
HAL Id: hal-04009294
https://hal.science/hal-04009294v1

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

H-BIM and Artificial Intelligence: Classification of
Architectural Heritage for Semi-Automatic Scan-to-BIM

Reconstruction
Valeria Croce, Gabriella Caroti, Andrea Piemonte, Livio De Luca, Philippe

Véron

To cite this version:
Valeria Croce, Gabriella Caroti, Andrea Piemonte, Livio De Luca, Philippe Véron. H-BIM and Ar-
tificial Intelligence: Classification of Architectural Heritage for Semi-Automatic Scan-to-BIM Recon-
struction. Sensors, 2023, 23 (5), pp.2497. �10.3390/s23052497�. �hal-04009294�

https://hal.science/hal-04009294v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Croce, V.; Caroti, G.;

Piemonte, A.; De Luca, L.; Véron, P.

H-BIM and Artificial Intelligence:

Classification of Architectural

Heritage for Semi-Automatic

Scan-to-BIM Reconstruction. Sensors

2023, 23, 2497. https://doi.org/

10.3390/s23052497

Academic Editors: Antonia Spano,

Giulia Sammartano,

Rosario Ceravolo and

Erica Lenticchia

Received: 25 January 2023

Revised: 15 February 2023

Accepted: 17 February 2023

Published: 23 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

H-BIM and Artificial Intelligence: Classification of
Architectural Heritage for Semi-Automatic
Scan-to-BIM Reconstruction
Valeria Croce 1,*, Gabriella Caroti 2 , Andrea Piemonte 2 , Livio De Luca 3 and Philippe Véron 4

1 Department of Energy, Systems, Land and Construction Engineering (DESTEC), University of Pisa,
56122 Pisa, Italy

2 Civil and Industrial Engineering, ASTRO Laboratory, University of Pisa, 56122 Pisa, Italy
3 UMR MAP 3495 CNRS/MC, Campus CNRS Joseph-Aiguier, 13402 Marseille, France
4 LISPEN EA 7515, Arts et Métiers Institute of Technology, 13100 Aix-en-Provence, France
* Correspondence: valeria.croce@ing.unipi.it

Abstract: We propose a semi-automatic Scan-to-BIM reconstruction approach, making the most
of Artificial Intelligence (AI) techniques, for the classification of digital architectural heritage data.
Nowadays, Heritage- or Historic-Building Information Modeling (H-BIM) reconstruction from laser
scanning or photogrammetric surveys is a manual, time-consuming, overly subjective process, but
the emergence of AI techniques, applied to the realm of existing architectural heritage, is offering
new ways to interpret, process and elaborate raw digital surveying data, as point clouds. The
proposed methodological approach for higher-level automation in Scan-to-BIM reconstruction is
threaded as follows: (i) semantic segmentation via Random Forest and import of annotated data
in 3D modeling environment, broken down class by class; (ii) reconstruction of template geometries
of classes of architectural elements; (iii) propagation of template reconstructed geometries to all
elements belonging to a typological class. Visual Programming Languages (VPLs) and reference to
architectural treatises are leveraged for the Scan-to-BIM reconstruction. The approach is tested on
several significant heritage sites in the Tuscan territory, including charterhouses and museums. The
results suggest the replicability of the approach to other case studies, built in different periods, with
different construction techniques or under different states of conservation.

Keywords: machine learning; BIM; H-BIM; artificial intelligence; point cloud; classification; digital
heritage; cultural heritage; 3D models; scan-to-BIM; semantic segmentation

1. Introduction

In recent years, the Building Information Modeling (BIM) methodology was trans-
ferred from the realm of new construction to that of the built heritage. Since the early
studies by Murphy and Dore [1,2], the scientific literature on Heritage or Historic-BIM
(H-BIM) has expanded [3–8], aiming to illustrate how geometrical data can be linked to:
architectural grammar and styles [9–11], material characterization [12], degradation pat-
terns [13], façade interventions and historical layers [14,15], structural damage and FEM
analysis [16–18], data collection and simulation of environmental parameters [19], archival
photographs [20] and text documents [21,22].

Hichri et al. [8] and Macher et al. [23] emphasized that H-BIM techniques require
the transition from the existing condition of the object to the modeling environment. The
shift from the as-built condition (registration of a building after construction) to the as-is
representation (registration of its current condition) implies reference to surveying data, as
point clouds acquired via laser scanning or photogrammetry [24] and reverse engineering
techniques. On the one hand, the elaboration of 3D surveying for the construction of BIM
models, known as Scan-to-BIM [21], is seen as a manual, time-consuming and subjective
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process [3,5]; on the other hand, the emergence of Artificial Intelligence (AI) techniques
in the architectural heritage domain [25–27] is reshaping the approach of heritage experts
towards the interpretation, recognition and classification of building components on raw
surveying information. Based on this consideration, this work proposes a semi-automated
procedure to enable the construction of BIM models of heritage objects and sites, starting
from 3D survey data that are classified via a supervised Machine Learning (ML) method.

The paper is structured as follows: Section 2 provides a literature review on Scan-
to-BIM techniques and AI-based semantic segmentation processes. Section 3 presents
case studies on which the proposed methodology was tested (Materials), and concurrently
illustrates the different steps of the reconstruction approach (Methods). In Sections 4 and 5,
the results are presented and discussed, while Section 6 draws conclusions and future
developments.

2. Related Work
2.1. State-of-the-Art Scan-to-BIM Reconstruction Processes

Scan-to-BIM processes [7,21,28] focus on translating existing survey data, as point
clouds, into BIM. They involve three main steps: (i) data acquisition by laser scanning
or photogrammetry; (ii) processing of survey data; and (iii) 3D modelling (Figure 1). In
the processing phase (ii), it is essential to semantically describe the objects that make
up a building over unstructured point clouds [28]. This interpretative issue is a major
bottleneck in current research, as the main limits of the Scan-to-BIM processing workflow
are identified as:

• Difficulties in modeling complex or irregular elements and representing architectural
details of existing buildings [1,29,30], and the need to intervene with classification,
hierarchical organization and simplification assumptions [14,23];

• Measurement uncertainties [23], as surveying data may contain occlusions [31];
• Compared to BIM for new constructions, there is an absence of pre-defined, ex-

tensive libraries of parametric objects [3] and lack of existing standards for H-BIM
artefacts [1,28,30];

• High conversion effort [1], since most BIM software for new buildings offer tools for
the construction of regular and standardized objects while the free-form geometry
modeling functions that are available are limited [15,29,32,33].

Figure 1. Steps of the Scan-to-BIM workflow using example from Grand-Ducal cloister, Pisa Charter-
house.

For the above limits, Scan-to-BIM techniques are never unambiguous. However, they
can be distinguished based on the degree of human involvement in the data processing
stage, classified as manual (Section 2.1.1) or semi-automated (Section 2.1.2).
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2.1.1. Manual Scan-to-BIM Methods

Most common approaches to the Scan-to-BIM are manual, as they require visual
recognition and subsequent manual tracing of building components starting from a point
cloud (Figure 2). Extensive literature reviews provided by Logothetis et al. [6], Volk et al. [7],
Tang et al. [34] and more recently by López et al. [3] and Pocobelli et al. [4], demonstrate that
manual methods [1,35], although widely consolidated, result in time-consuming, laborious
processes. Indeed, operators are asked to manually identify, isolate and reconstruct each
class of building elements [7,23]. This entails a considerable amount of time and resources,
besides implying the risk of making too subjective choices [36].
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Figure 2. Instantiation of a capital by direct reconstruction over the raw point cloud using example
from Grand-Ducal cloister, Pisa Charterhouse.

2.1.2. Semi-Automated Scan-to-BIM Methods

Fundamental issues in the definition of semi-automated methods are the recognition
and labelling of data points on raw point clouds with a named object or object class (e.g.,
windows, columns, walls, roofs, etc.) [34–38]. Existing methods can be distinguished
according to the solution identified over time for this issue:

Primitive fitting methods. They fit simple geometries, such as planes, cylinders and
spheres [39], to sets of points in the scene via robust estimation of the primitive parameters.
The Random Sample and Consensus [40] and the Hough Transform [41] are common
algorithms of this type, used in commercial solutions for the semi-automatic recognition
of walls, slabs and pipes, proposed by software houses [3,42–44] including: EdgeWise
Building by ClearEdge3D (clearedge3d.com) as a complement for Autodesk Revit; Scan-
to-BIM Revit plug-in by IMAGINiT Technologies (imaginit.com); and Buildings Pointfuse
from Arithmetica (pointfuse.com). Primitive fitting methods mostly apply to indoor envi-
ronments [31,37,38,42] for the detection of planar elements, as floors and walls [23,37,45].
Shape extraction and BIM conversion are limited to simple geometries with standardized
dimensions; application to complex existing architectural structures, varying in forms and
types, is hardly possible unless the model is oversimplified (Figure 3) [23,42].
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Mesh-reconstruction methods. For each architectural component or group thereof, a
mesh is reconstructed via triangulation techniques, starting from the distribution of points
in the original point cloud. References [15,17,29,31,47–49] converted 3D textured meshes
derived from surveying into BIM objects; however, the mesh manipulation and geometric
modification are limited as the mesh models cannot be edited and controlled by parametric
BIM modeling [29].

Reconstruction by shape grammar and object libraries. Such approaches rely on the
construction of suitable 3D libraries of architectural elements (families) to handle the com-
plexity of materials and components that characterizes historic architecture [10,50–52]. In
detail, De Luca et al. [53] studied the formalization of architectural knowledge based on
the analysis of architectural treatises, to generate template shape libraries of classical archi-
tecture. Murphy et al. [54] modelled interactive parametric objects based on manuscripts
ranging from Vitruvius to Palladio to the architectural pattern books of the 18th century.
Since relying on the formalization of architectural languages as derived from treatises of
historical architecture, such methods are valid regardless of the modeling type or represen-
tation chosen [53].

Reconstruction by generative modelling. In this case, the reconstruction is again
guided by the formalization of architectural knowledge, and VPLs are considered to ma-
nipulate each geometry by interactively programming, via a graphical coding language
made up of nodes and wires, the set of modeling procedures, primitive adjustments and
duplication operations performed in 3D space [33,53,55]. Grasshopper, a visual program-
ming interface for Rhino3D, and Dynamo, a plug-in for Autodesk Revit, are commonly
used for these tasks in the case of new constructions. By contrast, VPLs are rarely exploited
for existing monuments and sites. The 3D content could be created, based on surveying
data [17,48,55–57], by a series of graphic generation instructions, repeated rules and algo-
rithms [58]. The release of Rhino.Inside.Revit (rhino3d.com/it/features/rhino-inside-revit,
accessed on 18 December 2022), allowing Grasshopper to run inside BIM software as
Autodesk Revit, goes in the direction of novel VPL-to-BIM connection tools.

2.2. State-of-the-Art AI-Based Semantic Segmentation

In the digital heritage field, ML and Deep Learning (DL) techniques emerge to help
digital data interpretation, semantic structuring and enrichment of a studied object [25] e.g.,
to assist the identification of architectural components [59], the re-assembly of dismantled
parts [60], the recognition of hidden or damaged wall regions [61], and the mapping of
spatial and temporal distributions of historical phenomena [62].

In the architectural heritage domain, AI techniques have proven to be crucial in stream-
lining the so-called semantic segmentation process, understood as the reasoned subdivision
of a building into its architectural components (e.g., roof, wall, window, molding, etc.),
starting from surveying data. With respect to other common computer vision tasks exploit-
ing AI, such as object recognition, instance localization and segmentation, the semantic
segmentation process classifies pixels or points as belonging to a certain label and per-
forms this operation for multiple objects of the 2D image or of the 3D unstructured scene
(Figure 4). The term semantic, indeed, underlines that the breakdown is done by referring
to prior knowledge on the studied 2D/3D architectural scenes.

Though earlier experiments of digital heritage classification were geared towards the
semantic segmentation of images [61,63,64], research is now moving in the direction of
segmenting textured polygonal meshes [27] and/or 3D point clouds [65]. In the archi-
tectural domain, the classification is either focused on automatically recognizing, via ML
algorithms and through a suitable amount of training data, on the one hand, the presence
of alterations on historical buildings [66] or the mapping of materials (texture-based ap-
proaches) [27,67,68], and, on the other hand, the distinction into architectural components
based on prior historical knowledge (geometry-based approaches) [26,69–71].

rhino3d.com/it/features/rhino-inside-revit
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Depending on the type of approach chosen, the classification can act on either two
kinds of properties of the raw data: (a) geometric features, such as height, planarity, linearity,
sphericity, etc. [72], that are better suited for the recognition of architectural components
based on respective shapes of elements, or (b) colorimetric attributes, such as RGB, HSL
or HSV color spaces [66], that are widely used for the identification of decay patterns (as
biological patina or colonization, chromatic alterations, spots, etc.) or of materials.

Geometry-based classification techniques, formerly exploited for classifying urban
scenes [17,72,73], are now applied to the scale of the individual building, for the segmenta-
tion of walls, moldings, vaults, columns, roofs, etc. [70]. Grilli et al. [70] investigated the
effectiveness of covariance features [72] in training a Random Forest (RF) classifier [74]
for architectural heritage, even demonstrating the existence of a correlation between such
features and many main dimensions of architectural elements.

2.3. Open Issues Arising from the State-of-the-Art Methods

The literature review in Section 2.1 proves that data segmentation and classification
are essential steps in common Scan-to-BIM workflows, enabling:

• A breakdown of the survey data into subsets of elements (pixels or points) sharing the
same features, whether geometric or radiometric, extracted from 2D or 3D descriptors
and according to predefined criteria (segmentation);

• The assignment of a label to each subset (classification or semantic segmentation).

Although this process has been considered to be mostly manual and performed by
a single operator, the evolution of recent research in the application of RF algorithms to
the classification of digital heritage point clouds (see Section 2.2), suggests the possible
automation of Scan-to-BIM reconstruction processes. The semantically segmented point
cloud, in which different architectural elements are finally distinguished as an outcome
of geometry-based classification techniques, could in fact be considered as a basis for the
reconstruction of H-BIM models. To date, besides primitive shape fitting approaches [75],
no research has considered the possible integration of semi-automatically annotated point
clouds and H-BIM environments. This still-uncertain and unclear transition, deserving
more in-depth analysis and worth the exploration of the operational challenges of a scan-
to-BIM via ML model, constitutes the research line of the present work.
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3. Materials and Methods
3.1. Materials

The semantic segmentation and Scan-to-BIM reconstruction methodology was tested
on three point clouds of historic buildings in the Tuscany territory (Italy), acquired either
by laser scanning or photogrammetry, alongside traditional topographic instruments.

The case studies relate to the typology of medieval cloisters: a central area is closed on
its perimeter by recurring architectural elements such as columns, moldings, arches and
vaults that form a series of open galleries (Figure 5). In detail:

• The Grand (or main) cloister of the Pisa Charterhouse. The cloister, extending an
area of about 70 × 45 m, was built starting from the year 1375 and underwent major
renovations in the 17th century. The perimeter walkway, covered by vaulted ceilings
and enclosed by marble columns, once provided access to the cells of the Carthusian
fathers. The point cloud is the result of a Leica ScanStation C10 laser scanner survey
(~10 M points).

• The Grand-Ducal cloister of the Pisa Charterhouse. Extending a rectangular-shaped
area of 12 × 14 m, this cloister dates back to the 14th century. Its structure underwent
several transformations around the 17th century, that lent it its current layout. The
courtyard, with a central cistern, is overlooked by vaulted galleries; the two opposite
sides of the cloister are connected, on the first floor, by an overhead walkway. The
considered point cloud is the outcome of an integration between laser scanning and
drone-based photogrammetric surveys (~6 M points).

• The cloister of the convent of San Matteo in Pisa. This cloister is located in the medieval
convent of San Matteo in Pisa, which currently houses a National Museum. Major
changes of its layout, dated to the 16th century, involved the construction of a portico,
with granite columns closing the central space, Gothic windows and a cross-vaulted
ambulatory. The survey was carried out via terrestrial photogrammetry and the
resulting point cloud consists of ~12 M points.

The considered point clouds have different densities, but they are all set to a minimum
space between points of 0.01 m.
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3.2. Methods

The proposed methodological approach for Scan-to-BIM classification and reconstruc-
tion is divided into two macro-parts: in the first one, a supervised ML algorithm, the RF,
is exploited to annotate the architectural components of a building from a point cloud
survey. The workflow for this first phase was previously presented in reference [76], to
which the reader could refer for further details and in-depth discussion on the ML-based
data processing step.

The focus of this paper is rather on the second part of the workflow, concerning
Scan-to-BIM reconstruction based on semantically annotated data. The latter takes place
following the successive steps of: import of annotated data into the BIM environment;
reconstruction and propagation, via VPL, of template geometries based on knowledge
derived from historical treatises of architecture; and transfer of template geometries into
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BIM software as Autodesk Revit (Figure 6). The two steps of data segmentation and H-BIM
reconstruction are both completed by a data validation process.
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Figure 6. Two steps of the proposed approach: ML-based classification workflow, as illustrated
in [76], and Scan-to-BIM reconstruction. The example provided refers to the case study of the Grand
cloister of the Pisa Charterhouse.

3.2.1. Semantic Segmentation via ML

At first, semi-automated systems were exploited to properly interpret the 3D architec-
tural scene from the input point cloud to improve the description and recognition of forms,
materials, state of preservation. A ML-based segmentation procedure was used to assist
the proper processing, management and semantic enrichment of digital heritage objects.
The RF by Breiman [74] was used as the reference algorithm following the successful tests
by Grilli [72]. This classifier is recognized as an effective tool for the classification of typo-
logical components of a building, outperforming other ML and DL approaches in terms of
trade-off between training time, size of training data required and accuracy of the obtained
results [26].

Starting from the extraction of appropriate covariance and radiometric features, and
using a relevant set of training data, the RF is trained to classify, within digital models, the
architectural elements that make up a historic building [76]. The procedure is broken down
into five different steps:

(i) Neighborhood selection and feature extraction;
(ii) Feature selection;
(iii) Manual annotation on a reduced portion of the dataset (training set) to identify classes

of elements;
(iv) Application of the RF classifier and consequent accuracy evaluation;
(v) Generation of an annotated 3D point cloud.

At first, a set of features is extracted in a chosen local neighborhood of each 3D point or
image pixel (i). The choice of appropriate features and consequently, the choice of the local
neighborhood in which they are computed, is fundamental in this phase as the predictive
model is built to make predictions by recognizing the features that distinguish one class of
elements from another. As the initial set of features may appear redundant or too large to be
managed, the features are iteratively selected (ii). Readers can refer to previous work [76]
for more details on the features’ description, extraction and selection steps. Subsequently,
classes of recurring architectural elements are identified and labeled on a training set. This
input data is used to perform a multi-scale classification via the RF to iteratively select
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the most relevant features; the classification process is thus run by considering a subset of
features each time. For this reason, steps (ii) and (iii) are strictly interrelated. For the RF,
the number of trees, Ntrees, is set to 100 and the hyperparameter optimization accounts for
overfitting through a 10-fold cross validation procedure.

Upon its completion of training using the training set of annotated data, the predic-
tive model is applied to the remaining part of the point cloud or image (non-manually
annotated), so to semantically label the classes of typological elements in the rest of the
dataset. The accuracy of the classifier is finally assessed (iv), based on the comparison
between true and predicted values on a validation set, that consists of almost the 25% of
the labeled data (not used in the training phase). The performance evaluation is sorted
out in the form of a confusion matrix, providing a measure of the number of correct and
incorrect predictions, class by class. The on-diagonal elements stand for the True Positive
(TP) values (correctly classified instances of the dataset), while the off-diagonal elements
provide a measure of misclassifications: True Negatives (TN), False Positives (FP) and False
Negatives (FN) values. The performance measures of Precision, Recall, Overall Accuracy
and F-measure are derived from a combination of these values, as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Overall accuracy =
TP + TN

TP + TN + FP + FN
(3)

F − measure = 2· Recall ·Precision
Recall + Precision

(4)

The point cloud obtained at the end of this classification step is separated into its
recurring architectural components: considering that the semantic structuring of heritage
data could be beneficial in view of the construction of BIM-based representations, this
classified point cloud is taken as initial data for the Scan-to-BIM reconstruction process.
The hierarchical organization of the classes over the annotated point cloud reflects the logic
of H-BIM environments, where each element (molding, vault, floor, wall, etc.) is defined by
specific names, attributes and properties.

3.2.2. Scan-to-BIM Reconstruction

Starting from the distinct classes of elements recognized on the point cloud through
the segmentation process, so-called template geometries are reconstructed. These geome-
tries are generated from the observation of architectural components that fall within a
single point cloud class with reference to the architectural treatises. With VPL, a series of
algorithms and rules are established for constructing the reference geometries of each type
of component (family); subsequently, the reconstructed geometries are propagated to all
elements belonging to the same typological class.

A conceptual model is thereby reconstructed by treating and processing each class of
architectural components separately; if carried out on the entire set of classes making up
the architectural object, the replication of the template geometries yields a complete H-BIM
information system. This way of classifying data appears consistent with the logic of the
H-BIM process, whereby the model results from a combination of smart objects, properly
differentiated in terms of type and morphology (e.g., roof, wall, floor, column, etc.) and
grouped into families of architectural elements. In the overall model, each component is
effectively discerned according to whether it belongs to one class or another.

The model obtained at the end of the process, containing the 3D reconstruction of all
typological element classes, can be used to construct H-BIM type representations, i.e., to
build 3D archives of architectural heritage, which can be further enriched with information
related to preservation and documentation.
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In detail, for the reconstruction of template forms, reference geometries and proportions
are derived, where available, from historical architectural treatises. Conceptual forms are
hence generated for each class through the recognition and parametric reconstruction of
related elementary parts, profiles and surfaces. The procedure is performed through VPL
and is broken down class by class according to the following steps:

(i) Import of the annotated point cloud into 3D modeling environment, and extraction of
the single class concerned by the reconstruction process;

(ii) Reconstruction of a template geometry for each class of architectural elements identified,
while referring to architectural treatises and based on the definition of base construc-
tion plans, constraints, generating primitives, base profiles and ensuing functions of
extrusion, loft, sweep, etc.;

(iii) Propagation of the template geometry to all elements belonging to a typological class,
i.e., definition of element replica operations, so to enable the duplication of the defined
geometry to multiple elements sharing same characteristics.

The mathematical and conceptual representation of each class, managed through
generative modeling procedures, is entrusted to the creation of Non-Uniform Rational
B-Splines (NURBS).

Real-time generation, control, and editing of architectural forms is accomplished
through the Grasshopper graphical algorithm editor, integrated in Rhino McNeel. Grasshop-
per, in particular, allows visual control of the 3D geometries reconstruction procedures by
direct manipulation of nodes (algorithms) and wires. Finally, the Volvox (food4rhino.com/
en/app/volvox, accessed on 18 December 2022) and Rhino.Inside.Revit (rhino3d.com/
inside/revit/1.0/, accessed on 18 December 2022) plug-ins are used to connect the recon-
structed 3D model with point cloud processing software and BIM platforms, respectively.

4. Results
4.1. Annotated 3D Data

At an initial stage, geometric features are extracted from input raw point clouds, with
varying local neighborhood radii for each 3D point. Features, as covariance characteristics
and changes of curvature, are computed and iteratively selected for each case study via a
predictor importance estimate process [76] (Figure 7) in order to allow better distinction
between one class and another. The choice of the local neighborhood in which features
vary draws on considerations of the recurring dimensions of many elements composing
the dataset, that are provided with a first estimate (e.g., the diameter of the columns,
or thickness of certain architectural moldings, as well as other repetitive dimensions of
the elements) so to extract geometric features considering selected ranges of the local
neighborhood (e.g., ρ = 0.2 m; ρ = 0.4 m; ρ = 0.6 m). Within the chosen ranges of ρ, the
covariance features are extracted from the covariance matrix, while the Normal Change Rate
is extracted as a curvature measure describing for each point the speed of the orientation
change [38]. Radiometric features, derived from the decomposition of the color space
into single R, G and B scalar fields, and a height feature (the Z coordinate), are then
considered as additional characteristics for each dataset. For additional samples of extracted
covariance features -i.e., features depending on the distribution of 3D points in space
(linearity, planarity, sphericity, omnivariance, etc.), colorimetric features and height features,
the readers can refer to Appendix A (Figures A1 and A2).

After feature extraction, classes of architectural components are identified and anno-
tated on a reduced portion of data samples, consisting of almost 20% of the total number
of points of the point cloud (Figure 8). The so-called training set is specified each time
for each case study; the point cloud is segmented based on the ten benchmark classes
proposed by Matrone et al., 2020 [77] (Figure 9): arch, column, molding, floor, openings
(door or window), wall, stair, vault, roof and other (all elements not belonging to the
previous classes).

food4rhino.com/en/app/volvox
food4rhino.com/en/app/volvox
rhino3d.com/inside/revit/1.0/
rhino3d.com/inside/revit/1.0/


Sensors 2023, 23, 2497 10 of 30

Sensors 2023, 23, x FOR PEER REVIEW 10 of 32 
 

 

single R, G and B scalar fields, and a height feature (the Z coordinate), are then considered 

as additional characteristics for each dataset. For additional samples of extracted covari-

ance features -i.e., features depending on the distribution of 3D points in space (linearity, 

planarity, sphericity, omnivariance, etc.), colorimetric features and height features, the 

readers can refer to Appendix A (Figures A1 and A2).  

After feature extraction, classes of architectural components are identified and anno-

tated on a reduced portion of data samples, consisting of almost 20% of the total number 

of points of the point cloud (Figure 8). The so-called training set is specified each time for 

each case study; the point cloud is segmented based on the ten benchmark classes pro-

posed by Matrone et al., 2020 [77] (Figure 9): arch, column, molding, floor, openings (door 

or window), wall, stair, vault, roof and other (all elements not belonging to the previous 

classes).  

The overall number of cases is 10 for the Grand-ducal cloister dataset, but it was re-

duced to 9 for the Grand cloister, as there is no ‘Class 6—Stair’, as well as for the San 

Matteo dataset, where ‘Class 8—Roof’ was not visible since the photogrammetric survey 

was ground-based and did not allow the description of the roofing structure. In any case, 

each identified class, for the three datasets, was associated with a specific label, to a class 

index varying from 0 to 10 and to a related color; the training set was chosen in a repre-

sentative portion of the dataset, where all classes to be annotated are visible. 

 

Figure 7. Many relevant features identified on a portion of the Grand-Ducal cloister dataset, Pisa 

Charterhouse, for different local neighborhood radii ρ. 

 

Figure 8. Percentage of training set used for learning over the three case studies considered. 

Figure 7. Many relevant features identified on a portion of the Grand-Ducal cloister dataset, Pisa
Charterhouse, for different local neighborhood radii ρ.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 32 
 

 

single R, G and B scalar fields, and a height feature (the Z coordinate), are then considered 

as additional characteristics for each dataset. For additional samples of extracted covari-

ance features -i.e., features depending on the distribution of 3D points in space (linearity, 

planarity, sphericity, omnivariance, etc.), colorimetric features and height features, the 

readers can refer to Appendix A (Figures A1 and A2).  

After feature extraction, classes of architectural components are identified and anno-

tated on a reduced portion of data samples, consisting of almost 20% of the total number 

of points of the point cloud (Figure 8). The so-called training set is specified each time for 

each case study; the point cloud is segmented based on the ten benchmark classes pro-

posed by Matrone et al., 2020 [77] (Figure 9): arch, column, molding, floor, openings (door 

or window), wall, stair, vault, roof and other (all elements not belonging to the previous 

classes).  

The overall number of cases is 10 for the Grand-ducal cloister dataset, but it was re-

duced to 9 for the Grand cloister, as there is no ‘Class 6—Stair’, as well as for the San 

Matteo dataset, where ‘Class 8—Roof’ was not visible since the photogrammetric survey 

was ground-based and did not allow the description of the roofing structure. In any case, 

each identified class, for the three datasets, was associated with a specific label, to a class 

index varying from 0 to 10 and to a related color; the training set was chosen in a repre-

sentative portion of the dataset, where all classes to be annotated are visible. 

 

Figure 7. Many relevant features identified on a portion of the Grand-Ducal cloister dataset, Pisa 

Charterhouse, for different local neighborhood radii ρ. 

 

Figure 8. Percentage of training set used for learning over the three case studies considered. 
Figure 8. Percentage of training set used for learning over the three case studies considered.

The overall number of cases is 10 for the Grand-ducal cloister dataset, but it was
reduced to 9 for the Grand cloister, as there is no ‘Class 6—Stair’, as well as for the San
Matteo dataset, where ‘Class 8—Roof’ was not visible since the photogrammetric survey
was ground-based and did not allow the description of the roofing structure. In any
case, each identified class, for the three datasets, was associated with a specific label, to
a class index varying from 0 to 10 and to a related color; the training set was chosen in a
representative portion of the dataset, where all classes to be annotated are visible.

After the manual annotation of the training set, a first classification is run, via the
RF algorithm, considering the multi-scale feature extraction (i.e., the whole set of features
extracted at different local neighborhood radii). At the end of the learning process, an
importance ranking can be displayed, showing the relevance score of each feature.

Starting from the importance ranking extracted, redundant and less relevant features
are iteratively removed, and the RF is hence trained with a reduced subset of features.
This step provides insight into the data, showing which features are more relevant to
the classification task, thus reducing the dimensionality of the data to a set of almost
10–15 features and allowing the selection of a subset of predictors that adequately describe
the identified classes. The feature ranking process is run each time for the three different
case studies; surface variation, sphericity, anisotropy and verticality always appear among
the most relevant features.
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(b) of the Pisa Charterhouse; the cloister of the National Museum of San Matteo (c). The distinction
of classes is conveyed visually, through a color legend.

By comparing the results of the three different datasets in terms of feature selection,
and by visually considering the variation of features along the datasets, many relevant
considerations can be drawn up on the recurrence of some features: verticality, for instance,
is more apt to the distinction between elements of the dataset that are mostly horizontal
(floors, ground) or vertical (columns, walls), while omnivariance and sphericity enable the
recognition of architectural moldings, arches, vaults and columns; anisotropy and planarity
further support the classification of columns and the distinction of windows and doors
from the wall. Moreover, they are valuable for depicting finer elements with horizontal
development, e.g., the windowsill and the underroof moldings.

Normal change rate, as curvature feature, is appropriate to depict columns and arches,
and to identify elements belonging to ‘Class 9—other’, as drain spouts.

The selected features associated with the manually annotated training set allow the
RF classifier to be trained to extend classification to the entire point cloud. The procedure
is followed for each of the cases studied and leads to the semantic segmentation results
shown in Figure 10. Once classified, the point clouds can be differentiated according to
the distinction of the architectural elements that compose them. As an example, Figure 11
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provides a zoomed view of the several classes of recurring architectural elements that were
recognized on a portion of the main cloister of the Pisa Charterhouse.
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In order to evaluate the classifier performance, a validation set was considered, consist-
ing of almost 25% of annotated portion of the data that was not previously used for training.
On such validation set, the correspondence between the manually annotated labels and
the predicted ones was tested by referring to the values of the confusion matrix and to the
performance measures: Precision (1), Recall (2), Overall accuracy (3) and F-measure (4).
The average values of the performance measures obtained for the three case studies are
summarized in Table 1; a detailed description of the validation sets, confusion matrices and
performance measures for the three cases is provided in Appendix A, Figures A3 and A4.

Table 1. Average performance measures obtained for the classification of the three datasets.

Grand Cloister,
Pisa Charterhouse

Grand-Ducal Cloister,
Pisa Charterhouse

Cloister Museum
of San Matteo, Pisa

n. of classes 9 10 9
Avg. classes 93.49% 83.03% 84.37%

Avg. precision 95.56% 82.07% 89.71%
Avg. accuracy 99.30% 98.04% 98.73%
Avg. F1-score 94.44% 81.53% 85.98%

4.2. Semantic-Based Reconstruction on Annotated Data

Since geometry-based approaches relying on supervised ML support the distinction
of recurring typological elements as walls, columns, vaults, etc. on raw point clouds,
the semantically segmented data is used here as a reference for the reconstruction of the
HBIM models.

4.2.1. Import of Annotated Data

In the scan-to-BIM reconstruction process, the need first arises to preserve the classified
3D data even though the point cloud was imported into a 3D modeling environment.
Through the semantic segmentation procedure, each architectural element identified within
the point cloud can be isolated and shown individually (as in the example in Figure 12).
This allows class information to be made available and visible in the transition to the 3D
modelling environment, so that so-called template geometries can be reconstructed by
acting on the manipulation and display of individual object classes over the point cloud
between the point cloud and the Rhinoceros modeling environments.
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In detail, the developed algorithm (Figure 13) reads and sorts the point cloud file (1),
recognizing indices and colors that are associated with each class of typological elements.
The original point cloud is segmented into multiple point clouds, each containing the points
belonging to the individual class of architectural elements (2); then, the management of a
special slider allows the user to directly select the index of a desired class (3). The colors,
names and points associated with the selected class are selected (4) and the corresponding
point cloud is displayed in the graphical user interface (5). The advantage of this procedure
lies in allowing the user to activate or deactivate the display of a given class, depending on
case-specific needs: only the 3D points belonging to the selected class are visible, while the
remaining 3D points are hidden (Figure 14).
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Figure 14. Segmented point cloud import. Selection (a) and isolation (b) of the ‘Vault’ class using
example from the Grand cloister, Pisa Charterhouse.

This direct manipulation of architectural component classes on the original point cloud
simplifies the modeling phase that is already in its first stage since the 3D reconstruction
work can be carried out on an already segmented (reduced) dataset.

4.2.2. Libraries of Template Geometries

Once the import of the semantically segmented point cloud into the modeling envi-
ronment is completed, each class can be reconstructed in the form of a template geometry,
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i.e., a parametric 3D object that reproduces a particular recurring typological element
(class or family of parametric elements). Again, the need to reconstruct geometries with
modifiable and adaptable parameters leads to the choice of VPL, to model and edit the
model by means of a series of rules and graphical processing operations (e.g., through the
connection of nodes and wires in the VPL of Rhino Grasshopper). The following operations
are performed via VPL algorithms:

• Definition of template conceptual shapes of each class of architectural elements iden-
tified on the point cloud, through a series of processing operations, rules (nodes)
attributes and connections (wires).

• Control of the different graphic elements that compose the reconstructed shapes
and direct manipulation of sliders related to their dimensions, extension and other
and properties.

Many relevant classes of architectural types—such as the column, arches and vaults—
are reconstructed with reference to architectural canons. For the case studies considered,
Vincenzo Scamozzi’s treatise L’idea dell’architettura universale [78] is taken into account.
This work inspired the renovation of many of the settings of the Charterhouse of Pisa in
the 17th century. In detail, for the template shapes reconstruction process, the followed
formalization approach is based on the work by De Luca et al. [53], consisting of three
steps: interpretation of any knowledge referring to the shape; identification of the necessary
modeling methods; and identification of relationships between elements.

With this approach, the elementary entities are identified and architecture primitives
that constitute the basis of the representation method, are formalized. Once the 3D points
belonging to each class of elements have been properly identified and shown on the 3D
viewer, indeed:

• Reference building planes were detected and suitably oriented;
• A generating profile was created via VPL and, where necessary, a direction path was

outlined.
• Functions such as revolution, sweep, extrusion, loft, etc. of the identified profile were

used to build the targeted surface.

The parametric geometry constructed, representative of each class of elements, can
be adapted over the point cloud through manipulation of sliders and parameters, and
the related programming outputs are displayed in the Rhino3D graphical interface. For
the formalization of template geometries, the moldings are studied first as they comprise
the smallest and most trivial units of architectural elements corresponding to a seman-
tic description of the building, and further combination of them yields more complex
architectural elements.

Many moldings from Vincenzo Scamozzi’s treatise were analyzed and studied (Figure 15),
and an example of the structure of their generation algorithms is shown in Figure 16: each
molding is represented by a curve (drawn on a selected construction plane) and is included
in a bounding box, i.e., a deformable section that defines the height and width of the
element. A starting point and an ending point are the anchor points for any other moldings
attached to the element. Considering the insertion points of the moldings as anchoring
elements for the construction of subsequent moldings, more complex profiles are later
provided (Figure 17).

The application of extrusion, loft, sweep and revolution functions to the constructed
generating profiles determines the template shape of a class.

Figure 18 shows the construction process of the ‘column shaft class’, for the case of
the Grand Cloister dataset: first, descriptors and geometric attributes are defined for the
construction of this architectural component. Then, the column shaft is built based on the
study of the dimensional relationships between the diameter of the column base and its
height, which allows for the establishment, at different heights, of reference circles. These
circles are used to define, through a loft function, the conceptual shape of the concerned
object, even representing the enthesis of the column shaft.
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Figure 18. Creation of the column shaft: base circle (1), reference circles (2) and shape generation via
the loft function (3).

This approach can be extended to the entire set of classes, by a set of rules and visual
scripting nodes that enable the construction of each architectural component.

4.2.3. Information Propagation and Import into BIM Software

Once defined for each class, the geometry of the model is subsequently propagated to
other parts of the point cloud, where the 3D points have been recognized as belonging to
the same architectural type. The procedure is done through duplication and displacement
nodes, particularly leveraging array, copy and translation operations (e.g., the Move node in
Grasshopper). These operations allow the repetition, as many times as necessary, of the 3D
geometry for each class of architectural components (Figure 19). Figure 20 shows the results
obtained in the construction of some significant classes extracted from the considered
datasets: the ‘column’ class for the main cloister, the ‘vault’ class for the Grand-Ducal
cloister and the ‘arch’ class for the Museum of San Matteo. The creation and propagation
of conceptual geometries by generative design rules allows the repetition and, where
necessary, the modification of the parameter of these reconstructed geometries.
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Figure 19. Example of propagation algorithm: template geometry (1); insertion points and Move
node (2); and propagated geometries (3) using example from Class 1—Column, Grand cloister, Pisa
Charterhouse.
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Figure 20. Examples of reconstruction of parametric components: original class (a), conceptual
reference geometry (b) and propagation of the information to the whole class (c).

By extending the propagation of the template shapes to the set of all classes, a complete
model of the whole building is finally achieved (Figure 21). Each architectural element
identified within individual classes retains its own semantic description, as it is linked to
the semantic decomposition of the architectural object and it is defined by a template shape
(Figure 22).
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Figure 22. Resulting conceptual model for a portion of the main cloister in the Pisa Charterhouse and
selection of the ‘Column’ class.

Following these principles, each element is reconstructed independently of the soft-
ware used and can be imported, for example, into BIM software, to be further enriched
with non-geometric information (related, e.g., to materials, restoration and consolidation
work, documentary and analytical sources, state of preservation, etc.).

For instance, Grasshopper VPL could be linked to Autodesk Revit BIM software via
the Rhino.Inside.Revit plug-in, as one possible way of importing the classified model in
BIM environment: the algorithm displayed in Figure 23 allows the selection of architectural
objects belonging to individual element classes and associates them with a Revit family,
preserving their level of semantic description.
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Figure 23. VPL import script via Rhino.Inside.Revit. The selected template geometry (1) is imported
in Autodesk Revit as a generic model component (2), and it is associated with the Revit Material
‘white marble (3).

5. Discussion

The use of AI-based classification methods in common Scan-to-BIM processes em-
powers the automation of 3D model reconstruction from point clouds, in terms of time,
raw surveying data management and semantic description. The key findings of this work
may be identified following the breakdown into the two respective steps of semantic
classification via ML (5.1) and BIM-based reconstruction (5.2).

5.1. Assessment of ML-Based Classification Methods

Upon assessment of the performance scores of the three datasets being considered,
the geometry-based classification returned an average accuracy of 98.73% and an F-score
of 87.13%. The models accurately predicted the semantic segmentation results and sig-
nificantly reduced the annotation time: Figure 24 summarizes the processing times for
different stages of the workflow. However, some considerations need to be raised on the
validation of this methodology:
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• After observing the confusion matrices (Appendix A, Figure A4) and visually checking
the data with the segmentation results, we observed misclassifications in the boundary
regions, that is, in those areas that mark the boundary between one class and another.
Specifically, as features are computed in a given local neighborhood ρ, feature extrac-
tion can be misleading for those 3D points that are in the boundary regions between
classes (Figure 25). Those errors increase with increasing radius of the spherical neigh-
borhood. This situation was mitigated, on the one hand, by adding discriminative
radiometric features based on color information and, on the other hand, by choosing
low (<0.6 m) values of ρ.

• Regions with similar developments (e.g., planar or cylindrical) in which geometric
features may yield several values, can be misclassified as falling into the same class. For
instance, the analysis of the off-diagonal elements of the confusion matrices suggested
that Class 5—Wall’ and ’Class 4—Door and Window’ are often interchanged with each
other, as both are characterized by predominantly planar behaviors.

• As the covariance and curvature features are computed in a given local neighborhood,
the density of the point cloud influences the classification results. In other words,
if two point clouds of a same object have different point densities, feature selection
may produce two different results, as seen in the example in Figure 26. In order to
align feature selection for different surveys of the same dataset, one could then plan to
return the point clouds to the same density by means of a subsampling operation.
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cloister (b) of the Pisa Charterhouse; the cloister of the National Museum of San Matteo (c).
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Figure 26. Example of a same feature (linearity, ρ = 0.6 m) computed on two point clouds with higher
(a) and lower (b) densities. Example from main cloister, Pisa Charterhouse.

Besides these observations, it should be noted that, as the number of classes increased,
greater similarity among them were found, and this implies that the number of semantic
classes chosen can strongly influence the quality of the classification results; likewise,
the amount of training data used can impact the resulting classification. In the case of
laser scanning data, many sources of error, such as EDM centering, beam divergence and
instrumental errors [79] which occurred during data collection, were not taken into account
in the present study, although they could influence the classification results.

5.2. Assessment of the Scan-to-BIM Reconstruction Workflow

The separation of the semantic parts is the fundamental prelude to automation of
the scan-to-BIM process and better correlation between the point cloud and parametric
model. The semi-automated reconstruction of 3D mockups from survey data relies here
on the visualization and import of the annotated data and on the subsequent construction
and propagation of template geometries. With this approach, the geometric nature of
the building components is reconstructed, the originally designed form is interpreted,
and a reference geometry is identified and modeled for each class, following the logic of
parametric BIM families. At the end of the process, visual programming techniques enable
propagation and dimensional comparison of repetitive elements. A direct connection is
in fact established between the point cloud and the reconstructed model on the level of
individual classes of elements, and this avoids the loss or possible dispersion of information
in the transition from the 3D survey to the parametric model.

The resulting conceptual representation yields an effective support tool in the docu-
mentation of any architectural asset: the obtained digital model, being based on model
geometries (with reference to architectural canons and treaties), becomes valid regardless
of actual object changes and modifications, and additional information can then be inserted,
retrieved, modified and updated within it, as a relevant basis for H-BIM-type systems. In
fact, the use of architectural canons and the definition of a set of rules to reconstruct or mod-
ify a 3D object makes this system independent of the software used. This also implies that
Grasshopper and Rhino3D do not represent the only environment in which such methods
could be implemented, but rather other generative modeling software (such as Dynamo,
implemented in Autodesk Revit software) could be exploited for the same task, if the same
construction, modeling and operation processes are retrieved and repurposed accordingly.
In addition, as a result of the connection drawn between the reconstructed classes and the
semantic point cloud, it is pertinent to note that the two types of representations could be
compared with each other, e.g., in terms of relative distances, in order to derive the extent
to which, for each class of elements, a quasi-conceptual (digitally reconstructed) model
deviates from the real data (e.g., from a point cloud acquired by survey). To this end, the
comparison of the two (real and ideal) models could lead to the construction of disparity
maps showing the variation, in space and time, of real (existing) architectural elements
compared to the relative ideal model (Figure 27). For instance, this study could enable
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further refinement of the model geometry or could have an impact on the study of the
evolution of an architectural style over time.
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The conceptual model of the 3D connection point cloud allows each element belonging
to a given class to be enriched with additional analytical or technical data. However, it
is worth noting that the transfer of localized information—that is, information related to
small portions of the model geometries—is not yet possible unless appropriate subdivisions
of the reconstructed surfaces are provided to connect the information at a higher level
of detail.

6. Conclusions

This work pointed at the automation of Scan-to-BIM workflows by combination of
semantic segmentation methods exploiting AI and graphical algorithm editors for 3D
modeling.

At first, geometry-based classification approaches are exploited to enable, to different
extents, the addition of a semantic label associated with the decomposition of the building
into recurring architectural elements. ML algorithms, implemented by suitably leveraging
manipulation, export and extraction of geometric and visual descriptors (features) from
raw 2D or 3D data, significantly reduce the brute annotation phase, lessening the space
for arbitrary and too subjective choices. However, user supervision, in terms of choice
of the training set and decision on which classes should be used to partition the digital
data, is crucial in determining the success of the classification and labeling process. In
addition, high performance computing machines are required in the feature extraction and
data-driven algorithm training phase. Moreover, mis-classification may occur in boundary
regions, as well as in regions with similar development (geometry-based approaches) or
with similar color characteristics or patterns (texture-based approaches). The generalization
of the same ML algorithm to other datasets, pertaining to different architectural types
and/or built in different periods, as well as the establishment of larger annotated datasets
to train deep neural networks, are possible future developments in this domain.

The semantically segmented point cloud is later exploited for the construction of a
reference model, composed of template geometries, following the logic of H-BIM type
information systems. The proposed procedure enables the reconstruction of Heritage-
Building Information Models starting from annotated 3D survey data. The reconstructed
H-BIM model preserves the semantic link with the semantically annotated point cloud, at
the level of the single classes of detected architectural components and can be leveraged
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for further enrichment with non-geometric (analytical, knowledge-related) information.
However, it is noted that the annotation process, although being trivial when referred to
the single architectural component, becomes tricky in cases of localized annotation.

Considering this aspect, future work could be focused on developing additional
possibilities of semantic structuring and transfer of more localized information, relying
on the definition of suitable tiling procedures of the template model geometries. These
experiments could be aimed at noting, inter alia, the presence of frescoes and decorative
parts, degradation phenomena, and crack patterns, repair and restoration interventions.

The integration of reconstructed H-BIM models and existing H-GIS systems, at the
urban and territorial scale, could even be the subject of future research.
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Figure A4. Confusion matrix and performance scores for the three case studies.
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