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The Bidirectional Encoder Representations from Transformers (BERT) architecture

o�ers a cutting-edge approach to Natural Language Processing. It involves two

steps: 1) pre-training a language model to extract contextualized features and 2)

fine-tuning for specific downstream tasks. Although pre-trained language models

(PLMs) have been successful in various text-mining applications, challenges remain,

particularly in areas with limited labeled data such as plant health hazard detection

from individuals’ observations. To address this challenge, we propose to combine

GAN-BERT, amodel that extends the fine-tuning process with unlabeled data through

a Generative Adversarial Network (GAN), with ChouBERT, a domain-specific PLM.

Our results show that GAN-BERT outperforms traditional fine-tuning in multiple text

classification tasks. In this paper, we examine the impact of further pre-training on the

GAN-BERT model. We experiment with di�erent hyper parameters to determine the

best combination of models and fine-tuning parameters. Our findings suggest that

the combination of GAN and ChouBERT can enhance the generalizability of the text

classifier but may also lead to increased instability during training. Finally, we provide

recommendations to mitigate these instabilities.
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1. Introduction

Climate change is causing massive yield losses due to the disruption of cycles and the

emergence of crop-affecting pests and plant diseases (Massod et al., 2022). More pest attacks may

occur than that reported earlier, and their population may increase due to warmer temperatures.

The CO2 level and lower soil humidity can also affect the nature of plant diseases (Mozaffari,

2022). To tackle the emerging risks and increasingly unpredictable hazards acting as a menace

to crops and plants, precision agriculture emerges as an alternative–or improvement–to existing

agricultural practices. Indeed, researchers have experimented with technological innovations to

find solutions to some specific goals, such as predicting the climate for agricultural purposes

using simulation models (Hammer et al., 2001), improving the efficiency and effectiveness of

grain production using computer vision and Artificial Intelligence (Patrício and Rieder, 2018),

studying and evaluating soils with drones (Tripicchio et al., 2015), and collecting real-time

data from the fields using sensors following the IoT and cloud computing paradigms (Patil

et al., 2012). Although the application of these technological innovations produces important

results, we suggest that the current observation data from precision agriculture cannot represent

all forms of agricultural environments, especially small farms. Recently, the idea of how to

encourage the participation of farmers to share their knowledge and observations is drawing

the attention of researchers (Jiménez et al., 2016; Kenny and Regan, 2021). Indeed, new studies

show that social media might enable farmers to reveal different aspects of their world and to

share their experiences and perspectives among colleagues and non-farming audiences (Riley

and Robertson, 2021).
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The role of social media such as Twitter in farmer-to-farmer

and in farmer-to-rural-profession knowledge exchange is increasing,

and it suggests that their use among rural professionals and

farmers is evolving with open participation (creating contributions),

collaboration (sharing contributions), and fuller engagement (asking

questions and providing answers/replies) dominating one-way

messaging (new/original contributions) (Phillips et al., 2018).

Following the social sensing paradigm (Wang et al., 2015),

individuals—whether they are farmers or not- have more and more

connectivity to information while on the move, at the field level. Each

individual can become a broadcaster of information by posting real-

time hazard observations in social media. Indeed, Twitter enables

farmers to exchange experience with each other, to subscribe to

topics of interest using hashtags, and to share real-time information

on natural hazards. Compared to paid and specialized applications,

information on Twitter, presented in the form of text, image, sound,

video, or a mixture of the above, is more accessible to the public

but less formalized or structured. More and more farmers get

involved in online Twitter communities by adding hashtags on their

publications to categorize their tweets and help others find them

easily (Defour, 2018). Some hashtags are #AgriChatUK1, #FrAgTw2,

and #Farming365.

Still, the extraction of useful plant health information from social

media poses some challenges, including lack of context, irrelevancy,

homographs, homophones, homonyms, slangs, and colloquialisms.

In an earlier study, we developed ChouBERT (Jiang et al., 2022)

to detect farmers’ observations from tweets for pest monitoring.

ChouBERT takes a pre-trained CamemBERT (Martin et al., 2020)

model and further pre-trains it on a plant health domain corpus

in French to improve the generalizability of plant health hazards

detection on Twitter. Some potential applications of ChouBERT are

as follows:

• The annotation and indexing of the key elements of plant health-

related events in the text, including named entity recognition,

entity linking, and relation extraction.

• Topic modeling for detecting emerging issues from a collection

of texts.

• Natural language inference for finding precursors of pest attacks.

In this article, we explored the combination of GAN-

BERT (Croce et al., 2020) and further pre-training with ChouBERT.

We present a discussion on the results and perspectives of

this combination on the text classification task for plant health

hazard detection.

2. Background

2.1. Pre-trained language models

Pre-trained language models (PLMs) are deep neural networks

of pre-trained weights to vectorize sequences of words. Such

vectorial representations obtain state-of-the-art results on NLP

tasks, such as text classification, text clustering, question-answering,

and information extraction. PLMs suggest an objective engineering

1 http://www.agrichatuk.org

2 https://franceagritwittos.com

paradigm for NLP: language model pre-training for extracting

contextualized features from text and fine-tuning for downstream

tasks. BERT (Devlin et al., 2019) is a PLM introduced in 2018 by

Google that led to significant improvements in this field. BERT is pre-

trained in two stages: first, a self-supervised task where the masked

language model (MLM) must retrieve masked words in a text; and

second, a supervised task where the model must refind whether a

sentence B is the continuation of a sentence A or not (next-sentence

prediction, NSP). The pre-training produces in the end 12 stacked

encoders which take a sequence of tokens as input and add a special

token “[CLS]” at the beginning of the sequence and a “[SEP]” at

the end of each sentence, and calculates a fixed-length vector for

each token. Each dimension of these vectors represents how much

attention that token should pay to the other tokens. For the text

classification task, the vector of “[CLS]” represents the whole text.

Among the French varieties of BERT, CamemBERT (Martin et al.,

2020) is a model based on the same architecture as BERT but trained

on a French corpus with MLM only. ChouBERT (Jiang et al., 2022)

takes a pre-trained CamemBERT-base checkpoint and further pre-

trains it with MLM over a corpus in French in the plant health

domain to improve performance in detecting plant health issues from

short texts, particularly, from Twitter.

2.2. Generative adversarial networks

Generative Adversarial Networks (GANs) (Goodfellow et al.,

2014; Wang et al., 2017) are a family of neural networks that can

be commonly divided into two antagonistic parts: a generator and a

discriminator, which compete during training. The generator aims to

mimic real data by transforming noise, while the discriminator aims

to determine if the data are real or produced by the generator. The

discriminator’s classification results then feed the generator’s training

in turn. The training of GANs is known to suffer from the following

failure modes: gradient vanish, mode collapse, and non-convergence.

Gradient vanish occurs when the discriminator cannot give enough

information to improve the generator. Mode collapse occurs when

the generator gets stuck generating only one mode. Non-convergence

occurs when the generator tends to overfit to the discriminators

instead of reproducing the real data distribution.

Many variants of GANs are proposed to improve sample

generation and the stability of training. Some of these variants are the

conditional GANs (CGANs), where the generator is conditional on

one or more labels (Mirza and Osindero, 2014), and semi-supervised

GANs (Salimans et al., 2016) (SS-GANs), where the discriminator is

trained over its k-labeled examples plus the data generated by the

generator as a new label “k+ 1”(see in Figure 1).

2.3. GAN-BERT architecture

Generative adversarial network-bidirectional encoder

representations from transformers (GAN-BERT) (Croce et al., 2020)

extends the fine-tuning of BERT-like pre-trained language models

(PLMs) for text classification with a semi-supervised discriminator–

generator setting, introduced in the study by Salimans et al. (2016).

Let us project all the data points in a d-dimensional hidden space,

then the data vector h ∈ Rd. The generator GSSGAN is a multi-layer
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FIGURE 1

Training an SS-GAN architecture.

perceptron (MLP) that considers a noise vector as input and attempts

to mimic the PLM representation of real data. The discriminator

DSSGAN is another MLP that obtains either PLM representation of

real labeled and unlabeled data hR = PLM(x), hR ∈ Rd, or a faked

representation hG = g(noise), hG ∈ Rd, produced by GSSGAN as

input, converts the input vector to inner representation hD ∈ Rd,

and performs a multi-class classification. DSSGAN is trained over two

objectives: 1) the correct classification of real data into K classes from

labeled data (supervised learning) and 2) the distinction of generated

data from real unlabeled data (unsupervised learning).

We define pm(ŷ = y|x, y ∈ (1, ..., k)) as the probability given by

the model m that an example x belongs to one of the k target classes

and pm(ŷ = y|x, y = k+ 1) as the probability of x being fake data. Let

PR and PG denote the real data distribution and the generated data,

respectively. The loss function for training DSSGAN becomes:

LD = LDsup + LDunsup (1)

LDsup evaluates how well the real labeled data are classified:

LDsup = −Ex,y∼PR log[pm(ŷ) = y|x, y ∈ (1, ..., k)] (2)

LDunsup punishes the discriminator when it fails to recognize a fake

example or when it classifies a real unlabeled example to be fake. If

the discriminator is free to assign any of the k target classes to the

unlabeled data.

LDunsup = −Ex∼PR log[1− pm(ŷ = y|x, y = k+ 1)]

−Ex∼PG log[pm(ŷ = y|x, y = k+ 1)] (3)

As for the generator GSSGAN , Croce et al. (2020) defines the loss

function as:

LG = LGunsup + LGfeat
(4)

LGunsup penalizes GSSGAN when DSSGAN correctly finds

fake examples:

LGunsup = −Ex∼PG log[1− pm(ŷ = y|x, y = k+ 1)] (5)

Let fD(x) denote the activation that DSSGAN uses to convert

the input data to its inner representation hD. LGfeat
3 measures the

statistical distance between the inner representation of real data hDR

and the inner representation of generated data hDG .

LGunsup = ‖Ex∼PR f (x)− Ex∼PG f (x)‖
2
2 (6)

The PLM is part of the discriminator DSSGAN ; that is, when

updating DSSGAN , the weights of the PLM are also fine-tuned.

Moreover, at the beginning of each training epoch, the [CLS] vector

of real examples is recalculated by the updated PLM.

2.4. GAN-BERT applications

Generative adversarial network-bidirectional encoder

representations from transformers (GAN-BERT) has been assessed

on different datasets with different PLMs. The original authors of

GAN-BERT have applied it to English sentence-level classification

tasks, including topic classification, question classification (QC),

sentiment analysis, and natural language inference (NLI) with the

original BERT model (Devlin et al., 2019; Croce et al., 2020).

Later, MT-GAN-BERT (Breazzano et al., 2021) extends

GAN-BERT to a multi-task learning (MTL) architecture to

solve simultaneously several related sentence-level classification

tasks reducing overfitting. MT-GAN-BERT is assessed with

English and Italian datasets, using BERT and UmBERTo4,

respectively, for sentence embedding generation. The results of

3 In the PyTorch implementation of the feature reg loss, the authors use:

g_feat_reg = torch.mean(torch.pow(torch.mean(D_real_features, dim=0) -

torch.mean(D_fake_features, dim=0), 2)), which is not exactly the same as

the definition given by the article; however, according to other author’s

experiments and our experience, there is no significant impact on the training

result.

4 https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1
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MT-GAN-BERT show that GAN-BERT-based models outperform

BERT-based models with 100 and 200 labeled data. However,

the performance worsens when training GAN-BERT with 500

labeled data.

In the study of Ta et al. (2022), the authors applied GAN-

BERT for paraphrase identification. They propose to filter noises

in the labeled set to improve the performance and claim that,

for their use case, a lower learning rate helps the model to learn

better. However, a too-small learning rate makes the accuracy to

increase slowly. In the study of Santos et al. (2022), the authors

applied GAN-BERT with Portuguese PLMs to find hate speech

in social media. This study shows that text cleaning, including

removing users’ mentions, links, and repeated punctuation, improves

the performance of GAN-BERT-based classification. Finally, the

authors infer that GAN-BERT is nonetheless more susceptible

to noise.

In the study of Myszewski et al. (2022), the authors showed that

the combination of a GAN-BERT setting with a domain-specific

PLM BioBERT (Lee et al., 2019) outperforms the original GAN-

BERT on a sentiment classification task for clinical trial abstracts.

However, the authors do not compare the results with those of

PLM-only classification. They neither provide a detailed analysis

of the training. In this study, the authors presented 108 labeled

examples. The small number (23) of labeled samples in their

test set also makes the result unconvincing, which calls for more

studies to validate the combination of GAN-BERT and domain-

specific PLMs.

In the study of Danielsson et al. (2022), the authors studied

whether and how GAN-BERT can help in the classification of

patients bearing implants with a relatively small set of labeled

electronic medical records (EMRs) written in Swedish. In practice,

they further pre-trained a Swedish BERT model5 to provide the

[CLS] representations of 64 and 512 tokens to the discriminator of

GAN-BERT and perform experiments over varying training set sizes.

Their results show that combining GAN-BERT and a domain-specific

PLM improves the classification performance in specific challenging

scenarios. However, the effective zone of such scenarios remains to

be studied. The numerous applications of GAN-BERT witness its

capacity for fine-tuning PLM on sentence-level classification tasks in

a low resource setting. However, none of the works presented in this

section have studied the correlation between the labeled/unlabeled

data ratio and the performance of GAN-BERT or the impact of

using domain-specific PLMs. The lack of specifications for these

hyperparameters makes the GAN-BERT setting a black box to

newcomers and could lead to expensive grid search experiments

for optimization (Bergstra and Bengio, 2012). Furthermore, the

granularities of different classification problems are not comparable.

Therefore, it is unfair to compare the performances of GAN-

BERT plus the PLMs pre-trained in different languages or domains

over these tasks. In this study, we address these shortcomings by

applying the GAN-BERT settings to CamemBERT (Martin et al.,

2020), ChouBERT-16, and ChouBERT-32 and probing the different

losses over varying labeled and unlabeled data sizes to give more

insights into when and how to train GAN-BERT for domain-specific

document classification.

5 https://github.com/Kungbib/swedish-bert-models

3. Method

3.1. Data

Data annotation by domain experts is expensive and time-

consuming. Therefore, the main challenge of detecting natural

hazards from textual contents on social media is to identify unseen

risks with low resources for training. We reuse the labeled tweets

produced by ChouBERT (Jiang et al., 2022), tweets about corn borer,

barley yellow dwarf virus (BYDV) and corvids for training and

validation, and tweets about unseen and polysemous terms such

as “taupin” (wireworm in English) for testing the generalizability

of the classifier. Since the binary cross entropy loss adopted by

the discriminator of GAN-BERT favors the majority class when

data are unbalanced, for the different training experiments, we

sampled ChouBERT’s training data to 16, 32, 64, 128, 256, and 512

subsets, each subset having equal number of observations and non-

observations. We used the same validation data and test sets for all

the experiments. In the validation set, there were 79 observations and

213 non-observations; in the test set, there were 58 observations and

447 non-observations.

Among the data collected by ChouBERT, there is not only a

small set of labeled tweets but also many unlabeled tweets. For the

unsupervised learning, we have 12,308 unlabeled tweets containing

common insect pest names (other than those in the labeled data) in

France.We sampled 0, 1,024, 4,096, and 8,192 unlabeled data to study

the effect of adding unlabeled data.

3.2. Text classification with a pre-trained
language model

Following the study of Jiang et al. (2022), the ChouBERTmodels6

are further-pre-trained CamemBERT-base models over French Plant

Health Bulletins and Tweets and the ChouBERT pre-trained for 16

epochs (denoted as ChouBERT-16) and for 32 epochs (denoted as

ChouBERT-32) are the most efficient in finding observations about

plant health issues. Thus, in this study, we combine GAN-BERT

settings with CamemBERT, ChouBERT-16, and ChouBERT-32.

To make our state-of-the-art model, we fine-tune CamemBERT,

ChouBERT-16, and ChouBERT-32 for the sequence classification

task over the same training/validation/test sets by adding a linear

regression layer a to the final hidden state h of the [CLS] token to

predict the probability of a label o:

p(o|h) = softmax(Wah), (7)

WhereWa is the parameter matrix of this linear classifier.

During the training, the weights of the PLM are affected

along with Wa. We developed these experiments with

CamemBertForSequenceClassification of the transformer package7.

To make the probability outputs of this linear regression layer

comparable with the label outputs from the GAN-BERT classifier, we

fixed the threshold of 0.5. For the predicted probability greater than

0.5, we considered it as an observation, else as a non-observation.

It is worth mentioning that we used 0.5 as a threshold to simplify

6 https://huggingface.co/ChouBERT

7 https://huggingface.co/transformers/v3.0.2/
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FIGURE 2

PLM + GAN-BERT vs. PLM only with same training steps over varying sizes of training datasets.

the comparison with the PLM plus GAN-BERT classification. When

applying the PLM-only classification to other datasets in other

domains, we might need to find an optimal threshold depending on

the real needs for precision or recall. Based on the results presented

in the study of Jiang et al. (2022), we fixed the learning rate to 2e−5,

the maximum sequence length to 128, and fit the classifier for 10

epochs. We set the batch size to (training_data_size/8) to have the

same steps for the different training data sizes.

3.3. Experimental setup

For our experiments, we used GAN-BERT’s latest PyTorch

implementation,8 which is compatible with the transformer package.

We fixed the max sequence length of the PLM to 128. We fixed

the number of hidden layers in G and in D to 1 and the size of

G’s input noisy vectors to 100. We used the following learning rate

combinations (D,G): (5e-5, 5e-5), (1e-5, 1e-5), and (5e-6, 1e-6). We

applied the AdamW (Loshchilov and Hutter, 2017) optimizer with

and without a cosine scheduler. To limit the number of variables, we

8 https://github.com/crux82/ganbert-pytorch

conduct two groups of experiments. In the first group, we fixed the

batch size per GPU to 32 and epochs to 30. We trained the GAN-

BERT architectures over increasing labeled data sizes (16, 32, 64, 128,

256, and 512) and unlabeled data sizes (1,024, 4,096, and 8,192). In

the second group, we fixed the training steps of each (labeled and

unlabeled) pair by setting the batch size to (unlabeled_data_size/256).

Moreover in the second group, we trained the GAN without

unlabeled data. That is, in this group, the unsupervised learning

learns the features from labeled data only. We fixed the batch size to

4 and set epochs to (1, 024/train_data_size + log2(train_data_size))

to approximate the number of training steps in the experiments with

unlabeled data.

4. Results and evaluation

4.1. Overall metrics

As the validation set and the test set were unbalanced and that

our interest is to find out the observations, we plot the F1 score of the

observation class F1observation and the macro average F1 score of the
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FIGURE 3

PLM + GAN-BERT performance with fixed steps, training dataset sizes = 16, 32, 64, 128, 256, and 512.
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FIGURE 4

PLM + GAN-BERT performance with fixed batch size to 32, training dataset sizes = 16, 32, 64, 128, 256, and 512.
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FIGURE 5

A macroscopic view of the evolution of training losses, with labeled data sizes of 16 and 64 over 15 epochs. We fix unlabeled size to 4096, Learning rates

of the Discriminator and Generator to 5e-6 and 1e-6.

FIGURE 6

Training data set size = 16.

whole classification.

F1macro = (F1observation + F1non−observation)/2 (8)

Let us consider a dummy classifier as our baseline model.

If it predicts that all the examples in the validation set are non-

observations, the F1observation, F1macro, and accuracy become 0, 0.42,

and 0.73, respectively; if it predicts that all are observations,

the F1observation, F1macro, and accuracy become 0.43, 0.21,

and 0, respectively.

We present the overall results of the fixed-step experiments in

Figure 2, which are the most representative and stable. By comparing

the maximum F1 scores of each configuration during the training in

Figures 2–4, we believe the performance of the classifiers on both the
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FIGURE 7

Training data set size = 64.

validation and test sets to be continuous and relatively stable in a

period, once the training converges. In other words, overfitting will

not immediately cause huge drops. It is worth pointing out that, on

the unbalanced validation and test sets, the F1 score (the objective of

our classification task) and the binary cross entropy loss (the objective

of GAN-BERT’s training) are not completely aligned and may lead to

suboptimal convergence.

Compared to PLM-only classification, the PLM plus GAN-BERT

setting improves the scores over the validation and test sets of unseen

hazards with 32, 64, 128, and 256 training data. In Figure 3, we

depict the performance with varying unlabeled data sizes. In both

figures, we can see that the deep blue lines (ChouBERT-32) are above

the yellow lines (CamemBERT), which is clearly coherent with the

results presented in Jiang et al. (2022), indicating that pre-training

helps to improve generalizability. The representational similarity

analysis in Merchant et al. (2020) shows that “fine-tuning has a much

greater impact on the token representations of in-domain data” and

suggests fine-tuning to be “conservative.” In our experiments, we

did not observe that the SSGAN setting without domain unlabeled

data helps the model generalization for the identification of tweets

about upcoming unseen hazards. For small training data sizes, adding

unlabeled data helps to improve the performance on the test set,

but adding more unlabeled data consumes more computational

resources without making significant difference. We observe similar

phenomena in the fixed batch size group results in Figure 4, where

adding more unlabeled data brings more training steps per epoch and

eventually reduces the Lsup steadily within the same training epochs.

In all our experiments with 512 labeled data, PLM-only solutions

outperform PLM plus GAN-BERT solutions, while, in experiments,

with between 32 and 256 labeled data, PLM+GAN-BERT improves

the performance on the validation and test sets, which corresponds to

the results presented in Breazzano et al. (2021) and Danielsson et al.

(2022).

4.2. The instability of the GAN-BERT setting
with ChouBERT models

Even though the fine-tuning of pre-trained transformer-based

language models such as BERT has achieved state-of-the-art

results on NLP tasks, fine-tuning is still an unstable process.

Training the same model with multiple random seeds can result

in different performances on a task as described in the study

of Mosbach et al. (2021). This training instability is the reason why

we have not found the best labeled/unlabeled ratio to maximize

the performance. In Figure 5, we illustrate the training losses of

the discriminator and the generator when given different sizes

of labeled data with fixed unlabeled data size and learning rate.

The training with ChouBERT models has more difficulties to

converge than with CamemBERT. Thus, we explored the evolution

of different losses and the classifiers’ performance metrics on the

validation and test sets in Figures 6, 7, where the discriminators’

losses with ChouBERT-16 take more epochs to decrease

than with CamemBERT.

It is immediately clear that discriminators’ losses had the same

shape as Lsup. In particular, to present the evolution of LGfeat
at the

same scale as the other losses, we multiplied its value by 10 to draw

its line. Compared with ChouBERT-16, the Lsup had more difficulties

decreasing thanwith CamemBERT.We interpret the increase of LGfeat

as the generator catching up with the fine-tuning of PLM and the

decrease of LGfeat
toward its initial value as the end of the major

changes of fine-tuning.

According to the authors of SSGAN (Salimans et al., 2016),

“in practice, Lunsup will only help if it is not trivial to minimize

for our classifier and we thus need to train G to approximate

the data distribution,” which explains that, while the Lunsup of D

and G converge at the same rhythm with CamemBERT and with

ChouBERT-16, the troubled decrease of Lsup with ChouBERT-16
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renders worse F1 scores than those with CamemBERT. For example,

in the group with 16 training examples (see Figure 6), the test

F1observation scores with ChouBERT-16 are switching between 0 and

0.43, which means that the classifier predicts either all as non-

observation or all as observation. Considering the unbalanced nature

of our validation and test sets, all-observation predictions and all-

non-observation predictions are two local Nash equilibria for the

training of our SSGAN.

It is also remarkable that, in the group with 64 training

examples (see Figure 7), ChouBERT-16 gives better F1 scores than

CamemBERT in the early stages. However, after the bounces of Lsup,

despite the fine-tuning, helps it to decrease again, the F1 scores

are not as good as before because the effect of Lunsup is already

gone. We can also observe this phenomenon in the group with

32 training examples. Interestingly, when repeating the experiments

with the same hyperparameters, the “troubled decrease” of Lsup does

not always happen, but statistically, most of them can happen with

ChouBERT models, especially ChouBERT-16. Our strategies against

the “troubled decrease” include the following:

• Using a smaller learning rate with more training epochs at the

cost of computational resources (see Ta et al., 2022).

• Applying a smaller learning rate toG than toD (see Heusel et al.,

2017).

• Applying schedulers and down-sampling the majority class to

balance the training data–in our case, the upsampling proposed

by the original code of GAN-BERT does not help.

With the optimizationsmentioned above, Lsup with CamemBERT

decreases at a steady pace and “troubled decrease” happens less

often with ChouBERT models. When we examined the embeddings

of [CLS] produced by the PLM, we found that there is more

variance in each dimension of CamemBERT embeddings than in

each dimension of ChouBERT embeddings, before and after the

fine-tuning: VarCamemBERT > VarChouBERT−32 > VarChouBERT−16.

Thus, ChouBERT models produce more homogeneous encodings

than CamemBERT. This explains why ChouBERT embeddings are

more generalizable for detecting unseen hazards: the embeddings of

texts containing unseen hazards are more similar to those of seen

hazards, so the downstream classifier is more familiar with these

vectors. It also indicates that the differences between observations

and non-observations are more subtle in ChouBERT’s latent space.

Thus, the training of GANplus ChouBERT needs lower learning rates

to converge, while GAN plus CamemBERT is a robust approach to

converge in most configurations.

5. Conclusion

In this article, we demonstrate that combining further-pre-

trained language models and GAN-BERT benefits from the

generalizability of the domain-specific PLM to classify unseen

hazards. We also demonstrate that training such a combination may

also suffer from extra instabilities compared to using GAN-BERT

with CamemBERT, a general PLM.Our results validate that the GAN-

BERT setting improves the task of natural hazard classification for

datasets containing between 32 and 256 instances of labeled data.

Based on our experimental studies, we give our suggestions to

reduce the instability such as: (1) The Lsup needs a certain minimum

number of steps to decrease to zero. For a fixed batch size, adding

unlabeled data makes more training steps to go through in each

epoch, consequently allowing Lsup to decrease at a similar pace as

Lunsup. When the number of unlabeled data is limited, using smaller

batch sizes and training for more epochs is also a good approach.

(2) If the task is not too domain-specific, in other words, when the

further pre-trained language model cannot significantly outperform

the general language model in the PLM-only classification, using a

general language model with the GAN-BERT setting is safer. On the

other hand, if the task is highly domain-specific, it is better to apply

schedulers, downsample the majority class to balance the training

data, and use smaller learning rates to train GAN-BERT with further-

pre-trained language models. (3) We need to choose a suitable PLM.

We proved that ChouBERT-32 outperforms ChouBERT-16 in an

SSGAN setting. The perspectives and developments are numerous

to increase the stability of domain-specific text classification using

GAN-BERT; for example, how to further pre-train PLMs to adapt

better SSGAN setting is yet to investigate.
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