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1 Introduction
The Electric Autonomous Dial-A-Ride Problem (E-ADARP) consists in scheduling a fleet

of Electric Autonomous Vehicles (EAVs) to provide ride-sharing services for customers that
specify their origins and destinations. The E-ADARP was first introduced by [1] as a problem
variant of the classical Dial-A-Ride Problem (DARP) defined in [2]. Although the E-ADARP
shares some constraints of the classical DARP, the E-ADARP differentiates in two aspects :
(i) a weighted-sum objective that minimizes both total travel time and total excess user ride
time, and (ii) the employment of EAVs and a partial recharging policy ; The first aspects (ii)
requires determining minimal-excess-time schedules for a feasible E-ADARP route, while the
second aspect complicates the feasibility checking process as en-route recharging needs to be
considered. Other E-ADARP features further increase the complexity of solving the problem.
These features include (a) the elimination of maximum route duration constraints due to the
autonomy of vehicles, (b) a minimum battery level that must be maintained at the end of the
route, and (c) limited visits to each recharging station.

This paper proposes a highly-efficient labeling algorithm that can be embedded in the Column
Generation (CG) approach to solve the E-ADARP. The original mixed integer programming
(MIP) model is decomposed by the Dantzig–Wolfe decomposition into a master problem
and pricing subproblems, which are formulated as Elementary Shortest Path Problems with
Minimizing Excess Ride Time (hereafter ESPP-MERT). To solve the problem, we first introduce
a fragment-based representation. Based on this representation, A novel approach is invoked
to abstract fragments to arcs while ensuring excess-time optimality. We then construct a new
graph that possesses all feasible routes of the original one, by enumerating all feasible fragments
and connecting them with depots and recharging stations in a feasible way. Routes with negative
reduced costs are generated by a customized labeling algorithm with strong dominance rules
and complex REFs. To demonstrate the performance of the proposed labeling algorithm, we
perform our labeling algorithm in CG on all existing E-ADARP instances and compare CG
results to best-reported results in [1, 5].

2 The ESPP-MERT Description
The problem is defined on a complete directed graph G = (V, A), where V represents the set

of vertices, and A denotes the set of arcs. V can be further partitioned into several subsets, i.e.,



V = N ∪ S ∪ O ∪ F , where N represents the set of all customers, S is the set of recharging
stations, O and F denote the set of origin depots and destination depots, respectively. The set
of all pickup vertices is denoted as P = {1, · · · , i, · · · , n} and the set of all drop-off vertices is
denoted as D = {n + 1, · · · , n + i, · · · , 2n}. The union of P and D is N , i.e., N = P ∪ D. Each
customer request is a pair (i, n + i) for i ∈ P and the maximum ride time for users associated
with request i is assumed to be mi. A time window is defined on each node i ∈ V , denoted as
[ei, li], in which ei and li represent the earliest and latest time at which the vehicle starts its
service, respectively. A load qi and a service duration si are also associated with each node
i ∈ V . For pickup node i ∈ P , qi is positive. For the corresponding drop-off node n + i, we
have qn+i = −qi. For other nodes j ∈ O ∪ F ∪ S, qj and sj are equal to zero. Vehicles are
assumed to be heterogeneous in terms of their maximum vehicle capacities (denoted as Ck)
and homogeneous in terms of battery capacities (denoted as Q). The travel time on each arc
(i, j) ∈ A is denoted as ti,j , and the battery consumption is denoted as bi,j . The recharging rate
at charging facilities is α. To avoid the numerical problem when calculating time and energy, we
define hi,j = bi,j/α to convert the battery consumption bi,j on arc (i, j) to the time needed for
recharging this amount of energy. Similarly, we can also convert the current energy level to the
time needed to recharge to this energy level. Let H denote the time required to recharge from
zero to full battery capacity Q. Partial recharging is allowed while a vehicle visits recharging
stations, and a minimum battery level γQ must be respected at destination depots, where we
analyze three different γ values, namely, γ ∈ {0.1, 0.4, 0.7}. Higher values of γ result in more
tightly constrained instances, which are harder to solve. The triangle inequality is assumed to
hold for travel times and battery consumption.

The ESPP-MERT consists in finding the minimum-reduced-cost route while satisfying the
following E-ADARP constraints :

1) Each route starts at an origin depot and ends at a destination depot ;
2) Pairing and precedence constraints for pickup and drop-off nodes ;
3) Time window constraints ;
4) Maximum user ride time constraints ;
5) Maximum vehicle capacity constraints ;
6) Maximum battery capacity constraints ;
7) Minimum battery level constraints at the destination depot ;
8) At-most-one visit to each recharging station ;
9) No passenger is onboard when the vehicle visits a recharging station ;
The reduced cost c̄ω for a route ω is formulated as :

cω −
∑
i∈V

θi,wλi (1)

where cω is the weighted-sum objective function value for a route ω, θi,w is the binary coefficient
that denotes whether node i is on ω, and λi is the associated dual variable values.

3 Forward Labeling Algorithm for the ESPP-MERT

The most challenging point of solving the ESPP-MERT is maintaining excess-time optimality
in the extension of labels. To handle this issue, we design a labeling algorithm by introducing a
fragment-based representation in Section 3.1, which ensures the minimum excess user ride time
being non-decreasing during the label extension. Our labeling algorithm includes two steps :
From Section 3.2 to 3.3, we construct a new sparser network Gsp by abstracting fragments to
arcs. In Gsp, we guarantee excess-time optimality for all arcs, and we prove that Gsp possesses
all feasible routes over the original graph G. Section 3.4 generates routes with negative reduced
costs by an efficient labeling algorithm with strong dominance rules over Gsp.



3.1 Representation of partial paths
To minimize the total excess user ride time for a partial path P, we first introduce the

battery-restricted fragment as in Definition 1 :

Definition 1. Assuming that F = (i1, i2, · · · , ik) is a sequence of pickup and drop-off nodes,
where the vehicle arrives empty at i1 and leaves empty at ik and has passenger(s) on board at
other nodes. Then, we call F a battery-restricted fragment if there exists a feasible route R of
the form :

(o, si1 , · · · , siv ,

F︷ ︸︸ ︷
i1, i2, · · · , ik, siv+1 , · · · , sim , f),

where si1 , · · · , siv , siv+1 , · · · , sim(v, m ⩾ 0) are recharging stations and o ∈ O, f ∈ F . In the
case of route R is feasible without a recharging station (i.e., v = m = 0), the battery-restricted
fragment is equivalent to the one defined in [4].

Based on Definition 1, each E-ADARP route can be regarded as the concatenation of battery-
restricted fragments, recharging stations (if required), origin depot, and destination depot.
Clearly, this representation guarantees the total excess user ride time for P being non-decreasing.
Meanwhile, it eliminates the need to determine the reduced cost at every node along P as we
can generalize a sequence of nodes to an arc when extending P by a fragment.

3.2 Abstracting fragments as arcs
In the labeling algorithm, a partial path is not fixed until reaching the sink node, which

introduces difficulty in ensuring excess-time optimality while maintaining feasibility. This
section solves this issue from another perspective : assuming a fragment F = {1, 2, · · · , m}
and any excess-time optimal schedule A is presented as a set of service start times over F , i.e.,
A = (A1, A2, · · · , Am). Based on our representation of paths, we only need to determine all
possible values of A1, Am for any excess-time optimal schedule A, such that we can maintain
excess-time optimality by restricting time windows at node 1 and node m. To calculate all
possible values of A1, Am, we introduce vehicle-waiting-time optimal schedules :

Definition 2. A vehicle-waiting-time optimal schedule B for a fragment F is defined as a set
of service start times Bi, i ∈ F that minimize the total waiting time of the vehicle waits at each
node along F (i.e.,

∑m
i=2[Bi − (Bi−1 + ti−1,i + si−1)]).

For a given fragment F , we determine the following two vehicle-waiting-time optimal schedules.
We show later in Theorem 1 that these schedules determine all possible values of A1, Am.

1. the “latest” vehicle-waiting-time optimal schedule Bl ;
2. the “earliest” vehicle-waiting-time optimal schedule Be.
Assuming that Bl

i is the service start time for schedule Bl at node i. Then, the arrival time
at each node i is Arri = Bl

i−1 + ti−1,i + si−1, 2 ⩽ i ⩽ m. The waiting time ∆i at node i is
calculated as ∆i = max{0, Bl

i − Arri}. Bl
i is defined inductively as follows :

1. Bl
1 = l1 ;

2. assuming Bl
i has been defined for i < v, we define Bl

v by :
(a) if the extension from node (v − 1) will not violate the time window constraint at node

v (i.e., Arrv ≤ lv), then we define Bl
v = max{ev, Arrv} ;

(b) Otherwise,
— if min

i<v
{0, Bl

i − ei} ≥ Arrv − lv, we can update the schedule at nodes 1, · · · , v − 1
by moving forward Arrv − lv. Then the extension from node (v − 1) to node v will
not violate the time window constraint. I.e., we update Bl

i as Bl
i − (Arrv − lv) for

i = 1, · · · , v − 1 and define Bl
v = lv ;

— Otherwise, there is no feasible schedule for {1, 2, · · · , v}, as the time window
constraint at node v is always violated.



After determining Bl on F , Be is determined by moving forward Bl on F by the maximum
amount of time that will not change the minimum vehicle waiting time. We denote the maximum
amount of time that Bl can be moved forward as

←
∆, which is calculated by taking the minimum

value among all the Bl
i − ei, that is :

←
∆ = min

i∈F
{Bl

i − ei}. Then, Be
i = Bl

i −
←
∆, i ∈ F .

Clearly, for any excess-time optimal schedule A of a fragment F , we can obtain A by moving
forward Bl by a certain amount of time δ if Be ̸= Bl. In case of waiting time generated, we
proved that the service start time of A is the same as Bl at the first and last node of the
fragment (Theorem 1). The proof is omitted due to the limit of space.
Theorem 1. Assuming that fragment F = {1, 2, · · · , m}, A is an excess-time optimal
schedule and Bl is the constructed latest vehicle-waiting time optimal schedule over F . Then
there exists δe, δl ≥ 0 such that :

A1 = Be
1 + δe, Am = Be

m + δe;
A1 = Bl

1 − δl, Am = Bl
m − δl.

Based on Theorem 1, restricting time windows at node 1 and node m to [Be
1, Bl

1] and [Be
m, Bl

m]
will include all excess-time optimal schedules on fragment F = {1, · · · , m}. Then we can
abstract F to an arc (1, m) such that :

1. the total travel time from 1 to m (denoted as t′1,m) is Bl
m − Bl

1 ;
2. the time window of node 1 is [Be

1, Bl
1] and [Be

m, Bl
m] for node m ;

3. the energy consumption from 1 to m is
m−1∑
i=1

hi,i+1 ;

3.3 Construction of a new sparser graph
In this section, we construct a new sparser graph Gsp by enumerating all feasible fragments

and abstracting them to arcs. To generate all feasible fragments, we start from each pickup
node and extend it in a feasible way, assuming that the initial battery inventory is Q. Then,
these “arcs” are connected to depots and recharging stations in a feasible way. Figure 1 shows
an example of constructing new arcs in Gsp. It should be noted that for two different fragments,
even though they have the same start node i+ and end node j−, we must treat them as two
different arcs in Gsp as they represent different fragments containing different sequences of
nodes and have different restricted time windows.

FIG. 1 – Example of constructing arcs in the new graph Gsp

Next, we work on the new sparser graph Gsp instead of G, as we show in Theorem 2 that
Gsp possesses all feasible routes over G.
Theorem 2. Let R be a route over graph G, and Rsp be the corresponding route over Gsp.
Then R is feasible if and only if Rsp is feasible.



3.4 Forward labeling algorithm
We develop a labeling algorithm on Gsp by extending the one proposed by [3] considering

features of the E-ADARP. We denote Li as the label associated with a partial path ends
with node i. The forward labeling algorithm extends labels from a source node ok ∈ O to a
sink node f ∈ F . Let a label associated with a partial path P from ok to current vertex i be
Li = {T cost

i , (T rchs
i )s∈S , T tMin

i , T tMax
i , T rtMax

i , T req
i }, the definition of each resource is described

as follows :
1. T cost

i : The reduced cost of the partial route until i ;
2. T rchs

i : The number of times recharging station s ∈ S is visited along partial path P ;
3. T tMin

i : The earliest service start time at vertex i assuming that, if a recharging station
is visited prior to i along the partial path, a minimum recharge (ensuring the battery
feasibility up to i) is performed ;

4. T tMax
i : The earliest service start time at vertex i assuming that, if a recharging station is

visited prior to i along the partial path, a maximum recharge (ensuring the time-window
feasibility up to i) is performed ;

5. T rtMax
i : In order to propagate the information along the path, we make the artificial

assumption that vehicles can be recharged at all vertices. But in reality, the vehicle will
never go to the recharging station when passengers are on board. With this assumption,
T rtMax

i denotes the maximum recharging time required to fully recharge at vertex i if a
recharging station is visited prior to i along P , a minimum recharge (ensuring the battery
feasibility up to i) is performed ;

6. T req
i : The set of visited and unreachable requests until i along partial path P . A request

is said to be unreachable if time window constraints are violated if visited.
We extend a label Li = {T cost

i , (T rchs
j )s∈S , T tMin

i , T tMax
i , T rtMax

i , T req
i } along arc (i, j) of Gsp

using Resource Extension Functions (REFs) in [3]. The label feasibility is checked via the
following proposition :

Proposition 1. The route R is feasible if and only of ∀j ∈ R, the label Lj satisfies :

T tMin
j ⩽ Bl

j , T tMin
j ⩽ T tMax

j , T
reqp

j ⩽ 1, ∀p ∈ P, T rtMax
j ⩽

{
(1 − γ)H, j ∈ F

H, otherwise

If j is a recharging station, then T
rchj

j ⩽ 1 must be satisfied. In case of a feasibility violation,
the corresponding label will be discarded. The following dominance rules are applied for two
labels associated with the same node.

Definition 3. Let Lk = {T cost
i , (T rchs

j )s∈S , T tMin
i , T tMax

i , T rtMax
i , T req

i }, k ∈ 1, 2 be two labels.
Assume that the partial path associated to L1 and L2 are P1 and P2, respectively, and P1, P2
end at the same node. L1 dominates L2 if and only if :

T r
1 ⩽ T r

2 , ∀r ∈ {cost, rch, tMin} (2)

T req
1 ⊆ T req

2 (3)

T rtMax
1 − (T tMax

1 − T tMin
1 ) ⩽ T rtMax

2 − (T tMax
2 − T tMin

2 ) (4)

T rtMax
1 − (T tMax

2 − T tMin
1 ) ⩽ T rtMax

2 (5)

The last two conditions are equivalent to the requirement that : for every service start time
T2 ∈ [T tMin

2 , T tMax
2 ], there exists a service start time T1 ∈ [T tMin

1 , T2] such that T rtMax
1 − (T1 −

T tMin
1 ) ⩽ T rtMax

2 − (T2 −T tMin
2 ). In other words, we can always find a service start time T1 ⩽ T2

that consumes not more energy.



4 Results and Discussion
The proposed labeling algorithm has been embedded in the CG approach to solving the

E-ADARP. The obtained CG results are compared to the best-reported results in [1] and [5].
We summarize all results in Table 1, where #opt, #bestlb, and #bestub denote the number of
times the respective algorithm provides optimal solutions, the best lower bound/integer solution
of all considered algorithms, respectively. B/F denotes the ratio between the number of best
solutions obtained and the number of feasible solutions obtained. LB% is the gap between the
obtained lower bound and the best-obtained integer solution among all considered algorithms.

On small-to-medium-sized instances (type-a and -u instances), Our CG algorithm optimally
solves 50 out of 84 instances and generates high-quality lower bounds with a 0.31% average
deviation to the best-known solutions. We obtain 40 equal lower bounds and 24 better lower
bounds than those reported in [1]. The overall quality of the lower bound is improved by 1.33%
on average. In addition, we provide 10 new optimal solutions on previously solved and unsolved
instances. As [1] does not test type-r instances (large-scale instances with up to 8 vehicles and
96 requests), we compare CG results to the best-reported heuristic results of [5]. We report
14 better solutions (5 of them are optimal) as well as 17 lower bounds. Hence, we prove the
performance of our labeling algorithm.

type-a and -u instances results summary
CG with labeling algorithm Best-reported results [1]

scenario #opt #bestlb LB% B/F avg.time(s) #opt #bestlb LB% B/F avg.time(s)
γ = 0.1 21 23 0.10% 25/28 1154.12 23 23 1.17% 26/28 1502.83
γ = 0.4 20 22 0.13% 26/28 1382.65 19 19 1.84% 21/27 1701.36
γ = 0.7 9 20 0.71% 20/26 2454.04 11 15 1.93% 14/19 3965.85
Overall 50 64 0.31% 71/82 1663.60 53 57 1.64% 61/74 2390.01

type-r instances results summary
CG with labeling algorithm Best-reported results [5]

scenario #opt #bestlb #bestub B/F avg.time(s) #opt #bestlb #bestub B/F avg.time(s)
γ = 0.1 3 10 8 8/10 9423.78 0 NA 2 2/10 981.36
γ = 0.4 2 7 6 6/8 9974.08 0 NA 3 3/9 1368.13
Overall 5 17 14 14/18 9698.93 0 NA 5 5/19 1174.74

TAB. 1 – Results summary of CG algorithm on all benchmark instances

Our labeling algorithm offers new insights into designing an exact algorithm for solving a
practical version of the electric DARP. One important “by-product” of our labeling algorithm
is an exact and efficient schedule optimization method that can determine the excess-time
optimal schedule for a given E-ADARP route. This is the first time that excess user ride time
minimization is handled exactly in the E-ADARP. This schedule optimization method can also
be applied to DARPs with multiple objectives, where total excess user ride time is minimized.
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