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FINITE DIMENSIONAL SOLUBLE GROUPS

FRANK O. WAGNER

Abstract. The results for soluble groupe of finite Morley rank are generalized to
the finite dimensional context. In particular, finite dimensional connected soluble
non-nilpotent groups interpret a field, and have a nilpotent derived subgroup.

Introduction

I

1. Dimension

Definition 1.1. A theory T is finite-dimensional if there is a dimension function dim
from the collection of all interpretable sets in models of T to {−∞} ∪ ω, satisfying
for a formula ϕ(x, y) and interpretable sets X and Y :

• Invariance: If a ≡ a′ then dim(ϕ(x, a)) = dim(ϕ(x, a′)).
• Algebraicity: dim(∅) = −∞, and dimX = 0 iff X is finite.
• Union: dim(X ∪ Y ) = max{dim(X), dim(Y )}.
• Fibration: Let f : X → Y be an interpretable map.

– If dim(f−1(y)) ≥ d for all y ∈ Y , then dim(X) ≥ dim(Y ) + d.
– If dim(f−1(y)) ≤ d for all y ∈ Y , then dim(X) ≤ dim(Y ) + d.

Of course, fibration implies that

(†) If dim(f−1(y)) = d for all y ∈ Y , then dim(X) = dim(Y ) + d.

Note that we do not suppose that the dimension is definable, i.e. that all sets {y ∈
Y : dim(f−1(y)) = d} are definable. If dimension is definable, then (†) (i.e. fibration
with =) implies the two fibration axioms (with ≥ and ≤).

Remark 1.2. In [6] a more general notion of dimension is defined. Our notion of
finite-dimensionality would correspond to fine finite-dimensional with lower fibration.

Examples of finite-dimensional theories include theories of finite Lascar rank, finite
SU-rank, finite Uþ-rank and o-minimal theories.
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Fact 1.3. [6] In a finite-dimensional theory, if f : G → H is a definable homomor-
phism of definable groups, then dimG = dimH+dimker f . In particular, if H ≤ G,
then dimG = dimH + dimG/H. So H has infinite index in G iff dimH < dimG.

It follows that we have a descending and an ascending chain condition on definable
subgroups up to finite index. Note however that there is no a priori assumption on the
existence of connected components (although we usually assume connectedness of one
of the groups involved). Part of the work is then overcome the lack of connectedness
elsewhere.

Lemma 1.4. Let G be a connected group acting on the infinite abelian group A in
a finite-dimensional theory. Suppose that A has no infinite G-invariant definable
subgroup of smaller dimension, and there is g ∈ G with (g − 1)A infinite. Then A
has a G-invariant G-minimal definable subgroup of finite index.

Proof. Suppose A∗ ≤ A is a G-invariant definable subgroup of finite index. Then
CG(A/A

∗) has finite index in G and must be the whole of G. So (g − 1)A ≤ A∗; it
is thus contained in every G-invariant subgroup of finite index in A.
Now consider finitely many gi ∈ G such that B =

∑
i(gi−1)A has maximal dimension

possible. As (g−1)A is infinite for some g ∈ G, the group B is infinite; by maximality
of dimB it must be commensurable with gB ≤

∑
i[(ggi − 1)A − (g − 1)A] for any

g ∈ G. By compactness the commensurability is uniform, and by Schlichting’s
Theorem there is a G-invariant definable subgroup B0 commensurable with B. Then
dimA = dimB0 = dimB, so there is a maximal sum A0 =

∑
j(gj − 1)A of finite

index in A. Then A0 is G-invariant, and contained in every G-invariant definable
subgrou of finite index in A, whence G-minimal. �

In order to preserve connectedness in nilpotent groups, we shall need the following
Lemma.

Lemma 1.5. Let G be a finite-dimensional nilpotent connected group. Then G has
a definable connected lower central series.

Proof. We use induction on the dimension. If G is abelian, the statement is clear.
Otherwise choose g ∈ γn−1G \ Z(G), where n is the nilpotency class of G. Then
x 7→ [x, g] is a homomorphism from G to γnG ≤ Z(G); its image Z is definable,
connected and infinite. Since dim(G/Z) < dimG and γi(G) is the pre-image of
γi(G/Z) with respect to the projection G → G/Z, we finish by induction. �

Lemma 1.6. Let H1, H2 be normal subgroups of G. If G/H1 and G/H2 are connected-
by-finite, so is G/(H1 ∩H2).

Proof. Let (Gk)k be an infinite strictly descending sequence of subgroups of G con-
taining H1∩H2. Since G/H1 is connected-by-finite, the sequence (GkH1)k will even-
tually be stationary, and we may assume that it is constant for all k. Similarly, the
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sequence (Gk ∩H1)/(H1 ∩H2) ∼= (Gk ∩H1)H2/H2 will eventually be stationary, and
we may assume Gk ∩H1 is constant for all k. But then Gk/(Gk ∩ H1) ∼= GkH1/H1

is stationary, as is Gk, a contradiction. �

Lemma 1.7. Let H be a normal subgroup of G and suppose G/H and H are
connected-by-finite. Then G is connected-by-finite.

Proof. Let (Gk)k be an infinite strictly descending sequence of subgroups of G. Then
GkH and Gk∩H will eventually be stationary, and we may assume they are stationary
for all k. But then Gk/(Gk ∩ H) ∼= GkH/H is stationary for all k, as is Gk, a
contradiction. �

Proposition 1.8. Let G be a connected group acting faithfully on the abelian group
A in a finite-dimensional theory. Suppose that CA(G), as well as A[n] are finite for
all n < ω. Then A is connected-by-finite.

Note that since the n-torsion is finite for all n < ω, a connected subgroup of A must
be divisible (and a divisible group is connected).

Proof. By induction on dimA. If (g − 1)A were finite for all g ∈ G, then

dim{(g, a) : ga = a} = dimG+ dimA,

so dimCG(a) = dimG for dimA many a ∈ A, whence CG(a) = G by connectedness
of G, and CA(G) has finite index in A, a contradiction. As in Lemma 1.4, there
is a G-invariant subgroup B ≤ A commensurable with a finite sum of the form∑

i(gi − 1)A of maximal dimension possible.
If dimB = dimA, then as in Lemma 1.4 there is a G-invariant subgroup A0 of finite
index in A of the form A0 =

∑
j(gj − 1)A, which is contained in all G-invariant

subgroups of finite index in A. Since A0[n] is finite, nA0 has finite index in A, so
A0 ≤ nA0 for all n > 0 and A0 is divisible, whence connected.
If dimB < dimA, then B is connected-by-finite by induction hypothesis. Choose
n < ω minimal such that there are gi ∈ G for i ≤ n such that

∑
i≤n(gi − 1)A is

commensurable with B, and put N =
∑

i<n(gi−1)A. Then (gn−1)A/((gn−1)A∩N)
is infinite and commensurable with B/N , whence connected-by-finite. Put K =
{a ∈ A : (gn − 1)a ∈ N}. Then A/K ∼= (gn − 1)A/((gn − 1)A ∩ N) is infinite,
and connected-by-finite. Choose finitely many hj ∈ G such that K0 =

⋂
j hjK has

minimal dimension possible. Then K0 is uniformly commensurable with all its G-
conjugates; by Schlichting’s Theorem there is a G-invariant K1 commensurable with
K0. By Lemma 1.6, A/K0 is connected-by-finite; since dimK1 < dimA also K1 is
connected-by-finite by inductive hypothesis, as is K0; finally A is connected-by-finite
by Lemma 1.7. �

Corollary 1.9. Let K be a field definable in a finite-dimensional theory. Then K
does not have a connected infinite group of automorphisms.
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Proof. If CK(G) is infinite, then [K : CK(G)] is a field extension of degree dimK/ dimCK(G),
which is finite. Hence G embeds into Gal(K/CK(G)), which is finite. Thus G is triv-
ial by connectedness.
If CK(G) is finite, we consider G as a connected group of automorphisms of K×. Then
K is divisible-by-finite by Proposition 1.8. However, the subfield Kabs of absolutely
algebraic elements is contained in CK(G) by connectivity of G, and must be finite.
But then Kabs has a cyclic extension of every prime degree q, as does K, and (K×)q

has index at least q in K×, a contradiction. �

2. Soluble groups

Theorem 2.1. Let M be a connected abelian group acting faithfully on the infinite
abelian group A in a finite-dimensional theory. Suppose that A has no infinite M-
invariant definable subgroup of smaller dimension and CA(M) is trivial. Then A is
M-minimal, and there is a definable field K such that A ∼= K+ and M →֒ K×.

Proof. We consider the ring R of definable endomorphisms of A generated by M .
Then R is commutative, and contains M as a multiplicative subgroup. Moreover,
for any r ∈ R both ker r and im r are definable M-invariant, whence either finite or
of finite index in A. But the centralizer of any finite M-invariant subgroup F has
finite index in M , and must equal M by connectedness. Since CA(M) is trivial, so is
F . But then, if ker r has finite index, im r is finite, whence trivial, and r = 0. Thus
ker r = {0} for all r ∈ R \ {0}, and R is an integral domain.
Let A0 be the M-invariant M-minimal subgroup of finite index in A given by Lemma
1.4. Then (m − 1)A = A0 = (m − 1)2A for any m ∈ M \ {1}, since these groups
are all M-invariant of finite index in A and M centralises A/A0. Hence A = A0 ⊕
ker(m− 1); as ker(m− 1) is trivial, A0 = A. But then the image of any r ∈ R \ {0}
is infinite M-invariant, and must be equal to A by M-minimality, so R acts on A by
automorphisms.
It follows that any r ∈ R is determined by the couple (a, ra) for any r ∈ R and
non-zero a ∈ A. Thus dimX ≤ 2 dimA for any type-definable subset X of R. By
[7, Proposition 3.6 and Proposition 3.3] the field of fractions K of R is definable,
and A is a finite-dimensional vector space over K. By minimality of dimA it is
1-dimensional, so A ∼= K+; clearly M →֒ R× = K×. �

Theorem 2.2. Let G be a nilpotent connected group acting on an infinite abelian
group A, in a dimensional theory. Then either the action is nilpotent, or there is a
definable centreless 2-soluble section which naturally interprets a field.

Proof. By induction on dimG+dimA. If CA(G) is infinite, dim(A/CA(G)) < dimA
and we may use the induction hypothesis for G acting on A/CA(G). So we may
assume that CA(G) is finite. Then aG is finite for any a ∈ A centralised by G
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modulo CA(G), so CG(a) has finite index and g ∈ CA(G) by connectedness. Thus
CA/CA(G)(G) is trivial, and we may assume CA(G) is trivial. In particular, a finite
G-invariant subgroup of A must be contained in CA(G), and be trivial.
By Lemma 1.5 the derived subgroup G′ is connected and definable, and dim(G′) <
dim(G). By induction hypothesis either the action of G′ on A is nilpotent, or a
field is naturally definable. So we may assume that we are in the former case, and
we consider the definable series A0 = {0}, An+1 = {a ∈ A : [a,G′] ⊆ An} which
terminates in A. Note that G/G′ acts on all the quotients An+1/An. Let Q be such
a quotient. If it is finite, it is centralized by G by connectivity. If CQ(G) is finite,
again by connectivity of G the action of G on Q/CQ(G) is centreless; if Q0 ≤ Q
is definable, infinite and G-invariant of minimal dimension possible, Theorem 2.1
yields an interpretable field K such that Q0

∼= K+ and G/CG(Q0) →֒ K×. Finally,
if CQ(G) is infinite, we divide out and finish by induction. �

Corollary 2.3. A connected soluble non-nilpotent dimensional group interprets nat-
urally a field.

Proof. If Z(G) is infinite, we divide by Z(G) and use induction on dimG. If Z(G)
is finite, then G/Z(G) is centreless by connectivity, and we may assume that G is
centreless. Then for any non-trivial a in the last non-trivial derived group, A =
Z(CG(a

G)) is a definable infinite abelian group. Either G/A is non-nilpotent and we
finish by induction on dimG, or G/A is nilpotent and we finish by Theorem 2.2. �

Theorem 2.4. Let G be a connected group acting faithfully and without fixed points
on the infinite abelian group A in a finite-dimensional theory. Suppose that A is
G-minimal, and that G has a definable infinite finite-by-abelian normal subgroup M .
Then A is definably a vector space of finite linear dimension over a definable field
K, such that the action of G is K-linear and M has a G-invariant subgroup M0 of
finite index acting by scalars (so M0 is central in G and embeds into K×).

Proof. Let C be the G-invariant family of centralisers in M of finite tuples m̄ ∈ M ,
and note that they all have finite index in M . Consider an infinite definable subgroup
B ≤ A of minimal possible dimension and invariant under some subgroup NB ∈ C.
Choose finitely many gi ∈ G such that S =

∑
i giB ≤ A has maximal dimension

possible. Then dimS + gS = dimS = dim gS for any g ∈ G, so the family of
translates {gS : g ∈ G} is commensurable, and uniformly so by compactness. By
Schlichting’s Theorem there is a G-invariant group S0 commensurable with S; by
minimality of dimA we have dimA = dimS0 = dimS and S has finite index in A. It
follows that there is a maximal finite sum of G-translates of B containing S; it must
be G-invariant, whence equal to A by G-minimality. Renaming, we may assume that
S = A =

∑
i giB.
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Suppose CM(B) has finite index in M . Then so does CM(gjB) = CM(B)g
−1

j , as well
as the intersection

C =
⋂

j

CM(B)g
−1

j = CM(
∑

j

gjB) = CM(A) = {1},

a contradiction.
Let R be the group of endomorphisms of A generated by M , and for any subgroup
N ∈ C let RN be the group of endomorphisms of A generated by N . Put IB =
{r ∈ RNB

: rB finite}. Now B is RNB
-invariant, and for any r ∈ R generated using

elements m̄ ∈ M , rB is invariant under NB ∩ CM(m̄) ∈ C. It follows by minimality
that rB is either finite or has dimension dim rB = dimB, so B ∩ ker r is finite. In

particular I is a prime ideal in RMB
. Note that NgB = Ng−1

B , RNgB
= Rg−1

NB
and

IgB = Ig
−1

B .
We shall call g and h equivalent if there is a subgroup N ∈ C containing NgB ∩NhB

such that IgB ∩ RN = IhB ∩RN . This clearly is a G-invariant equivalence relation.
Suppose (hj : j ≤ k) are inequivalent for some h0, . . . hk ∈ G, and put N =⋂

j≤k NhkB, again a group in C. Then all IhjB ∩ RN are distinct prime ideals in RN ,

and one of them is minimal, say IhkB. So there is r ∈ RN ∩
⋂

j<k IhjB \ IhkB. Hence

rhjB is finite for j < k and rhkB has finite index in hkB. Thus hkB ∩
∑

j<k hjB is

finite; iterating we find that the sum
∑

j≤k hjB is almost direct. So (k+ 1) dimB =

dim
∑

j≤k hjB ≤ dimA, and k < dimA, as dimB > 0. Thus there are only finitely
many equivalence classes among the elements of G, and we may choose representa-
tives (ei : i < c).
For any i < c let Si be a sum

∑
ji
hj,iB of maximal dimension, where all hj,i are

equivalent to gi. Then as above we see that the sum
∑

i<c Si is almost direct, and
h is equivalent to gi if and only if hB is almost contained in Si. It follows that the
action of G on the equivalence classes is definable, and trivial by connectivity. So
there is just one equivalence class, since the action is transitive.
Recall that A =

∑
i giB. Take N ∈ C containing

⋂
i NgiB such that all IgiB ∩RN are

the same prime ideal IN of RN . Now any r ∈ RN has finite image or image of finite
index on every giB, whence on A. It follows that IN = {r ∈ RN : rA finite}. Now
for m,m′ ∈ N we have m + IN = m′ + IN iff m −m′ ∈ IN iff im (m −m′) is finite
iff im (m′−1m − 1) is finite iff CA(m

′−1m) has finite index in A iff mM0 = m′M0,
where M0 = {m ∈ M : |A : CA(m)| finite}. Note that the finiteness is definable by
compactness, so M0 is definable.
Suppose almost all m ∈ N are equivalent modulo I. Then M0 has finite index in M .
Consider the set

{(a,m) ∈ A×M : ma = a}.
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It has dimension at least dimM0 + dimA = dimM + dimA. It follows that the
definable subgroup A0 = {a ∈ A : Ma finite} has finite index in A, and both are
G-invariant. Then A0 ⋊ M0 has finite derived group, which is a finite G-invariant
subgroup of A, whence contained in CA(G) = {1}. So M0 acts trivially on A0. But
A0 = A by G-minimality, contradicting faithfulness. Hence M/M0 is infinite.
Suppose that there is no maximal finite subgroup of A invariant under some subgroup
in C. Then take a countably infinite restricted sum S of such subgroups; they are
invariant under a subgroup N0 of M which is a countable intersection of subgroups
in C. Since M0 has infinite index in M , it has infinite index in N ∩N0, and there are
m,m′ ∈ N ∩N0 with m′−1m /∈ M0 whith the same action on S. Hence ker(m−m′) ⊇
S is infinite, so im (m − m′) is finite, contradicting m′−1m /∈ M0. It follows that
there is a unique maximal finite subgroup invariant under some subgroup in C. By
uniqueness it is G-invariant, whence centralized by G by connectedness. But CA(G)
is trivial, so there is no non-trivial finite subgroup of A invariant under some subgroup
in C. Thus RN \{0} consists of injective endomorphisms whose image has finite index
in A. In particular IN is trivial.
Choose a ∈ A \ {0}. For any r ∈ RN the couple (a, ra) determines r, so we get a
bound on dimRN , and the skew field of fractions KN is definable by [7, ].
The derived subgroup M ′ is finite, say of size n. It is characteristic in M , whence
normal in G, and must be centralized by G by connectivity. It follows that

[x, yn] = [x, y]n = 1

for all x, y ∈ M . Moreover,

(xy)2n = x2ny2n[y, x](2n−1)2n/2 = x2ny2n.

So the map x 7→ x2n is an endomorphism of M with characteristic abelian image; we
want to show that the image M0 has finite index. So suppose otherwise. Then the
kernel M [2n] is infinite, as is N [2n] = M [2n] ∩N . Since centralisers of finite tuples
have finite index in M , we can find an abelian subgroup A of exponent 2n and size
> 2n in N . But A generates a commutative subfield of KN , a contradiction.
It follows that M0 has finite index in M ; clearly it is G-invariant. We repeat the
above argument with M0 instead of M , noting that this time C = {M0}. So RM0

is
a commutative ring of injective endomorphisms of A with finite kernels, whose field
of fractions K0 is definable. Then G acts on K0 definably, and trivially by Corollary
1.9. Hence m = mg for all m ∈ M0 and g ∈ G, and M0 is central in G. Now im r
is G-invariant for any 0 6= r ∈ RM0

, so im r = A by G-minimality. It follows that
A is a K0-vector space of finite linear dimension, G acts K0-linearly and M0 acts
K0-scalarly. �

Theorem 2.5. A finite-dimensional connected soluble group G has a nilpotent de-
rived subgroup.
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Proof. Dividing out by the hypercentre, we may assume that G is centreless. In
particular, it has no finite G-invariant subgroups. If a 6= 1 is in the last non-trivial
derived subgroup of G, then Z(CG(a

G)) is a definable G-invariant abelian subgroup of
G. So we can choose a non-trivial definable G-invariant abelian subgroup A ≤ G such
that CG(A) has maximal dimension possible. Replacing A by a definable subgroup,
we may assume that dimA is minimal possible. Note that A is infinite.
If [g, A] is finite for all g ∈ G, consider the set

{(g, a) ∈ G× A : ga = a}

and note that it has dimension dimG + dimA. Hence dim{a ∈ A : [G, a] finite} =
dimA. But by connectivity [G, a] is finite if and only if it is trivial, contradicting the
fact that G is centreless. By Lemma 1.4 we may assume that A is G-minimal. We
claim that G′ ≤ CG(A). So suppose not.
If CG′(A) has finite index in G′, then for every g ∈ G the index |G : CG(g/CG(A))|
is finite, whence trivial by connectivity. It follows that G′ ≤ CG(A), a contradiction.
Hence CG′(A) has infinite index in G′ and there is maximal k such that (G′)(k)/CG(A)
is infinite. Put N = CG(A)(G

′)(k+1), a definable finite extension of CG(A). Then
Z(CG/N((G

′)(k)/N) is an infinite definable normal abelian subgroup of G/N contain-

ing (G′)(k)/N (it is definable since the centralizer is the centraliser of the set of basic
commutators generating (G′)(k)). Its preimage M in G/CG(A) is finite-by-abelian.
By Theorem 2.4 there is a definable G-invariant subgroup M0 of finite index in M
centralized by G; moreover A is definably a finite-dimensional vector space over a de-
finable field, the action of G is linear and the action of M0 is scalar. But M0∩ (G′)(k)

consists of scalar matrices of determinant 1 and must be finite, again a contradiction.
Hence G′ centralizes A. We divide out by A and finish by induction on the dimension.

�
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