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Abstract9

Many real-life systems can be modeled as a complex network made up of nodes whose10

dynamics are governed by nonlinear differential equations. Observability on such networks11

is one fundamental problem consisting in the capability of inferring the states of all/some12

target nodes from the knowledge of some node states. In this paper, we present a new ap-13

proach for studying the full and the target observability in networks of nonlinear systems14

with linear and/or nonlinear couplings. The proposed method is based on a mathematical15

result ensuring the existence of specific local relations obtained from equations of each node.16

Two consequences in terms of observability are deduced from this theoretical result and are17

used to elaborate an algorithm. This algorithm, named TargetObservability, determines18

sets of nodes ensuring the observability of a given target set. We exemplify our approach on19

a biological neural network of C. elegans, made up of Hodgkin-Huxley type models coupled20

through linear and nonlinear terms. This provides a testable hypothesis that is likely to21

accelerate the discovery and analysis of the biological circuitry in C. elegans.22

23
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1 Introduction25

Many real-life systems can be modeled as a complex network, made up of nodes connected through26

edges (Newman, 2018). In such a configuration, each node has its own dynamics governed by a set27

of differential equations, and the edges describe the interactions between the nodes. A neuronal28

network is an example of complex network in which the nodes represent the neurons, and the edges29

represent the synaptic connections. The best way to monitor the state of a complex network would30

be to measure the state of all its nodes separately. However, in practice, we are often restricted to31

a limited set of measurements due to technical and experimental impediments. Therefore, we can32

ask which nodes of the system can contain sufficient information about the other nodes to retrieve33

the network complete state, making the system full observable.34

However, in many applications, the full observability is not the right concept since retrieving35

the state of all the nodes in the network is not expected. Indeed, we might want to infer the36

state of only a subset of nodes, called target nodes, since only their states would describe a desired37

property of the network. As an example, in neuroscience, muscle states form the basis of the38

locomotor behavior, and are modulated by the activity of neurons in the nervous system. In this39

case, we might be interested in identifying an optimal set of neurons from which we can infer40

the state of the muscles, without having to retrieve the state of all neurons in the entire nervous41

system.42

There is a long tradition and a substantial literature that deal with the observability and its43

dual concept, the controllability, of linear complex systems (Meng et al., 2023; Aguirre and Letel-44

lier, 2016; Wang et al., 2014; Gao et al., 2014; Leitold et al., 2017; Czeizler et al., 2018; Montanari45

et al., 2022). In such a case, the nodal dynamics and couplings are considered linear, despite the46

fact that they are fundamentally nonlinear in nature. If these simplifications facilitate the mathe-47

matical studies of systems, they are not without consequences (Aguirre et al., 2018). Indeed, some48

recent works demonstrate the irrelevance of the linear observability and controllability to nonlinear49

dynamical networks. First, the linearized system could be not controllable, while the original non-50

linear system is actually controllable (Liu and Barabási, 2016). Also, linear controllability theory51

tends to generate information that is not useful for nonlinear control of many complex systems.52

For instance, linear controllability may give great importance to some nodes for the controllability53

of the system while these nodes are theoretically unimportant (Jiang and Lai, 2019). Last, linear54

observability can highly underestimate the number of sensors necessary to retrieve the state of the55

variables of the original nonlinear system (Letellier et al., 2018b). Taken together, these evidences56

urged the development of mathematical tools capable of dealing with the nonlinear observability.57

In this context, some approaches dealing with the nonlinear observability have emerged from58

different perspectives. Liu et al. (2013) proposed a graph-theoretic approach, based on an inference59
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diagram, that only yields a strict lower bound for the size of the minimum sensor set, which still60

tend to severely underestimate their number to get a good observability (Letellier et al., 2018a).61

Therefore, Letellier et al. (2018a) slightly modified the inference diagram from Liu et al. (2013) by62

removing all the nonlinear couplings, thus taking into account only the linear ones. If this approach63

proved to be efficient in some particular cases, it turns out to be inapplicable for complex systems64

with only or mostly nonlinear connections. Another approach is based on the symbolic formalism65

(Bianco-Martinez et al., 2015; Letellier and Aguirre, 2009; Letellier et al., 2018b) that suffers66

from a high computational cost: the number of variable combinations to investigate increases67

exponentially with the system dimension.68

In this paper, we propose a work on the target observability in network of nonlinear systems69

with non linear couplings avoiding such a high computationnal cost. Further, this paper has a two-70

fold contribution. The first is a theoretical result: from the differential equations corresponding71

to one node, this result ensures the existence of relations involving only one state variable of the72

node, the coupling terms and eventual controls. Two observability properties propagating in the73

network are deduced from this result. These two properties constitute the basis of the second74

contribution which consists in an algorithm, called TargetObversability, that determines sets of75

nodes which should be observed to deduce the state of a given target set of nodes. Many models76

fall within the scope of the present work in neuroscience (Hodgkin and Huxley, 1952; FitzHugh,77

1969; Hindmarsh and Rose, 1984; Naudin et al., 2022b,a).78

To show the suitability of our approach, we apply it for the target observability of C. elegans79

muscles involved in a chemotaxis behavior (Costalago-Meruelo et al., 2018). The C. elegans worm80

is a well-known model organism in neuroscience due to its simple nervous system and its fully81

mapped connectome (White et al., 1986; Varshney et al., 2011). In particular, we determine a set82

of neurons from which the state of C. elegans muscles can be inferred.83

The remainder of the paper is organized as follows. In Section 2, we define the problem of84

the target observability in mathematical terms. Section 3 presents a theoretical result centered85

on local differential algebraic relations from which two corollaries giving observability conditions86

are deduced in Section 4. These corollaries form the basis of the TargetObservability algorithm87

developed in Section 5. Finally, this algorithm is applied in Section 6 on a C. elegans neuronal88

network, and the perspectives are drawn in Section 7.89

2 Problem statement90

In this paper, we consider directed complex networks formed of N nonlinear nodes coupled through91

linear and nonlinear terms. Some nodes can be controlled using inputs ui and the other nodes are92
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coupled between them and to the controlled ones (Figure 4.A). Here the coupling acts on a single93

variable of the node, the one characterizing the node dynamics. Moreover, the dynamics of each94

node are governed by a nonlinear dynamical system described by a set of differential equations.95

These differential systems are not necessarily identical. The state variable Xi = (xi,1, . . . , xi,n)
T of96

the ith node (i = 1, . . . ,N) takes the form:97

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi,1 = fi,1(Xi,Θi) +∑j∈N−i cj(xi,1, xj,1) + ui

ẋi,2 = fi,2(Xi,Θi),

⋮

ẋi,n = fi,n(Xi,Θi),

(1)

where98

• fi, j(Xi,Θi) are linear combinations of the state variables xi,2, . . . , xi,n whose coefficients are99

analytical functions in Θi, xi,1 and its derivativesA;100

• the initial states Xi(t0), i = 1, . . . ,N , of the network are supposed to be known at time t0;101

• ∑j∈N−i cj(xi,1, xj,1) is a coupling term with N −i the in-neighbors set of the node i (that is, the102

nodes whose edge comes into the node i), and cj ∶ R2 → R is an infinitely differentiable such103

that, for all xi,1 ∈ R, xj,1 → cj(xi,1, xj,1) is a one to one function.104

Figure 4.B illustrates the full complex network presented in Figure 4.A with the set of differential105

equations associated with each node, and the intra- and inter-node couplings.106

It is worth noting that System (1) describes a large class of models in real-life problems. In107

this paper, we emphasize on the neuroscience field in which most of neuron models describe the108

dynamics of the neuron voltages following a system of the form (1). Some examples are the large109

class of conductance-based models that use the Hodgkin–Huxley formalism (Hodgkin and Huxley,110

1952), the Hindmarsh–Rose model (Hindmarsh and Rose, 1984), the Fitzhugh–Nagumo model111

(FitzHugh, 1969), or the phenomenological non-spiking models (Naudin et al., 2022b,c).112

113

Now, we aim to study the observability of a set of nodes of the network, called target afterwards.114

To do this, from the solutions of some nodes, we set the following target observability definition.115

Definition 2.1. Let N and T be two sets of nodes of the network, the second one being the target.116

The set of nodes T is N -observable if there exists a surjective function on the solution set of117

(Xi)i∈N in the solution set of (Xi)i∈T .118

AAn example of such a system is given by System (5). A system in which function fi,2(Xi, θi) = ẋi,1xi,2 +xi,1x
2
i,3

does not belong to the framework of the present work since it is not linear in xi,3.
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Figure 1: (A) Example of a complex network composed of 4 nodes (N = 4) coupled through

directed edges, and controlled through the first node. (B) Full complex network presented in (A)

with the set of dynamical systems associated with each node, and the intra-node (in black) and

inter-node (in orange) couplings. This representation highlights the inter-node couplings through

the first variable xi1, i = 1, . . . ,N , and the heterogeneity of dynamical systems governing the

behavior of nodes of the network.

From the known solutions of the set of nodes N , our goal is to determine whether it is possible119

to infer the solutions of the set of nodes T . Our approach is based on specific relations linking the120

first state variable of a node and the first variables of its in-neighbors. More precisely, we deduce121

an ordinary differential equation ensuring that the first variable of System (1) can be inferred from122

its in-neighbor nodes and vice versa. This is the subject of the following section.123

3 Analytical redundancy relations of nodes124

The result presented in this section gives the general form of the differential equation linking the125

node i to the nodes j ∈ N −i . In the literature, these relations linking the parameters, the outputs,126

and the inputs (and their derivatives) of the system are classically called Analytical Redundancy127

Relations (ARR) (Staroswiecki and Comtet-Varga, 2001; Travé-Massuyes et al., 2006; Verdière128

et al., 2015).129
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Proposition 3.1. Let i ∈ [1,N] and X−i be the vector (xj,1)j∈N−i . There exists an ARR of the form130

P̃i(xi,1,X−i,Θi) = Pi(xi,1,Θi) +
α

∑
k=0

hi,k(xi,1,Θi)u
(k)
i + ∑

j∈N−i

α

∑
k=0

hi,k(xi,1,Θi)cj(xi,1, xj,1)
(k)
= 0 (2)

where131

• hi,k are analytical functions in Θi, xi,1 and its derivatives;132

• α < n with n the dimension of System (1).133

Proof. To simplify the proof, let us set wi = ∑j∈N−i cj(xi,1, xj,1) + ui. Under the hypotheses of

Section 2, System (1) can be written

(3)

⎧⎪⎪
⎨
⎪⎪⎩

ẋi,1 = gi,1,1(xi,1,Θi) + gi,1,2(xi,1,Θi)xi,2 +⋯ + gi,1,n(xi,1,Θi)xi,n −wi

ẋi,j = gi,j,1(xi,1,Θi) + gi,j,2(xi,1,Θi)xi,2 +⋯ + gi,j,n(xi,1,Θi)xi,n, j = 2, ⋯, n,

(3a)

(3b)

with gi,j,k analytical functions in Θi, xi,1 and its derivatives.

Using Equation (3b), the successive derivatives of

wi = −ẋi,1 + gi,1,1(xi,1,Θi) + gi,1,2(xi,1,Θi)xi,2 +⋯ + gi,1,n(xi,1,Θi)xi,n (see Equation 3a)

can be expressed as linear combinations of xi,2, . . . , xi,n:134

w
(l)
i =m1,l(xi,1,Θi) +m2,l(xi,1,Θi)xi,2 +⋯ +mn,l(xi,1,Θi)xi,n, l ∈ N (4)

We have (wi, ẇi, . . . ,w
(n−1)
i )T =M (1, xi,2, . . . , xi,n)

T where M = (mj,l)1≤j≤n, 0≤l≤n−1.

If det(M) = 0 then a linear combination of the rows of M is null. The last equality shows that the

same linear combination of the (wi, ẇi, . . . ,w
(n−1)
i )T is null.

If det(M) ≠ 0 then M̃ (wi, ẇi, . . . ,w
(n−1)
i )T = det(M) (1, xi,2, . . . , xi,n)

T where M̃ is the trans-

posed comatrix of M . This last equality shows, in particular, that a linear combination of

wi, ẇi, . . . ,w
(n−1)
i is equal to det(M).

In both cases, we obtain an ARR of the form

Pi(xi,1,X−i,Θi) = Pi(xi,1,Θi) +
α

∑
k=0

hi,k(xi,1,Θi)w
(k)
i = 0 with α < n.

Equation (2) is then a direct consequence of this last equality and of the definition of wi.135

Proof of Proposition 3.1 gives a way to obtain such ARRs and the expression form (2) will permit136

to define criteria for the target observability. However, the proposed method can be difficult to put137
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in place since it requires the inversion of a formal matrix leading to complex calculus even in simple138

examples. When the functions fi,j of System (1) are differential polynomials in the components of139

Xi, ARRs can be found in using the Rosenfeld-Groebner elimination algorithm implemented in the140

package Differential Algebra of Maple (Boulier, 1994; Verdière et al., 2015; Verdière and Orange,141

2018). Let us see with the FitzHugh-Nagumo model how to obtain the ARR of Proposition 3.1 by142

this kind of procedure.143

Example 1. Consider a complex network made up of three neurons whose dynamics are governed144

by the FitzHugh–Nagumo (FHN) model (FitzHugh, 1969). In this network, the first two nodes are145

controlled by a constant input current Ii that models a sensory information (see Figure 2). The146

entire system of the complex network, noted Γ, is then given by147

Γ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ1,1 = x1,1 −
x3
1,1

3
− x1,2 + I1,

ẋ1,2 =
1
τ (x1,1 + a − bx1,2).

Γ2

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ2,1 = x2,1 −
x3
2,1

3
− x2,2 + I2,

ẋ2,2 =
1
τ (x2,1 + a − bx2,2).

Γ3

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ẋ3,1 = x3,1 −
x3
3,1

3
− x3,2 + e31(x1,1 − x3,1) + e32(x2,1 − x3,1),

ẋ3,2 =
1
τ (x3,1 + a − bx3,2).

(5)

where x1,1, x2,1 and x3,1 represent the membrane potential of the neuron 1, 2 and 3 respectively.148

Moreover, assume that x3,1 is the output of the system Γ, and denote Θ ∶= (a, b, τ).149

For System Γ3, x1,1 and x2,1 can be considered as inputs. The Gröbner-Rosenfeld algorithm150

applied to System Γ3 with the elimination order [Θ] ≺ [x3,1, x1,1, x2,1] ≺ [x3,2] (that consists in151

eliminating first the state variable x3,2 then x2,1 and x1,1) returns:152

P̃3(x3,1) = P3(x3,1) + e31 (3b(x1,1 − x3,1) + 3τ(ẋ1,1 − ẋ3,1)) + e32 (3b(x2,1 − x3,1) + 3τ(ẋ2,1 − ẋ3,1)) = 0

(6)

with P3(x3,1) = −3 τ x2
3,1 ẋ3,1 + 3 τ ẋ3,1 − 3 τ ẍ3,1 − 3x3,1 − bx3

3,1 + 3 bx3,1 − 3 b ẋ3,1 − 3a.153

Identifying (2) and (6) leads to set h3,0 = 3b, h3,1 = 3 τ , c1(x3,1, x1,1) = e31(x1,1 − x3,1) and154

c2(x3,1, x2,1) = e32(x2,1 − x3,1),155

4 Consequences on target observability156

In this section, the ARR (2) is used to present consequences on the target observability from a157

given set of nodes N . The ARR, P̃i is a differential equation linking xi,1 and xj,1 for j ∈ N −i and is158
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FHN 2

FHN 3

FHN 1

Figure 2: Coupling of three neurons governed by the FitzHugh–Nagumo (FHN) model, where the

first two nodes are controlled by constant input currents I1 and I2.

supposed to be determined for each node of the network. Recall that the initial condition Xi(t0),159

i = 1, . . . ,N is assumed to be known in System (1) and also the derivatives of Xi at t0 at any order.160

The following corollaries are deduced from these ARRs and the initial condition. They give con-161

ditions ensuring the N -observability of a given node from a set of nodes N -observable.162

These corollaries are illustrated by Figure 3.A and 3.B.163

Corollary 4.1. Let N a given set of nodes. If, for all j ∈ N −i , the jth node is N -observable, then164

the ith node is N -observable.165

Proof. By hypothesis, there exists a surjection from the set of solutions of (Xj)j∈N on the set of166

solutions of (Xj)j∈N−i . The Picard-Lindelöf theorem, applied to Equation (2), ensures the existence167

of a surjection from (Xj)j∈N−i toXi. Consequently, there exists a surjection from the set of solutions168

of (Xj)j∈N to Xi.169

Example 2. Let take again Example 1. The initial value problem formed of polynomial P̃3 (see170

Equation (6)) and initial conditions x3,1(t0), ẋ3,1(t0) admits a unique solution x3,1 according to171

the Picard-Lindelöf theorem.172

Corollary 4.2. Let N be a given set of nodes and j0 ∈ N −i . If the ith node and all the jth nodes173

for j ∈ N −i ∖ {j0} are N -observable then the jth0 node is N -observable.174

Proof. By isolating terms depending on j0, the ARR (2) can be rewritten175

Q(xi,1,X−i,Θi) +
α

∑
k=0

hi,k(xi,1,Θi)z
(k) = 0 (7)

where z = cj0(xi,1, xj0,1). Equation (7) can be solved with respect to z and z is N -observable. Since176

xj0,1 → cj0(xi,1, xj0,1) is a one to one function, Xj0 is also N -observable.177

Consequently, there exists a surjection from the set of solutions of (Xj)j∈{i}∪N−i ∖{j0} to Xj0 . As178

in the proof of Corollary 4.1, we can construct a surjection from the set of solution (Xj)j∈N to Xj0 .179
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Remark 4.1. Note that ARR (2) may not depend explicitly on xj0 for j0 ∈ N −i . In this case, there180

exists a differential equation linking xj0 and xi,1. Consequently, it stays possible to infer the set of181

solutions of Xj0 from the solutions of Xi and the initial condition.182

183

Example 3. Consider again Example 1. Let i = 3 and j0 = 2 and suppose that nodes 1 and 3 are184

N -observable. The initial value problem composed of the differential equation P̃3 and the known185

initial conditions x2,1(t0) and ẋ2,1(t0) admits a unique solution x2,1.186

The set of the  
  instances 

Node 

A B

The set of the  
  instances 

Node 

Node 

Figure 3: (A) Illustration of Corollary 4.1. The N -observability of node i is deduced from the

one of its in-neighbors (N −i ). (B) Illustration of Corollary 4.2. The N -observability of node j0 is

deduced from the N -observability of the node i and of its in-neighbors, N −i (except the j0th).

From any set N , Corollaries 4.1 and 4.2 are used to define the function ObservableNodes187

which computes the set of N -observable nodes. This function is used in the TargetObservability188

algorithm presented in the next section.189

5 Target observability algorithm190

In this section, in order to simplify the notation, the nodes are identified to their indexes.191

The algorithm TargetObservability, presented afterwards, is based on Corollaries 4.1 and 4.2.192

This algorithm determines sets of nodes from which the state of a set of target nodes can be193

inferred.194

Let N ′ be a given set of nodes and T the set of target nodes. The algorithm TargetObservability195

returns the set E of all the subsets N ⊂ {1, . . . , N}∖ T containing N ′, minimal for inclusion, such196

that T is N -observable. The sets of E are minimal in the sense that, for any subset N ′′ of197
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{1, . . . , N} ∖ T such that T is N ′′-observable, there exists at least an element N of E contained198

in N ′′. In order to compute the set E, the algorithm performs a tree transversal to construct199

recursively an increasing sequence of sets N ′ = N0 ⊂ N1 ⊂ ⋯ ⊂ Nm = N until T is N -observable.200

Further, the algorithm TargetObservability proceeds as follows. Initially, E is assigned to201

the empty set {} and the algorithm is called with a set N ′ of supposed observed nodes. Now, let202

us describe any recursive call performed by the algorithm. From a subset Ñ of {1, . . . , N}∖T , this203

algorithm tests whether a set of E is included in Ñ . If it is the case, T is Ñ -observable but Ñ is204

not minimal for inclusion and no other computation is performed. Otherwise, the algorithm calls205

the function ObservableNodes that determines the set O ⊂ {1, . . . , N} of Ñ -observable nodes.206

Note that the computation of O is based on Corollaries 4.1 and 4.2. Two cases appear:207

• T ⊂ O. In this case, T is Ñ -observable; Ñ is inserted to E and sets of E that are not minimal208

for inclusion are removed from E.209

• T /⊂ O. In this case, for each of the nodes i ∈ {1, . . . , N} ∖ (O ∪ T )B, a recursive call of this210

algorithm is performed with Ñ ∪ {i} as input.211

The above description is summarized in the following pseudo-code.212

TargetObservability (Ñ )213

If Ñ is not included in one of the set of E Then214

O := ObservableNodes(Ñ );215

If T ⊂ O Then216

E ∶= E ∪ {Ñ} ;217

Remove sets of E which are not minimal for inclusion ;218

Else219

for i ∈ {1, . . . , N} ∖ (O ∪ T ) do (*)220

E = TargetObservability (Ñ ∪ {i});221

end do ;222

end if ;223

end if ;224

Return E ;225

In the next section, we apply the algorithm TargetObservability described in this section on a226

C. elegans chemotaxis neuronal network.227

BIf {1, . . . , N} ∖ (O ∪ T ) = ∅ then Ñ can not be completed into a set N ′ ⊂ {1, . . . , N} ∖ T so that T is N ′-
observable. In such a case, the loop (*) is not executed.
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6 Application on a C. elegans chemotaxis network228

Here we apply our proposed algorithm TargetObservability for the target observability of mus-229

cles in the C. elegans worm. C. elegans is a well-known model organism in neuroscience due to230

its simple nervous system, made up of 302 neurons and about 7000 synaptic connections, and its231

fully mapped connectome (White et al., 1986; Varshney et al., 2011). Despite its simplicity, the232

nematode surprisingly shares many of the general essential human biological features using similar233

neurotransmitters, channels, and developmental genes (Altun et al., 2020). Moreover, principles234

that underlie behaviors in C. elegans may also be similar in more complex animals such as hu-235

mans (Chalasani et al., 2007). For these reasons, C. elegans has become a model of reference to236

investigate how behavior emerges from its underlying physiological processes (Sarma et al., 2018).237

Thus, recent efforts have been made to build conductance-based models (Hodgkin and Huxley,238

1952) that reproduce the experimental dynamics of individual neurons in the worm (Naudin et al.,239

2021, 2022a). These models take the form240

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CV̇ = −gCamCahCa(V −ECa) − gKirhKir∞(V )(V −EK) − gKmK(V −EK) − gL(V −EL) + I

ṁCa =
mCa∞(V ) −mCa

τmCa

, mCa∞(V ) = (1 + exp(
V mCa

1/2 − V

kmCa

))

−1

ḣCa =
hCa∞(V ) − hCa

τhCa

, hCa∞(V ) = (1 + exp(
V hCa

1/2 − V

khCa

))

−1

ṁK =
mK∞(V ) −mK

τmK

, mK∞(V ) = (1 + exp(
V mK

1/2 − V

kmK

))

−1

hKir∞(V ) = (1 + exp(
V

hKir
1/2 −V
khKir

))

−1

(8)

where:241

• V , mCa, hCa and mK are the four state variables of the system. In particular, V is the242

membrane potential of the neuron, which is the variable that characterizes the behavior of243

the neuron, and mCa, hCa and mK are the activation and inactivation variables of the ion244

channels;245

• I is the control that models a sensory information produced by the environment, or an246

artificial injection current applied by the experimenter;247

• gion and Eion, ion ∈ {Ca,K,Kir,L}, are parameters, as well as τx, V x
1/2, kx with x ∈248

{mCa,mK , hK , hKir}. The values of these parameters depend on the considered neuron249
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(Naudin et al., 2021, 2022a).250

Chemotaxis network and coupling. Some neuronal networks underlying specific behaviors251

in C. elegans have been cracked using data from the anatomical connectome (White et al., 1986;252

Varshney et al., 2011), together with powerful experimental techniques and computational tools.253

Here, we use a neuronal network associated with a chemotaxis behavior (Costalago-Meruelo et al.,254

2018) (Figure 4). Each neuron is arbitrarily named with three capital letters for convention, and a255

fourth letter L (left) or R (right) (White et al., 1986). The dynamics of each neuron are governed256

by a model of the form (8). The electrical and chemical synapses are modeled by coupling terms257

corresponding to the variable I of the first equation of System (8). The electrical synapses are258

linear, modeled as ohhmic resistances, while chemical synapses are nonlinear with channels gated259

in the postsynaptic membrane. Their respective expressions are then given by260

Igapij (Vi, Vj) = ggap(Vi − Vj)

Isynij (Vi, Vj) = gsyns∞(Vj)(Vi −Eij)

where i and j denote a post- and pre-synaptic neuron, respectively; ggap, gsyn and Eij are param-261

eters; and s∞ is a sigmoid function of the form262

s∞(Vj) =
1

1 + exp(
Vth − Vj

Vslope

)

with Vth and Vslope two other parameters.263

Therefore, using the notations of System (1), the variable I of System (8) is substituted by264

the coupling term ∑j∈N−i cj(Vi, Vj) + Ii with cj(Vi, Vj) = Igapij (Vi, Vj) + I
syn
ij (Vi, Vj), where Ii is an265

eventual artificial control acting on the node i. The three conditions of System (1) are satisfied by266

Model (8) with the coupling terms cj.267

Application of the TargetObservability algorithm. Let us suppose that the sensory neurons268

ASEL and ASER are observed and let T = {Muscle} be the target of the set of this network. The269

algorithm ObservableNodes applied to N ′ = {ASEL,ASER} ensures that T is not N ′-observable.270

An application of Algorithm TargetObservability returns the following sets of neurons:271
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ASERASEL

AIAL AIAR

AIZR

AIBR

RIAR

AIZL

AIYRAIYL

AIBL

AVARRIBR

Musclelinear coupling 
(electrical synapse)

non-linear coupling 
(chemical synapse)

interneurons

sensory neurons

motor neuron

muscle

RMD

Figure 4: A neural network underlying a chemotaxis behavior in C. elegans (Costalago-Meruelo

et al., 2018).

E = {{RIAR},{RMD},{AIAL,AIAR},{AIAL,AIBL},{AIAL,AIY L},{AIAL,AIY R,},
{AIAL,AIZL},{AIAL,AIZR},{AIAR,AIBL},{AIAR,AIY L},{AIAR,AIY R},
{AIAR,AIZL},{AIAR,AIZR},{AIBR,AIY L,AIZR},{AIBR,AIY R,AIZR},
{AIBR,AIZL,AIZR},{AIY L,AIZR,AV AR},{AIY L,AIZR,RIBR},
{AIY R,AIZR,AV AR},{AIY R,AIZR,RIBR},{AIZL,AIZR,AV AR},
{AIZL,AIZR,RIBR},{AIBL,AIBR,AIZR,AV AR},{AIBL,AIBR,AIZR,RIBR},
{AIBL,AIZR,AV AR,RIBR}}.

(9)

The union of N ′ = {ASEL,ASER} and of any of these sets turns T into an observable nodeC.272

273

CNote that, by construction of Algorithm TargetObservability, any set N ′′ containing nodes ASEL and
ASER such that T is an N ′′-observable contains at least one of the sets of E.
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The CPU time needed to obtain this output is approximately 1.07 second with a Maple im-274

plementation of algorithm TargetObservability on a Intel Quad Core 2.50GHz Processor with275

8 Go of RAM.276

An example of the propagation of the observability property through the network.277

In this paragraph, we focus on the propagation of the observability property in the network.278

Let us consider the node T = {Muscle} which is N = {ASEL,ASER,AIAL,AIAR}-observable279

(See (9)). By tracking the computations performed by the function ObservableNodes, it is possible280

to obtain each of the steps leading to the observability of T from the set N . In this particular281

case, a propagation of the observability property can be summed up in Table 1.282

Node considered In-neighbors of the node Corollary used Deduced observable node

ASER {AIBL,AIAL,AIAR} Cor. 4.2 AIBL

AIAL {ASEL,ASER,AIAR,AIZL} Cor. 4.2 AIZL

AIAR {ASER,AIAL,AIZR} Cor. 4.2 AIZR

AIBR {ASEL,ASER,AIAR,AIZL,AIZR} Cor. 4.1 AIBR

ASEL {AIYR.AIZL} Cor. 4.2 AIYR

AIYR {ASEL,ASER,AIYL} Cor. 4.2 AIYL

AIBL {ASEL,ASER,AIAL,AIZL,AIZR,RIBR} Cor. 4.2 RIBR

RIBR {AIBR,AIAL} Cor. 4.2 AVAR

RIAR {ASEL,AIYR,AIZR,RIBR,AVAR} Cor. 4.1 RIAR

RMD {RIAR} Cor. 4.1 RMD

Muscle {RMD} Cor. 4.1 Muscle

Table 1: Propagation of the {ASEL,ASER,AIAL,AIAR}-observability property in the network
to the target T = {Muscle} performed by Algorithm TargetObservability.

7 Conclusions and perspectives283

Summary. This paper focuses on the target observability, that consists in determining which284

nodes are needed to infer the state of a target subset. To that end, we present theoretical results285

based on specific local analytical redundancy relations. These results lead to two observability286

properties used to develop the algorithm TargetObservability that automatically identify sets287

of nodes that can infer the state of target ones. Finally, we apply our algorithm for the target288

observability of a C. elegans muscle involved in a chemotaxis behavior.289
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Perspectives. The observability property test does not tell us how to numerically reconstruct290

the states of target nodes and it is well-known that different sets of nodes do not provide the291

same reconstruction quality (Letellier et al., 1998; Montanari and Aguirre, 2020; Sysoeva et al.,292

2021). Nevertheless, our approach currently returns different sets of nodes from which the target293

set can be reconstructed. A first extension to this work will be to develop methods quantifying the294

quality of these sets of nodes by developing metrics to choose the best option to reconstruct the295

target nodes states. Since this paper provides some building blocks for a practical reconstruction296

of the nodes states, a second extension of the present work will be the development of a state297

reconstructor, which is still an open challenge for nonlinear systems (Liu and Barabási, 2016).298
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