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Crater jet morphology
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Orsay, France
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We present a detailed analysis of the morphology of craters induced by a round

gas jet impinging vertically onto horizontal non-cohesive granular bed. The virtual

origin of the jet from a self-similar model is taken into account both in the size

scaling of the craters and in the inertial Shields number that governs the erosive

processes. Two intrinsic types of craters with different morphologies are found and

characterized in detail from shallow parabolic craters (type I) to deep conical craters

(type II). whereas a flat central part arises from a finite bed thickness and leads to

truncated morphologies. The transitions between the different crater morphologies

are also analyzed in detail. The local Shields number based on the local velocity at

the evolving bed surface is shown to depend on the local crater shape at the impinging

point of the jet.
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I. INTRODUCTION

Erosion is encountered in numerous natural or industrial situations. Understanding ero-

sion process is essential for instance to interpret geomorphological patterns on Earth or other

planets and to predict the evolution of estuaries and river beds.1 In nuclear power industry,

the cleaning of high radioactive product tanks is performed by eroding materials laying on

the bottom of the tank.2 But erosion could arise spontaneously during a reactor overheat-

ing which may lead to the spreading of radioactive materials in the primary circuit of the

reactor.3 Predicting and eventually preventing erosion is thus a major key for the safety

of nuclear reactors.4 Finally, erosion is the main cause of dam and embankment failure5 so

that the direct knowledge of soil stability, which requires reliable in situ measurements, is

necessary for risk prevention. The Jet Erosion Test (JET) proposed by Hanson and Cook,6

following the work of Mazurek et al.7 and references herein, has been developed for this final

purpose. JET consists in the measurements of the mass and depth cratering by a strong

impinging water jet which gives access to an erodibility coefficient and the critical shear

stress of the soil.

Craters eroded by impinging jets exhibit different morphologies from simple hemispheric

or parabolic shapes to more complicated shapes with mixed curved and straight parts.8–13

The origin of these different shapes and their detailed link with the soil properties and the

jet flow remains however unclear. The difficulty arises from the complex hydrodynamics

of the spatially evolving jet flow and from the strong coupling with the deformable soil.

The spatial evolution of the jet can be divided into successive regions from the nozzle exit

with a free-jet behavior towards its interaction with the soil : (i) the potential core close

to the nozzle exit where the jet axial velocity remains constant together with a spatially

evolving mixing layer, (ii) the downstream free-jet region where the decaying axial velocity

and increasing transverse width of the jet may be described by self-similar models arising

from a virtual point origin and with conservation arguments, (iii) the impinging jet region

at the soil where the streamlines are sharply curved close to one stagnation point, which is a

high pressure region of radial gaussian extension, and (iv) the wall-jet region where the flow

is mainly parallel to the soil with a radially decreasing shear stress. Even in the absence of

soil interaction, the description of free jets with self-similar models remains complex and may

work satisfactorily only within some downstream regions of limited extension.14 Besides, the
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interaction with the soil is not very clear and several erosion processes have been imagined

from the so-called “Viscous Erosion” to the “Diffusion-Driven flow”.12 Therefore, there is a

need of new well controlled experiments with model soils together with numerical simulations

that take into account its inherent discrete nature.13,15,16

Erosion and mass transport are commonly described using either the Shields number that

compares the driving hydrodynamic force to the resisting apparent weight of one grain, or

the Rouse number that compares the flow velocity to the settling velocity of one grain. Since

pioneering works,8,17 the Shields number is mainly used for bedload transport whereas the

Rouse number is usually used in general for suspension transport. However, both numbers

are linked through the particle Reynolds number that gives the hydrodynamic regime of

the grain settling. Note that for the jet erosion configuration is used sometimes a so-called

“Erosion parameter” corresponding to the square root of the Shields number.9–11 We have

shown recently that the local Shields number, based on self-similar jet models, allows the

accurate prediction of the erosion threshold of a model granular bed for both laminar and

turbulent impinging plane jets.15 Above erosion threshold the crater depth has been reported

by some recent studies to increase in time before reaching an asymptotic final value.13,18

In this paper, we focus on the final crater shape and we describe the different crater

morphologies in terms of the Shields number for a turbulent round gas jet impinging a

model granular bed. Section II describes the experimental set-up and the different observed

morphologies. In section III, the evolution of the crater characteristics — depth, radius,

volume, end slope and aspect ratio — are reported as a function of the Shields number

for the two first morphologies. The influence of the granular bed thickness is considered in

Section IV for the analysis of the third morphology before the results are discussed in terms

of local erosion process in Section V.

II. EXPERIMENTAL SETUP AND CRATER MORPHOLOGY

The experimental set-up shown in Fig. 1 is made of a vertical round gas jet impinging

onto a horizontal granular bed. This granular bed consists in sieved glass beads of diameter

d = 250 ± 50µm and density ρp = 2.5 × 103 kg/m3 poured into a cylindrical container of

diameter 170 mm and height 30 mm with a bottom wall of typical roughness 100 µm. To

achieve reproducible results, we first put the grains in excess and gently stirred them before
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leveling the granular bed with a ruler to obtain a smooth flat surface of height h. The

vertical position of the bottom wall relative to the cylindrical side wall of the container is

varied thanks to wedges of different thicknesses so that the height h of the granular bed

lies in the range 5 6 h 6 30 mm (20 6 h/d 6 120). The jet of gas originates from a

Nitrogen pressured bottle and flows out by a straight cylindrical tube of length L = 200

mm and internal diameter D = 4mm at the atmospheric ambient pressure and ambient

temperature with a density ρ ≃ 1.2 kg/m3 and a viscosity η ≃ 1.66 × 10−5Pa · s. The

bottom end (outlet) of this vertical tube corresponding to the physical origin of the jet is at

a distance l above the horizontal granular bed. This distance l has been varied in the range

5 . l . 12 cm corresponding to a dimensionless jet/bed distance l∗ = l/D in the range

10 . l∗ . 30. The tube is aligned with the axis of the cylindrical container so that the jet

impinges at the center of the granular bed. The flow rate Q measured with a flow meter

just upstream the tube has been varied using an adjusting valve up to the maximal value 3

cm3/s corresponding to a mean velocity of the jet flow UJ = 4Q/πD2 at the tube outlet up

to 24m/s with an accuracy of about 0.2m/s. The maximum Reynolds number of the jet is

thus ReJ = ρUJ D/η ≃ 7×103. As the Reynolds number of the flow satisfies the conditions

ReJ ≫ L/D and ReJ ≫ 103, there is a plug flow at the tube outlet and the jet is in a

turbulent regime. In the present jet erosion situation, the relevant dimensionless parameter

is the global inertial Shields number based on the typical jet velocity UJ at the tube outlet

ShJ = ρUJ
2/(ρs − ρ)gd.15 This dimensionless parameter compares the inertial fluid forces

of the jet to the apparent gravity forces of the grains. All the physical parameters involved

in ShJ are kept constant in the present experiments except the jet velocity UJ so that the

variations of ShJ are directly related to the variations of UJ . The procedure of a typical

experiment of jet cratering is the following. The jet flow is adjusted to the prescribed value

but first stopped by an horizontal plate located between the granular bed and the tube

outlet. This plate is then removed quickly at a time that corresponds to the time origin

t = 0 of the experiment. At time t > 0, the jet impacts the granular bed with the constant

jet velocity UJ and a possible crater hole may form progressively in the granular bed before

reaching a quasi stationary state. In this paper we only characterize the steady crater shapes

that are reached at long enough time. Note that these stationary shapes correspond to a

dynamical equilibrium and can relax and be modified when the jet is stopped.

The shape of the crater is measured from above along one diameter using a laser pro-
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FIG. 1: Sketch of the experimental setup.

filometer with a raw length of 1280 pixels located such that the laser sheet contains the jet

axis (Fig. 1). Instantaneous height measurements of the granular bed ξ(r, t) are recorded

at the frequency f = 25 Hz along the radial position r, where r = 0 corresponds to the jet

axis. The vertical precision is about 20µm while the radial resolution is about 50 µm for a

working distance of about 10 cm between the profilometer and the granular bed. The mea-

surements are made along one given diameter which is not restrictive as we ensure visually

that the crater remains axisymmetric in the present experiments. In order to be sure that

we capture the maximum depth of the crater at the jet axis, the measurements are made

along a radial length of about 10 cm that does not originates from r = 0 but is slightly

shifted by a small value of about 1 cm such that r is typically in the range −1 . r . 9 cm.

In the stationary state, at long enough time (t → ∞), a time average of the height profile

of the surface, ξ∞(r) =< ξ(r, t) >t, is made over about 100 successive profiles to reduce

the noise. Before the jet impacts the granular bed (t < 0), we measure the average height

profile of the initial granular surface ξ0(r) =< ξ(r, t) >t and the crater depth profiles p(r)

presented in the following correspond to the difference p(r) = ξ0(r) − ξ∞(r) between the

averaged initial and final height profiles.

Different types of craters are observed depending on the jet velocity and the jet-bed

distance above the erosion threshold (fig. 2). Slightly above the erosion threshold Shc, the

crater profile, denoted I, presents a parabolic shape with a maximum crater depth P0 and

a crater radius R0. The two corresponding crater sizes P0 and R0 are given by the best

parabolic fit of the experimental data. The maximum crater depth is always close to the
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jet axis (P0 ≃ p(0)) so that the crater profile satisfies the relation p(r) = P0 [1− (r/R0)
2].

Using this definition, the crater radius R0 corresponds to the radial extent of the crater

relatively to the initial bed surface p(r) = 0 and does not take into account the possible

external rim of deposited grains at r > R0 above the initial bed surface. In the same way,

the crater depth P0 corresponds to the depth relative to the initial bed surface p(r) = 0,

whatever the possible external rim crest of deposited grains is. For this crater shape, the

end slope of the crater is θ0 = −dp/dr|r=R0
= 2P0/R0. This parabolic crater shape will be

referred as type I and correspond to the so called Weakly Deflected Jet Regime.11 The time

evolution of such parabolic crater has been analyzed in details by Sutherland and Dalziel,13

with a linear time evolution of the crater depth before saturation.
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FIG. 2: a) Crater shapes p(r) for a jet/bed distance l∗ = 28.8 and increasing Shields

number ShJ corresponding to a crater of type I (ShJ = 62, —), a crater of type II

(ShJ = 84, —) and a truncated crater (ShJ = 105, —). The horizontal dotted line

corresponds to the bottom wall (p = h = 20mm) of the container. b) Sketch of the

different crater parameters.

Further above the erosion threshold Shc, we observe a deeper and wider crater, with

larger values of P0 and R0, but with a profile p(r) separated in two different parts in curves.

Indeed, a parabolic part remains close to the jet axis until to an intermediate radius Ri < R0

while a straight part develops at larger radial extend for Ri 6 r 6 R0 and thus forms a

conical part. This part of the crater profile is well fitted by a linear law p(r) = θ0(R0 − r)

where the end slope value θ0 in the range Ri . r . R0. The inner parabolic part of relative

depth Pi < P0 is thus now given by the relation p(r) = (P0−Pi)+Pi [1− (r/Ri)
2] for r 6 Ri.

This crater shape with two parts will be referred as type II and corresponds to a Strongly

Deflected Jet Regime.9,11 The time evolution of the depth of such craters has been reported
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to be logarithmic.12,18

At large enough jet flow, the bottom wall of the cell affects the crater and the maximum

depth saturates at the initial granular depth value h in a central part that extends up to a

radius Rf . In such a case, the crater presents a flat bottom in the central part of equation

P0 = h for r 6 Rf 6 Ri (orR0 and a straight outer part of equation p(r) = θ0(R0 − r) for

Ri 6 r 6 R0 which forms by axisymmetry a truncated conical part. These horizontal and

inclined part are connected in between the two neighbouring radius Rf and Ri by a small

parabolic part. By axisymmetry this forms a small parabolic crown connecting the inner

flat part to the outer truncated conical part. This truncated crater shape with an inner

flat part does not come from the interaction of the jet flow with the granular material only

but from the finite thickness of the granular bed. Strictly speaking, this is thus not a third

intrinsic type of crater.

In the following we characterize the evolution of the geometrical parameters of the craters,

represented in Fig. 2b, as a function of the Shields number. We first focus on the global

parameters of the craters defined for the different types: The crater depth and radius P0 and

R0, the slope θ0 at the crater periphery, the volume of the eroded crater V0 =
∫ R0

0
p(r)2πrdr,

and the aspect ratio P0/R0 of the crater. The transition between the craters of types I and II

can be clearly seen in the evolution of these parameters. We then focus on the evolution of the

intermediate parameters of craters of type II : The intermediate depth Pi and radius Ri that

connect the central parabolic part to the outer straight part. The volume of the parabolic

part of the crater defined as Vi =
∫ Ri

0
[p(r)− Pi] 2πrdr and the end slope of this parabolic

part θi = −dp/dr|r=Ri
are also of interest. All these global and intermediate parameters are

discussed first in relation with the global Shields number based on the typical jet velocity UJ

at the injector outlet, but ultimately with the local Shields number Shl based on the local

jet velocity close to the granular surface. As a matter of fact, this local Shields number has

been shown to govern the erosion threshold in the similar configuration of a plane liquid jet

impinging a liquid immersed granular bed in both laminar and turbulent regimes.15
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FIG. 3: (a) Crater depth P0 as a function of the jet velocity UJ for three dimensionless

jet-bed distance l/D = 19.1 (N), 24.5 (�), 28.8 (•) but a given bed thickness h/d = 120.

(b) Corresponding (square root) critical Shields number Sh
1/2
Jc

for erosion threshold as a

function of l∗ = l/D. (—) Linear fit through the data of equation Sh
1/2
Jc

= 0.3(l∗ − 6).

III. FROM SHALLOW PARABOLIC TO DEEP CONICAL CRATERS:

TRANSITION I/II

Before showing the cratering results in terms of dimensionless parameters, we first con-

sider the resulting final crater depth P0 as a function of the jet velocity UJ in Fig. 3a for

three values of the jet-bed distance l∗ = l/D. For each value of l, P0 increases with UJ

provided that the bottom wall is not reached (here P0 < 3 cm), and there exists a critical

value UJc below which no crater forms. This critical value UJc of erosion increases with

l: UJc = 9.5 ± 0.5 m/s, 14 ± 0.5 m/s, and 16.5 ± 0.5 m/s for l∗ ≃ 19.1, 24.5 and 28.8,

respectively. Conversely, for a given value of UJ , P0 decreases for increasing l, and there

exists a critical value, lc, above which no crater forms as no erosion arises. The critical

velocity UJc measured experimentally leads to the corresponding critical Shields number for

erosion, ShJc , which is expected to be function of both the flow regime and the jet-bed dis-

tance as demonstrated by Badr et al.15 In the present experiments, for large values of Re to

reach the turbulent regime and large enough l∗, ShJc is expected to be a strictly increasing

function of l∗ which is what we observe here. Following a recent analysis of the jet erosion

threshold,15 we consider that the jet flow is well described by an axisymmetric self-similar
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model of free turbulent jet for the range of l∗ explored in the present study. In the stream-

wise direction x downstream from the tube outlet (x = 0), i.e. at dimensionless distances

x∗ = x/D larger than about 15,19 the axial velocity u(x) of the jet can be described by the

self-similar axisymmetric law u(x)/UJ = K/ (x∗ + λ∗), where K is the velocity decay rate

and λ∗ = λ/D is the dimensionless distance of the virtual origin from the outlet, with here

a positive (resp. negative) value for a virtual origin located upstream (resp. downstream) of

the outlet. Considering that the local Shields number Shl evaluated at the undeformed flat

bed surface (x∗ = l∗) should be constant,15 Sh
1/2
Jc

should thus scale linearly with l∗. This is

what is observed in Fig. 3b. The extrapolation of a linear fit through the data leads to the

virtual origin λ∗ = −6± 0.5. The negative value of λ∗ means that the virtual origin is here

downstream from the tube outlet. This is expected even if the sign and the accurate value

of λ∗ together with the K value depend largely on the range of Reynolds number, on the

range of x∗ and on the nozzle geometry.14 In the present range of Reynolds numbers, the

corresponding attenuation rate is expected to be around K ≃ 4.20

In the self-similar description, the relevant characteristic length scale of the flow and thus

its erosive action should be no more l orD but is l+λ. The crater depth and width presented

in the following will thus be made dimensionless using the length scale l+λ and studied first

as a function of the global Shields number ShJ prior to consider the local Shields number

Shl.

The crater dimensionless depth P̃0 = P0/(l+ λ) is plotted in Fig. 4a as a function of the

deviation of the Shields number from its critical value for erosion ShJ−ShJc . All data points

of Fig. 3a now collapse onto a single master curve in Fig. 4a. It means that the variation

with l of the erosive strength of the jet outflow, characterized by ShJ , is now described by

ShJc . In the evolution of P̃0 with ShJ − ShJc reported in Fig. 4a, we observe two different

behaviors: P̃0 first increases linearly with ShJ − ShJc for P̃0 . 0.1 and ShJ − ShJc . 20

before a strong non linear increase close to (ShJ − ShJc)
3/2. The departure from a linear

behavior of P̃0 vs ShJ − ShJc is related to a transition in the crater morphology, as now

shown in Fig. 4b,c,d by the analysis of the corresponding evolution with ShJ − ShJc of the

dimensionless radius R̃0 = R0/(l+λ) of the crater, its dimensionless volume Ṽ0 = V0/(l+λ)3

and its end slope θ0 = −dp/dr|R0
.

An important point is that the crater radius remains constant around the typical value

R̃0 ≃ 0.3 (Fig. 4b) while P̃0 increases linearly with ShJ − ShJc . The crater end slope θ0
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FIG. 4: Evolution of the crater morphology as a function of the Shields number deviation

from erosion threshold ShJ − ShJc : (a) dimensionless crater depth P̃0, (b) crater radius

R̃0, (c) crater volume Ṽ0 and (d) crater end slope θ0. Same filled data symbols as in Fig. 3

together with open data symbols corresponding to the internal crater parameters (a) P̃i,

(b) R̃i, (c) Ṽi and (d) θi. The vertical dashed line in each plot corresponds to

ShJcII − ShJc = 26 for the transition I/II.

thus increases linearly with ShJ −ShJc up to about 40◦ for ShJ −ShJc ≃ 26 (Fig. 4d). The

transition I/II in the crater morphology can be observed in Fig. 4d as θ0 decreases abruptly

by more than 10◦ near ShJ − ShJc ≃ 26 and then remains constant with a mean value of

θ0 = 27◦ ± 2◦. The transition I/II corresponds to the appearance of granular avalanches on

the crater slope. The largest value θ0 ≃ 40◦ just below the transition I/II corresponds to the

maximum angle of stability θm, i.e. the avalanche starting angle. The critical value θ0 ≃ 27◦
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corresponds to the angle of repose θr, i.e. the avalanche stopping angle, which is here a

little larger than the value reported for such grains in classical avalanche experiments.21

This slightly larger value of the angle of repose comes from two geometrical factors: (i) a

stabilizing inner conical shape and (ii) a small pile length (R0 −Ri . 102d). The maximum

angle of stability found here, 40◦, is by contrast much larger than the usual values.21 This

large value is due to the high stabilizing effect of the backward jet flow: It undoubtly delays

the avalanche start in the type I crater shape. Indeed it was shown that the avalanche

slope angle increases linearly with the Shields number in a laminar parallel flow situation

of upwards water flows above an inclined granular bed.22 As the first avalanche starts, the

backward jet flow changes abruptly from a “smooth” flow attached to the entire crater slope

towards a “strong” detached flow with a backward flow now restricted to the inner parabolic

part of the crater whereas a weak recirculating flow now takes place along the outer crater

side. These flow descriptions correspond to the Weakly and Strongly Deflected Jet Regimes

introduced by Aderibigbe.11 This abrupt change of the flow induced by the avalanche process

is in turn responsible for the very large relaxation of θ0 that corresponds here to an unusual

value, θm − θr ≃ 10◦, much larger than the usual value 3◦.21

For the crater of type I, as P̃0 increases linearly with ShJ −ShJc while R̃0 is constant, the

dimensionless volume Ṽ0 = (π/2)P̃0R̃0
2
of the corresponding parabolic crater shape increases

linearly with ShJ − ShJc as shown in Fig. 4c. For ShJ − ShJc & 26, i.e., for the type II

regime, the crater radius R0 is not constant anymore but now increases with ShJ − ShJc

in close relation with the crater depth P0. Indeed, the end slope angle θ0 ∼ tan−1(2P0/R0)

is constant in this regime and is governed by the avalanche process. Therefore, the crater

volume Ṽ0 increases faster with respect to ShJ−ShJc , with a scaling law Ṽ0 ∼ (ShJ−ShJc)
9/2

as P̃0 and R̃0 both scale as (ShJ − ShJc)
3/2 in this regime. Note that this large cratering

volume is thus not so much related to erodibility but much more to avalanche process.

To summarize the crater evolution from type I to type II, the global aspect ratio P0/R0

of the crater is the relevant parameter as shown in Fig. 5. In the type I regime, slightly

above the erosion threshold, for ShJ −ShJc . 26), P0/R0 increases linearly with ShJ −ShJc

in the same way as P0 since R0 is constant. In the type II regime, for ShJ − ShJc & 26,

P0/R0 tends towards a limit value tan θ0 ≃ 0.5 corresponding to a critical avalanche slope

angle θ0 ≃ 27◦.

After characterizing the evolution of the global parameters of the craters of types I and II,
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the linear fit P0/R0 ≃ 0.018(ShJ − ShJc) in regime I, and to the constant value

P0/R0 ≃ 0.47 in regime II.

we now focus on the internal parameters related to the parabolic part of the craters of type

II. In this regime, Pi and Ri correspond to the relative depth and radius of the parabolic

shape, respectively , Vi to the volume and θi = −dp/dr|Ri
to the end slope. The evolution

of the dimensionless parameters P̃i = Pi/(l+λ), R̃i = Ri(l+λ), Ṽi = Vi/(l+λ)3 and θi as a

function of ShJ −ShJc is reported with open data symbols in Fig. 4. The main point is that

all these parameters that describe the parabolic shape remain constant above the transition

I/II, i.e. for ShJ − ShJc & 26: P̃i = 0.13 ± 0.03, R̃i = 0.3 ± 0.1, Ṽi = 0.03 ± 0.01 and

θi = 42◦ ± 2◦. It means that the parabolic part remains the same in the cratering process

even if the crater of type II is globally deeper and wider with increasing P̃0 and R̃0 when

increasing ShJ −ShJc . This invariant parabolic shape, present at the eroding jet head, thus

corresponds to the final shape of the parabolic crater of type I at the transition I/II. The

real jet erosion process takes only place in this small parabolic region that has reached its

final invariant shape. For all craters of type II composed of an inner parabolic and an outer

conical part, there is always the same discontinuity of the local crater slope dp/dr that jumps

from the large value θi ≃ 40◦ to the lower value θ0 ≃ 27◦ at the connection point (r = Ri)

between the two regions. This slope discontinuity is associated to the detachment of the
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backward jet flow at this point between the inner parabolic shape and the outer conical

shape.

To summarize, the jet erosion begins with a shallow parabolic cratering of constant radius

that deepens progressively causing an increase of the end slope up to a critical value where

avalanche arises and backward flow detaches. The crater of type I then turns out to type

II with an invariant inner parabolic head of constant radius and depth that progresses

downwards with an increasing outer conical part of constant avalanche slope. In the following

section we see how this evolution is modified by the presence of a solid bottom wall.

IV. INFLUENCE OF GRANULAR BED THICKNESS
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erosion threshold ShJ − ShJc for a given dimensionless distance between the jet and the

granular bed, l∗ = 28.8, and three different values of the bed thickness, h/d = 80 (⊕),

h/d = 40 (⊗), and h/d = 20 (◦), together with the data of Fig. 4a for h/d = 120 and

different values of l∗. (b) Critical Shields numbers ShJc for erosion threshold (• ), ShII
Jc for

transition I/II (◦ ) and ShT
Jc for the appearance of truncated craters (⊞), as a function of

the bed thickness h/d.

We here focus on the influence of the granular bed thickness h on the cratering processes.

The experiments at different bed thicknesses in the range 20 < h/d < 120 have been

performed at a fixed jet-bed distance of l∗ = 28.8. The evolution of the dimensionless crater

depth P̃0 as a function of ShJ − ShJc is shown in Fig. 6a: P̃0 increases with ShJ − ShJc
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until it reaches a limit value corresponding to P0 = h when there is no more grains at the

bottom. The main point is that P̃0 follows the same master curve when varying ShJ −ShJc

for all the bed thickness h/d considered in this study , provided that the bottom of the cell

is not reached. The deviation from this master curve at P0 = h is not smooth but abrupt.

We thus may conclude that the jet erosion process is only a surface phenomena which is

only marginally affected by the deeper grain layers in the bulk. This is confirmed with

the measurement of the critical Shields number ShJc shown in Fig. 6b (•). Here, ShJc is

constant for the different bed thicknesses with a value ShJc ≃ 53±2. The transition between

craters of type I and craters of type II is also not affected by the bed thickness h/d with a

constant value ShII
Jc = 79± 4 as shown in Fig. 6b (◦). This corresponds to the critical value

ShII
Jc
− ShJc = 26± 3 already reported in Section 3 for h/d = 120. As expected, the critical

Shields number ShT
Jc, corresponding to the birth of truncated craters, is directly related to

the bed thickness h as shown in Fig. 6b where ShT
Jc increases with h/d and tends to ShJc

for vanishing h/d. When ShT
Jc < ShII

Jc which corresponds here to h/d . 45, craters of type I

become truncated before turning into craters of type II. When ShT
Jc > ShII

Jc (here h/d & 45),

craters of type I turn first into craters of type II before being truncated. From the scaling

observed for P̃0 with (ShJ −ShJc) in Fig. 4a, it is expected that ShT
Jc −ShJc scales linearly

with h/d at low enough h/d (h/d . 45), but non linearly with the scaling (h/d)2/3 at high

enough h/d (h/d & 45). The value h/d ≃ 45 corresponds to the “triple point” separating

the three morphologies in Fig. 6b. This value comes from the value h/(l + λ) ≃ 0.12 given

for the transition I/II from Fig. 4a with here l + λ = 22.8D and D/d = 16.

Note that the radial extension R̃f of the flat part of the truncated craters is found to

increase linearly with ShJ − ShT
Jc at the same rate as R̃0 so that the difference R̃0 − R̃f

remains constant. It means that the eroded grains are expelled beyond R̃0 out of the crater.

However, the difference R̃0 − R̃f depends on h/d as R̃0 will increase either from the value

R̃0 ≃ 0.3 or from a value R̃0 > 0.3 depending on whether truncated craters arise from type I

or II. Because the crater depth P0 is kept constant when R0 increase, the aspect ratio P0/R0

of the truncated craters now decreases when increasing ShJ . Truncated craters have thus a

slightly different morphology depending on whether they originate from craters of type I or

II. In the first case, the inner flat part of radial extension Rf is followed by an outer annular

parabolic part of constant width R0 − Rf 6 Ri with an end slope θ0 . 40◦. In the second

case, the inner flat part is connected to the outer conical part of constant slope θ0 ≃ 25◦ by
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a small parabolic crown of constant extension. Therefore, the detachment of the backward

jet flow remains the same whatever the flat or curved central impinging region of the jet.

V. LOCAL EROSION PROCESS
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FIG. 7: Local Shields number at the bottom of the crater, Shl+P0
, as a function of the

dimensionless crater depth P̃0 for different jet-bed distance. Same data symbols as in Fig.

3.

In a previous study, we have shown that the jet erosion threshold is governed by the local

flow velocity at the bed surface which can be determined using the jet self-similar models.15

In the present study, we find that the morphology of the craters (except the truncated

craters due to finite bed thickness) is entirely controlled by the Shields number deviation

from erosion threshold, ShJ − ShJc , once all the lengths that characterize the crater are

made dimensionless by the distance l + λ of the initial flat bed to the virtual origin of the

jet. According to these two results, we now look at how the local Shields number Shl+P0

based on the local jet flow velocity at the bottom of the crater evolves with the dimensionless

depth P̃0 of craters in Fig. 7a. As expected from Fig. 3b, the critical local Shields number

Shlc corresponding to vanishing P̃0 is constant with a value Shlc ≃ 1.5. This value depends

on the chosen value for the decay rate of the self-similar model (here K ≃ 4) and is very

similar to the value Shlc ≃ 1.2 found for a plane liquid jet in both laminar and turbulent

regime.15 These result show that the local erosion process is the same for different types

of jet (round or plane, gas or liquid, turbulent or laminar). We also observe that Shl+P0
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remains constant in the type II regime as the cratering head still corresponds to an inner

invariant parabolic shape. It means that the local Shields number Shl+P0
depends on the

curvature of the crater and thus increases with the depth in the type I regime before keeping

a constant value related to the jet-bed distance for craters of type II.

This behavior may be explained by the topological change of the crater as it deepens.

Indeed Shl+P0
has been calculated assuming an unperturbed jet velocity obtained from a free

jet self similar model. This is clearly not the case once a crater is formed, as the jet is then

affected by the evolving surface profile. Because of the back flow, it is thus expected that the

axial velocity given by a self-similar model and used to calculate Shl+P0
is overestimated.

In the first stage of erosion, crater of type I deepens but keeps a constant outer radius R̃0,

so that the back flow increases with the curvature which should induce a local jet velocity

decrease. As a consequence Shl+P0
inferred from an invariant free jet model should increase.

Above transition I/ II, craters of type II keep a parabolic part of constant radius R̃i and

constant depth P̃0 − P̃i and thus an invariant back flow which leads to a constant Shl+P0

however depending on the curvature.

VI. CONCLUSION

The morphology of the craters resulting from the erosion of a model granular bed by an

axisymmetric turbulent gas jet have been studied in detail. Two types of craters depending

on the deviation of the Shields number from its critical value for erosion ShJ − ShJc have

been identified and characterized. For small enough ShJ − ShJc values (ShJ − ShJc . 26),

craters of type I have a parabolic profile with a constant radius R0 but increasing depth P0

so that the global aspect ratio of the crater P0/R0 increases with ShJ − ShJc . This process

leads to an increase of the crater end slope θ0 with ShJ −ShJc up to a critical value at which

it relaxes abruptly by about 10◦ because of avalanche process. This process leads to the

birth of craters of type II that are now formed by an invariant inner parabolic part and an

outer conical part of invariant end slope. This invariant inner parabolic part means that the

jet erosion process remains the same in this cratering regime. For these type II craters, the

depth and radius of the crater increases with ShJ −ShJc in a similar way so that the global

aspect ratio of the crater remains constant and governed by the dynamical avalanche slope.

Finally, truncated craters appear for a finite bed thickness when the erosion process reaches
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the bottom wall. In this case, the crater depth remains of course constant when its radius

still increases with ShJ −ShJc so that the global aspect ratio now decreases with increasing

ShJ . The analysis performed using a self-similar jet model reveals that the local Shields

number at the bed surface keeps a constant value when the bed has a constant shape and

that this value depends on the exact bed shape. For the undeformed flat initial granular

bed, the local Shields number has a constant value of 1.5 at erosion threshold. The local

Shields number increases however with increasing crater curvature. This can be understood

by the retroaction of the curved surface on the back flow. For type II craters of constant

central parabolic shape at the bottom head, the local Shields number is also found constant

when the crater deepen. To further improve the understanding of the jet cratering, some

detailed local measurements with coupled fluid/grains velocity measurement would be key

elements.
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