Let φ =W (x,v), and consider the rules:

W (x,v) ⇐ ∃x′. x 7→ (⊥,⊥,⊥,⊥,⊥,x′)∗Wp,p(x′,v)
where p ∈ B

Wp,q(x,v) ⇐ ∃x′,y,z,u. x 7→ (p,q,y,z,u,x′)∗Wp′,q′(x′,v)∗P(y,⊥)∗P(z,⊥)
∗ P(u,⊥) where p◁q, p →u p′ and q →v q′

Wp,q(x,v) ⇐ ∃y,z,u. x 7→ (p,q,y,z,u,⊥)∗P(y,⊥)∗P(z,⊥)∗P(u,⊥)
where p = (i,∥λi∥), q = (i,∥γi∥), and p◁q

P(x,y) ⇐ x 7→ (y,y,y,y,y,y)
4

The following result follows immediately from the definition of the rules defining W :

Lemma 6. The structures that validate φ are of the form (s,h), where: (i) s(x) = ℓ and s(⊥) = ℓ′;
(ii) for all i = 1, . . . ,m′, s(pi) = ℓ

p
i and s(qi) = ℓ

q
i ; (iii) pi,qi ∈ P are such that pi ◁qi, pi →λ pi+1

and qi →γ qi+1; (iv) the heap h is of the form (with ℓm′+1 = ℓ′):

h =
{
(ℓ,ℓ′, ℓ′, ℓ′, ℓ′, ℓ′, ℓ1)

}
∪

{
(ℓi, ℓ

p
i , ℓ

q
i , ℓ

y
i , ℓ

z
i , ℓ

u
i , ℓi+1) | i = 1, . . . ,m′}

∪
{
(ℓy

i , ℓ
′, ℓ′, ℓ′, ℓ′, ℓ′, ℓ′) | i = 1, . . . ,m′} ∪

{
(ℓz

i , ℓ
′, ℓ′, ℓ′, ℓ′, ℓ′, ℓ′) | i = 1, . . . ,m′}

∪
{
(ℓu

i , ℓ
′, ℓ′, ℓ′, ℓ′, ℓ′, ℓ′) | i = 1, . . . ,m′} .

Furthermore, p1 = q1 ∈ B and there exists i such that pm′ = (i,∥λi∥) and qm′ = (i,∥γi∥). Thus,
the words λ(p1) · · ·λ(pm′) and γ(p1) · · ·γ(pm′) are of the form λi1.λik and γ j1.γ jk′ , for some
sequences (i1, . . . , ik) and (j1, . . . , jk′) of elements in {1, . . . ,n}.

Note that we have λ(p1) · · ·λ(pm′) = γ(p1) · · ·γ(pm′), however the sequences (i1, . . . , ik) and
(j1, . . . , jk′) may be distinct (but we still have i1 = j1 and ik = jk′).

Right-hand side. We introduce a formula ψ that is satisfied when (i1, . . . , ik) ̸= (j1, . . . , jk′), i.e.,
for which either k ̸= k′ or il ̸= jl for some l ∈ {2, . . . ,k−1}. This is done by using the additional
locations ℓ

y
i , ℓz

i and ℓu
i to relate the indices Il = ∥λi1. . . . ,λil−1∥+ 1 and Jl = ∥γ j1 ,γ jl−1∥+ 1,

corresponding to the beginning of the words λil and γ jl respectively in λi1.λik and γ j1γ jk′ ,
with the convention that I1 = J1 = 1. We introduce predicates relating the locations ℓy

i , ℓz
i and ℓu

i
using the relation S. They are associated with rules that guarantee that all the models of the left-
hand side that are countermodels of the right-hand side of the sequent will satisfy the following
properties: (i) k = k′ and for all l ∈ {1, . . . ,k}, (ℓy

Il
, ℓz

Jl
) ∈ S and (ℓu

Il
, ℓz

Jl
) ̸∈ S; (ii) il = jl for

1 ≤ l ≤ k. Predicates A and B introduced below are used to guarantee that the first condition holds
for these countermodels. Predicate A is satisfied by those structures that start with a dummy node
and for which the condition does not hold when l = 1, and B is satisfied by those structures for
which either k ̸= k′ or there is an l ∈ {1, . . . ,k−1} such that the condition is satisfied at l, but not
at l+1. Thus the structures that satisfy W (x,v) and that are countermodels of the disjunction of A
and B are exactly the structures for which k = k′ and (ℓ

y
Il
, ℓz

Jl
) ∈S∧ (ℓu

Il
, ℓz

Jl
) /∈S for l = 1, . . . ,k.

Predicate C is then used to guarantee that for all 1 ≤ l ≤ k, pIl = qJl : this predicate is satisfied by
the considered structures for which there is an l such that (ℓy

Il
, ℓz

Jl
) ∈ S∧ (ℓu

Il
, ℓz

Jl
) /∈ S holds but

pIl ̸= qJl . We begin with the rules for predicate A.

A(x,v) ⇐ ∃x′. x 7→ (⊥,⊥,⊥,⊥,⊥,x′)∗A′(x′,v)
A′(x,v) ⇐ ∃x′,y,z,u. x 7→ (p,q,y,z,u,x′)∗Wp′,q′(x,v)∗P(y,⊥)

∗ P(z,⊥)∗P(u,⊥)∗ (S(y,z)∨S(u,z)), for every p,q, p′,q′ ∈ P

Note that since y,z,u are allocated in distinct predicates, they must be distinct, hence S(y,z) is
equivalent to ¬S(y,z) and S(u,z) is equivalent to ¬S(u,z). The following property is a straightfor-
ward consequence of the definition of A (note that, by definition, I1 = J1 = 1):

Lemma 7. A model (s,h) of φ validates A(x,v) iff (using the notations of Lemma 6) either
(ℓ

y
I1
, ℓz

J1
) ̸∈S or (ℓu

I1
, ℓz

J1
) ∈S.

5

We now define the rules for predicate B, which is meant to ensure that if the condition “(ℓy
Il
, ℓz

Jl
)

∈S and (ℓu
Il
, ℓz

Jl
) ̸∈S” (†) holds for some l then it also holds for l+1. This predicate has additional

parameters y,y′,z,z′,u,u′ corresponding to the locations ℓ
y
Il
, ℓ

y
Il+1

, ℓz
J j
, ℓz

J j+1
, ℓu

Il
, ℓu

Il+1
which “break”

the propagation of (†). The locations y,y′,z,z′,u,u′ must be chosen in such a way that the T -
formula S(y,z)∗S(u,z)∗(S(y′,z′)∨S(u′,z′)) holds. The predicates Ba,b with a,b∈{0,1,2} allocate
all the locations ℓ1, . . . , ℓm′ and in particular the “faulty” locations associated with y,y′,z,z′,u,u′.
Intuitively, a (resp. b) denotes the number of variables in {y,y′} (resp. {z,z′}) that have already
been allocated. The rules for predicates Ba,b are meant to guarantee that the following conditions
hold for variables y and y′ (similar constraints hold for z and z′): (i) y is allocated before y′, (ii) y is
allocated for a variable p corresponding to the beginning of a word (p ∈ B), (iii) when y has been
allocated, no variable p ∈ B can occur on the right-hand side of an atom of the form u 7→ v until y′

is allocated. Several cases are distinguished depending on whether the locations associated with
y and z (resp. y′ and z′) are in the same heap image of a location or not. Note that u and u′ are
allocated in the same rules as y and y′ respectively. Predicate B also tackles the case where k ̸= k′.
This corresponds to the case where the recursive calls end with B1,2 or B2,1 in the last rule below,
meaning that (†) holds for some l, with either l = k and l < k′ or l = k′ and l < k. For the sake
of conciseness and readability, we denote by w the vector of variables v,y,y′,z,z′,u,u′ in the rules
below. We also denote by φ′(y,z,u) the formula P(y,⊥)∗P(z,⊥)∗P(u,⊥).

B(x,w) ⇐ x 7→ (⊥,⊥,⊥,⊥,⊥,x′)∗B0,0(x′,w)
∗S(y,z)∗S(u,z)∗ (S(y′,z′)∨S(u′,z′))

Ba,b(x,w) ⇐ ∃x′,y′′,z′′,u′′.x 7→ (p,q,y′′,z′′,u′′,x′)∗Ba,b(x′,w)∗φ′(y′′,z′′,u′′)
if (a ̸= 1 or p ̸∈ B) and (b ̸= 1 or q ̸∈ B)

B0,0(x,w) ⇐ ∃x′.x 7→ (p,q,y,z,u,x′)∗B1,1(x′,w)∗φ′(y,z,u) if p,q ∈ B

B0,1(x,w) ⇐ ∃x′.x 7→ (p,q,y,z′,u,x′)∗B1,2(x′,w)∗φ′(y,z′,u) if p,q ∈ B

B1,0(x,w) ⇐ ∃x′.x 7→ (p,q,y′,z,u′,x′)∗B2,1(x′,w)∗φ′(y′,z,u′) if p,q ∈ B

B1,1(x,w) ⇐ ∃x′.x 7→ (p,q,y′,z′,u′,x′)∗B2,2(x′,w)∗φ′(y′,z′,u′) if p,q ∈ B

B0,b(x,w) ⇐ ∃x′,z′′.x 7→ (p,q,y,z′′,u,x′)∗B1,b(x′,w)∗φ′(y,z′′,u)
if p ∈ B and (b ̸= 1 or q ̸∈ B)

B1,b(x,w) ⇐ ∃x′,z′′.x 7→ (p,q,y′,z′′,u′,x′)∗B2,b(x′,w)∗φ′(y′,z′′,u′)
if p ∈ B and (b ̸= 1 or q ̸∈ B)

Ba,0(x,w) ⇐ ∃x′,y′′,u′′.x 7→ (p,q,y′′,z,u′′,x′)∗Ba,1(x′,w)∗φ′(y′′,z,u′′)
if q ∈ B and (a ̸= 1 or p ̸∈ B)

Ba,1(x,w) ⇐ ∃x′,y′′,u′′.x 7→ (p,q,y′′,z′,u′′,x′)∗Ba,2(x′,w)∗φ′(y′′,z′,u′′)
if q ∈ B and (a ̸= 1 or p ̸∈ B)

Ba,b(x,w) ⇐ ∃y′′,z′′,u′′.x 7→ (p,q,y′′,z′′,u′′,⊥)∗φ′(y′′,z′′,u′′)
if (a,b) ∈ {(2,2),(2,1),(1,2)}

By imposing that all words in the PCP instance are of length at least 2, we guarantee that the last
rule above is the only terminating one that is necessary. It is possible to get rid of the condition
on the word lengths at the cost of requiring additional rules for the case where the recursive calls
should end at the beginning of a word. The following lemma states that models of φ validate
∃y,z,y′,z′,u,u′.B(x,w) iff Property (†) does not propagate:

Lemma 8. A model (s,h) of φ validates ∃y,z,y′,z′,u,u′.B(x,w) iff (using the notations of Lemma
6) there exists l ∈{1, . . . ,k} and l′ ∈{1, . . . ,k′} such that (ℓy

Il
, ℓz

Jl′
)∈S, (ℓu

Il
, ℓz

Jl′
) ̸∈S and one of the

6

following holds: (l = k and l′ ̸= k′) or (l ̸= k and l′ = k′) or (ℓy
Il+1

, ℓz
Jl′+1

) ̸∈S or (ℓu
Il+1

, ℓz
Jl′+1

) ∈S.

Proof. Consider a store s′, coinciding with s on all variables other than y,z,y′,z′,u,u′ and such
that (s,h) satisfies B(x,w). The rules defining B impose that the last rule of B is applied at some
point, as it is the only rule with no predicate on its right-hand side. Since this rule applies only on
predicates Ba,b with a > 0 and b > 0, this entails that there are cells ℓ

y
i , ℓu

i and ℓz
j, possibly with

i = j, that must have been allocated and are such that s′(y) = ℓ
y
i , s′(u) = ℓu

i and s′(z) = ℓz
j. By

the conditions on the rules, i and j must correspond to the start of a word in λ or γ respectively,
thus we have i = Il and j = Jl′ , for some l ∈ {1, . . . ,k} and l′ ∈ {1, . . . ,k′}. If the last rule is
applied with a = b = 2, then there exist cells ℓy

i′ , ℓ
u
i′ and ℓz

j′ that must have been allocated, and are
such that s′(y′) = ℓ

y
i′ , s

′(u′) = ℓu
i′ and s′(z′) = ℓz

j′ . Still by the conditions on the rules, none of the
cells ℓi+1, . . . , ℓi′−1, ℓ j+1, . . . , ℓ j′−1 may correspond to the start of a word, thus we have i′ = Il+1
and j′ = Jl′+1. Because of the first rule we have (s′(y),s′(z)) ∈ S, (s′(u),s′(z)) ̸∈ S, and either
(s′(y′),s′(z′)) ̸∈ S, or (s′(u′),s′(z′)) ∈ S, hence we get the result. If the rule is applied with
(a,b) = (1,2) then ℓz

j′ is allocated but not ℓy
i′ , which entails that l′ ̸= k′ and l = k. The proof is

similar if (a,b) = (2,1).

We derive the following result.

Lemma 9. With the notations of Lemma 6, a model (s,h) of φ falsifies the formula A(x,v)∨
∃y,z,y′,z′,u,u′.B(x,w), iff k = k′ and for all l ∈ {1, . . . ,k}, (ℓy

Il
, ℓz

Jl
) ∈S∧ (ℓu

Il
, ℓz

Jl
) ̸∈S.

Proof. The proof is by induction on l. Lemmata 7 and 8 give the base and inductive cases, respec-
tively.

Finally, we consider an atom C(x,v) that will be satisfied by structures such that pIi ̸= qJi ,
for some i = 1, . . . ,k, assuming the condition (†) above is fulfilled. This predicate allocates the
location ℓ and introduces existential variables y,z,u denoting the faulty locations ℓ

y
Ii
, ℓz

Ji
and ℓu

Ii
,

i.e., the locations corresponding to the index i such that pIi ̸= qJi . By (†), these locations must be
chosen in such a way that the constraints S(y,z) and S(u,z)are satisfied. The predicate C(x,v) also
guesses pairs p,q such that p ̸= q (denoting the distinct pairs pIi and qJi) and invokes the predicate
C(0,0)

p,q to allocate all the remaining locations. As for the previous rules, the predicates Ca,b
p,q, for

p,q ∈ B and a,b ∈ {0,1} allocate ℓ1, . . . , ℓm′ , where a (resp. b) denotes the number of variables in
{y} (resp. {z}) that have already been allocated. In the rules below, we denote by u the vector
v,y,z,u. In all the rules we have p′,q′ ∈ P.

C(x,v) ⇐ ∃y,z,u. x 7→ (⊥,⊥,⊥,⊥,⊥,x′)∗C0,0
p,q(x′,u)∗S(y,z)∗S(u,z)

if p ̸= q and p,q ∈ B

Ca,b
p,q(x,u) ⇐ ∃x′,y′′,z′′,u′′.x 7→ (p′,q′,y′′,z′′,u′′,x′)∗Ca,b

p,q(x,u)
∗ φ′(y′′,z′′,u′′)

C0,0
p,q(x,u) ⇐ ∃x′.x 7→ (p,q,y,z,u,x′)∗C1,1

p,q(x,u)∗φ′(y,z,u)
C0,b

p,q(x,u) ⇐ ∃x′,z′′.x 7→ (p,q′,y,z′′,u,x′)∗C1,b
p,q(x,u)∗φ′(y,z′′,u)

Ca,0
p,q(x,u) ⇐ ∃x′,y′′,u′′.x 7→ (p′,q,y′′,z,u′′,x′)∗Ca,1

p,q(x,u)∗φ′(y′′,z,u′′)
C1,1

p,q(x,u) ⇐ ∃y′′,z′′,u′′.x 7→ (p′,q′,y′′,z′′,u′′,⊥)∗φ′(y′′,z′′,u′′)

7

Let ψ = A(x,v),∃y,z,y′,z′,u,u′.B(x,w),C(x,u). The entailment problem φ ⊢R ψ satisfies the
expected property:

Lemma 10. The PCP admits a solution iff the entailment problem φ ⊢R ψ has a countermodel.

Proof. Assume a structure satisfies the atom W (x,v) but not the disjunction A(x,v)∨∃y,z,y′,z′,u,
u′.B(x,w)∨C(x,u). Then by Lemma 6, there exists a word λi1.λik = γ j1.γ jk′ . Since C(x,u)
is not satisfied, il = jl′ holds if (ℓy

Il
, ℓz

Jl′
)∈S∧(ℓu

Il
, ℓz

Jl′
) ̸∈S. By Lemma 9, we have k = k′ and Prop-

erty (†) holds, hence we deduce that il = jl for all l ∈ {1, . . . ,k}, i.e., that (i1, . . . , ik) = (j1, . . . , jk′).
Conversely, if a solution of the PCP exists, then by using the locations αl,α

′
l,α

′′
l guaranteed to ex-

ist by the hypothesis of the theorem as the respective locations ℓy
Il
, ℓz

Jl
, ℓu

Il
, it is easy to construct a

structure satisfying W (x,v). Also, by hypothesis, since (αl,α
′
l) ∈ S and (α′′

l ,α
′
l) ̸∈ S, we have

(ℓ
y
Il
, ℓz

Jl
) ∈ S and (ℓu

Il
, ℓz

Jl
) /∈ S for all l = 1, . . . ,k. Thus, both A(x,v) and ∃y,z,y′,z′,u,u′.B(x,w)

do not hold. To fulfill ¬C(x,u) we have to ensure that, for all i, j ∈ {1, . . . ,k}, we have (ℓ
y
Ii
, ℓz

J j
) ∈

S∧ (ℓu
Ii
, ℓz

J j
) ̸∈ S =⇒ pIi = qJi . Since the considered word is a solution of the PCP, we have

pIi = qJi for all i = 1, . . . ,k, hence ¬C(x,u) is satisfied.

(x,⊥,⊥,⊥,⊥,⊥,1)

(1,(2,1),(2,1),2,3,4,5)

(5,(2,2),(2,2),6,7,8,9)

(9,(2,3),(1,1),10,14,11,12)

(12,(1,1),(1,2),13,20,15,16)

(16,(1,2),(1,3),17,18,19,⊥)

We provide a heap encoding a witness abcde for the PCP,
with λ = (de,abc) and γ = (cde,ab). The solution is i1 = 2
and i2 = 1, with k = 2. We assume that L = N and that S is
interpreted as the successor function. For readability the in-
terpretation of the variables x,⊥, (1,1), (1,2), (1,3), (2,1),
(2,2) and (2,3) are left unspecified and the mappings from
the locations 2,3,4,6,7,8,10,11,13,14,15,17,18,19,20 to
(⊥,⊥,⊥,⊥,⊥,⊥) are not depicted. The sequence
(ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) is (1,5,9,12,16). We have I1 = 1, I2 = 4,
J1 = 1 and J2 = 3. The dashed arrows indicate the con-
nections between cells ℓIl and ℓJl , for l = 1,2. For l = 1,
ℓIl = ℓJl = ℓ1 = 1 is connected to itself since we have ℓy

1+1=
2 + 1 = 3 = ℓz

1. For l = 2, ℓIl = ℓ4 = 12 is connected to
ℓJl = ℓ3 = 9, as ℓ

y
4 + 1 = 13+ 1 = 14 = ℓz

3. This example
also covers the case where S is interpreted as the usual order on natural numbers, as we have
ℓ

y
1 < ℓz

1 < ℓu
1 and ℓ

y
4 < ℓz

3 < ℓu
4.

4. Discussion

The presented result is very tight. Theorem 5 applies to most non trivial theories and the proof
only uses very simple data structures (simply linked lists). The proof could be adapted (at the cost
of cluttering the presentation) to handle quantifier-free entailments and even simpler inductive
systems with at most one predicate atom on the right-hand side of each rule, in the spirit of word
automata. The reduction is given for κ = 6 but it may also be defined with κ = 2 by encoding
tuples as binary trees. Our logic has only one sort of variables, denoting locations, thus one cannot
directly describe structures in which the heap maps locations to tuples containing both locations

8

and data, ranging over disjoint domains. However, data can be easily encoded in our framework by
considering a non-injective function d(x) mapping locations to data, and adding theory predicates
constructed on this function, such as d(x) ≈ d(y) to state that two possibly distinct locations x,y
are mapped to the same element. The obtained theory falls within the scope of Theorem 5 (using
d(x) ≈ d(y) as the relation S(x,y)), provided the domain of the data is infinite. This shows that
entailments with data disjoint from locations are undecidable, even if the theory only contains
equations and disequations, except when the data domain is finite.

Acknowledgments. This work has been partially funded by the the French National Research
Agency (ANR-21-CE48-0011). The authors wish to thank Radu Iosif for his comments on an
earlier version of the paper. The result presented in this paper is also described in a paper ac-
cepted for presentation at ASL2022 (workshop on Advancing Separation Logic, with no formal
proceedings).

References

[1] R. Iosif, A. Rogalewicz, J. Simacek, The tree width of separation logic with recursive definitions, in: Proc. of
CADE-24, Vol. 7898 of LNCS, 2013.

[2] S. S. Ishtiaq, P. W. O’Hearn, Bi as an assertion language for mutable data structures, in: ACM SIGPLAN Notices,
Vol. 36, 2001, pp. 14–26.

[3] J. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures, in: Proc. of LICS’02, 2002.
[4] R. Iosif, A. Rogalewicz, T. Vojnar, Deciding entailments in inductive separation logic with tree automata, in:

F. Cassez, J. Raskin (Eds.), ATVA 2014, Proceedings, Vol. 8837 of LNCS, Springer, 2014, pp. 201–218.
[5] J. Pagel, F. Zuleger, Beyond symbolic heaps: Deciding separation logic with inductive definitions, in: LPAR-23,

Vol. 73 of EPiC Series in Computing, EasyChair, 2020, pp. 390–408.
[6] R. Piskac, T. Wies, D. Zufferey, Automating Separation Logic using SMT, in: CAV 2013, Proceedings, 2013, pp.

773–789.
[7] X. Qiu, P. Garg, A. Stefanescu, P. Madhusudan, Natural proofs for structure, data, and separation, in: H. Boehm,

C. Flanagan (Eds.), ACM SIGPLAN PLDI ’13, ACM, 2013, pp. 231–242.
[8] Z. Xu, T. Chen, Z. Wu, Satisfiability of compositional separation logic with tree predicates and data constraints,

in: L. de Moura (Ed.), CADE 26, Vol. 10395 of LNCS, Springer, 2017, pp. 509–527.

9

