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Abstract—Autonomous vehicles (AVs) are the dream of the
present era and are close to become reality. In AVs, perception
is a challenging task. It gives understanding of the driving
environment. One type of such task is road detection, where
the goal is to segment the road area into drivable and non-
drivable using multi-modal sensors like cameras and lidars. For
their ability on a road detection task, deep neural networks, with
an encoder-decoder architecture, are chosen in this paper. Since
deep learning models have large size and AVs have constrained
computational power, model reduction is important. Therefore,
architecture reduction of a convolutional neural network is
proposed on a deep learning based multi-modal fusion model.
This model is used as the baseline of our work, and camera
and lidar are its modalities. The baseline model’s weights that
are used to fuse the camera processing pipeline with the lidar
pipeline are analysed. The analysis shows that the strength of
fusion between the two modalities changes from layer to layer.
Using this result and a support from generic encoder-decoder
architecture, a reduced architecture is proposed. The latter is
further processed by removing some layers of the baseline to
produce a lite model. The reduced architectures are validated to
show comparable performance with the baseline. Furthermore,
both the reduced architectures outperform the baseline on a
brightness adjusted camera image. These reduced architectures
can be used from the perspective of embedded system, or they can
be used to boost performance by appending additional algorithm.
The training and validation are done on the KITTI dataset.

Keywords—architecture reduction, sensor fusion, perception,
autonomous vehicle, deep learning

I. INTRODUCTION

Autonomous Vehicles (AVs) are sought-after systems with
an aim of reducing traffic accidents, mitigating traffic con-
gestion, reducing emissions, increasing mobility, and using
infrastructure efficiently. AVs have perception, path planning
and control units in the modular approach [1]. Therefore, the
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vehicle can perceive the environment. This understanding of
the driving area is used to generate path trajectory and actuate
the vehicle.

Perception in AVs is a challenging task. It maps the driving
environment, and gives the world knowledge for autonomy.
It involves multi-modal sensors like cameras, lidars, radars
or ultrasonic sensors [1]–[3]. Failure in perception propagates
in all the succeeding modules, and may initiates a wrong
control action. In perception systems, there are various tasks
like object detection, semantic segmentation, road and lane
detection, localization and mapping, and so on [1], [4]. For
this tasks, deep learning becomes a standard approach, and has
shown outstanding performance [1], [5]–[7]. It employs con-
volutional neural network (CNN) to extract features. However,
sensors have their own inherent limitations, and a uni-modal
perception system will have a constrained performance.

Sensor fusion is used to overcome the inherent shortcomings
[1], [2]. There are different scenarios that affect sensing
modalities: illumination change, rain, snow, night, entering or
leaving a tunnel and so on. Cameras are rich in features, but
they are affected by change in illumination levels, non visible
or partially visible objects, etc. Lidars are sparse though they
are not affected by illumination variation. The robustness to
weather condition of radar is limited by its low accuracy.
Thus, the cons of one modality need to be complemented
by the pros of the other by multi-modal sensor fusion [8],
[9]. The fusion can be at early, middle or late stage of the
processing pipeline [3]. However, the fused architecture could
become large in size because of the multiple modalities (or
sensors). Therefore, it is important from the perspective of
real-time execution to have a reduction in the size of fusion
architectures while maintaining comparable performance [10].
Besides, reduced architectures may have different level of ro-
bustness to change in illumination level [11]. Furthermore, this
reduction can also be used to extend the perception systems
with uncertainty handling methods [12], [13]. In this paper two



reduced models with comparable performance, and enhanced
robustness for change in level of illumination are proposed
for a camera-lidar fusion architecture. The reduction has used
model weight analysis to see the degree of fusion between
the two modalities. This analysis together with selection of
appropriate architecture resulted in the reduced models.

The rest of this paper is organized as follows. Section II
discusses related works, and section III gives a background
discussion on a baseline multi-modal fusion architecture that
will be reduced in size. The method of reduction and the
proposed reduced architectures are presented in section IV.
Finally, the experimental results are reported in section V, and
Section VI concludes the paper.

II. RELATED WORK

Sensor fusion architectures based on deep learning have
been proposed for perception in AVs. Camera and lidar are
fused using a multi-layer perceptron (MLP) in [14]. The fusion
is done after camera and lidar inputs are processed using a
CNN based detector called YOLO [15]. The detection from
the individual modalities is re-scored by the fusion. This work
has shown that up-sampled lidar maps can be used for object
detection. Besides, MLP is also used for a purpose of fusion.
The same modalities are also fused at decision level in [16]. In
[17], YOLO is also used camera-lidar fusion by a weighted-
mean of the prediction bounding boxes. The confidence score
is used to weight the detection and produce better result
than the single modalities. A fusion throughout a processing
pipeline of camera and radar using concatenation operation
is done in [18]. The fusion showed the advantage of radar in
sever weather condition. Differently, authors in [19] propose to
investigate fusion at different stage of the processing pipeline:
early fusion, late fusion and cross fusion. Respectively, the
fusion should occur at the start, at the end or throughout the
pipeline. Early and late fusion use concatenation as fusion
operation at early and late stage of processing, respectively.
However, the fusion called cross-fusion is implemented by
combining camera and lidar features at each processing layer
of a fully convolutional neural network (FCN). The fusion
is done using learnable parameters. Therefore, the position
and extent of fusion is not fixed, rather it is determined by
learning. It is reported that the cross-fusion outweighs the
performance of the early and late fusion. This kind of FCN
is also used in previous works on lidar-based road detection
and path generation [20], [21]. Therefore, the cross-fusion
technique worth to be investigated but needs to be modified
for real-time execution.

III. BACKGROUND

A camera-lidar fusion architecture called cross-fusion (CF)
is proposed by Caltagirone et al. [19]. It is used as our baseline
for a fusion architecture reduction. The implementation detail
of the baseline architecture is provided by the authors allowing
to be re-implemented1. To have an accurate re-implementation,

1https://github.com/geletumn/cf reduction

every line on data preprocessing, architecture building, and
network training and validation is strictly followed.

A. Lidar-camera cross fusion baseline model

The baseline model is structured around an encoder-decoder
architecture for road detection [19]. To have context aggrega-
tion without losing resolution, a module called context module
is used [22]. The module is placed in between the encoder
and decoder sections. Convolution is the operation used in the
encoder, and dilated convolution followed by dropout is used
in the context module. The dilation factor used in the context
module has exponential growth. The decoder has successive
layers of deconvolution and convolution. The baseline model
has two processing pipelines. This kind of pipelines have been
utilized by previous works [20], [21]. The pipelines are used to
process camera and lidar inputs. Each pipeline has twenty lay-
ers. A final softmax layer produces the output. The processing
layers of one modality are fused with the corresponding layer
of the other modality. The fusion operations are additions and
weightings. A lidar layer is weighted by a learnable scalar.
This parameter is called fusion weight of the lidar layer. Then
it is added to the corresponding layer of the camera pipeline.
The sum is used as input to the next camera layer. The same
line of operation flows from camera layer to produce the
next lidar layer. The weighting parameter is now called fusion
weight of the camera layer.

B. Re-implementation detail

The baseline cross-fusion architecture is trained on the
KITTI dataset (see section V-A) [23]. Camera images and
3D-lidar point clouds from the road detection are used. The
lidar points are projected on the image plan to have a 2D
representation of the depth information. The projection matrix
P , the rectification matrix R and the translation matrix T are
used to project a 3D lidar point x to a point y in the camera
image. These matrices are provided on the KITTI benchmark
suite.

y = P R T x (1)

The depth in the X-axis, Y-axis and Z-axis of the projection
forms three separate depth maps, similar to the three RGB
channels of the camera image. Since these depth maps are
sparse, up-sampling is done using the technique proposed by
Premebidia et al. [24]. Fig. 1 illustrates the projection and up-
sampling of 3D lidar points. Besides, zero-padding is used to
have images of matching size, and no additional image pre-
processing is used.

The fusion architecture is implemented in tensorflow. The
network is trained using Adam optimization, and a polyno-
mial decay is used as the learning rate. Detail of the re-
implementation in alignment with the baseline cross-fusion
architecture is given in table I.

IV. ARCHITECTURE REDUCTION

The baseline cross-fusion architecture is reduced from the
perspective of real-time execution in an instrumented test car,
where the computational power is constrained. The reduction



(a) 3D lidar points projected to image

(b) Up-sampled dense depth image

Fig. 1: Projection and up-sampling of 3D-lidar points

TABLE I: Baseline cross-fusion re-implementation detail

Re-implementation detail
Inputs RGB image

lidar point cloud
Input size 384x1248
Preprocessing Lidar projection

Upsampling
Data split Training: 239 frames

Validation: 50 frames
Augmentation Random rotation about the center in range of [−20o, 20o]
Optimization Adam
Learning rate Polynomial decay
Epoch 420
Batch size 1
Dataset KITTI

is done considering fusion weights, generic encoder-decoder
architecture, and context module.

A. Reduction in decoding

The baseline CF architecture has two pipelines for the
two modalities. Each layer of one modality is fused with
the corresponding layer of the other modality. The fusion
weights are analyzed to see the strength of fusion in each
layer. Since there is randomness in network initialization and
training dataset split, the training of the baseline network is
done multiple times. Five separate trainings having different
seeds of the input are used. In all different seeds, the training-
validation split ratio is maintained. There are twenty lidar and
camera layers each. For each of these layers, the statistical
summary of the fusion weights on the five runs is given in
fig. 2.

The encoder has the first five layers. Layers six up to
fourteen belongs to the context module. The last six layers
are part of the decoder. For each layer, as can be seen from
the statistical summary, there is a variation in the strength of
fusion from layer to layer. From the box and whisker plot (see
fig. 2), the median and the dispersion of the fusion weights
in the decoding layers are small. This shows that there is no
strong fusion in the decoding layers.

In a generic encoder-decoder architecture, reconstruction is
done from the latent-space representation [25]–[27]. Once the

latent representation is obtained, a single decoder will give the
full resolution output. Since the fusion in the decoder section
of the baseline is negligible regarding the other fusion weights,
and a single decoder can be used for the reconstruction, a re-
duced fusion architecture is proposed (see fig. 3). This reduced
architecture has a single unified decoder. It reconstructs from
the joint latent representation of the two modalities. The fusion
in the encoder and context module of the baseline is kept
unchanged. This reduced architecture is named uni-decoder
CF.

B. Reduction in the context module

Further reduction is proposed on the uni-decoder CF using
the work of Yu and Kontun [22]. In their work, the context
module was reduced depending on the image resolution. In
their experiment on the KITTI dataset, a layer of the context
module was removed because the vertical resolution of KITTI
dataset images is small. Akin to this, layer 12 (L12) of the
baseline is removed from the two processing pipelines. The
resulting context module has eight layers. The architecture of
this reduced context module is given in table II. This reduced
fusion architecture is named Lite CF.

TABLE II: Architecture of the reduced context module

Context layer 1 2 3 4 5 6 7 8
Dilation 1 1 2 4 8 16 1 –
Receptive field 3×3 5×5 9×9 17×17 33×33 65×65 67×67 67×67
# feature maps 128 128 128 128 128 128 128 128
Filter size 3 3 3 3 3 3 3 1

V. EXPERIMENTAL RESULTS

The re-implementation in section III-B is evaluated, and its
performance is compared against the baseline CF. The reduced
architectures, uni-decoder CF and lite CF are also trained, and
their prediction performance is compared with the baseline
CF. Besides, the performance of the baseline, uni-decoder CF
and lite CF are evaluated on brightness adjusted KITTI image.
The KITTI metrics maximum F1 (MaxF), precision (PRE) and
recall (REC) are used, and MaxF is the ranking metrics [28].

A. Dataset

In this work the KITTI dataset is used [23]. It is a
dataset captured by driving around the city of Karlsruhe,
Germany. It has camera images and laser scans among other
measurements. For the task of road detection, the dataset
provides 289 training images with their corresponding ground
truth. These are collected mainly in good lighting conditions.
It contains three different road categories: urban unmarked,
urban marked and urban multiple marked lanes with 98, 95
and 96 samples respectively. These samples are split in to
training and validation set in our experiment.

B. Re-implementation validation

The baseline is re-implemented as it is discussed in section
III-B. Caltagirone et al. [19] have not reported the performance
metrics value to be mean of multiple runs. However, there is
randomness while training the network. Therefore, to have a
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Fig. 3: Uni-decoder CF architecture

robust validation, five separate trainings are done on different
seeds. The mean and the standard deviation (std), not the
best, performance of the multiple trainings is reported (see
table III). As can be seen from the table, the re-implementation

performance is in alignment with the baseline result. Us-
ing the ranking metrics MaxF, the mean value on the re-
implementation is close to the baseline. Furthermore, the re-
implementation has a small statistical dispersion (small std



value). Therefore, in the absence of a public source code, the
re-implementation is used as the baseline.

TABLE III: Re-implementation validation

MaxF [%] PRE [%] REC [%]
Cross-fusion [19] 96.25 96.17 96.34
Re-implementation 96.52 (std=0.43 ) 96.70 (std=0.47 ) 96.34 (std=0.52 )

C. Comparison of the reduced architectures

The proposed reduced architectures are evaluated, and com-
pared with the validation of the baseline. As per the suggestion
from the KITTI benchmark suite, 10-fold cross validation is
used. The dataset is randomly splitted into ten folds. Each
fold is made to have a proportional number of frames from
each road category: urban unmarked, urban marked and urban
multiple marked lanes. Then ten separate training-validation
are made. Except for the data split, the training follows the
procedure described in III-B. The mean and the std of the
10-fold cross validation is given in table IV.

TABLE IV: Reduced architectures validation

Fusion
architecture

#model
param.

MaxF [%] PRE [%] REC [%]
mean std mean std mean std

Baseline 3,246,830 96.25 0.71 96.46 0.66 96.05 1.06
Uni-decoder CF 3,032,383 96.18 0.74 96.16 0.74 96.20 0.84
Lite CF 2,737,213 95.50 0.52 95.57 0.69 95.45 0.74

The validation result shows that the reduced architectures
have comparable performance with the baseline while the
model complexity (number of model parameters) is decreased.
The performance of the reduced architectures, i.e. %MaxF,
is only slightly decreased. As can be seen from the table,
the uni-decoder CF has more than 6% reduction in number
of model parameters. This reduction is further increased by
the lite CF to more than 15% with small std on the MaxF
value compared with the baseline. This may show that the
baseline has learnt details of some scenarios that the dispersion
on MaxF is slightly higher. Therefore, the lite CF gives
comparable performance while the statistical dispersion is
small.

For qualitative comparison of the proposed reduced archi-
tectures, some visuals of detection results are shown in fig.
4. As can be seen from the figure, the majority of the road
segment is detected in both the baseline and the reduced
architectures. However, they both make some false detections
(false positive or false negative) at road edges and far end
points. The false detection at far end points could be because of
lack of rich representation in the camera image, and absence of
laser scans. This is common to both the baseline and reduced
architectures.

D. Evaluation on brightness adjusted KITTI dataset

Different fusion models can have different degree of ro-
bustness. To show this, a scenario is created by changing the
brightness level of KITTI images. The original KITTI images
are taken in a good sunny condition. However, when the image
brightness level is changed, there are dark and foggy kind of

images. This will impose difficulties on the fusion models to
degrade their performance.

Evaluation is done to see the degree of robustness to change
of brightness level on the baseline and the reduced architec-
tures. The level of brightness is adjusted randomly by a little
value on the KITTI images. The models that are trained on
normal brightness images are evaluated on brightness adjusted
ones. The 10-fold cross validation is used by changing the
image brightness in the validation split. Table V gives the
mean and std of the cross validation when the brightness is
changed.

TABLE V: Performance comparison of baseline and reduced
architecture while the image brightness is adjusted

Fusion
architecture

MaxF [%] PRE [%] REC [%]
mean std mean std mean std

Baseline 83.65 6.24 88.74 3.84 79.37 8.69
Uni-decoder CF 87.09 6.74 92.70 1.98 82.62 10.07
Lite CF 87.42 3.68 91.58 3.27 83.69 4.63

It is expected that the models’ performance generally de-
crease. However, as can be seen from table V, the reduced
architectures have higher MaxF value. Therefore, they are
less affected than the baseline by the change in the level of
brightness. Moreover, the lite CF model has small std value,
which is statistically desirable. Similar result is also observed
on the lite in section V-C. This shows that the lite CF is
more robust than the baseline with less statistical dispersion.
This robustness result of the lite CF together with the result
in section V-C, i.e. more than 15% parameter reduction and
comparable performance, makes lite CF a notable model.

Some visual results are given in Fig. 5. As can be seen
from the figure, the baseline model is more affected by the
change than the reduced models. When the image is darkened,
the baseline model produces bad result. However, the reduced
architectures are comparatively better. When the image is a
foggy kind, all the models detected the major part of the road
segment.

The robustness of the reduced architecture could be at-
tributed to the removal of some layers. The baseline CF has
twenty layers dedicated to process the camera input, which is
rich in feature. Therefore, the model can be highly dominated
by the camera input, and grabs details of the camera image
features. As a result, a slight change in the brightness of
camera images may result in a large loss of performance. This
is also supported by the comparatively high values of std in
the MaxF value (see table IV). However, the uni-decoder and
lite CF have only fourteen and thirteen layers, respectively,
dedicated to the camera input. Besides, decoding is done on a
unified feature, i.e. there is no room to emphasize one modality
over the other while decoding. As a result, every detail of the
feature rich camera input may not be grabbed and processed.
This can contribute to the fact that they are less affected when
the brightness level in the camera images is changed slightly.

The MaxF value in table V has high value of std. Therefore,
it is statistically dispersed. This can be due to the fact that the
level of brightness is changed randomly. Since 10-fold cross



Fig. 4: Detection output of the baseline and reduced architectures. From left to right: baseline prediction, uni-decoder CF
prediction, Lite CF prediction [Green: True positive, Red: False positive, Blue: False negative].

Fig. 5: Detection on brightness adjusted images. From top to bottom: KITTI image, brightness adjusted image, ground truth,
baseline prediction, uni-decoder CF prediction, Lite CF prediction [Ground truth: pink-road, red-not road, black-invalid area;
prediction: white-road, black-not road].

validation is used, the change in brightness in one fold could be
totally different from the change in the other fold. Therefore,
there is dispersion in performance from one validation fold to
the other.

VI. CONCLUSION

In this paper, the problem of road detection for autonomous
driving has been addressed. Thanks to their performance in
image processing, deep neural networks have been consid-
ered. Since the main target is to embed the algorithms into
industrial computers, there is a real need for architecture

reduction. The paper has proposed two reduced architectures
for a lidar-camera fusion. The reduced architectures have up
to 15% reduction in model parameters compared with the
baseline while maintaining comparable performance, only a
maximum drop of 0.78% in mean value of MaxF. More-
over, the evaluation on brightness adjusted images has shown
that the reduced architectures are more robust to brightness
change than the baseline. Therefore, the proposed reduced
architectures have practical advantage in providing robust and
accurate performance at low computational cost in AVs, where
computational power is constrained. Alternatively, they can be



used to boost performance by appending additional algorithm
without inducing much computational complexity. Fusion ar-
chitectures generally focus on building a high performance
model. However, the model can be complex and demand high
computational resources. Model architecture reduction should
be pursued in order to get models that have comparable or
better performance while having reduced size. This perspective
can be applied to reduce a more complex and robust fusion
architecture. It is also relevant to append additional algorithms
that could improve performance, like evidential theory.
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