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ABSTRACT

We demonstrated that mild cognitive impairment (MCI) participants of the ADNI database (N=640)
can be discriminated into 3 coherent and neuropsychologically-defined subgroups. Our clustering
approach revealed an amnestic MCI, a mixed MCI and a false positive subgroup. Furthermore, we
investigated  the  neurobiological  foundation  of  these  automatically  extracted  MCI  subgroups.
Classification  modelling  exposed  that  specific  predictive  features  can  be  used  to  differentiate
amnestic and mixed MCI from healthy controls: CSF Aβ1-42 concentration for the former and CSF Aβ1-42

concentration, tau concentration as well as cortical atrophies (especially in the temporal and occipital
lobes) for the latter. In contrast, false positive participants exhibited an identical profile to healthy
participants  in  terms  of  cognitive  performance,  brain  structure  and  CSF  biomarker  levels.  Our
comprehensive data-analytics strategy provide further evidence that multimodal neuropsychological
subtyping is both clinically and neurobiologically meaningful.

HIGHLIGHTS

 Our clustering approach revealed an amnestic MCI, a mixed MCI and a false positive 
subgroup within the ADNI-defined MCI individuals.

 We investigated the neurobiological foundation of these neuropsychologically-defined MCI 
subtypes.

 Classification modelling exposed that specific predictive features can be used to differentiate 
amnestic and mixed MCI from healthy controls.

 However, a subgroup of ADNI-defined MCI individuals displayed a profile similar to healthy 
participants in terms of brain structure, CSF biomarker levels, and cognitive performance.

 These results suggest that neuropsychologically-defined MCI subtypes are neurobiologically 
grounded.
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INTRODUCTION

Mild  cognitive  impairment  (MCI)  is  considered  a  transitional  stage  between  normal  aging  and

Alzheimer’s disease (AD). There is evidence that around 10-15 percent of MCI patients progress to

AD  each  year,  compared  to  1–2  percent  in  the  healthy  older  adult  population (Alzheimer’s

Association 2019; Anderson 2019). However, there is considerable heterogeneity among the MCI-

diagnosed individuals and not all of them are at risk for developing AD dementia later in life. Some

patients  develop non-AD dementia or  other  neuropsychiatric  diseases  (Slot  et  al.  2019).  Others

remain stable  with  respect to neuropsychological  performance  (Overton,  Pihlsgård,  and Elmståhl

2019), or even revert to normal cognitive functioning (Thomas, Edmonds, et al. 2019). There is also a

high rate of  misdiagnosis  using conventional  diagnostic criteria  based on the DSM-5,  with many



‘false-positive’ MCI cases (Edmonds et al. 2019). This heterogeneity of MCI have led the researchers

to  place  great  emphasis  on  subtyping  or  risk  stratification  of  MCI  patients  to  identify  those  at

increased risk of developing AD and who constitute the optimal target population for therapeutic

interventions (Dams-O’Connor et al. 2021; Winblad et al. 2016).

A common subtyping approach is to classify MCI individuals based on their neuropsychological test

scores. Early on, MCI were staged into early and late MCI based on their level of impairment on one

memory measure,  with  the latter being  more impaired than the former.  This  “classical  criteria”

approach can be seen in the North American Alzheimer’s Disease Neuroimaging Initiative (ADNI) and

in other  samples  (eg., Jessen et al. 2014). This approach has proven to be useful for staging MCI

severity by demonstrating a higher risk of conversion to AD in individuals with late MCI compared to

those with early MCI. However, there are also a number of limits with this approach including the

unreliability  of  using a single neuropsychological  test  score to  form subgroups,  resulting in false

positive MCI cases (Edmonds et al. 2019; Thomas, Eppig, et al. 2019), as well as the low sensitivity for

detecting  non-amnestic  forms  of  MCI  (Jak  et  al.  2009).  Researchers  then  developed  a

“comprehensive  criteria”  from  which  multiple  subtypes  of  MCI  were  identified  based  on

performance on several tests covering a number of cognitive domains (eg., Clark et al. 2013; Jak et al.

2009;  Bondi  et  al.  2014).  They consistently  revealed an amnestic  subtype (impaired memory),  a

language  or  dysnomic  subtype  (impaired  language),  and  a  mixed  subtype  (impaired  memory,

executive function, attention, verbal fluency, and visuospatial function). It should be noted that, in

some studies, the dysexecutive subtype is distinguished from the mixed subtype, with memory being

affected only in the latter one;  while,  in other studies,  the mixed subtype is  alternately labelled

‘dysexecutive’  or  ‘mixed’  depending  on  the  authors,  even  when  referring  to  a  subgroup  with

substantial impairment in overall cognitive performance, including memory. In the present study, this

specific group will  be referred to as ‘mixed MCI’.  Interestingly,  the  mixed MCI subtype has been

repeatedly reported to have a higher rate of progression to AD dementia than the other subtypes.

More recently, this finding has been consolidated by studies that empirically derived the exact same



subtypes (i.e, amnestic and mixed) using cluster analysis performed on neuropsychological test data

(Machulda et al. 2019; Junquera et al. 2019; Blanken et al. 2020; Edmonds et al. 2016). 

Several studies further characterized the above neuropsychologically-defined MCI subtypes in terms

of their underlying AT(N) biomarkers, namely cerebrospinal fluid (CSF) beta amyloid deposition (‘A’)

and pathologic tau (‘T’), and neurodegeneration (‘N’) as assessed from structural MRI. The objective

using the AT(N) framework for AD research (Jack et al. 2016) was to better understand the potential

etiologic distinctions underlying the MCI subtypes. Overall, patterns of grey matter atrophy among

the MCI subtypes were found to correspond to their profiles of cognitive impairment. Amnestic MCI

individuals  were  reported  to  have  smaller  hippocampi  (He  et  al.  2009).  Medial  temporal  lobe

thinning was found in both the amnestic and dysnomic subtypes (Whitwell et al. 2007; Edmonds et

al.  2016).  Lateral  temporal  lobe atrophy was also found in the dysnomic subtype. A widespread

pattern of grey matter atrophy spanning parietal, temporal, and frontal regions was reported in the

mixed MCI subtype (Dickerson and Wolk 2011; Edmonds et al. 2016). Regarding CSF biomarkers (i.e.,

p-tau and Aβ1-42 level), the mixed subtype showed a greater proportion of individuals with positive

CSF AD biomarkers than the dysnomic and amnestic subtypes (Edmonds, Delano-Wood, Clark, et al.

2015). In sum, these results tend to support the idea that MCI subtypes are rather homogeneous in

terms of their biological and cerebral injury biomarkers. 

A recent  study  by  Kwak  and  colleagues  (2021) addressed  the  opposite  question as  to  whether

heterogeneity in brain atrophy patterns of MCI individuals could allow identification of biologically

and clinically meaningful subgroups. They reported one MCI subgroup in which the pattern of brain

atrophy resembled that of AD patients (MCI-AD) and another MCI subgroup in which grey matter was

similar  to  that  of  healthy  individuals  (MCI-CN).  The  rate  of  progression  to  AD  for  the  MCI-AD

subgroup was higher than for the MCI-CN. In terms of biological features, they reported marked

differences between MCI-AD and MCI-CN subgroups,  including especially  more elevated tau and

beta-amyloid burden in MCI-AD compared to MCI-CN. On the other hand, they found only a limited



degree  of  overlap  between  these  two  MRI-derived  (atrophy-centered)  subgroups  and  those

empirically derived from neuropsychological test scores, including the amnestic, dysnomic and mixed

ones.  Thus,  whether or  not  neuropsychological  profiles  of  patients  with  MCI  correspond to real

distinct biological subtypes is still an open question.

In the present study, we pursue the question of the correspondence between MCI subtypes derived

from neuropsychological assessment and their underlying patterns of neurodegeneration and CSF

biomarker composition. For this purpose, using the ADNI data (640 MCI individuals and 326 healthy

controls), we investigated the accuracy with which brain (i.e. grey matter) atrophy on the one hand

and CSF beta amyloid and tau levels on the other hand, can predict neuropsychological subtypes of

MCI.  If  predictive  models  derived  from  AT/N  biomarkers  perform  well  in  classifying

neuropsychological  profiles  of  MCI,  then  such  findings  will  provide  compelling  evidence  of

concordance between neuropsychological and neurobiological subtypes. More broadly, the study will

provide valuable information about the neuropsychological  and neurobiological  fingerprintings of

MCI,  and,  by extension, about the need (or not)  to profile patients on the basis  of  multi-modal

assessments.



METHODS

Participants

Data  used  in  the  preparation  of  this  article  were  obtained  from  the  Alzheimer’s  Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). Written informed consent was obtained

from all participants or authorized representatives participating in the study. For more information,

including  criteria  for  eligibility,  see  http://www.adni-info.org.  To  be  included  in  this  work,  each

participant must have a status of mild cognitive impairment (MCI) or cognitively normal (CN) .  CN

participants showed no signs of depression, mild cognitive impairment, or dementia. ADNI criteria for

MCI were : i) subjective memory concern as reported by the subject, their study-partner or clinician,

ii) abnormal memory function documented by scoring within education-adjusted ranges on delayed

free recall of Story A from the WMS-R Logical Memory II subtest, iii) Mini–Mental State Examination

(MMSE) score between 24 and 30, iv) global  Clinical  Dementia Rating (CDR) score of 0.5,  with a

Memory Box score of at least 0.5, and v) general cognition and functional performance sufficiently

preserved so that a diagnosis of AD could not be made. Included participants must also  have an

exploitable T1 scan (i.e.,  the image successfully passed the preprocessing steps as well  as visual

quality assessment), an exploitable level of CSF biomarkers (no missing or not-a-number quantity), as

well as an exploitable score on each questionnaire used in our study (no missing or not-a-number

scores). A total of 966 participants met these conditions and thus were included in our study. See

table 1 for more information.

Neuropsychological assessments

All MCI subjects in ADNI underwent a neuropsychological assessment at baseline (visit at one month

from the  screening  in  the  ADNI  protocol).  The  ADNI  database  provided  the  raw results  of  this

assessment. For our study, we selected a list of neuropsychological tests according to two criteria : i)

the test scores must not be missing and be a valid value, and ii) the test scores must have been used

in previous studies using clustering  (L. Q. Park et al. 2012; Edmonds et al. 2019) in order to allow



comparison of results. Neuropsychological test scores meeting these two criteria were included in

our analysis. These tests included three measures of language : Animal Fluency Test, Boston Naming

Test,  Naming  Object  and  Fingers  Task  of  the  Alzheimer’s  Disease  Assessment  Scale-Cognitive

Subscale /  ADAS-Cog  (Rosen,  Mohs, and Davis  1984),  two measures of  executive function :  Trial

Making Test: score A and score B minus A, two measures of visuo-spatial ability :  Constructional

Praxis Task and  Ideational Praxis  Task  of  the ADAS-Cog, and seven measures of  memory :  Word

Recognition Task of the ADAS-Cog, Logical Memory Scale II (Chelune, Bornstein, and Prifitera 1990),

and short delayed recall, long delayed recall, recognition, learning and forgetting items of the Rey

Auditory Verbal Learning Test -RAVLT- (Rey 1958). Neuropsychological test scores, for which a lower

score  represents  better  performance,  were  multiplied  by  minus  one,  so  that  a  higher  score

represents better performance. All scores were then transformed into z-scores by mean centering

and unit-variance scaling. 

Image acquisition

Processing: The structural brain image was acquired for all participants (n=966) with an anatomical

3D T1-weighted MPRAGE sequence. The sequence specifications of ADNI 1 session were TR = 3000

ms, TE =  3.6 ms, FoV = 192 × 192 mm2, flip angle = 8°, voxel resolution = 1.3 × 1.3 ×1.3 mm 3, and for

ADNI 2 session TR = 2300 ms, TE =  3 ms, FoV = 256 × 256 mm2, flip angle = 9°, voxel resolution = 1 × 1 

× 1 mm3.  The brain tissue was segmented into grey matter, white matter and cerebrospinal fluid.

Structural  MRI  data  were  preprocessed  using  SPM12

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)  toolbox  implemented  in  Matlab  2022a

(MathWorks,  Inc.,  Natick,  MA) to  derive voxel-wise grey matter volumes for each subject.  For a

precise spatial normalization into standard (MNI), the Diffeomorphic Anatomic Registration Through

Exponentiated  Linear  algebra  algorithm  (DARTEL)  (Klein  et  al.  2009) was  performed.   Standard

settings of SPM12 were used for the preprocessing steps (DARTEL normalization to the ICBM-152

template, affine and non-linear spatial normalization). The images were segmented into grey matter,

white  matter,  and  cerebrospinal  fluid,  and  modulated  with  Jacobian  determinants.  Finally,  the



modulated grey  matter  images  were smoothed with  an  8 mm isotropic  FWHM  Gaussian kernel.

Volume  extraction: Using  the  probabilistic  Harvard-Oxford  Cortical  Structural  lateralized  atlas

(RRID:SCR_001476)  available  from Scikit-learn  (Pedregosa et  al.,  2011,  using  the argument  'cort-

maxprob-thr25-2mm'), quantitative measures of grey matter volume were extracted within the 96

macroscopic brain structures labeled in this atlas in every participant. For the extraction of relevant

signal from the structural brain data, the total of 96 regions served as topographic masks to sum the

volume information across the voxels belonging to a given region. All  region-wise structural grey

matter  volumes  were  transformed  into  z-scores  by  mean  centering  and  unit-variance  scaling.

Variance explained by total intracranial volume (TIV) and age were regressed out based on a glm

approach (Friston et al. 1994).

Cerebrospinal fluid (CSF) biomarkers collection

The ADNI database provided the raw CSF levels of amyloid ß plaques (Aß1-42), total tau (tau) and tau

phosphorylated at threonine 181 (ptau). In this work, these 3 biomarkers levels were recorded for

each included participant. They were selected according to the AT(N) framework which was proposed

to differentially assess the likelihood of progression to AD dementia at the MCI stage. “A” refers to β-

amyloid deposition (Aβ1-42 ), “T” refers to pathologic tau, and “N” to neurodegeneration (Jack et al.

2016). More details of the CSF collection and measurements in the ADNI can be found in Shaw and

colleagues  (2009).  All  biomarkers  were  transformed  into  z-scores  by  mean  centering  and  unit-

variance scaling.

Identifying hidden group structure: hierarchical clustering

We applied  a  hierarchical  clustering  algorithm (agglomerative)  to  automatically  partition patient

neuropsychological  profiles  into  homogeneous  groups  using  the  standardized  (z-scored)

neuropsychological scores from all  MCI participants (n = 640).  Hierarchical  clustering is a general

family of clustering algorithms that build nested clusters by merging or splitting them successively

(Kärkkäinen et al.  2020).  This hierarchy of  clusters is  represented as a tree (or dendrogram, see

Figure 1). The root of the tree is the unique cluster that gathers all the samples, the leaves being the



clusters with only one sample. Here, agglomerative clustering was performed using a bottom up

approach: each observation starts in its own cluster, and clusters are successively merged together.

The  metric  used  for  the  merge strategy  was  the  sum of  squared differences  within  all  clusters

(Ward’s method), which here was minimized. It is a variance-minimizing approach and in this sense is

similar to the k-means objective function but tackled with an agglomerative hierarchical approach. In

contrast  to  previous  approach,  agglomerative  clustering  is  a  method  identifying  one-to-many

mappings  (Bzdok  and  Yeo  2017):  each  patient  is  a  member  of  exactly  one  group.  We  used

"NbClust"(Charrad et  al.  2014),  an established R  package that  simultaneously  applied  30 cluster

validity metrics. This approach provided complementary indications on the number of groups most

supported by the patient data. That is, several clustering schemes were evaluated while varying the

number of clusters, to help determining the most appropriate number of clusters for our dataset.

These metrics included for example the Duda index, the C-index, and the Gamma index. Please, see

the reference above for the full list of metrics. Among the 30 metrics and according to the majority

rule,  the  best  number  of  clusters  was  3.  Therefore,  three  groups  of  patients  with  distinct

neuropsychological profiles were automatically extracted as it provided a useful fit to our clinical

sample.

Risk ratio of developing Alzheimer

Risk ratio (RR) was used to assess the risk of developing Alzheimer disease in each extracted MCI

subgroups compared to controls. RR was defined as :  RR = Cle / Clu where Cle is the cumulative

incidence in the exposed group (i.e., each MCI subgroup), and Clu is the cumulative incidence in the

unexposed goup (i.e., the control group).

Machine learning prediction of cluster membership from structural brain measures

The relative importance of grey matter volumes to predict membership in each MCI cluster versus

control  group  was  analyzed  capitalizing  on  a  pattern-learning  algorithm  L2-penalized  logistic

regression  (Hastie  et  al.  2009).  Unlike  the  common  logistic  regression,  the  L2-penalized logistic

regression variant has an additional constraint used to reduce the chances of overfitting, which can



render the models' prediction of future observation unreliable. The L2-penalized logistic regression

estimated the separating hyperplane (i.e.,  a linear function) yielding out-of-sample accuracies for

distinguishing between MCI patients of each cluster and healthy participants. Model-fit and accuracy

estimation were carried out as a 5-fold cross-validation procedure. Class imbalance, if present, was

handled by changing the class-weight of the scikit-learn logistic regression API. The “balanced” mode

uses  the  class  membership  to  automatically  adjust  weights  inversely  proportional  to  class

frequencies. The outcome to be predicted was defined by being healthy (0) or being an MCI patient

from one of the three extracted clusters (1). In other words, three models were adjusted using grey

matter  volumes  as  input  with  a  first  model  predicting  cluster-derived normal  versus  controls,  a

second model predicting amnestic MCI versus controls, and a third one predicting mixed MCI versus

controls. This way of engineering transformed a four-class problem into 3 two-class problems. In

sum, this quantitative investigation detected if grey matter volume would be predictive of cluster

belonging.

Machine learning prediction of cluster membership from CSF biomarkers measures

In order to allow for results comparison, the same algorithm was used in the previous setting and this

one. This time, the L2-penalized logistic regression used three CSF biomarkers level (Aß1-42, t-tau and

p-taup181)  as feature input to estimate the separating hyperplane for  distinguishing between MCI

patients  of  each  cluster  and  healthy  participants.  Again,  we  deployed  a 5-fold  cross-validation

procedure and handled class-imbalance if present.  The outcome to be predicted were exactly the

same as in the previous setting. That is, being healthy (0) or being an MCI patient from one of the

three extracted clusters (1). Thus, three models were adjusted using CSF biomarkers level as input

with  a  first  model  predicting  cluster-derived  normal  versus  controls,  a  second model  predicting

amnestic MCI versus controls, and a third one predicting mixed MCI versus controls. In sum, this

quantitative investigation detected if CSF biomarkers level would be predictive of cluster belonging.

Testing for significance



Three models based on grey matter volume and three other models based on CSF biomarkers level

were conducted separately.  Statistical  significance for weights in each of the 6 final  models was

assessed based on (family wise error,  multiple-comparison  corrected)  p-values derived through a

rigorous non-parametric permutation approach using the model weights as the test statistic (Efron

2012; Nichols and Holmes 2002). Relying on minimal modeling assumptions, a valid null distribution

was derived for the achieved weights resulting from the logistic regression fit. In 1000 permutation

iterations, the input feature matrix (consecutively brain regions volume and CSF biomarkers level)

was held constant, while the class membership (control versus each clusters) underwent participant-

wise  random  shuffling.  The  empirical  distribution  generated  in  this  manner  reflected  the  null

hypothesis  of  random  association  between  the  input  features  and  class  membership  across

participants. The beta coefficients were recorded in each iteration. The p values were obtained given

the  distance  between  the  original  beta  values  and  the  mean  beta  values  obtained  during  the

permutation iterations. 

Testing for complex relationships among the grey matter volumes

L2-penalized  logistic  regression  (cf.  above)  selected the most  predictive ROI  volumes  for  cluster

membership. But this predictive algorithm is constrained to estimate  additive effects between ROI

volumes.  To  complement  the  regression model insights,  we  combined  exploration  of  more

sophisticated ROI-ROI relationships with the evaluation of prediction performance. In this way, we

tested  the  hypothesis  of  existing  non-linear  relationships  between  the  ROI  volumes  and  their

usefulness for prediction. 

The goal here was to assess that a non-linear model would not reach a higher accuracy than the

linear models in predicting mixed MCI cluster compared to controls. Note that we reported findings

of this analysis only in one setting. That is, input features defined as grey matter volumes, and class

defined as whether controls or MCI subjects belonging to the mixed MCI subgroup. given that in the

main analysis (using logistic regression),  only the accuracy between mixed MCI and controls was



significant. However, all the other results can be found in the additional  (Supplementary Figure 1).

We thus compared the performance of linear models to the performance of models able to exploit

non-linear  structure  in  the ROI  volumes  for  predicting  mixed  MCI  versus  control.  Model-fit  and

accuracy estimation were carried out using a 5-fold cross-validation procedure as implemented in the

previous analysis. Class imbalance was again handled by changing the class-weight of the scikit-learn

model API.  Three linear models (ridge regression, logistic regression, and support vector machine)

were  benchmarked  against  three  models  allowing  looking  for  non-linear  interactions  (k  nearest

neighbor,  random  forest  and  adaptive  boosting).  Note  that  we  used  the  default  regularization

parameter for each algorithm.

Among the linear predictive pattern-learning algorithms, the ridge regression is commonly used as a

shrinkage  method.  This  model  encourages  small  absolute  weights  on  each  ROI  volume  which

emphasized the most predictive ROI volumes, while linear support vector machines mapped the ROI

volumes as points in space so that volumes of separate categories (predictive of a mixed MCI or a

control  participant)  were  divided  by  a  maximal  gap  between the  individuals.  Given  that  similar

predictive ROIs were expected to emerge from these linear models, we also compared the obtained

coefficients in a supplementary analysis.

Regarding  the  non-linear  models,  the  k  nearest  neighbor  estimator  uses  the  k  closest  training

examples (in our case, the closest participant brain structure) in the feature space, while the output

is determined by a majority vote across these most similar training examples. In other words, the

guessed class belonging (mixed MCI or control) for a given new participant can thus be derived from

the  brain  structure  of  the  k  closest  participants  in  the  training  set.  Further,  the  random forest

algorithm is an ensemble learning method that operates by constructing a multitude of decision

trees and outputs its prediction estimate that is the committee decision across all trees. The cluster

belonging for a given patient was thus derived based on the most consistently predicted outcome of

the built decision trees. As the last non-linear prediction algorithm, the adaptive boosting algorithm

starts by fitting a model on the dataset and then fits additional copies of that model on the same



dataset  but where the weights of incorrectly judged instances are adjusted such that subsequent

fine-tuning of models focusses more on difficult cases.

Code availability

Python was selected as the scientific computing engine. Scikit-learn (Pedregosa et al., 2011) provided

efficient, unit-tested implementations of state-of-the-art statistical learning algorithms (http://scikit-

learn.org).  All  analysis  scripts  of  the  present  study  are  readily  accessible  to  the  reader  online

(https://github.com/JLefortBesnard/MCI_cluster_prediction).



RESULTS

Identifying hidden group structure: hierarchical clustering

To explore  distinct subgroups related to cognitive test assessment patterns among MCI patients,

each patient was automatically assigned to one dominant symptom constellation based on a number

of cognitive tests. This data-driven exploration exposed 3 distinct symptom clusters (see Figure 1a

and 1b) grouping the MCI patients: a mixed MCI subgroup (294 MCI patients) harbored low scores at

almost every test (maximum 0.6 points on average), an amnestic MCI subgroup (207 MCI patients)

scored low only on test assessing memory (maximum 1 point on average),  and a cluster-derived

normal subgroup (139 MCI patients) included MCI patients with a scoring profile virtually identical to

controls (at least 1 point on average) except for one test, the logical memory scale II.  The three

subgroups were homogeneous in terms of sex and age (Supplementary Table 1).

Repartition of MCI patients developing Alzheimer

We examined the association between cluster memberships and AD. Compared to controls, only the

amnestic MCI and mixed MCI subtypes exhibited a higher propensity to develop Alzheimer with twice

as much risk for the mixed MCI subgroup (See Figure 2). The risk ratios for the amnestic and mixed

MCI subgroup were respectivelly  4.38 (p < 0.01) and 7.52 (p < 0.01).

MCI cluster prediction based on grey matter volume 

We explored the  hypothesis that grey matter volume may predict affiliation to MCI subgroups. A

regularized logistic regression was used to automatically identify regions of interest (ROI) with a high

discriminant value for distinguishing controls from each MCI subgroup (see Figure 3a and 3c). Our

analysis strategy revealed that only the mixed MCI subgroup was distinguishable from controls using

grey matter volume. The mean accuracy of the averaged GMV models, incorporating only structural

MRI data, was 72.13% with a standard error of 3.66%. There were 8 ROIs (p<0.05) that consistently

contributed to predicting mixed MCI. These ROIs included the left occipital fusiform gyrus (weight =

0.73), the right (weight = 0.93) and left (weight = 1.11) parahippocampal gyrus anterior, the right

cuneal  cortex  (weight = 0.58),  the left middle posterior  temporal  gyrus  (weight  =  1.05),  the left



occipital  pole  (weight  =  -1.10),  and  the  right  (weight  =  -0.84)  and  left  (weight  =  0.58)

parahippocampal gyrus posterior (see Figure 4a).

MCI cluster prediction based on CSF biomarkers level

We then analyzed the relative importance of the level of Amyloid-β 1 to 42 peptide (Aβ1-42), total tau

(Tau), and tau phosphorylated (PTau) for distinguishing controls from each MCI subgroup (see Figure

3a and 3b). Our findings indicated a significant prediction accuracy for discriminating both the mixed

MCI (71.60% +/- 4.67%) and amnestic MCI (63.42% +/- 5.19%) subgroup from controls. However, our

model did not perform better than chance to distinguish controls from the cluster-derived normal

subgroup. Only the weight associated with the level of  Aβ1-42 (coefficient = 0.40) was significant in

predicting  amnestic  MCI  patients  while  both  the  level  of  Aβ1-42  (coefficient  =  0.69)  and  Tau

(coefficient = -0.75) were significant in predicting mixed MCI patients (see Figure 4b).

Testing for complex relationships among ROI volumes to distinguish mixed MCI from controls

Here, we wanted to make sure that a regularized logistic regression was more appropriate to our

research setting than a model looking for non-linear effects. To test the hypothesis of existing non-

linear interaction between the ROI volumes, we compared the prediction performance of mixed MCI

compared to controls of different linear models (ridge regression, logistic regression, and support

vector machine) to the prediction performance of  different non-linear  ones (k nearest  neighbor,

random forest, and adaptive boosting) (Fig. 5). Furthermore, we directly compared significant ROI

weights obtained with the three linear models.

The  three linear  models  — support  vector  machine,  logistic  regression,  and  ridge regression  —

obtained on average a similar performance with respectively 71.12% (+/- 3.24), 70.96% (+/- 3.64),

and 72.42% (+/- 3.28) accuracy. Note that the tiny difference between our reported mean accuracy

with logistic regression in the main analysis (72.13%) and the mean accuracy of the logistic regression

in the benchmark analysis (70.96%) might be explained by the randomness in the cross validation

split  procedure  (training-testing  sets).  On  the  other  hand,  the  models  looking  for  non-linear



interactions—k  nearest  neighbor,  random  forest  and  adaptive  boosting—obtained  on  average

69.84% (+/- 4.34), 70% (+/- 3.24), and 67.74% (+/- 4.53). 

As a general observation, the mean accuracy for the linear models (71.5%) was on average higher

than the mean accuracy for the non-linear models (69.19%) in our sample. Furthermore, the variance

was higher for the non-linear model performances (average standard deviation: 4.21%) than within

the linear model performances (average standard deviation: 3.45%). These results suggest that the

ROI volumes are predominantly predictive for mixed MCI based on their additive effects. However, it

is important to note that our claim might be limited to the size of our sample. Indeed, non-linear

models such as adaptive boosting might keep learning and thus may predict better with more data

involved in the fitting. 

All examined linear models showed virtually identical prediction performance. As a next step, we also

wanted to evaluate the similarity of results (i.e, significant ROI weights)  obtained between these

three benchmarked linear models. Three ROI weights were systematically significant (Table 2). These

ROI included the left posterior middle temporal gyrus; the left anterior parahippocampal gyrus, and

the left occipital pole. Four ROI weights were reported as significant by the logistic regression and the

support vector machine including the right cuneal cortex, the right anterior parahippocampal gyrus,

the right posterior parahippocampal gyrus, and the left occipital fusiform gyrus. In other words, the

three linear  models  capitalized on virtually  similar  ROIs  to  discriminate  mixed MCI  from control

individuals. 



DISCUSSION

Our study uncovered three partitions of discrete neuropsychologically-based MCI profiles. The first

extracted MCI profile was similar to controls in terms of grey matter volumes, CSF biomarker levels,

neuropsychological tests scores, as well  as risk of developing Alzheimer’s disease. The two other

extracted MCI profiles showed regional grey matter volume reductions and abnormal CSF biomarker

levels,  allowing  their  discrimination  from  healthy  individuals,  and  were  also  more  at  risk  of

developing Alzheimer’s disease. These results support the conclusion that MCI subtypes derived from

neuropsychological test scores have relatively clear biological – grey matter volume and CSF features

– boundaries.  

Subtyping of the MCI individuals using neuropsychological test scores

Our  clustering  method revealed two distinct,  clinically  meaningful,  subgroups of  MCI  patients:  a

mixed MCI profile with low performance on memory, language, executive functioning, and visuo-

spatial function, and an amnestic MCI profile with memory being the only impaired domain. A third

profile also came out, with a neuropsychological profile similar to healthy participants. In general,

these latent profiles are consistent with those reported in a number of previous studies that also

applied clustering methods on  a standardized set of neuropsychological  tests measuring multiple

domains of cognitive functioning (Eppig et al. 2017; Bondi et al. 2014; Edmonds, Delano-Wood, Clark,

et al. 2015; Blanken et al. 2020). However, there are also studies that revealed additional profiles to

the above-mentioned core MCI profiles, including dysexecutive, visuo-spatial or dysnomic profiles

(Clark et al. 2013; Edmonds, Delano-Wood, Galasko, et al. 2015; Edmonds et al. 2016; Kwak et al.

2021). Factors that can explain such variations in the profiles are the criteria used to define MCI

(prior to the clustering analysis) as well as the set of neuropsychological test scores included in the

cluster analysis. For instance, in addition to the amnestic, mixed and cluster derived normal profiles,

Clark and colleagues (2013) also reported dysexecutive and visuo-spatial subtypes. However, in their

study,  to  be included as  MCI  was not based on the conventional  diagnostic criterion (as  in  our

present study), but instead on a specific criterion that required low performances on at least two



measures within a cognitive domain. In addition, they used items from the Wechsler Intelligence

Scale and Wechsler Memory Scale while we used items from the ADAS-cog for assessing visuospatial

functioning. Likewise, studies that reported dysnomic MCI subtype assessed language from animal

fluency and 30-items Boston Naming Test  (Kwak et al. 2021; Edmonds, Delano-Wood, Clark, et al.

2015), while we further included the Naming Object and Fingers Task of the ADAS-cog. An additional

factor that may explain discrepancies between studies is the stability of the chosen clusters. We used

multiple distance metrics (n=30, through the nbclust R package) to assess the most stable number of

clusters in our sample while a single metric is usually chosen in other studies. Accordingly, we are

confident that the choice of three clusters was the most consistent and optimal solution to get non-

overlapping homogeneous groups.  It  is  noteworthy that the higher  risk of  Alzheimer’s  dementia

observed in the mixed MCI subgroup^p compared to the amnestic MCI subgroup and the normal risk

level of the cluster-derived normal subgroup provided clinical validity to this clustering scheme. From

a the clinical standpoint, the existence of these MCI subtypes illustrates the problem of diagnosing

individuals on the basis of a single test in the memory domain, here the WMS-R Logical Memory Test

in the ADNI study. First, it places side by side individuals with memory deficits only and individuals

with multi-domain cognitive deficits, who are at different risk of progression to dementia. Second, it

leads to false positive MCI diagnoses. Accordingly, and in line with previous recommendations (eg.,

Thomas,  Eppig,  et  al.  2019;  Edmonds,  Delano-Wood,  Clark,  et  al.  2015a;  Jak  et  al.  2009),  MCI

diagnosis  should  include  a  multi-domain neuropsychological  assessment  and avoid  the ‘one test

equals one domain’ methodology.

Predictive value of regional grey matter volume to distinguish MCI patients from healthy individuals

We automatically  assessed the extent to which each MCI subgroup could be differentiated from

healthy participants based on regional grey matter volumes. Significant accuracy (72%) was obtained

only for predicting the mixed MCI subgroup compared with the healthy participants. This finding

suggests that the amnestic MCI subgroup and the cluster-derived normal subgroup have a brain

structure  more  similar  to  healthy  participants.  Whereas  the  similarity  of  regional  grey  matter



volumes in the cluster-derived normal MCI subtype and in the cognitively normal group confirms the

conclusion of previous studies drawn from cortical thickness (Edmonds et al. 2016; 2020; Blanken et

al. 2019; L. R. Clark et al. 2013), that between the amnestic MCI subgroup and healthy participants

may appear surprising. 

Edmonds and colleagues (2016; 2020) found cortical differences between these two populations (i.e.,

amnestic MCI and controls) in the medial and lateral temporal lobe regions bilaterally as well as in

some parietal and frontal  regions.  Machulda and colleagues  (2020) also found differences in the

medial temporal regions. Sun and colleagues (2019) reported decreased cortical thickness in medial

orbitofrontal, parahippocampal and precuneus in amnestic MCI individuals. The discrepancy between

these  findings  and  ours  is  presumably  due  to  difference  in  the  methodology.  Indeed,  previous

research  focused  on  differences  in  brain  structure  in  an  explanatory  fashion  (i.e.,  modeling  for

inference using statistical significance) whereas in our study, we sought to find predictive patterns

(i.e., modeling for prediction using cross-validation). In particular, there is evidence that successful

prediction is often associated with a significant p-value, but not vice versa  (Bzdok, Engemann, and

Thirion 2020). Hence, previous brain structure impairments reported in amnestic MCI individuals may

have rather poor predictive performance. Accordingly, brain structure should not be regarded as an

indicator of main importance to detect amnestic MCI. This proposal is further supported by other

studies, albeit with a rather small sample size (respectively 49 and 29 amnestic MCI), that used an

explanatory approach and found no differences in brain structure between amnestic MCI individuals

and controls (Xue et al. 2021; Yang et al. 2019). 

Regarding mixed MCI, a total of 8 ROIs with decreased grey matter volume significantly contributed

to the prediction performance. These ROIs included 3 regions from the occipital lobe, namely the left

occipital fusiform gyrus, the left occipital pole, and the right cuneal cortex, and 5 regions from the

temporal lobe including the right and left, anterior and posterior parahippocampal gyrus, and the left

middle posterior temporal gyrus. Note that the weights of 3 of these 8 ROIs (the left middle posterior

temporal  gyrus,  the  left  anterior  parahippocampal  gyrus,  and  the  left  occipital  pole)  were



systematically  significant  across  the linear  model  benchmark  analysis,  suggesting  a  more robust

predictive value for these 3 ROIs. Hence, atrophy in temporal and occipital regions had predictive

value for delineating mixed MCI individuals from healthy participants. While widespread atrophy of

temporal regions is a typical finding in mixed MCI (Edmonds et al. 2020; 2016; Machulda et al. 2020;

Kwak et al. 2021; Johnson et al. 2010; Junquera Fernández et al. 2020; Ghosh, Libon, and Lippa 2014),

occipital  regions  are  usually  only  marginally  affected  in  these  individuals.  Indeed,  it  is  generally

accepted so far that atrophy of the occipital cortex is characteristic of the later stages of Alzheimer’s

disease (Braak & Braak, 1991). Furthermore, impaired perfusion of the occipital lobe was proposed

as a determining marker of dementia with Lewy bodies but not really of Alzheimer’s disease (Hanyu

et al. 2006; Prosser, Tossici-Bolt, and Kipps 2017). Hence, a striking and novel result of our study is

that grey matter volume in occipital cortex is affected as early as the MCI stage. Interestingly, our

findings go well with a recent conclusion that loss of grey matter integrity in the lateral and medial

temporal  lobes  as  well  as  in  the  occipital  lobe  is  responsible  of  cognitive  decline  in  vulnerable

individuals that suffer the deleterious effects of elevated brain amyloid and poor vascular health

(Saboo et al. 2022). Hence, atrophy of the temporal and occipital lobes may be very valuable marker

of cognitively vulnerable individuals. On the other hand, the above-mentioned studies on mixed MCI

reported significant grey matter loss in parietal and frontal regions, which were not found to be

particularly predictively relevant in our study. Note that we emphasized our discussion on ROIs with

the highest  and most robust weights as automatically optimized by the model (i.e.,  L2-penalized

logistic regression). However, it is important to keep in mind that the model chose to shrink a ROI

coefficient because it brings little or no additional information on top of the other ROIs. Therefore,

ROIs with small weights may still be related to the outcome. Nevertheless, the 8 ROIs found to have a

significant weight in our study carried a substantial impact on distinguishing mixed MCI subjects from

controls. 

Predictive value of CSF biomarkers to distinguish MCI patients from healthy individuals



CSF biomarkers were useful to significantly differentiate (72% accuracy) between mixed MCI patients

and healthy participants.  In particular,  the weights associated to  the concentration of  Aβ1-42 and

concentration of total tau were significant. That is, these two features were repeatedly informative

for  telling  apart  both  groups.  In  patients,  the  concentration  of  Aβ1-42 was  lower  while  the

concentration of total tau was higher compared to controls.  CSF biomarkers were also effective to

significantly distinguish amnestic MCI from healthy individuals (63% accuracy). This time, only the

weight associated with the concentration of Aβ1-42 was significant, suggesting that the concentration

of Aβ1-42 was the most contributing feature for the prediction. Overall, these results are in line with

several  previous  studies  that  have  examined  biomarker  characteristics  in  empirically  derived

subtypes  of  MCI  and  concluded  that  MCI  patients  with  amnestic  or  executive  symptoms  have

amyloid brain pathology and neuronal injury (Bangen et al. 2016; Edmonds et al. 2016; 2021; Eppig et

al. 2017; Thomas, Eppig, et al. 2019; Edmonds, Delano-Wood, Clark, et al. 2015). Indeed, low CSF Aβ1-

42 level and high CSF tau level are strong predictors of the presence of pathologic amyloid plaques

and  neurofibrillary abnormalities in the brain (Tapiola et al. 2009). An important outcome of our

work is that total tau was found to be a significantly informative feature to separate mixed MCI, but

not amnestic MCI, from controls. Accordingly, both amnestic and mixed MCI subtypes would exhibit

amyloid  pathology  while  only  the  mixed  subtype  would  have  disrupted  neuronal  activity.  This

conclusion is also supported by a clinical interpretation of the concentrations of CSF Aβ1-42 and total

tau observed in our sample. In both subgroups, CSF Aβ1-42 concentration was less than the cutoff of

192 pg/ml that is commonly used to identify the presence of amyloid pathology (Shaw et al. 2009).

On the other hand, the cutoff of 93 pg/ml, which identifies disruption of neuronal activity (Shaw et al.

2009), was exceeded in the mixed subgroup only. Finally, it is also important to draw attention to the

fact that above and beyond the above-mentioned impaired levels of CSF Aβ1-42 and total tau in the

MCI subgroups, both MCI subgroups were at higher risk to develop AD. This suggests a link between



CSF  biomarkers  and  conversion  to  AD,  as  pointed  out  in  earlier  studies (Hansson  et  al.  2006;

Mattsson et al. 2009; Insel et al. 2018; Ortega et al. 2019; Park et al. 2019).

MCI subgroups as distinct MCI phenotypes or distinct stages along the course of Alzheimer?

The mixed MCI subgroup was distinguished from healthy individuals through structural brain atrophy

as well  as  CSF  Aβ1-42 and total  tau abnormal  levels,  while  the amnestic MCI  subgroup was only

separated  from  healthy  controls  through  CSF  Aβ1-42 abnormal  level.  Importantly,  mixed  MCI

individuals were at higher risk of conversion to Alzheimer disease than amnestic MCI individuals.

Overall, these findings do concur with the amyloid cascade model of AD progression in which Aβ

pathology  (as  measured  by  CSF  Aβ1-42 or  amyloid  PeT)  appears  first,  followed by  tau  pathology

(measured by CSF tau), then neuronal loss (measured by MRI) and then clinical symptoms (Jack Jr et

al. 2010; Jack et al. 2013). This model has received strong support over the years (Balsis et al. 2018;

Yasuno et al. 2021; Jack et al. 2010; van Rossum et al. 2012; Broadhouse, Winks, and Summers 2021;

Han and Shi  2016; Weiner et  al.  2015; X.  Yang,  Tan,  and Qiu 2012; Nettiksimmons et  al.  2014),

although not all findings align with it and alternative scenarios have emerged where Aβ deposition,

tau  pathology,  neuronal  degeneration  and  cognitive  loss  aligned  in  a  narrow  time  sequence

(Edmonds, Delano-Wood, Galasko, et al. 2015; Braak et al. 2013).  Hence, through the prism of the

amyloid cascade model, our MCI subgroups would rather represent distinct stages along the course

of AD, the disease progressing from the amnestic stage to the mixed stage. However, the question of

whether amnestic and mixed MCI subgroups merely reflect different stages along the course of AD or

correspond  to  distinct  MCI  phenotypes  could  only  receive  a  definite  answer  by  examining

longitudinal data from the two subgroups. This could hopefully be achieved in future research.  

LIMITATIONS

It is important to note that data from the ADNI 1 were acquired from a 1.5 T scanner while data from

the ADNI 2 were acquired from a 3T scanner. It is an ongoing debate if scans acquired from different

scanners  can  be  merged.  Many  studies  reported  highly  reproducible  correspondence  between

volumes (Roche et  al,  2013; Ho et  al,  2010) while other studies suggested different methods to



increase  consistency  across  field  strengths  (Keihaninejad  et  al  2010).  Here,  we  have  made  the

decision  to  similarly  preprocess  all  scans.  Additionally,  we  only  used  grey  matter  volume  as

neuroimaging data, other measure can be of interest such as tractography, white matter, cortical

thickness, and so on. Another limitation of our study includes the use of one dataset (i.e., ADNI).

ADNI is not a population-based study and there are strict inclusion and exclusion criteria for selection

of participants, which can affect generalizability of our findings. Therefore, validating our models and

outcomes in other population-based studies and clinical trials’ data would be an important next step.

CONCLUSION

In  summary,  our  research revealed 3  latent  subgroups  underlying  MCI  participants  of  the ADNI

database:  an amnestic  MCI,  a  mixed MCI  and a false positive subgroup.  Leveraging  on machine

learning,  our  findings  further  suggest  that  MCI  subtypes,  extracted  from  multimodal

neuropsychological approach, have proper biological and neurological characteristics. As such, our

findings  pave  the  way  to  fine-grained,  biologically  and  neurologically  meaningful  MCI  diagnosis.

Finally, our results suggested that AD progression may start affecting memory and CSF biomarkers,

followed by an alteration of brain structure and of the other cognitive functions. As such, multimodal

neuropsychological  subtyping,  in  addition  to  being  clinically  meaningful,  is  also  biologically  and

neurologically  meaningful.  Furthermore,  our  results  suggested  that  AD  progression  may  start

affecting memory and CSF biomarkers, followed by an alteration of brain structure and of the other

cognitive functions.
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Figure 1: automatic extraction of 3 MCI clusters
Three subgroups were extracted from a cohort of 640 MCI patients. 
Polar  plot  (a)  shows  the  Z  score  for  each  neuropsychological  test  included  in  the  clustering
procedure.  The  grey  lines  represent  each  extracted  cluster  (from  darker  to  lighter:  mixed  MCI,
amnestic MCI and  cluster-derived normal) while the dotted black line represent the Z score of the
controls. A higher score represents a greater performance. 
Dendrogram (b) shows the best clustering scheme, 3 subgroups according to 30 metrics, extracted
from a hierarchical clustering based on a cohort of 640 MCI participants.
In sum, within the MCI diagnosed participants, we could extract three very specific subtypes, the
mixed MCI subtype scoring low at almost every test, the amnestic MCI subtype, scoring low mostly
on  test  assessing  memory,  and  the  cluster-derived normal subtype,  scoring  mostly  like  controls
except for the logical memory scale II.



Figure 2: Risk ratio of MCI patients developing Alzheimer
Scatter  plot  (a)  displays  the  participant  first  and  second  component  of  a  PCA  analysis  on  the
neuropsychological  tests  included  in  our  clustering  analysis.  Note  that  this  PCA  analysis  was
computed for the sake of visualization only, however, more details about this analysis can be found
in the supplementary. 
The grey bar graphs (b)  display the risk ratio of developing Alzheimer disease in each extracted
subgroup compared to controls. The red dotted line represents a risk ratio similar to the control
group risk ratio. 
These results exhibit a higher propensity to develop Alzheimer for MCI patients in the mixed MCI and
amnestic  MCI  subgroups  with  twice  as  much  risk  for  the  mixed  MCI  subgroup.



Figure 3: MCI cluster prediction based on grey matter or CSF level
We explored the hypothesis that grey matter volume on the one hand, and level of Amyloid-β 1 to 42
peptide  (Aβ42),  total  tau  (tau),  and  tau  phosphorylated  (ptau)  on  the  other  hand  may  predict
affiliation to MCI subgroups. Note that all subgroups were extracted based on neuropsychological
test scores only, thus the CSF biomarkers and grey matter information did not take part into the
cluster extraction procedure.
Violin plots (a) display the generalization performance (test set) of the prediction using grey matter
volume (blue) and CSF biomarker level (orange) between controls and each MCI subgroup. The width
of the violins illustrates the density of the obtained performances. For instance, the shape of the first
blue violin plot  on the left side (skinny on each end and wide in the middle) indicates that the
obtained accuracies are highly concentrated around the median. The height of the violins indicates
the variability (i.e.,  range of the obtained accuracies).  Short  violins represent a slight while long
violins represent a substantial variability. A non-parametric test was applied to assess the (Bonferroni
corrected) significance of the accuracy, that is, to evaluate if such an accuracy could be obtained by
chance alone. The significant accuracies are represented with a black star.
The line graph (b) displays the mean (with the standard deviation) CSF biomarkers level (Aβ42, tau,
and ptau) per MCI subgroups as well as in controls.
The brains (c) indicates the grey matter quantity average difference between controls and each MCI
subgroups. The redder the area, the higher the atrophy compared to controls.
As a general observation, a better performance was achieved when dissociating mixed MCI from the
controls using grey matter volume, as well as when using CSF biomarkers level. However, the models
could not segregate cluster-derived normal from controls using these modalities. The amnestic MCI
subgroup was distinguishable  from the controls  based on CSF biomarkers  level  but not on grey
matter volume.



Figure 4: Map of coefficient for the predictions of controls versus each MCI cluster
Prediction of  controls  versus  mixed  MCI  subgroup membership  was  assessed  using  grey  matter
volume (a) or CSF biomarkers level (b) and using regularized logistic regression models. The colormap
on each glass brain (a) depicts the final coefficient value for each region of interest (roi). A non-
parametric test was computed to assess significance of the coefficients. That is, to evaluate if a high
coefficient was high only by chance or not. Significant rois are outlined in yellow. For each significant
roi, boxplots of the distribution of grey matter volume per subjects for controls (pink) and mixed MCI
(light  green)  are  displayed.  The  heatmap  (b)  displays  the  final  coefficient  value  for  each  CSF
biomarker, with significant biomarkers outlined in yellow.
In sum, 8 rois passed the (Bonferroni corrected) threshold and thus had a significant coefficient in
predicting mixed MCI versus controls based solely on grey matter volume. These rois are located
within the temporal and occipital lobes. Controls had on average more grey matter than mixed MCI
subjects in all these significant roi. 



Figure 5: Probing complex relationships among the ROI volumes.
We explored the hypothesis that more complex patterns may explain relationships between different
ROI volumes and thus be helpful to distinguish mixed MCI from controls. We thus compared the
predicting  performance  of  models  looking  for  additive  effects  (left  side)  to  the  prediction
performance of models looking for non-linear effects (right side). The transparent orange violin plots
display the in-sample accuracies (train set) while the plain orange plots display the generalization
performance (test set). The width of the violins illustrates the density of the obtained performances.
For instance, the shape of the first plain orange violin plot on the left side (skinny on each end and
wide  in  the  middle)  indicates  that  the  obtained  accuracies  are  highly  concentrated  around  the
median. The height of the violins indicates the variability (i.e.,  range of the obtained accuracies).
Short violins represent a slight while long violins represent a substantial variability. Linear models
including the ridge regression (Ridge L2), the logistic regression (LogReg L2), and the support vector
machine (SVM L2) are plotted on the left side of the dashed bar. Non-linear models including the k
nearest neighbor (kNN), the random forest (RandForest) and the adaptive boosting (AdaBoost) are
plotted on the right side. As a general observation, the plain orange violin plots of the linear models
indicate on average a better performance with less variance thus appear to be more adapted to this
setting. These results suggest that the ROI volumes are perhaps mostly  individually predictive as
much as this evidence is supported by dataset



Table 1: information about the included ADNI subjects

Diagnosis N total N male N female Age mean (SD) N ADNI 1 N ADNI 2

MCI 640 376 264 73.42(7,66) 374 266

CN 326 162 164 75,15(5.57) 211 115



Table 2: Significant ROI weights for the benchmarked linear models

  LogReg L2 SVM L2 Ridge L2

Left Middle Temporal Gyrus, posterior division 1,05 0,45 0,30

Right Cuneal Cortex 0,59 0,25  

Left Parahippocampal Gyrus, anterior division 1,11 0,42 0,35

Right Parahippocampal Gyrus, anterior division 0,93 0,39  

Left Parahippocampal Gyrus, posterior division 0,59    

Right Parahippocampal Gyrus, posterior division -0,84 -0,38  

Left Occipital Fusiform Gyrus 0,73 0,31  

Left Occipital Pole -1,10 -0,46 -0,29
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