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Abstract—The aim of this work is to compare the response of
A375 melanoma cells following 90 min of exposure to trains of 1.5 or
6 s millimeter-waves (MMW)-induced thermal pulses with the same
temperature dynamics. Phosphorylation of heat shock protein 27
(HSP27) and activation of cleaved Caspase-3 were used as markers
of cellular stress and apoptosis, respectively. Immunofluorescence
was used to observe and precisely quantify the cellular response as a
function of the spatial distribution within the exposed area. Results
show that cellular response was stronger when cells were exposed
to a train of 1.5 s compared to 6 s heat pulses despite the same
average temperature dynamics. Cellular apoptosis induced by 1.5
s pulses was about 50% greater compared to the one induced by
6 s pulses in the area of maximal thermal stress. Similarly, HSP27
phosphorylation was approximately 20% stronger than the one
induced by 6 s pulses, and mainly focused within a small area of a
few mm2. Cellular response to MMW induced by pulsed heating
does not only depend on the peak, average, and minimum tem-
perature. It is a function of combination of the pulse parameters,
including duration, peak power, and period. MMW-induced heat
pulses can be efficiently used to induce cellular stress and apoptosis
in melanoma cells as a promising innovative tool for the treatment
of superficial skin cancer. Adaptative therapies might be envisaged
by tuning the pulse shape as a function of the desired effect.

Index Terms—Caspase 3, heat pulses, hyperthermia, HSP27,
melanoma, millimeter waves (MMW), in vitro experiments.

I. INTRODUCTION

THERMAL treatment of cancer represents a promising
alternative for damaging or killing tumoral cells with

minimal injury to healthy tissues. In hyperthermia treatments,
biological tissues are heated between 40 and 47 °C to sensitize
cells to other treatments, such as radiotherapy and chemotherapy.
During ablation, temperatures above 48 °C are applied for a short
duration (between a few seconds and 4–6 minutes) to induce
irreversible cellular injury. Three main effects can be induced at
the cellular level depending on the thermal dose:

1) cytotoxicity [1] or
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2) radiosensitization [2], both as responses to a heat shock
typically > 43 °C, and

3) thermotolerance [3] appearing during continuous heating
at temperatures < 43 °C or short exposure at temperatures
> 43 °C followed by incubation at 37 °C [4], [5]. Rela-
tively high activation energy behind these changes (within
120–146 kcal/mole) suggests that protein unfolding is the
common transition triggering such effects [1].

Cellular thermotolerance is the ability of mammalian cells
exposed to a non-lethal shock to acquire a transient resistance
to subsequent exposures at elevated temperatures [3]. This phe-
nomenon is mediated by overexpression of cellular chaperones
and heat shock proteins (HSP) that assist heat-denatured proteins
to refold into their native and functional conformations, thereby
playing a protective role. Various forms of cellular stress, such as
moderate heat, may dramatically increase the phosphorylation of
small molecular weight chaperones, such as HSP27, to promote
the recognition of client proteins in order to trap and protect
the stress-induced misfolded proteins from aggregation [6].
On the contrary, when cells undergo a severe heat shock, the HSP
response may be not able to cope with thermal stress, provoking
critical denaturation of the proteins that leads to a direct cellular
death [7], possibly mediated by activation of a group of cysteine
proteases, called Caspases [8]. Heating of biological tissues
may be achieved by means of different power sources such as
ultrasound or electromagnetic waves, including radiofrequency
(RF), microwave (MW), ultraviolet (photothermal therapy), and
light (lasers). Our recent results suggest that the upper part of the
millimeter-wave (MMW) band may be used for thermal treat-
ment of superficial skin cancer, such as spreading melanoma,
located within the MMW penetration depth (i.e., ∼ 0.5 mm at
60 GHz) [9], [10], [11]. We showed that continuous wave (CW)
MMW-induced heating at temperatures higher than 46 °C may
minimize cellular thermotolerance while inducing apoptosis
[10]. Moreover, MMW-induced heat pulses with duration of 1.5
s, period of 20 s, amplitude of 10 °C, and peak steady-state
temperature > 48 °C were able to induce a significant cellular
injury in melanoma cells compared to CW-induced heating with
the same average temperature rise of about 42 °C [9], [11]. These
results are in agreement with previous studies demonstrating that
pulsed electromagnetically-induced heating leads to stronger
cellular damage compared to continuous constant heating [12],
[13]. During pulsed exposure, high peak temperature, necessary
to kill cancer cells, can be rapidly achieved in the warm-up
phase of the pulse, maintaining the average temperature under
the lethal threshold. This results in avoiding a possible injury of
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healthy tissues surrounding the tumor, as opposite to continuous
heating [14]. The biological rationale for the application of heat
to treat melanoma is mediated by a high susceptibility of this
cancer to elevated temperatures [15], [16]. In addition, activation
of an apoptotic pathway mediated by activation of Casp-3,-6,
and 7 [15] or by the endoplasmic reticulum [17] was observed
following exposure to continuous heating within the 41–48 °C
range or pulsed heating with a steady-state peak temperature of
approximatively 49 °C [9].

Conventional models of cellular response usually employ as
a metric the steady-state temperature, overall exposure duration,
and heat dose (in terms of degree × minutes [18] or cumulative
equivalent minutes [19]). However, during the pulsed heating the
number of warm-up intervals may vary from one (for continuous
constant heating) to tens or hundreds in case of pulsed peri-
odic heating. The latter is characterized by cumulative metrics
mentioned above as well as by intrinsic parameters of pulses,
including pulse duration, duty cycle, peak temperature, average
temperature, and temperature rise rate. While their role remains
underexplored so far, these parameters of thermal pulses could
specifically alter heat-sensitive cellular processes.

The main objective of this study is to extend the current
knowledge about the heat-induced modifications in melanoma
cells by MMW-pulsed heating as a function of the heat pulse
duration for adaptative therapies. To this end, results previously
obtained using short 1.5 s pulses [9], [10], were compared, for the
first time, to longer pulses (6 s), with the same minimum, peak,
and average temperature rise. Cellular response was quantified
in terms of cellular injury after 90 min of exposure mediated
by the activation of cleaved Casp-3 and compared to heat shock
response mediated by phosphorylation of HSP27.

II. MATERIALS AND METHODS

A. Exposure Setup and Electromagnetic Dosimetry

The exposure system as well as the electromagnetic dosime-
try were described in detail in [10], [20]. Briefly, a thin cell
monolayer cultured in a well of a 12-well tissue culture plate
was exposed from the bottom 5 mm away from an open-ended
rectangular WR15 waveguide (WG) antenna (aperture size
3.81×1.905 mm2), used as a source of the MMW radiation.
Experiments were performed inside an incubator (Memmert
UNE400, Schwabach, Germany), which temperature was set to
32 °C to avoid cellular overheating due to the fast temperature
elevation occurring in the beginning of exposure. This allowed to
reach the desired steady-state temperature with a peak of about
49 °C and average around 42 °C in the center of the exposed area
[20]. A high-power generator (QuinStar Technology, Torrance,
CA) operating at 58.4 GHz with an output power up to 3.7 W was
used as a narrowband source in CW or PW amplitude modulation
regimes. Amplitude modulation of the MMW radiation was
obtained through a programmable pulse generator (HMP 4040,
Hameg Instruments, Hampshire, U.K.) allowing to adjust peak
power and pulse duration.

Numerical simulations were performed using the finite inte-
gration technique (FIT) solver of CST Microwave Studio 2018
(Computer Simulation Technology [CST]; Dassault Systemes,

Darmstadt, Germany) as detailed in [10], [20]. Due to the shal-
low penetration of the MMW, the specific absorption rate (SAR)
distribution in the exposed cell monolayer rapidly decreases
along all the directions of the well [10], [20]. Computed local
SAR in the cell monolayer, at the center of the exposure – aligned
with the boresight axis of the open-ended WG – is equal to 19.8
W/kg per 1 W of incident power. Note that in a fraction of mm
along the well height (∼ 0.13 mm) SAR drops by about 50%.

B. Microscale Temperature Measurement

The temperature increase induced at the cellular level by the
exposure to CW and PW MMW was measured using a K type
thermocouple (TC) probe with the lead diameter of 75 μm (RS
Components, Corby, U.K.). Precise protocol and instrumenta-
tion employed for temperature acquisition and recording are
detailed in [10]. Briefly, the sensor of the TC was located on
the exposure beam axis with its leads lying on the bottom of
the well perpendicular to the E-plane to avoid induction of
currents in the TC and possible related artefacts [10], [21],
[22], [23], [24]. Note that under the exposure conditions of this
study, the presence of a small metallic TC (diameter < 1 mm)
during the exposure introduces a local (within 0.1 mm around
the TC) increase of SAR (along the E-plane), by about 5%,
close to the TC tip that practically does not impact heating of
the exposed sample (difference of heating dynamics with and
without TC is less than 1%) [10]. Temperature measurements
and cell exposures were performed in separate experiments. In
this way, possible cellular damage, contamination, and local
increase of SAR in the cell monolayer due to presence of the
TC were avoided. Temperature measurements were performed
at least in 3 independent experiments for each waveform.

C. Cell Culture, Exposure, and Immunofluorescence

The human malignant A375 melanoma cell line was pur-
chased from American Type Culture Collection (ATCC, Mol-
sheim, France). Cells were cultured as previously described
[9] in a standard humidified incubator at 37 °C and 5% CO2.
Experiments were performed at earlier passages between 4 and
10, to avoid a drift of the cellular population. For exposure,
cells were seeded in 3 wells of a 12-well tissue culture plate
at a density > 3·104 cells per well. One well was exposed to
MMW and the other two served as a control (negative control
and positive control with chemical treatment to induce heat
shock response or apoptosis [data not shown]) [9]. Cells were
exposed to MMW for 90 min as previously described [9]. Sham
exposures were performed under identical experimental con-
ditions, but with the generator switched off. Since heat shock
response may appear after certain delay after heat [25], cells were
incubated at 37 °C for 6 hours after exposure. Finally, cells were
fixed before proceeding to immunofluorescence (IF) analysis.
The IF protocols were described in detail in [9], [26]. In brief,
phosphorylated HSP27 and cleaved Casp-3 were detected using
specific primary antibodies diluted at 1:200 (Phospho-HSP27
(Ser82), ref 2406, Cell Signaling Technology, Danvers, MA)
and 1:500 (Cleaved Caspase-3 (Asp175), ref 96645, Cell Signal-
ing), respectively. Revelation was carried out using fluorescent
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secondary antibodies at 1:1000 dilution. Nuclei counterstaining
was performed (Hoechst 33342, 10 μg/mL, Sigma-Aldrich)
to identify individual cells. 121 square pictures (each of 0.25
mm2) of cells were automatically taken, and fluorescence of
each cell was quantified using a Cellomics ArrayScan VTI HCS
Reader (Termo Fisher Scientifc) at ImPACcell technological
platform (Biosit, University of Rennes 1, Rennes, France). A
total area of 30.25 mm2 was covered within each well. This
corresponds to the central area of the exposure, i.e., the zone of
the maximal thermal stress. Each picture contained in average
about 100 cells. Data of the cellular fluorescence within the
nucleus and cytoplasm were analyzed cell-by-cell as a function
of the distance from the center of the well, where distance equal
to 0 mm was assigned to all cells belonging to the picture taken
in the center of the well aligned to the open-ended WG axis as
detailed in [10].

D. Thermal Dose

The thermal dose during CW and PW MMW-induced heating
was calculated with the cumulative equivalent minute at 43 °C
(CEM43 °C) [18]:

CEM43 ◦C =

n∑

i

tiR
(43−T̄) (1)

where n represents the number of intervals in which the duration
of the exposure has been divided, ti is the i-th interval over
which temperature is averaged (in minutes), T̄ is the average
temperature during the time interval ti, 43 °C is the reference
temperature, and R is related to the temperature dependence
of the rate of cellular death above and below the reference
temperature. Here, R (T < 43 °C) = 0.233 and R (T > 43 °C) =
0.428, as experimentally derived in [27] for human skin cells in
vitro. The averaging interval was equal to 0.3 s to consider the
fast temperature variations during the pulse exposure.

E. Statistical Analysis

All experiments were performed in three independent exper-
imental series. Data are presented as mean values and standard
error of the mean (SEM). Significance of measured differences
were tested with the non-parametric Mann-Whitney Rank Sum
test (SigmaPlot Statistics) for significance levels of p<0.05.

III. RESULTS

A. Electromagnetic and Thermal Pulses

Square-wave amplitude modulation was used to create ON /
OFF electromagnetic pulses with the duration of 1.5 s and 6 s.
This choice is motivated by the fact that using this combination
allowed us to obtain the same temperature dynamics, both in
terms of peak amplitude of the heat pulse and minimum and
maximum temperature rise at steady state, by varying only
period and power. This facilitates the comparison and interpre-
tation of results by reducing the number of variables. The pulse
parameters are summarized in Table I. The peak power at the
open-ended WG input was adjusted for each pulse duration to
obtain a peak temperature in a pulse of 10 °C (Fig. 1(a)).

TABLE I
PARAMETERS OF THE ELECTROMAGNETIC PULSES FOR THE TOTAL EXPOSURE

DURATION OF 90 MINUTES

Fig. 1. Temperature dynamics for 1.5 and 6 s MMW heat pulses measured at
the cell level on the exposure beam axis. (a) Measured single heat pulses with
duration of 1.5 and 6 s. (b) Train of 194 and 270 heat pulses of 1.5 and 6 s,
respectively, measured during 90 min of exposure. (c) Spatial distribution of the
PW peak temperature rise at steady state (normalized to the temperature at the
center of the well, i.e., 0 mm) along the well radius.

Peak power was set to 3.7 W and 1.6 W, corresponding to peak
SAR levels of 73.6 kW/kg and 31.8 kW/kg in the cell monolayer,
for the 1.5 s and 6 s pulses, respectively. The corresponding
temperature rise rate was 6.7 °C/s and 1.7 °C/s, respectively.
Note that for longer durations of the thermal pulse, convection
arising in the culture medium strongly impacts the temporal
pulse profile decreasing the peak amplitude and increasing the
cooling rate resulting in a 6 s heat pulse less sharp than the
1.5 s [20]. Indeed, high SAR gradients caused by local power
absorption at MMW in the exposed liquid are responsible for the
occurrence of convective currents that drive the heated liquid at
the bottom to the top of the well [20]. The period of the pulses
was adjusted to 20 s for 1.5 s pulses and 27.9 s for 6 s pulses
to maintain the same average temperature dynamics (mean PW
in Fig. 1(b)) around 42 °C. Average temperature was calculated
using a moving average filter with 75 s span through the smooth
function of MATLAB.
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The average temperature around 42 °C was chosen as it is
within the typical temperature range used in the clinical practice
of thermotherapy [28]. Note that in order to obtain the same tem-
perature dynamics for both pulse durations, the average power
for 6 s pulses (0.334 W) was higher by about 20% compared to
the 1.5 s pulses (0.275 W). This allows to compensate for the
effect of thermal convection which tends to decrease the peak
amplitude and increase cooling of longer thermal pulses [20].
For 90 min of exposure, the pulse train was composed by 270
and 194 pulses, for the 1.5 s and 6 s pulses, respectively. The
steady state was reached after about 40–50 minutes from the
beginning of exposure.

Maximum thermal dose in the center of the well bottom,
corresponding to the highest temperature induced in the cell
monolayer, was 502.67 ± 128.42 min and 1021.67 ± 401.5 min
for 1.5 s and 6 s PW exposures, respectively (mean ± standard
deviation). CEM43 °C for CW at the center of the exposure was
23.9± 9.7 min. Temperature decreases as moving away from the
WG axis. Temperature peak, reached at the steady state, during
exposure to 1.5 s pulses was equal to 49.2± 0.1 °C, 49± 0.1 °C,
48.3 ± 0.3 °C, and 46 ± 0.23 °C, respectively on the well axis
and at 1, 2, and 3 mm from it. For 6 s pulses convection triggered
in the culture medium slightly decreases the peak temperature
(differences less than 10%) compared to 1.5 s pulses (Fig. 1(c)).
Variation along the radius of the cell monolayer with respect to
maximum value at d = 0 mm of the PW peak temperature is
shown in Fig. 1(c). The maximum relative deviation between
1.5 s and 6 s pulses is of 27% at d = 2 mm. Average temperature
for both exposure conditions was of 41.7± 0.3 °C in the center
and it decreased by about 1 °C at 3 mm from the central point
towards the lateral sides of the well. Measurements performed
along the H-field direction, i.e., perpendicular to the E-field
direction, and electromagnetic numerical simulations suggest
a similar temperature distribution as the one recorded along the
E-field direction in the area of interest.

B. Induction of Apoptosis

Apoptosis is a highly regulated process primarily orchestrated
by the activation of a family of proteases named Caspase.
The latter, pre-exist in cells as catalytically inactive zymogens
(pro-caspase) precursors, activated by cleavage in response to
a variety of cell death stimuli. Initiation of apoptosis occurs
through either intrinsic or extrinsic pathways both leading to the
activation of the major effector caspases, such as Casp-3, which
coordinates the cleavage of key proteins, leading to demolition
of cellular structures and organelles [8]. In order to quantify the
cellular injury, we analyzed the activation of cleaved Casp-3 as
a marker of cellular death following the exposure to 1.5 and 6 s
PW MMW-induced pulses in the A375 melanoma cell line. As in
[9], we calculated the percentage of dead cells as the percentage
of cells above the level of background noise of activated Casp-3,
labelled through high-content fluorescence microscopy analysis.
Results were compared with CW heating at about 42 °C, i.e., the
average heating induced during PW exposure.

The spatial distribution of apoptotic cells, in the area of
interest, 6 hours after exposure is illustrated in Fig. 2(a). It

Fig. 2. Percentage of apoptotic cells after 1.5 and 6 s PW exposure compared
to CW heating with the same average temperature. (a) Spatial distribution of
apoptotic cells for PW (1.5 s), PW (6 s), CW, and sham. (b) Apoptotic response
analyzed cell-by-cell 6 h after exposure shown as mean values (n = 3) ± SEM
(standard error of the mean) normalized to sham. The data are averaged over
two areas around the center of the well. (∗) indicates statistical significance
compared to CW at p < 0.05. (c) The same data shown for the averaging with
a higher spatial resolution.

qualitatively shows that 1.5 s pulses induce stronger localized
apoptosis compared to 6 s pulses and CW heating. Cellular death
is mainly observed in the central area of the well within 1.8
mm-radius region (Fig. 2(b)) where cellular response following
the application of 1.5 s pulses is higher compared to the other
exposure conditions. Specifically, percentage of apoptotic cells
was 7%, 3%, and 1.4% for 1.5 s, 6 s, and CW exposures,
respectively. However, for d > 1.8 mm, where SAR and peak
pulse temperature, are below 77% and 86%, in respect to the peak
on the axis, respectively, the number of apoptotic cells rapidly
decreases to < 1.5%, i.e., comparable to sham values. Note that
from 0 to 3.5 mm (SAR and thermal pulse amplitude drop of
about 50%), the percentage of apoptotic cells was reduced by
almost 7 times for 1.5 s pulses and 5.5 times for 6 s pulses
(Fig. 2(c)).

Our data suggest that when cells are exposed to heat pulses
reaching a maximum peak temperature between about 48 °C and
49 °C (0 mm < d < 1.8 mm), for certain parameters of pulses
(i.e., pulse duration, temperature rise rate, peak power, etc.),
they are not able to cope with the external stress fully activating
repair processes, resulting in initiation of an apoptotic pathway
as visualized by the cleavage of Casp-3. The purely thermal
mechanism (based just on the consideration of minimal, mean,
and peak temperatures) would imply similar results induced by
1.5 s and 6 s pulse trains with the same minimal, mean, and
peak temperatures. However, here we observe that in the center
of the exposed area, 1.5 s heat pulses, with the smaller thermal
dose (about 50% less than 6 s) induce 55% stronger response
compared to 6 s pulses. These results suggest that the sensitivity
of the melanoma cells also depends on other properties of the
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Fig. 3. Phosphorylation of HSP27 after PW and CW exposure. (a) Spatial
distribution of the normalized intensity of the HSP27 phosphorylation for PW
(1.5 s), PW (6 s), CW, and sham. (b) Phosphorylation of HSP27 analyzed cell-
by-cell 6 h after exposure shown as mean values (n = 3) ± SEM (standard error
of the mean) normalized to sham. The data are averaged over two areas around
the center of the well. (∗) indicates statistical significance at p < 0.05 compared
to CW, (∗∗) indicates statistical significance at p < 0.05 compared to 6 s pulses.
(c) The same data shown for the averaging with a higher spatial resolution.

thermal pulses, such as duration, period, or temperature rise rate
(see Discussion).

C. Phosphorylation of HSP27

HSP27 phosphorylation was quantified to correlate the heat
stress induced by different types of heat pulses with the
level of effective cellular damage. Phosphorylation is the most
widespread post-translational modification in eukaryotic cells,
involved in all principal cellular processes, including signal
transduction, cell cycle, growth, apoptosis, membrane protein-
protein interactions, etc. [29], [30]. HSP27 phosphorylation has
been related to several physiological and pathological processes
[31] as well as to chaperone activity [32]. Following phospho-
rylation, HSP27 reorganizes itself into smaller oligomers able
to trap and restore the heat-stressed misfolded polypeptides
through cooperation with the well characterized ATP-dependent
“foldase” chaperone machinery refolding activity [6]. In ad-
dition, phosphorylation of HSP27 may inhibit the Caspase-
dependent apoptosis by repressing the Casp-3 activation [25].
Herein, the phosphorylation of HSP27 was used as a marker of
cellular stress and a reliable tool to spatially map the response
induced by the exposure to 1.5 and 6 s PW MMW-induced pulses
in the A375 melanoma cell line. Results were compared to CW
heating at 42 °C, similarly to the analysis of the MMW-heating
induced apoptosis.

Fig. 3(a) represents the spatial distribution of the fluorescence
intensity of cells following PW, CW, and sham exposures in
the central area of the cell monolayer. It qualitatively shows
that both PW exposure conditions and CW exposure induce
phosphorylation of HSP27. Inside the 1.8-mm radius area, 1.5 s
pulses result in levels of phosphorylation of HSP27 significantly

higher compared to 6 s pulses and CW heating (Fig. 3(b)). Within
this area, the induction of HSP27 phosphorylation was 10.1, 7.9,
and 6.4-fold in respect to the sham for 1.5 s, 6 s pulses, and CW,
respectively. It is interesting to note that heat induced by 1.5 s
pulses is mostly concentrated around the center of the exposure
while 6 s pulses-induced response spreads almost over the whole
region of interest. We assume that different HSP27 spatial dis-
tribution is possibly due to the different thermal diffusion time
of thermal pulses (see Discussion).

The drop of phosphorylation of HSP27 from 0 to 3.5 mm
is much lower compared to the decay of cellular death. Heat
shock response decays by a factor of 4.2, 2.7, and 1.4, following
CW, 1.5 s, and 6 s PW heating, respectively (Fig. 3(c)) showing
a plateau between 0 and 1.8 mm in the case of heat pulses
(Fig. 3(c)). This may be related to the saturation of the refolding
system not able to cope anymore with the intense thermal stress
in the 1.8 mm-radius area (peak PW temperature rise is between
47.7–49.2 °C [9]) as suggested by the substantial increase of
apoptosis observed in this region (Fig. 2(c)). We observed that
the strongest cellular death occurred for 1.5 s heat pulses (Fig. 2)
is correlated to the highest level of phosphorylation of HSP27
(Fig. 3). This is not surprising considering that the protein
redistribution in small oligomers due to excessive phosphory-
lation negatively regulates the chaperone-like activity of HSP27
leading to a significant decrease in their protective function [33].

IV. DISCUSSION

In this study, two aspects of the complex response activated
by MMW-induced heat pulses in the A375 melanoma cells have
been analyzed, namely the cellular damage, quantified as the
number of cells undergoing to apoptosis, and the heat shock
response mediated by the phosphorylation of HSP27. Responses
induced by 90 min of exposure to a train of 1.5 s and 6 s pulses,
with the same thermal profile, have been compared. Results
demonstrated that peak, minimum, and average temperature
elevation, are not the only parameters determining the cellular
response.

Pulse duration may play a fundamental role in determining
the spatial extension of the cellular response in terms of thermal
stress. Thermal diffusion τ represents an important parameter
to consider during photothermal therapies:

τ = δ2/4α (2)

where δ (mm) is the penetration depth of the incident radiation
and α (mm2/s) is the thermal diffusivity of the exposed tissue
[34]. If the duration of the pulse is shorter than the heat diffusion
time, the distribution of the thermal energy is limited within the
target zone. Pulses longer than the thermal relaxation time lead
to diffusion of heat outside the target zone causing in practice
the damage of the neighboring healthy tissue. Under exposure
conditions of this study, τ = 0.12 s with δ = 0.26 mm and α =
0.143 mm2/s. Even though τ is lower than the pulse duration,
the ratio between 1.5 and 6 s heat pulses and τ is different (12.5-
and 50-fold lower than the duration of the 1.5 s and 6 s heat
pulses, respectively). This could explain the fact that heat pulses
with shorter duration deliver high peak power to the target area
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restricting the heat affected zone to a localized region as opposite
to the long pulse duration where heat is more widespread. This
suggests that short thermal pulses are more suitable for localized
ablative therapies compared to longer pulses despite the similar
thermal profile.

Moreover, the higher heat shock response observed after 90
min of exposure to long pulses, in cells located at points beyond
1.8 mm, may be associated to thermodynamic phenomena occur-
ring in the exposed liquid. Indeed, thermal convection, facilitated
by the long thermal pulses [20], may be also responsible of a
stronger movement of the liquid bulk, that may affect cellular
response through indirect mechanisms, such as a local modifi-
cation of the concentration of oxygen or nutrients transported
by the culture medium [35], and possibly determine different
cellular response compared to the cells exposed to shorter pulses,
with the same temperature dynamics.

Peak power of pulses can also influence cellular response.
For example, Zorec et al., [36] investigated transdermal drug
delivery of compounds possessing different molecular weights
by means of YAG laser, analyzing the effect of duration, power,
and energy of laser pulses. They found that the energy of the
pulse mostly determined the size of the laser ablation, while
the duration of the pulse the extent of thermally stressed tissue.
In particular, the study showed that shorter pulses with higher
power allowed the achievement of higher ablative zone reducing
undesired thermal effects on tissue. This is in agreement with
results of our experiments where 1.5 s pulses with higher peak
power (57% higher than 6 s pulses) provided higher damage of
cells focused within a smaller region compared to 6 s pulses.
Moreover, we showed that the extent of the heat stressed area
is higher in 6 s pulses having 46% stronger energy than 1.5 s
pulses.

Number of pulses may also influence cellular response.
For example, in electroporation stronger cellular injury can
be achieved by increasing the number of pulses for the same
exposure conditions [37]. The higher number of short pulses
(28%>compared to 6 s pulse train), associated to higher peak
power, might also be responsible for the stronger response
observed in this study both in terms of thermal stress and induced
apoptosis.

Temperature rise rate represents another important param-
eter that could lead to different changes at the cellular level as
suggested by several studies [14], [38], [39].

Despite the direct action of temperature rise rate on the
enzymatic reaction has not been studied so far, we hypothesize
that the observed cellular responses could depend on it. Previous
studies showed that different spatio-temporal activation profiles
of the same signaling proteins may result in different physi-
ological responses, including cellular apoptosis [40]. Thermal
stimulation of a cell induces activation of several downstream
kinases, leading to the phosphorylation of key proteins. Faster
temperature rise of the thermal train of 1.5 s pulses (6.7 °C/s)
might abruptly denature proteins that do not have the time to
associate with protective chaperone proteins. On the contrary,
a train of 6 s thermal pulses (1.7 °C/s), might allow cells to
cope with thermal stress by properly exercise their function of
molecular chaperones when the heat stress is stronger.

The role of pulse period or pulse repetition rate is unclear.
Some studies show that it might play a role in defining the
cellular response [41]. For example, the study of the swelling
response of cells as a function of pulse number and repetition
rate, demonstrates that cell swelling increases when the pulses
repetition rate is higher [42]. However, in another study, a
decreased effect, in terms of cell viability, was observed at a
higher pulse repetition rate [43].

Overall, we can hypothesize that MMW induced heat pulses
can modulate cellular response and signaling depending on
the pulse parameters. This is supported by a recent study [44]
showing that calcium oscillation can be induced or inhibited
through high voltage μs pulsed electric fields as a function of
the pulse parameters.

Note that the discrimination of the effect due to each param-
eter of the pulse is not straightforward. Indeed, the observed
cellular response appears as a complex combination of the pulse
characteristics rather than a function of a single pulse parameter.
Therefore, further research is needed to isolate the effects of each
parameter on cellular response, by for example using pulses
of different shapes or varying other pulse parameters while
maintaining the same pulse duration. The deeper insight into
the impact of each pulse parameter on cell death and stress
may be of importance to adaptively optimize treatment con-
ditions by tuning the pulse parameter depending on the specific
requirement.

V. CONCLUSION

MMW-induced heat pulses allow reaching high-peak tem-
perature while keeping the average temperature rise at a rel-
atively low level therefore avoiding, in real-case scenarios,
overheating of healthy tissues surrounding the tumor. In this
study, the cellular response of a malignant melanoma cell line
is investigated following the exposure to 1.5 s and 6 s PW
MMW-induced heating with the same temperature dynamics
through high-content fluorescence microscopy image analysis.
Our results demonstrated that 1.5 s heat pulses led to a stronger
cellular response, both in terms of cellular apoptosis and stress,
suggesting that cellular behavior is determined by a combination
of pulse parameters, including peak temperature, number of
pulses, temperature rise rate, pulse energy, and period. In partic-
ular, we have shown that the use of 1.5 s pulses is advantageous
as it may provide a high selectivity within the irradiated zone
accompanied by a dose level which is below the typical thermal
threshold reported for human skin (i.e., around 600 CEM43 °C
[45]). Further investigation aiming to discriminate the role of
each parameter of pulses on the cellular response represents the
main perspective of the study.
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