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Abstract—Non-linear model predictive control (NMPC) solves
structured optimization problems under predetermined con-
straints. It results in an optimal control series in a multiple-step
prediction horizon. However, the NMPC requires considerable
computation time, making it difficult to implement on devices
with limited resources. We focus on an NMPC-based controller
used for autonomous vehicle racing. It is a typical representative
of quickly evolving cyber-physical systems. In the single-vehicle
racing mode, we propose a triggering method to enable the
execution of long-horizon NMPC, which is desirable for achieving
a better lap time. For the head-to-head racing mode, in order
to react rapidly to the evolving surroundings, we propose a
short-horizon NMPC-based control strategy with safe overtaking
capability. These control strategies can be implemented within a
limited time budget.

Keywords—NMPC, real-time systems, autonomous vehicle rac-
ing

I. INTRODUCTION

Non-linear model predictive control (NMPC) is widely used
to control systems with non-linear constraints and dynamics.
However, due to its high calculation costs, it is typically used
in systems that change slowly. In this paper, we concentrate
on its application in the autonomous race car system [1], in
order to investigate the viability of running NMPC in a rapidly
evolving system.

Sequential quadratic programming (SQP) is a popular tech-
nique to solve NMPC problems: starting from an initial value
for system states, the original problem is sequentially and
linearly approximated by QPs; the state value is updated
after each iteration and finally converges by using Newton
directions delivered by QPs. As in the work [2], NMPC is
proposed to achieve the shortest lap time for autonomous race
cars. In the work [3], the authors use SQP with only one
QP step and separate the calculation into preparation/feedback
phases, which is called the Real-time Iteration (RTI) method,
to reduce computation cost. The underlying concept is that by
shifting the result of the last NMPC calculation, the authors
have a reasonable initialization for the next NMPC calculation.
Instead of sequentially solving multiple QP sub-problems, the
authors solve only one QP. The NMPC can still produce
a solution relatively close to the one that it would have
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calculated with the traditional method, thanks to its efficient
initialization.

We approach the problem of the computation time load in
a different way. In single-vehicle racing mode, the race car
evolves in a relatively static environment. We can observe
that the resulting trajectory of the NMPC is significantly
changed only when the vehicle is about to run into different
track types, e.g. from a straight line to a sharp corner. This
means that it is only necessary to recalculate the NMPC under
this specific circumstance. Based on this fact, we propose
a triggering condition to reduce total calling times to the
NMPC solver while maintaining a sufficient level of system
performance. This mechanism also allows us to run long-
horizon NMPC without exceeding the given time budget. It
is worth mentioning that the NMPC is calculated by the SQP
method until its convergence. In this way, the convergence
criteria of the NMPC can naturally guarantee that the system
constraints are not violated, whereas the RTI method does not.

Triggering-based control is well considered in path tracking
problems. For example, authors in [4] propose two triggering
modes: self-triggering and event-triggering. The difference is
that the event-triggered mode relies on the environment and
requires continuous measurement of system state(s), while
in the self-triggered mode, the next triggering point is pre-
computed based on the current state and predicted control
sequence. In this work, we use a triggering mode similar to
self-triggering to handle our time-optimal autonomous racing
problem in the single-vehicle racing mode. We will show that
with this triggering method, the number of recalculation steps
is largely reduced and the performance in terms of lap time
is comparable to the conventional NMPC which recalculates
every progress step.

In the head-to-head racing mode where the ego vehicle and
one opponent vehicle run together, we propose a different
approach. A quick reaction time, i.e. a short enough control
period, is needed to avoid a potential collision with the oppo-
nent. Also, the procedure of SQP should always be completed
to ensure the satisfaction of system constraints (especially
collision-free constraints), thus the RTI method is not desirable
for this racing mode. To cut down the computation time below
a given time budget (or a pre-determined control period), we
employ a short-horizon NMPC. In this way, we can recalculate



the NMPC with high frequency. In head-to-head competition,
the correctness of the result (which should be delivered within
the given time budget) is of paramount importance. We may
slightly degrade the lap time performance by using short-
horizon NMPC, but it is worth making this trade-off to
guarantee the functional correctness.

In order to integrate the constraint of non-collision between
vehicles into the NMPC approach, we formulate the overtaking
procedure as a sequence of choice of the ego vehicle. At
each forecast stage, the ego vehicle can choose to overtake
the leading vehicle either from the left or from the right. The
overtaking procedure then consists in finding the combination
of choices to overtake as quickly as possible. As reported in
[5], mixed-integer programming (MIP) can be used to solve
this combination problem for finding an overtaking strategy
in the head-to-head racing scenario. However, the calculation
time of NMPC combined to MIP is very expensive and it
is difficult to employ in real-time scenarii. We propose a
simplified control strategy for selecting between the left and
right sides to achieve overtaking while also maintaining fast
computation. Authors in [6] decide the overtaking side thanks
to a learning-based method and only carry out the computation
for the chosen side. In our work, the trajectories on both sides
are computed in parallel (on different CPU cores) and the
better one (which results in a faster progress time) is selected.

Contributions.
• For the single-vehicle racing mode, we propose a self-

triggering method to reduce the number of recalculation
steps of NMPC without violating the time budget con-
straint or considerably sacrificing system performance.

• For the head-to-head racing mode, we propose a control
strategy with a fixed control period. This strategy featur-
ing the overtaking ability is feasible for real-time scenarii.

Organization.
The article is structured as follows. In section II, we

present the NMPC formulation and the conventional control
framework that forms the basis for the parts that follow. In
section III, we describe the issue that we intend to solve.
We introduce our solutions to enable NMPC-based controllers
to run under limited computation resources in section IV.
Simulation results are reported in section V.

II. BACKGROUND

In this section, we first present the NMPC formulation for
the autonomous vehicle racing problem. We then describe
how the NMPC’s resulting optimal control is deployed in a
conventional control framework.

A. The NMPC formulation
The whole system can be abstracted as the interaction

between the plant (i.e. the race car) and the NMPC controller.
We use the same NMPC formalization as in [5] which opti-
mizes the vehicle’s progress time in a curvilinear coordinate
system to achieve the objective of time-optimal control. In this
curvilinear coordinate system, the trajectory is parameterized
by the arc-length s along the track’s center line which serves

as a reference. We define s as the vehicle’s progress. The
vehicle’s center of gravity (CoG) has a projection point on
this reference line. We note the deviation of the vehicle’s CoG
from the reference line as ey . The difference between the
vehicle’s orientation and the tangent angle at the projection
point is noted as e . The vehicle’s position in the curvilinear
coordinate is thus represented as (s, ey, e ). At progress step
k in the prediction horizon, the vehicle’s progress will be
sk = s0 + k · �s, where s0 is the current progress along
the reference line and �s is the step size. Since control in the
NMPC horizon is piece-wise constant for each step, a longer
�s will reduce control flexibility but also safety guarantee.
However, a shorter �s will increase control complexity since
more control steps are needed for realizing the same horizon
length. In the following experiment, we set �s to a similar
value as the vehicle length to reach a compromise between
safety and complexity.

We recall the NMPC formalization used in [5]:
min
ui(s)

tN

s.t. ⇠0i+1 = fdyn(⇠i, ui), i = 0, ..., N

⇠i 2 [⇠min, ⇠max], i = 0, ..., N

ui 2 [umin, umax] i = 0, ..., N � 1

(1)

where the state vector ⇠i = [ey, e , vx, vy,!, t, s, d, �]i, the
control vector ui = [�d,��]i. vx, vy are the longitudinal and
lateral velocities. ! is the angular velocity of the vehicle’s
yaw angle. t is the progress time. d is the parameter of the
motor engine. � is the vehicle’s steering angle. �d and ��
are the variation ratios of d and �. In this NMPC formulation,
the prediction horizon has a length of N . The optimization
objective is the progress time at the end of the horizon: tN .
System states at different steps should respect the constraints
on dynamic evolution. States and controls are also constrained
by physical limitations in the form of intervals.

This paper uses the SQP technique to solve the above
NMPC formulation. The procedure is explained as follows.
We first provide guessed values for ⇠i, i = 0, . . . , N and
ui, i = 0, . . . , N � 1. These guesses result from previous
calculations or specific methods such as those introduced in
[7]. The initialization quality will have an impact on how
fast the algorithm converges to the optimal result. Then we
linearize the dynamics equation and constraints around the
initialized state/control vector and solve the problem in the
form of QP. After solving a single QP, we generate a new
N -steps prediction for (⇠i, ui). If the corresponding solution
does not reach the required precision, we linearize again
the dynamics equation/constraints around the newly generated
state/control vector, then resolve a new QP problem. We use
the Karush–Kuhn–Tucker (KKT) condition as the precision
indicator for denoting the optimality of the solution and the
violation of constraints.

It takes several QP iterations for the NMPC framework
to find a solution. We can set up the maximum number of
iterations Nmax

iter while the optimization can still terminate in
advance once the desired KKT value is reached. The worst



Fig. 1. The conventional NMPC control framework.

case execution time (WCET) of one QP iteration is an affine
function of the horizon length: WCETper iter(N).

B. Conventional control framework
In conventional NMPC, the calculation is supposed to be

done between steps discretized in terms of progress. The result
of NMPC is released at the beginning of each step. At progress
step k, the state series in the prediction horizon is noted as
⇠i|k, i = 0, . . . , N while the piece-wise constant control series
is ui|k, i = 0, . . . , N � 1. ⇠⇤i|k and u⇤

i|k represent the optimal
result. In conventional NMPC, only the optimal control of the
first predicted step u⇤

0|k is deployed, and the rest of the optimal
control series is recalculated at progress step k + 1.

As shown in Fig. 1, the system evolution and the NMPC
calculation occur simultaneously. In the system evolution part,
the vehicle moves forward using the optimal control input u⇤

0|k.
The system finally evolves to a new state ⇠k+1 during the
progress time �tprogress

k = tk+1 � tk. In the calculation part,
we prepare the optimal control for the next evolution step.
First, we measure the current state ⇠k and predict the state
⇠̃k+1 using the integration of system dynamics or a simple
interpolation. Then the NMPC is calculated using time �tcalc

k .

III. MOTIVATION AND SOLUTION DESIGN OBJECTIVE

In this section, we first discuss some issues in the online
implementation of NMPC-based controllers under the conven-
tional control framework. This provides research motivations
for designing a new framework to deploy NMPC-based con-
trollers within a limited time budget. In the second part of this
section, we describe the research problem and define a design
objective for the intended solution.

A. Conventional NMPC issues in single-vehicle racing mode
Using the conventional control framework, the time budget

requirement, �tprogress
k � �tcalc

k , is not always respected,
especially in long-horizon NMPC. The computed trajectory
may be obsolete taking into account the progress of the vehicle
during the calculation.

We demonstrate this problem using the same experimental
setting as in [5] running on a standard laptop with an Intel i7
processor (in this work, the code optimization level is set to

TABLE I
STATISTICS FOR CONVENTIONAL NMPC CALCULATION

Track 1 Track 2
horizon N 15 30 15 30

Per-step
progress time

[ms]

max 57.8 54.5 73.7 66.5
min 17.2 17.3 12.8 12.2

mean 33.2 32.7 33.9 33.4
Per-step

calculation time
[ms]

max 19.7 81.6 19.2 101.3
min 2.4 8.1 1.2 3.8

mean 6.8 27.0 6.4 25.2
QP

iteration
number

max 15 11 14 18
min 2 2 1 1

mean 4.4 4.3 3.9 4.0
Lap time [s] 4.852 4.773 10.189 10.064

Fig. 2. The histograms for the value of �t = �tprogress
k ��tcalc

k .

be ‘-O3’). The experiment is performed in an offline way: we
get the vehicle state at step k, then we calculate the optimal
control series with NMPC; once the calculation finishes, we
simulate the system state at step k+1 by an integration method
using the control result of NMPC. Both a short-horizon length
of N = 15 and a long-horizon length of N = 30 are tested.
The two testing tracks studied in [5] take respectively 145 and
300 progress steps to run through.

From Table I, we can observe that the average calculation
time for N = 30 is about 4 to 5 times more than that for
N = 15. To examine the constraint �tprogress

k > �tcalc
k for

each step, we display the value of �t = �tprogress
k ��tcalc

k in
Fig. 2. The value of �t should always be positive to allow
online execution. We see that on track 1, the constraint is
totally satisfied for N = 15 while this is not the case for
certain steps with N = 30. On track 2, even with N = 15,
there are 2 steps out of 300 where the calculation time exceeds
the progress time by 2.2[ms] and 0.7[ms] respectively, while
with N = 30 the constraint is violated at more steps. We find
that longer horizon NMPC is computationally expensive. But
its superior performance in terms of lap time (as shown in the
last row in Table I) makes it attractive.

B. NMPC controller issues in head-to-head racing mode

The conventional control framework counts the control steps
by measuring the progress s, e.g. the control step k is at
the progress sk = s0 + k · �s. In this way, continuous
monitoring for state sk is required and related computation
resources will be consumed. Since the monitoring is based on



vehicle self-localization, inaccurate measurement results are
possible, particularly in complicated dynamic situations. The
measurement inaccuracy of sk may result in a delay in control
release, which could potentially lead to a collision.

Another difficulty lies in the representation of constraints
for avoiding collision between two vehicles. At each prediction
step, the ego vehicle can be situated in 4 different positions
relative to the opponent vehicle: left, right, behind, or ahead.
The choice at each step can be formulated and solved as
a Mixed Integer Problem (MIP). However, as reported in
[5], combining NMPC and MIP results in a long execution
time which is usually 2 to 4 times more, depending on the
horizon length, than simple NMPC. As seen in Fig. 2, simple
NMPC with N = 15 already encounters difficulty in finishing
the calculation at certain steps on track 2. The additional
complexity of MIP makes it more difficult to complete the
calculation in time.

C. Problem description
In single-vehicle racing mode, a long-horizon NMPC is

preferred. In section III-A, we described the problem to ensure
the online execution of long-horizon NMPC. The proposed
method should keep the optimality featured by long-horizon
NMPC while also ensuring that the calculation time is shorter
than the progress time. We should also pay attention to the
QP iteration numbers of the SQP procedure of the proposed
method, since it indicates the required effort to reach the
convergence of NMPC.

In head-to-head racing mode, we make more effort to ensure
that the vehicle can respond in a safe and flexible manner to
the surroundings. In section III-B, we described the problem to
design an online NMPC-based controller that is feasible (the
calculation should be done within the given time budget), safe
(no collision happens) and realistic (the ability for overtaking
behavior should be enabled).

IV. PROPOSED SOLUTION

In this section, we formally propose a triggering-based
NMPC recalculation method for single-vehicle racing mode
and a realistic control strategy for head-to-head competition
mode. Both approaches are intended to make it possible for
NMPC-based controllers to function with constrained compu-
tational resources.

A. Single-vehicle racing mode
1) m-step recalculation: To ensure that we always have

�tprogress
k > �tcalc

k , we propose to deploy m-steps of optimal
control instead of the 1-step control in the conventional
control framework. The progress time is therefore �tprogress

k =
�tprogress

k!k+m = tk+m � tk, 1  m  N � 1. We select a
minimum step number m1 to satisfy the time budget needed by
the calculation. To save even more computational resources,
we can reuse m2,m2 � m1 steps in the NMPC prediction
horizon until the recalculation is triggered by other factors.
In the following part, we introduce a triggering condition that
is related to system performance in terms of lap time. Other

Fig. 3. The estimation for vehicle’s traveling path.

factors such as the difference between the predicted state and
the actual state at step k+i, 1  i  N�1 can also be used as
the triggering condition, which we will study in future work.
In this work, we suppose that there is no external disturbance
and model mismatch error that could cause this type of state
difference.

2) Curvature change based triggering: In single-vehicle
racing mode, human drivers have been observed to adjust their
intended course only when they are aware that they are about
to enter a track segment that is different from the one they had
originally planned for (e.g. from a straight line to a corner, or
inverse). In our design, the curvature of the track’s center line
(s) is available, which depends on the progress s along the
center line and indicates the track’s segment type. Intuitively,
we scan the curvature change to decide the triggering point
for recalculation.

At step k, we check the recalculation step k + i, i =
1, . . . , N � 1 which will be triggered by curvature changing.
The end of the potential prediction horizon will be at step
k+ i+N . If there is a significant difference between the track
curvatures at step k+ i+N and step k+N (which is the end
of the current prediction horizon), the recalculation of NMPC
might provide us with a different optimal trajectory; otherwise,
the resulting trajectory should not be significantly different
from the previous result. Meanwhile, as mentioned in the last
section, we should make sure that the progress time between
the current step k and step k + i is long enough to finish
the recalculation in time budget C. The condition is formally
expressed as finding the first i = m, i 2 [1, . . . , N � 1] such
that:

||(sk+i+N )� (sk+N )|| � ✏

�tprogress
k!k+i = tk+i � tk � C

(2)

The first term is meant to improve the system performance
in terms of lap time since it indicates the potential change of
the optimal trajectory, while the second term is a necessary
condition for the time budget to be respected.

3) Approximation for the triggering condition: It is logi-
cally difficult to calculate the second term in (2) since the
progress time at step k + i, tk+i, is an unknown future state
variable. However, we can make a conservative estimation of
the vehicle’s travel path: assuming that it travels along the
track’s inner boundary, the vehicle will take the shortest route
which results in the shortest progress time. As shown in Fig.



3, we use a simple geometric relation to estimate the progress
time between steps j and j + 1:

�tj, min = dprogress
min /vego

max = �s · (1� ||ey||max · (sj))/vego
max

(3)
The triggering condition is therefore reformulated as finding
the first i = m, i 2 [1, . . . , N � 1] such that:

||(sk+i+N )� (sk+N )|| � ✏

�tprogress
k!k+i �

Xi

j=1
�tj, min � C

(4)

4) Initialization related issues: Skipping recalculation
points makes it harder to come up with an initialization
strategy. In conventional NMPC, we have the optimal solution
at progress step k�1, i.e. ⇠⇤i|k�1, u

⇤
i|k�1, but only the control of

the first step u⇤
0|k�1 in the prediction horizon will be applied.

We recalculate the NMPC at progress step k. Its state and
control in the first N �1 prediction steps can be initialized by
the previous result (it is called “state/control shifting”, which
is a key component of the RTI method):

⇠i|k = ⇠⇤i+1|k�1, i = 0, . . . , N � 1

ui|k = u⇤
i+1|k�1, i = 0, . . . , N � 2

(5)

The state/control values at the last prediction step can be a di-
rect copy from the second last prediction step: ⇠N |k = ⇠N�1|k
and uN�1|k = uN�2|k. Another option is to only copy the
control at the last prediction step uN�1|k = uN�2|k and
estimate the last step state by forward simulation: ⇠N |k =

f integration
Runge–Kutta(⇠N�1|k, uN�1|k).

With our method, the state/control shifting is only feasible
for the first N � m steps. For the remaining m steps, we
currently use an all-zero strategy except for several exceptions,
e.g. the velocity is set to be a constant non-zero value inside its
value range. Although no initialization-related errors appeared
in the following experiments, this naive initialization method
can take more QP iterations to converge than other approaches.
In the worst case, it might not even ensure convergence. We
discuss in detail this influence of initialization on QP iteration
numbers in section V. A smarter initialization method should
be studied in further research.

B. Head-to-head racing mode
1) Fixed control period: As discussed in section III-B,

continuous monitoring of the progress s costs additional
computation resources. We propose to release the calculation
of optimal control in head-to-head racing mode at a fixed
frequency. The associated timing function is relatively accurate
and involves very little calculation. The conventional control
framework discussed in section II-B is therefore modified as
follows. The system evolution is triggered by time period
T ctrl instead of progress length �s. The NMPC is calculated
in the same manner as in the conventional framework and
we note the optimal control series for time instant t as
u⇤
i|t, i = 0, . . . , N � 1. The control input will be updated as

u⇤(t ! t+T ctrl) = [u⇤
i|t], 1  i  NT where NT  N �1 &

t⇤NT�1 � t  T ctrl & t⇤NT
� t > T ctrl.

2) Constraints on control period: With the appearance of
the opponent vehicle, we should take into account the dynamic
evolution of both vehicles. In other words, the constraints are
based on the opponent vehicle’s expected trajectory, which
might become invalid as time passes and might lead to
functional incorrectness. For safety reasons, we enforce a
safety distance dmin that allows the ego vehicle to have
sufficient braking space and time to react. In an extreme
case, the ego vehicle follows closely to the opponent with the
maximum speed: the braking distance is vego

max
2
/2amax. Before

receiving the braking command from the control update, the
ego vehicle continues to move forward. The safety distance
between the front of the ego vehicle and the rear of the
opponent is thus defined as dmin = vego

max
2
/2amax + vego

max · T ctrl
max.

We shouxld thus update the control signal in a period shorter
than T ctrl

max = (dmin � vego
max

2
/2amax)/v

ego
max to prevent a collision.

In addition to meeting the above requirement of functional
correctness, we should also make sure that the controller has
sufficient time to finish the calculation even in the worst case.
The minimum control period is estimated as the same with
the time budget: T ctrl

min = C, while C = WCETper iter(N) ·
Nmax

iter . Finally we have the constraint: T ctrl
min  T ctrl  T ctrl

max, i.e.
WCETper iter(N) ·Nmax

iter  T ctrl  (dmin � vego
max

2
/2amax)/v

ego
max.

3) Short-horizon NMPC: To make the ego vehicle react
quickly enough to the environment, we propose to use short-
horizon NMPC, which reduces WCETper iter(N) by shortening
N . As an example shown in Table I, long-horizon (N = 30)
has only relatively small advantage compared to short-horizon
(N = 15) in terms of lap time: 1.6% and 1.2% better on the
two tracks. In head-to-head mode, extra progress time to react
to the dynamic surrounding (for example emergency braking
for avoiding potential collision with the opponent vehicle) is
much more than this lap time difference. Therefore, using
short-horizon NMPC is rather acceptable in this mode.

4) Simplified overtaking strategy: In both the real-world
racing scenarii and numerical simulations using NMPC and
MIP, we can observe that overtaking usually occurs in succes-
sive steps and only on one single side (either left or right). We
can thus simplify the control strategy as one-side overtaking,
which allows us to use only NMPC and therefore reduce
computation time.

The general idea of our control strategy design is that, if
two vehicles are far away from each other, we use a simple
NMPC same as the one in the single-vehicle racing mode for
its forward (FW) advancement. Otherwise, in the prediction
horizon of the ego vehicle, we find the first step that might
overlap with the opponent. Then we set up the constraints for
the next M steps (M  N ) for left and right side overtaking
(LO and RO), and solve them in parallel. To ensure that this
simplified overtaking attempt is safe, we propose the following
technique in the situation where both sides overtaking is
impossible: if two vehicles still keep a safe distance, we let the
ego vehicle run at the same speed as the opponent vehicle and
continuously steer towards it, i.e. follow (FO) the opponent
vehicle; otherwise the ego vehicle brakes. More details are
given in Algo. 1. D1 represents the distance threshold to



trigger the overtaking strategy; D2 is the safe distance in terms
of ey .

Algorithm 1 Control strategy in head-to-head racing
Input: the position and orientation of both vehicles.
Output: the control command for the ego vehicle.

1: prepare an NMPC problem formulation FW by ignoring
the opponent vehicle

2: if not (sego
0  sopp

0 and sopp
0 � sego

0  D1) then
3: solve NMPC FW problem
4: else
5: find the first prediction step i, 0  i  N which

satisfies: dist(sego
i � sopp

i )  dmin
6: set up LO: ey

opp
i +D2  ey

ego
j  eymax, j = i, . . . , i+M

7: set up RO: eymin  ey
ego
j  ey

opp
i �D2, j = i, . . . , i+M

8: solve LO and RO problems in parallel
9: if one of these converges to a feasible solution then

10: select the one with faster progress time
11: else
12: if dist(sego

0 � sopp
0 )  dmin then

13: brake by letting: vego = 0, �ego = 0
14: else
15: calculate � difference between the ego’s yaw and

the angle towards the opponent vehicle
16: suppose that the vehicle’s path follows the kine-

matic model: �ego = arctan(� /T ctrl ·lvehicle/vego)
17: vego = vopp

18: apply vego, �ego to perform FO strategy
19: end if
20: end if
21: end if

V. SIMULATION RESULTS

In this section, we present simulation results for both racing
modes. For single-vehicle racing mode, the vehicle dynamics
and identification parameters are the same as those in [5]. In
the experiment for head-to-head racing, we use a more realistic
simulator that allows two cars to interact with one another.
The vehicle model chosen in the simulator has a real-world
counterpart, making it convenient to apply the same algorithm
to an actual race car in future work.

A. Single-vehicle racing mode
1) Experimental setup: Using the proposed triggering con-

dition (4) and the same experimental setting as in [5] with
the code optimization level set to ‘-O3’, we run NMPC
with prediction horizon N = 30 on both testing tracks. The
experiment is conducted on a standard laptop featuring an Intel
i7 processor and 32 GB of RAM under Ubuntu 18.04.

A small value of ✏ in the triggering condition (4) makes
the triggering condition more sensitive, thus, more calculations
will be performed. A large value of ✏ makes it less sensitive
and we might miss the recalculation points that lead to the
global optimal trajectory. We select ✏ = 10% · (max�min)
as a compromise according to the general curvature condition

Fig. 4. Trajectories using our triggering mechanism (track 1 and 2). Green
dots represent progress points triggering NMPC recalculation events; red
points conventional NMPC recalculation events. Colorbars represent speed.

on both tracks. Another important parameter to be determined
is the time budget C. According to statistics in Table I, we
find that the average calculation time of one QP iteration is
about 6.3[ms] and the total QP iteration number per step is
usually smaller than 20. In the following experiment, we bound
the QP iteration number below 20, and set the KKT value to
1 ⇥ 10�4. This KKT value indicates the precision error. In
terms of vehicle position, it means that the maximum precision
error is no more than 0.01[cm], which is relatively small and
acceptable given that the vehicle size is about 6[cm]. We also
give a 20% margin to estimate WCET as time budget: C =
(1 + 20%) ·�tmax observed time = (1 + 20%) · (20 · 6.3[ms]) ⇠
150[ms].

The resulting trajectory is shown in Fig. 4. We find that: on
track 1 (resp. track 2), NMPC is triggered 12 (resp. 26) times
for recalculation, while it is recalculated 145 (resp. 300) times
in conventional NMPC.

2) Respect of the time budget: We first verify whether the
second term in (4) is satisfied for all recalculation steps, i.e.
whether the progress time is always long enough to allow the
NMPC recalculation to be completed.

Fig. 5 gives an intuitive comparison of progress time and
calculation time at each step. Table III shows detailed statisti-



Fig. 5. Progress time and NMPC recalculation time. (track 1 - track 2)

TABLE II
LAP TIME [S] FOR DIFFERENT METHODS ON BOTH TRACKS

Track 1 Track 2

standard NMPC N = 15 4.852 10.189
N = 30 4.773 10.064

triggering method N = 30 4.775 10.075

TABLE III
STATISTICS FOR NMPC WITH TRIGGERING METHOD (N = 30)

Track 1 Track 2
Per-step

progress time
[ms]

max 820.0 819.2
min 196.5 161.8

mean 398.2 360.4
Per-step

calculation time
[ms]

max 118.8 144.6
min 25.4 24.3

mean 62.0 68.5
QP

iteration
number

max 20 20
min 6 4

mean 10.2 10.4

cal information. The minimum progress time on track 1 (resp.
track 2) is 196.5[ms] (resp. 161.8[ms]), which is longer than
C = 150[ms]. The maximum calculation time is 118.8[ms]
(resp. 144.6[ms]), which hasn’t exceeded C. As a result, the
computation timing restriction is respected.

3) Lap time: We also check the performance in terms of lap
time. By comparing the lap times between different methods in
Table II, we find that the proposed method has a slightly worse
lap time than the conventional NMPC method with N = 30
but is still better than the one with N = 15. It shows that
the first term of the triggering condition (4) relaunches the
NMPC efficiently, i.e. in a sporadic manner without deviating
too much from the global optimal trajectory.

4) Initialization related issue: We notice that in Table III,
several NMPC recalculations reach the maximum iteration
number. To be precise, on track 1 (resp. track 2), 1 out
of 12 (resp. 3 out of 26) recalculation points reaches the
maximum iteration number, finishing with the KKT value

Fig. 6. Histogram of “NMPC FW” per-iteration execution time.

1.2⇥ 10�4 (resp. 2.3⇥ 10�4). As discussed in section V-A1,
the maximum precision error is limited to 0.012[cm] (resp.
0.023[cm]), which is relatively small and acceptable.

If we compare Tables III with I, we find average QP iteration
numbers of the proposed triggering methods are almost twice
as high as in the conventional NMPC scenario, resulting in
a per-step calculation time about twice as long. This can be
explained by the fact that the conventional NMPC benefits
from a better initialization method, state/control shifting, as
discussed in section IV-A4. With our naive initialization, the
proposed triggering method needs more QP iterations to make
the NMPC algorithm converge. To further reduce the QP
iterations number and thus the total calculation time, we intend
to design a better initialization method in future work.

In conclusion, this experiment demonstrates the effective-
ness of the proposed method: long-horizon NMPC has a suffi-
cient time budget to complete the computation; the optimality
is preserved even though we skipped many recalculation steps.

B. Head-to-head racing mode
1) Experimental setup: A ROS node [8] runs on the

NVIDIA Jetson TX2, featuring two CPUs and one GPU, as
the ego vehicle’s controller. The onboard operating system is
a tailed version of Ubuntu (JetPack SDK 4.6 + Linux 4 Tegra
32.6.1) with PREEMPT RT patch. The CPU frequency is set
to the maximum value: 2.0 GHz. We set the code optimization
option to ‘-O3’ for compilation.

We perform the experiment with a Hardware-in-the-Loop
configuration: a simulator named f1tenth gym ros [9] runs
on the laptop and interacts with the controller running on
the Jetson TX2 via a USB cable. The simulator sends the
odometry information to the controller which sends back the
vehicle speed/steering angle as the command input. The ping
test indicates that the highest latency is less than 1[ms], which
meets our experimental requirements. The track used in the
simulator has the same shape as in [2], but is 10 times larger
to accommodate the size of our experiment vehicle.

2) WCET Measurements: According to results from several
preliminary experiments on the testing track, we find appro-
priate values for the horizon length and maximum iteration
number: N = 10, Nmax

iter = 10. We use both values as parame-
ters to test the NMPC controllers on 100000 random sampling



TABLE IV
CONTROLLER EXECUTION TIME ON JETSON TX2 ([MS])

NMPC FOLO
per iter

RO
per iter

FW
per iter

max 7.333 7.380 7.322 0.027
99%⇤ 2.928 2.929 2.822 0.007
mean 1.710 1.694 1.688 0.002

⇤99% means the value at the 99th percentile in the distribution

Fig. 7. Typical scenario in head-to-head competition using our control
strategy. Ego vehicle in blue; opponent vehicle in orange. Dotted lines are
planned optimal trajectories.

cases and obtain a WCET distribution as in Fig. 6. Detailed
statistics about the execution time of the different controller
components are provided in Table IV. We use an optimistic
estimation of the WCET: WCETper iter(10) ⇡ 3.0[ms].

3) NMPC Parameters: We recall the criteria discussed in
section IV-B for choosing control period: WCETper iter(N) ·
Nmax

iter = C  T ctrl  (dmin � vego
max

2
/2amax)/v

ego
max. The

safety distance between the two vehicles’ edges is set to
be the same as the vehicle’s length: dmin = 0.58[m]. The
maximum velocity is vego

max = 2[m/s] and the maximum
braking acceleration is amax = 8[m/s2]. The upper bound
for the control period is calculated as 165[ms]. We have the
lower bound for the control period, i.e. the time budget: C =
WCETper iter(10) · 10 = 30[ms]. To react to the environment
as quickly as possible, we set the control period equal to this
lower bound: T ctrl = C = 30[ms].

4) Overtaking Behavior: Using the predetermined value
of T ctrl, we run the proposed control strategy (Algo. 1)
in the simulator. A typical scenario is shown in Fig. 7.
At the beginning, the ego vehicle is behind the opponent:
sego
0 = 0.0[m], ey

ego
0 = 0.0[m], e 

ego
0 = 0.0[rad] and sopp

0 =
7.0[m], ey

opp
0 = 1.0[m], e 

opp
0 = �0.5[rad]. At t = 5.8[s],

neither LO nor RO strategies give a feasible solution, but the
distance between the two vehicles is still safe. The ego vehicle
then follows the opponent vehicle: as seen in the second frame
of Fig. 7, the previously planned optimal trajectory (blue
dotted line) is no longer employed because it is invalid at
this time and the ego vehicle uses FO strategy instead. At
time t = 7.8[s], only LO strategy is feasible (no space for
RO). At t = 12.8[s], both LO and RO strategies are feasible,
the ego vehicle decides to attempt RO at this step since the
predicted progress time is shorter than the one on the left
side. At t = 14.8, 16.8, 23.0[s], the ego vehicle uses LO
strategy and succeeds at t = 24.2[s]. From now on, the ego

vehicle becomes the leader, it is thus the opponent vehicle’s
responsibility to avoid collision. Since two vehicles are close
enough to each other, the emergency braking of the opponent
vehicle is triggered. The opponent vehicle’s position remains
nearly unchanged between t = 24.2[s] and 24.4[s], proving
that it succeeds to brake.

In summary, as seen in the simulation: the safety (collision-
free) of the system is ensured by the emergency braking
mechanism (lines 12-13 in Algo. 1); the execution time is
guaranteed to be under the given time budget based on the
WCET estimation; the overtaking is enabled, and by taking
into consideration the possibility of both left and right side
overtaking, we get a relatively optimal control strategy.

VI. CONCLUSION

To allow the NMPC-based controller to operate within a
limited time budget, we proposed two distinct methods. In
single-vehicle racing mode, we defined a triggering-based
method to implement a long-horizon NMPC on board. The
triggering mechanism enables the long-horizon NMPC to have
a sufficient time budget for completing the computation. The
optimality is preserved even though we skipped recalculation
steps. In head-to-head racing mode, frequent control updates
should be maintained to respond to the changing surround-
ings. We came up with a fixed-period short-horizon NMPC
approach that enables overtaking behavior while ensuring the
safety of the vehicle.

To handle more realistic scenarii in single-vehicle racing
mode, we shall take into account the environment disturbance
and the vehicle model mismatch error. We also consider
implementing our control strategy on a real-world race car.
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