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Many real-life systems can be modeled as a complex network made up of nodes whose dynamics are governed by nonlinear differential equations. Observability on such networks is one fundamental problem consisting in the capability of inferring the states of all/some target nodes from the knowledge of some node states. In this paper, we present a new approach for studying the full and the target observability in networks of nonlinear systems with linear and/or nonlinear couplings. The proposed method is based on a mathematical result ensuring the existence of specific local relations obtained from equations of each node.

Two consequences in terms of observability are deduced from this theoretical result and are used to elaborate an algorithm. This algorithm, named TargetObservability, determines sets of nodes ensuring the observability of a given target set. We exemplify our approach on a biological neural network of C. elegans, made up of Hodgkin-Huxley type models coupled through linear and nonlinear terms. This provides a testable hypothesis that is likely to accelerate the discovery and analysis of the biological circuitry in C. elegans.

Introduction

Many real-life systems can be modeled as a complex network, made up of nodes connected through edges [START_REF] Newman | Networks[END_REF]. In such a configuration, each node has its own dynamics governed by a set of differential equations, and the edges describe the interactions between the nodes. A neuronal network is an example of complex network in which the nodes represent the neurons, and the edges represent the synaptic connections. The best way to monitor the state of a complex network would be to measure the state of all its nodes separately. However, in practice, we are often restricted to a limited set of measurements due to technical and experimental impediments. Therefore, we can ask which nodes of the system can contain sufficient information about the other nodes to retrieve the network complete state, making the system full observable.

However, in many applications, the full observability is not the right concept since retrieving the state of all the nodes in the network is not expected. Indeed, we might want to infer the state of only a subset of nodes, called target nodes, since only their states would describe a desired property of the network. As an example, in neuroscience, muscle states form the basis of the locomotor behavior, and are modulated by the activity of neurons in the nervous system. In this case, we might be interested in identifying an optimal set of neurons from which we can infer the state of the muscles, without having to retrieve the state of all neurons in the entire nervous system.

There is a long tradition and a substantial literature that deal with the observability and its dual concept, the controllability, of linear complex systems [START_REF] Meng | Control energy scaling for target control of complex networks[END_REF][START_REF] Aguirre | Controllability and synchronizability: Are they related?[END_REF][START_REF] Wang | Controllability and observability analysis for vertex domination centrality in directed networks[END_REF][START_REF] Gao | Target control of complex networks[END_REF][START_REF] Leitold | Controllability and observability in complex networks-the effect of connection types[END_REF][START_REF] Czeizler | Structural target controllability of linear networks[END_REF][START_REF] Montanari | Functional observability and target state estimation in large-scale networks[END_REF]. In such a case, the nodal dynamics and couplings are considered linear, despite the fact that they are fundamentally nonlinear in nature. If these simplifications facilitate the mathematical studies of systems, they are not without consequences [START_REF] Aguirre | Structural, dynamical and symbolic observability: From dynamical systems to networks[END_REF]. Indeed, some recent works demonstrate the irrelevance of the linear observability and controllability to nonlinear dynamical networks. First, the linearized system could be not controllable, while the original nonlinear system is actually controllable [START_REF] Liu | Control principles of complex systems[END_REF]. Also, linear controllability theory tends to generate information that is not useful for nonlinear control of many complex systems.

For instance, linear controllability may give great importance to some nodes for the controllability of the system while these nodes are theoretically unimportant [START_REF] Jiang | Irrelevance of linear controllability to nonlinear dynamical networks[END_REF]. Last, linear observability can highly underestimate the number of sensors necessary to retrieve the state of the variables of the original nonlinear system [START_REF] Letellier | A symbolic network-based nonlinear theory for dynamical systems observability[END_REF]. Taken together, these evidences urged the development of mathematical tools capable of dealing with the nonlinear observability.

In this context, some approaches dealing with the nonlinear observability have emerged from different perspectives. [START_REF] Liu | Observability of complex systems[END_REF] proposed a graph-theoretic approach, based on an inference diagram, that only yields a strict lower bound for the size of the minimum sensor set, which still tend to severely underestimate their number to get a good observability (Letellier et al., 2018a). Therefore, Letellier et al. (2018a) slightly modified the inference diagram from [START_REF] Liu | Observability of complex systems[END_REF] by removing all the nonlinear couplings, thus taking into account only the linear ones. If this approach proved to be efficient in some particular cases, it turns out to be inapplicable for complex systems with only or mostly nonlinear connections. Another approach is based on the symbolic formalism [START_REF] Bianco-Martinez | Symbolic computations of nonlinear observability[END_REF][START_REF] Letellier | Symbolic observability coefficients for univariate and multivariate analysis[END_REF][START_REF] Letellier | A symbolic network-based nonlinear theory for dynamical systems observability[END_REF]) that suffers from a high computational cost: the number of variable combinations to investigate increases exponentially with the system dimension.

In this paper, we propose a work on the target observability in network of nonlinear systems with non linear couplings avoiding such a high computationnal cost. Further, this paper has a twofold contribution. The first is a theoretical result: from the differential equations corresponding to one node, this result ensures the existence of relations involving only one state variable of the node, the coupling terms and eventual controls. Two observability properties propagating in the network are deduced from this result. These two properties constitute the basis of the second contribution which consists in an algorithm, called TargetObversability, that determines sets of nodes which should be observed to deduce the state of a given target set of nodes. Many models fall within the scope of the present work in neuroscience [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF][START_REF] Fitzhugh | Mathematical models of excitation and propagation in nerve[END_REF][START_REF] Hindmarsh | A model of neuronal bursting using three coupled first order differential equations[END_REF]Naudin et al., 2022b,a).

To show the suitability of our approach, we apply it for the target observability of C. elegans muscles involved in a chemotaxis behavior [START_REF] Costalago-Meruelo | Emulation of chemical stimulus triggered head movement in the c. elegans nematode[END_REF]. The C. elegans worm is a well-known model organism in neuroscience due to its simple nervous system and its fully mapped connectome (White et al., 1986;[START_REF] Varshney | Structural properties of the caenorhabditis elegans neuronal network[END_REF]. In particular, we determine a set of neurons from which the state of C. elegans muscles can be inferred.

The remainder of the paper is organized as follows. In Section 2, we define the problem of the target observability in mathematical terms. Section 3 presents a theoretical result centered on local differential algebraic relations from which two corollaries giving observability conditions are deduced in Section 4. These corollaries form the basis of the TargetObservability algorithm developed in Section 5. Finally, this algorithm is applied in Section 6 on a C. elegans neuronal network, and the perspectives are drawn in Section 7.

Problem statement

In this paper, we consider directed complex networks formed of N nonlinear nodes coupled through linear and nonlinear terms. Some nodes can be controlled using inputs u i and the other nodes are coupled between them and to the controlled ones (Figure 4.A). Here the coupling acts on a single variable of the node, the one characterizing the node dynamics. Moreover, the dynamics of each node are governed by a nonlinear dynamical system described by a set of differential equations. These differential systems are not necessarily identical. The state variable X i = (x i,1 , . . . , x i,n ) T of the ith node (i = 1, . . . , N ) takes the form:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ẋi,1 = f i,1 (X i , Θ i ) + ∑ j∈N - i c j (x i,1 , x j,1 ) + u i ẋi,2 = f i,2 (X i , Θ i ), ⋮ ẋi,n = f i,n (X i , Θ i ),
(1) where • f i, j (X i , Θ i ) are linear combinations of the state variables x i,2 , . . . , x i,n whose coefficients are analytical functions in Θ i , x i,1 and its derivatives A ;

• the initial states X i (t 0 ), i = 1, . . . , N , of the network are supposed to be known at time t 0 ;

• ∑ j∈N - i c j (x i,1 , x j,1
) is a coupling term with N - i the in-neighbors set of the node i (that is, the nodes whose edge comes into the node i), and

c j ∶ R 2 → R is an infinitely differentiable such that, for all x i,1 ∈ R, x j,1 → c j (x i,1 , x j,1
) is a one to one function. It is worth noting that System (1) describes a large class of models in real-life problems. In this paper, we emphasize on the neuroscience field in which most of neuron models describe the dynamics of the neuron voltages following a system of the form (1). Some examples are the large class of conductance-based models that use the Hodgkin-Huxley formalism [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], the Hindmarsh-Rose model [START_REF] Hindmarsh | A model of neuronal bursting using three coupled first order differential equations[END_REF], the Fitzhugh-Nagumo model [START_REF] Fitzhugh | Mathematical models of excitation and propagation in nerve[END_REF], or the phenomenological non-spiking models (Naudin et al., 2022b,c).

Now, we aim to study the observability of a set of nodes of the network, called target afterwards.

To do this, from the solutions of some nodes, we set the following target observability definition.

Definition 2.1. Let N and T be two sets of nodes of the network, the second one being the target.

The set of nodes T is N -observable if there exists a surjective function on the solution set of (X i ) i∈N in the solution set of (X i ) i∈T .

A An example of such a system is given by System (5). A system in which function f

i,2 (X i , θ i ) = ẋi,1 x i,2 + x i,1 x 2 i,3
does not belong to the framework of the present work since it is not linear in x i,3 . with the set of dynamical systems associated with each node, and the intra-node (in black) and inter-node (in orange) couplings. This representation highlights the inter-node couplings through the first variable x i1 , i = 1, . . . , N , and the heterogeneity of dynamical systems governing the behavior of nodes of the network.

From the known solutions of the set of nodes N , our goal is to determine whether it is possible to infer the solutions of the set of nodes T . Our approach is based on specific relations linking the first state variable of a node and the first variables of its in-neighbors. More precisely, we deduce an ordinary differential equation ensuring that the first variable of System (1) can be inferred from its in-neighbor nodes and vice versa. This is the subject of the following section.

Analytical redundancy relations of nodes

The result presented in this section gives the general form of the differential equation linking the node i to the nodes j ∈ N - i . In the literature, these relations linking the parameters, the outputs, and the inputs (and their derivatives) of the system are classically called Analytical Redundancy Relations (ARR) [START_REF] Staroswiecki | Analytical redundancy relations for fault detection and isolation in algebraic dynamic systems[END_REF][START_REF] Travé-Massuyes | Diagnosability analysis based on componentsupported analytical redundancy relations[END_REF][START_REF] Verdière | Functional diagnosability and detectability of nonlinear models based on analytical redundancy relations[END_REF].

Proposition 3.1. Let i ∈ [1, N ] and X -i be the vector (x j,1 ) j∈N - i . There exists an ARR of the form

Pi (x i,1 , X -i , Θ i ) = P i (x i,1 , Θ i ) + α ∑ k=0 h i,k (x i,1 , Θ i )u (k) i + ∑ j∈N - i α ∑ k=0 h i,k (x i,1 , Θ i )c j (x i,1 , x j,1 ) (k) = 0 (2)
where

• h i,k are analytical functions in Θ i , x i,1 and its derivatives;

• α < n with n the dimension of System (1).

Proof. To simplify the proof, let us set

w i = ∑ j∈N - i c j (x i,1 , x j,1 ) + u i .
Under the hypotheses of Section 2, System (1) can be written

(3) ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ẋi,1 = g i,1,1 (x i,1 , Θ i ) + g i,1,2 (x i,1 , Θ i )x i,2 + ⋯ + g i,1,n (x i,1 , Θ i )x i,n -w i ẋi,j = g i,j,1 (x i,1 , Θ i ) + g i,j,2 (x i,1 , Θ i )x i,2 + ⋯ + g i,j,n (x i,1 , Θ i )x i,n , j = 2, ⋯, n, (3a) (3b)
with g i,j,k analytical functions in Θ i , x i,1 and its derivatives. Using Equation (3b), the successive derivatives of

w i = -ẋi,1 + g i,1,1 (x i,1 , Θ i ) + g i,1,2 (x i,1 , Θ i )x i,2 + ⋯ + g i,1,n (x i,1 , Θ i )x i,n (see Equation 3a)
can be expressed as linear combinations of x i,2 , . . . , x i,n :

w (l) i = m 1,l (x i,1 , Θ i ) + m 2,l (x i,1 , Θ i )x i,2 + ⋯ + m n,l (x i,1 , Θ i )x i,n , l ∈ N (4)
We have (w i , ẇi , . . . , w

(n-1) i ) T = M (1, x i,2 , . . . , x i,n
) T where M = (m j,l ) 1≤j≤n, 0≤l≤n-1 . If det(M ) = 0 then a linear combination of the rows of M is null. The last equality shows that the same linear combination of the (w i , ẇi , . . . , w

(n-1) i ) T is null. If det(M ) ≠ 0 then M (w i , ẇi , . . . , w (n-1) i ) T = det(M ) (1, x i,2 , . . . , x i,n
) T where M is the transposed comatrix of M . This last equality shows, in particular, that a linear combination of w i , ẇi , . . . , w

(n-1) i is equal to det(M ).
In both cases, we obtain an ARR of the form

P i (x i,1 , X -i , Θ i ) = P i (x i,1 , Θ i ) + α ∑ k=0 h i,k (x i,1 , Θ i )w (k) i = 0 with α < n.
Equation ( 2) is then a direct consequence of this last equality and of the definition of w i .

Proof of Proposition 3.1 gives a way to obtain such ARRs and the expression form (2) will permit to define criteria for the target observability. However, the proposed method can be difficult to put in place since it requires the inversion of a formal matrix leading to complex calculus even in simple examples. When the functions f i,j of System (1) are differential polynomials in the components of X i , ARRs can be found in using the Rosenfeld-Groebner elimination algorithm implemented in the package Differential Algebra of Maple [START_REF] Boulier | Study and implementation of some algorithms in differential algebra[END_REF][START_REF] Verdière | Functional diagnosability and detectability of nonlinear models based on analytical redundancy relations[END_REF][START_REF] Verdière | Diagnosability in the case of multi-faults in nonlinear models[END_REF]. Let us see with the FitzHugh-Nagumo model how to obtain the ARR of Proposition 3.1 by this kind of procedure.

Example 1. Consider a complex network made up of three neurons whose dynamics are governed by the FitzHugh-Nagumo (FHN) model [START_REF] Fitzhugh | Mathematical models of excitation and propagation in nerve[END_REF]. In this network, the first two nodes are controlled by a constant input current I i that models a sensory information (see Figure 2). The entire system of the complex network, noted Γ, is then given by

Γ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ Γ 1 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ẋ1,1 = x 1,1 - x 3 1,1 3 -x 1,2 + I 1 , ẋ1,2 = 1 τ (x 1,1 + a -bx 1,2 ). Γ 2 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ẋ2,1 = x 2,1 - x 3 2,1 3 -x 2,2 + I 2 , ẋ2,2 = 1 τ (x 2,1 + a -bx 2,2 ). Γ 3 ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ẋ3,1 = x 3,1 - x 3 3,1 3 -x 3,2 + e 31 (x 1,1 -x 3,1 ) + e 32 (x 2,1 -x 3,1 ), ẋ3,2 = 1 τ (x 3,1 + a -bx 3,2 ).
(

) 5 
where x 1,1 , x 2,1 and x 3,1 represent the membrane potential of the neuron 1, 2 and 3 respectively.

Moreover, assume that x 3,1 is the output of the system Γ, and denote Θ ∶= (a, b, τ ).

For System Γ 3 , x 1,1 and x 2,1 can be considered as inputs. The Gröbner-Rosenfeld algorithm applied to System Γ 3 with the elimination order

[Θ] ≺ [x 3,1 , x 1,1 , x 2,1 ] ≺ [x 3,2 ] (that consists in
eliminating first the state variable x 3,2 then x 2,1 and x 1,1 ) returns:

P3 (x 3,1 ) = P 3 (x 3,1 ) + e 31 (3b(x 1,1 -x 3,1 ) + 3τ ( ẋ1,1 -ẋ3,1 )) + e 32 (3b(x 2,1 -x 3,1 ) + 3τ ( ẋ2,1 -ẋ3,1 )) = 0 (6) with P 3 (x 3,1 ) = -3 τ x 2 3,1 ẋ3,1 + 3 τ ẋ3,1 -3 τ ẍ3,1 -3 x 3,1 -b x 3 3,1 + 3 b x 3,1 -3 b ẋ3,1 -3 a.
Identifying ( 2) and ( 6) leads to set h 3,0 = 3b, h 3,1 = 3 τ , c 1 (x 3,1 , x 1,1 ) = e 31 (x 1,1 -x 3,1 ) and c 2 (x 3,1 , x 2,1 ) = e 32 (x 2,1 -x 3,1 ),

Consequences on target observability

In this section, the ARR ( 2) is used to present consequences on the target observability from a given set of nodes N . The ARR, Pi is a differential equation linking x i,1 and x j,1 for j ∈ N - i and is supposed to be determined for each node of the network. Recall that the initial condition X i (t 0 ), i = 1, . . . , N is assumed to be known in System (1) and also the derivatives of X i at t 0 at any order.

The following corollaries are deduced from these ARRs and the initial condition. They give conditions ensuring the N -observability of a given node from a set of nodes N -observable.

These corollaries are illustrated by Figure 3.A and 3.B.

Corollary 4.1. Let N a given set of nodes. If, for all j ∈ N - i , the j th node is N -observable, then the i th node is N -observable.

Proof. By hypothesis, there exists a surjection from the set of solutions of (X j ) j∈N on the set of solutions of (X j ) j∈N - i . The Picard-Lindelöf theorem, applied to Equation (2), ensures the existence of a surjection from (X j ) j∈N - i to X i . Consequently, there exists a surjection from the set of solutions of (X j ) j∈N to X i .

Example 2. Let take again Example 1. The initial value problem formed of polynomial P3 (see Equation ( 6)) and initial conditions x 3,1 (t 0 ), ẋ3,1 (t 0 ) admits a unique solution x 3,1 according to the Picard-Lindelöf theorem.

Corollary 4.2. Let N be a given set of nodes and j 0 ∈ N - i . If the i th node and all the j th nodes for j ∈ N - i ∖ {j 0 } are N -observable then the j th 0 node is N -observable.

Proof. By isolating terms depending on j 0 , the ARR (2) can be rewritten

Q(x i,1 , X -i , Θ i ) + α ∑ k=0 h i,k (x i,1 , Θ i )z (k) = 0 (7)
where z = c j 0 (x i,1 , x j 0 ,1 ). Equation ( 7) can be solved with respect to z and z is N -observable. Since

x j 0 ,1 → c j 0 (x i,1 , x j 0 ,1 ) is a one to one function, X j 0 is also N -observable.

Consequently, there exists a surjection from the set of solutions of (X j ) j∈{i}∪N - i ∖{j 0 } to X j 0 . As in the proof of Corollary 4.1, we can construct a surjection from the set of solution (X j ) j∈N to X j 0 .

Remark 4.1. Note that ARR (2) may not depend explicitly on x j 0 for j 0 ∈ N - i . In this case, there exists a differential equation linking x j 0 and x i,1 . Consequently, it stays possible to infer the set of solutions of X j 0 from the solutions of X i and the initial condition.

Example 3. Consider again Example 1. Let i = 3 and j 0 = 2 and suppose that nodes 1 and 3 are N -observable. The initial value problem composed of the differential equation P3 and the known initial conditions x 2,1 (t 0 ) and ẋ2,1 (t 0 ) admits a unique solution x 2,1 .

The set of the instances

Node

A B

The 5 Target observability algorithm

In this section, in order to simplify the notation, the nodes are identified to their indexes.

The algorithm TargetObservability, presented afterwards, is based on Corollaries 4.1 and 4.2.

This algorithm determines sets of nodes from which the state of a set of target nodes can be inferred.

Let N ′ be a given set of nodes and T the set of target nodes. The algorithm TargetObservability returns the set E of all the subsets N ⊂ {1, . . . , N } ∖ T containing N ′ , minimal for inclusion, such that T is N -observable. The sets of E are minimal in the sense that, for any subset N ′′ of {1, . . . , N } ∖ T such that T is N ′′ -observable, there exists at least an element N of E contained in N ′′ . In order to compute the set E, the algorithm performs a tree transversal to construct recursively an increasing sequence of sets

N ′ = N 0 ⊂ N 1 ⊂ ⋯ ⊂ N m = N until T is N -observable.
Further, the algorithm TargetObservability proceeds as follows. Initially, E is assigned to the empty set {} and the algorithm is called with a set N ′ of supposed observed nodes. Now, let us describe any recursive call performed by the algorithm. From a subset Ñ of {1, . . . , N } ∖ T , this algorithm tests whether a set of E is included in Ñ . If it is the case, T is Ñ -observable but Ñ is not minimal for inclusion and no other computation is performed. Otherwise, the algorithm calls the function ObservableNodes that determines the set O ⊂ {1, . . . , N } of Ñ -observable nodes.

Note that the computation of O is based on Corollaries 4.1 and 4.2. Two cases appear:

• T ⊂ O. In this case, T is Ñ -observable; Ñ is inserted to E and sets of E that are not minimal for inclusion are removed from E.

• T / ⊂ O. In this case, for each of the nodes i ∈ {1, . . . , N } ∖ (O ∪ T ) B , a recursive call of this algorithm is performed with Ñ ∪ {i} as input.

The above description is summarized in the following pseudo-code.

TargetObservability ( Ñ ) If Ñ is not included in one of the set of E Then O := ObservableNodes( Ñ ); If T ⊂ O Then E ∶= E ∪ { Ñ } ;
Remove sets of E which are not minimal for inclusion ;

Else

for i ∈ {1, . . . , N } ∖ (O ∪ T ) do (*) E = TargetObservability ( Ñ ∪ {i}); end do ; end if ; end if ;
Return E ;

In the next section, we apply the algorithm TargetObservability described in this section on a C. elegans chemotaxis neuronal network.

B If {1, . . . , N } ∖ (O ∪ T ) = ∅ then Ñ can not be completed into a set N ′ ⊂ {1, . . . , N } ∖ T so that T is N ′observable. In such a case, the loop (*) is not executed.

Application on a C. elegans chemotaxis network

Here we apply our proposed algorithm TargetObservability for the target observability of muscles in the C. elegans worm. C. elegans is a well-known model organism in neuroscience due to its simple nervous system, made up of 302 neurons and about 7000 synaptic connections, and its fully mapped connectome (White et al., 1986;[START_REF] Varshney | Structural properties of the caenorhabditis elegans neuronal network[END_REF]. Despite its simplicity, the nematode surprisingly shares many of the general essential human biological features using similar neurotransmitters, channels, and developmental genes (Altun et al., 2020). Moreover, principles that underlie behaviors in C. elegans may also be similar in more complex animals such as humans [START_REF] Chalasani | Dissecting a circuit for olfactory behaviour in caenorhabditis elegans[END_REF]. For these reasons, C. elegans has become a model of reference to investigate how behavior emerges from its underlying physiological processes [START_REF] Sarma | Openworm: overview and recent advances in integrative biological simulation of caenorhabditis elegans[END_REF]. Thus, recent efforts have been made to build conductance-based models [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]) that reproduce the experimental dynamics of individual neurons in the worm [START_REF] Naudin | On the modeling of the three types of non-spiking neurons of the caenorhabditis elegans[END_REF](Naudin et al., , 2022a)). These models take the form

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ C V = -g Ca m Ca h Ca (V -E Ca ) -g Kir h Kir∞ (V )(V -E K ) -g K m K (V -E K ) -g L (V -E L ) + I ṁCa = m Ca∞ (V ) -m Ca τ m Ca , m Ca∞ (V ) = (1 + exp ( V m Ca 1/2 -V k m Ca )) -1 ḣCa = h Ca∞ (V ) -h Ca τ h Ca , h Ca∞ (V ) = (1 + exp ( V h Ca 1/2 -V k h Ca )) -1 ṁK = m K∞ (V ) -m K τ m K , m K∞ (V ) = (1 + exp ( V m K 1/2 -V k m K )) -1 h Kir∞ (V ) = (1 + exp ( V h Kir 1/2 -V k h Kir
))

-1

(8) where:

• V , m Ca , h Ca and m K are the four state variables of the system. In particular, V is the membrane potential of the neuron, which is the variable that characterizes the behavior of the neuron, and m Ca , h Ca and m K are the activation and inactivation variables of the ion channels;

• I is the control that models a sensory information produced by the environment, or an artificial injection current applied by the experimenter;

• g ion and E ion , ion ∈ {Ca, K, Kir, L}, are parameters, as well as τ x , V x 1/2 , k x with x ∈ {m Ca , m K , h K , h Kir }. The values of these parameters depend on the considered neuron [START_REF] Naudin | On the modeling of the three types of non-spiking neurons of the caenorhabditis elegans[END_REF](Naudin et al., , 2022a)).

Chemotaxis network and coupling. Some neuronal networks underlying specific behaviors in C. elegans have been cracked using data from the anatomical connectome (White et al., 1986;[START_REF] Varshney | Structural properties of the caenorhabditis elegans neuronal network[END_REF], together with powerful experimental techniques and computational tools.

Here, we use a neuronal network associated with a chemotaxis behavior [START_REF] Costalago-Meruelo | Emulation of chemical stimulus triggered head movement in the c. elegans nematode[END_REF] (Figure 4). Each neuron is arbitrarily named with three capital letters for convention, and a fourth letter L (left) or R (right) (White et al., 1986). The dynamics of each neuron are governed by a model of the form (8). The electrical and chemical synapses are modeled by coupling terms corresponding to the variable I of the first equation of System (8). The electrical synapses are linear, modeled as ohhmic resistances, while chemical synapses are nonlinear with channels gated in the postsynaptic membrane. Their respective expressions are then given by

I gap ij (V i , V j ) = g gap (V i -V j ) I syn ij (V i , V j ) = g syn s ∞ (V j )(V i -E ij )
where i and j denote a post-and pre-synaptic neuron, respectively; g gap , g syn and E ij are parameters; and s ∞ is a sigmoid function of the form

s ∞ (V j ) = 1 1 + exp ( V th -V j V slope )
with V th and V slope two other parameters.

Therefore, using the notations of System (1), the variable I of System ( 8) is substituted by 

the coupling term ∑ j∈N - i c j (V i , V j ) + I i with c j (V i , V j ) = I gap ij (V i , V j ) + I syn ij (V i , V j ),
The union of N ′ = {ASEL, ASER} and of any of these sets turns T into an observable node C . C Note that, by construction of Algorithm TargetObservability, any set N ′′ containing nodes ASEL and ASER such that T is an N ′′ -observable contains at least one of the sets of E.

The CPU time needed to obtain this output is approximately 1.07 second with a Maple implementation of algorithm TargetObservability on a Intel Quad Core 2.50GHz Processor with 8 Go of RAM.

An example of the propagation of the observability property through the network.

In this paragraph, we focus on the propagation of the observability property in the network.

Let us consider the node T = {M uscle} which is N = {ASEL, ASER, AIAL, AIAR}-observable (See ( 9)). By tracking the computations performed by the function ObservableNodes, it is possible to obtain each of the steps leading to the observability of T from the set N . In this particular case, a propagation of the observability property can be summed up in Table 1. 

Conclusions and perspectives

Summary. This paper focuses on the target observability, that consists in determining which nodes are needed to infer the state of a target subset. To that end, we present theoretical results based on specific local analytical redundancy relations. These results lead to two observability properties used to develop the algorithm TargetObservability that automatically identify sets of nodes that can infer the state of target ones. Finally, we apply our algorithm for the target observability of a C. elegans muscle involved in a chemotaxis behavior.

Perspectives. The observability property test does not tell us how to numerically reconstruct the states of target nodes and it is well-known that different sets of nodes do not provide the same reconstruction quality [START_REF] Letellier | On the non-equivalence of observables in phase-space reconstructions from recorded time series[END_REF][START_REF] Montanari | Observability of network systems: A critical review of recent results[END_REF][START_REF] Sysoeva | Reconstruction of coupling structure in network of neuron-like oscillators based on a phase-locked loop[END_REF]. Nevertheless, our approach currently returns different sets of nodes from which the target set can be reconstructed. A first extension to this work will be to develop methods quantifying the quality of these sets of nodes by developing metrics to choose the best option to reconstruct the target nodes states. Since this paper provides some building blocks for a practical reconstruction of the nodes states, a second extension of the present work will be the development of a state reconstructor, which is still an open challenge for nonlinear systems [START_REF] Liu | Control principles of complex systems[END_REF].

Figure 4 .

 4 Figure 4.B illustrates the full complex network presented in Figure 4.A with the set of differential equations associated with each node, and the intra-and inter-node couplings.

Figure 1 :

 1 Figure1: (A) Example of a complex network composed of 4 nodes (N = 4) coupled through directed edges, and controlled through the first node. (B) Full complex network presented in (A) with the set of dynamical systems associated with each node, and the intra-node (in black) and inter-node (in orange) couplings. This representation highlights the inter-node couplings through the first variable x i1 , i = 1, . . . , N , and the heterogeneity of dynamical systems governing the behavior of nodes of the network.

Figure 2 :

 2 Figure 2: Coupling of three neurons governed by the FitzHugh-Nagumo (FHN) model, where the first two nodes are controlled by constant input currents I 1 and I 2 .

Figure 3 :

 3 Figure 3: (A) Illustration of Corollary 4.1. The N -observability of node i is deduced from the one of its in-neighbors (N - i ). (B) Illustration of Corollary 4.2.The N -observability of node j 0 is deduced from the N -observability of the node i and of its in-neighbors, N - i (except the j 0 th).

Figure 4 :

 4 Figure 4: A neural network underlying a chemotaxis behavior in C. elegans (Costalago-Meruelo et al., 2018).

  E = {{RIAR}, {RM D}, {AIAL, AIAR}, {AIAL, AIBL}, {AIAL, AIY L}, {AIAL, AIY R, }, {AIAL, AIZL}, {AIAL, AIZR}, {AIAR, AIBL}, {AIAR, AIY L}, {AIAR, AIY R}, {AIAR, AIZL}, {AIAR, AIZR}, {AIBR, AIY L, AIZR}, {AIBR, AIY R, AIZR}, {AIBR, AIZL, AIZR}, {AIY L, AIZR, AV AR}, {AIY L, AIZR, RIBR}, {AIY R, AIZR, AV AR}, {AIY R, AIZR, RIBR}, {AIZL, AIZR, AV AR}, {AIZL, AIZR, RIBR}, {AIBL, AIBR, AIZR, AV AR}, {AIBL, AIBR, AIZR, RIBR}, {AIBL, AIZR, AV AR, RIBR}}.

Table 1 :

 1 Propagation of the {ASEL, ASER, AIAL, AIAR}-observability property in the network to the target T = {M uscle} performed by Algorithm TargetObservability.

	Node considered	In-neighbors of the node	Corollary used Deduced observable node
	ASER	{AIBL,AIAL,AIAR}	Cor. 4.2	AIBL
	AIAL	{ASEL,ASER,AIAR,AIZL}	Cor. 4.2	AIZL
	AIAR	{ASER,AIAL,AIZR}	Cor. 4.2	AIZR
	AIBR	{ASEL,ASER,AIAR,AIZL,AIZR}	Cor. 4.1	AIBR
	ASEL	{AIYR.AIZL}	Cor. 4.2	AIYR
	AIYR	{ASEL,ASER,AIYL}	Cor. 4.2	AIYL
	AIBL	{ASEL,ASER,AIAL,AIZL,AIZR,RIBR}	Cor. 4.2	RIBR
	RIBR	{AIBR,AIAL}	Cor. 4.2	AVAR
	RIAR	{ASEL,AIYR,AIZR,RIBR,AVAR}	Cor. 4.1	RIAR
	RMD	{RIAR}	Cor. 4.1	RMD
	Muscle	{RMD}	Cor. 4.1	Muscle
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