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Introduction

The existence of an economic equilibrium was proven by [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF] and [START_REF] Mckenzie | On equilibrium in Graham's model of world trade and other competitive systems[END_REF]. While the existence result could be established in many different ways, all classic proofs of the existence theorem rely on Kakutani fixed point argument (see [START_REF] Debreu | Existence of competitive equilibrium[END_REF]'s survey). In the so called excess demand approach, the existence result is yielded from the existence of prices satisfying the Walras's law. The core of the proof of excess demand approach is a celebrated result known as the Gale-Nikaido-Debreu lemma (henceforth, GND lemma) (see [START_REF] Gale | The law of supply and demand[END_REF], [START_REF] Debreu | Market equilibrium[END_REF] and [START_REF] Nikaidô | On the classical multilateral exchange problem[END_REF] or [START_REF] Debreu | Theory of Value -An Axiomatic Analysis of Economic Equilibrium[END_REF], [START_REF] Gale | The law of supply and demand[END_REF]Mas-Colell (1975, 1979)) whose proofs 1 make use of the Kakutani fixed point theorem. The present paper's main aim is, by the means of the Hartman-Stampacchia theorems [START_REF] Hartman | On some non-linear elliptic differential-functional equations[END_REF]) to provide a proof for the GND lemma and its generalized version given by Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF].

In recent years, there has been a renewed interest in the fundamental existence results of equilibrium in economics and games. In particular, the GND lemma has been extended to the class of discontinuous demand functions/correspondences in various settings, such as finite-dimensional settings (e.g., [START_REF] Maskin | On the fundamental theorems of general equilibrium[END_REF], [START_REF] Tian | On the existence of price equilibrium in ecconomies with excess demand functions[END_REF] and [START_REF] Cornet | The Gale-Nikaido-Debreu lemma with discontinuous excess demand[END_REF]), infinite-dimensional settings (e.g., [START_REF] He | Equilibria with discontinuous preferences: New fixed point theorems[END_REF]). Additionally, there have been many efforts to provide a proof of the existence result without Kakutani's fixed point argument, including studies by [START_REF] Greenberg | An elementary proof of the existence of a competitive equilibrium with weak gross substitutes[END_REF], [START_REF] Barbolla | An elementary proof of the existence of a competitive equilibrium in a special case[END_REF], [START_REF] John | Abraham Wald's equilibrium existence proof reconsidered[END_REF], [START_REF] Quah | The existence of equilibrium when excess demand obeys the weak axiom[END_REF], [START_REF] Frayssé | A simple proof of the existence of an equilibrium when the weak axiom holds[END_REF], [START_REF] Maćkowiak | The existence of equilibrium without fixed-point arguments[END_REF]. These studies often fall into two categories, both of which impose conditions on excess demand function or correspondence. The first category is relied on gross substitutes assumptions (e.g., [START_REF] Greenberg | An elementary proof of the existence of a competitive equilibrium with weak gross substitutes[END_REF] [START_REF] Greenberg | An elementary proof of the existence of a competitive equilibrium with weak gross substitutes[END_REF], [START_REF] Barbolla | An elementary proof of the existence of a competitive equilibrium in a special case[END_REF] and [START_REF] Frayssé | A simple proof of the existence of an equilibrium when the weak axiom holds[END_REF]); the second one is based on weak axiom of revealed preference assumption (e.g., [START_REF] Quah | The existence of equilibrium when excess demand obeys the weak axiom[END_REF] and [START_REF] Maćkowiak | The existence of equilibrium without fixed-point arguments[END_REF]). This paper aims to contribute to such line of research.

As mentioned in [START_REF] Duppe | Finding equilibrium: Arrow, Debreu, McKenzie and the problem of scientific credit[END_REF] and [START_REF] Khan | On the finding of an equilibrium: Duppe-Weintraud and the problem of scientific credit[END_REF], Debreu wanted to explore the possibility of proving the GND lemma and its generalization without the Kakutani's fixed point argument. [START_REF] Le | A direct proof of the Gale-Nikaido-Debreu lemma using Sperner's lemma[END_REF] have been among the first to investigate the question. The authors have used Sperner's lemmas as the primary argument to prove the GND lemma. However, they do not give a proof of the generalized version of GND lemma, given by Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF] [START_REF] Florenzano | General Equilibrium Analysis: Existence and Optimality Properties of Equilibria[END_REF]) by means of Sperner lemma. The first goal of the paper is to provide an alternative argument for the proof of not only GND lemma but also its generalization. In contrast to the proof in Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF], the present paper provides the direct proof. The second goal is to make an equivalence circle among the Hartman Stampacchia theorems, GND lemmas and some related fixed point theorems (See below).

As for the second goal, we introduce a new version of Hartman-Stampacchia theorem (Theorem 2) associating with upper semi-continuous correspondence. The original Hartman Stampacchia theorem for continuous mapping (Theorem 1, HS1) implies the one for uppersemi continuous correspondence (Theorem 2, HS2), which yields, in turn, the GND lemma (Theorem 4). As showed in Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF], the GND lemma implies the Kakutani theorem, which straightforward entails the Brouwer theorem. Finally, the original Hartman Stampacchia for continuous mapping can be obtained from the Brouwer theorem, leading to a full equivalence circle. Moreover, the Kakutani and Brouwer theorems are shown to be themselves a consequences of the original Hartman Stampacchia theorem (Theorem 1, HS1). All these results are illustrates in Figure 1. In order to achieve our purposes, the generalized version of Hartman-Stampacchia theorem (Theorem 2) associated with upper semi-continuous and convex-valued correspondence is provided and proven. This theorem, together with the original Hartman-Stampacchia theorem (Theorem 1), allows us to prove not only the GND lemma in [START_REF] Debreu | Theory of Value -An Axiomatic Analysis of Economic Equilibrium[END_REF] but also the generalized version of GND lemma in Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF] [START_REF] Florenzano | General Equilibrium Analysis: Existence and Optimality Properties of Equilibria[END_REF]). To make easy the reading of our paper, we first consider the case of a continuous mapping. In the second stage, we deal with the case of an upper semi-continuous correspondence with convex, compact, non-empty values. In the case of a correspondence, some additional ingredients such as finite covering of a compact set, partition of unit subordinated to a covering and Carathéodory convexity theorem [START_REF] Carathéodory | Uber den variabilitatsbereich der koeffizienten von potenzreihen, die gegebene werte nicht annehmen[END_REF]) have been added.

We end this introduction by discussing more precisely link this paper and others on the same subject. First, we do not assume the so called weak axiom of revealed preference or its generalization as in [START_REF] Quah | The existence of equilibrium when excess demand obeys the weak axiom[END_REF] and [START_REF] Maćkowiak | The existence of equilibrium without fixed-point arguments[END_REF] respectively. The results of [START_REF] Quah | The existence of equilibrium when excess demand obeys the weak axiom[END_REF] and [START_REF] Maćkowiak | The existence of equilibrium without fixed-point arguments[END_REF] are special cases of the GND lemmas (Theorems 3 or 4) below. [START_REF] Quah | The existence of equilibrium when excess demand obeys the weak axiom[END_REF] established the existence result under the standard assumptions and the weak axiom of revealed preference assumption on the excess demand correspondence. The later condition means that the excess demand correspondence ζ, whose domain is the set of prices P ⊂ R L , obeys the weak axiom of revealed preference if the following statement is true: for all p and p ′ in P, whenever there is

z ′ ∈ ζ(p ′ ) such that ⟨p, z ′ ⟩ ≤ 0, then ⟨p ′ , ζ(p)⟩ ≥ 0.
Second, the models of [START_REF] Greenberg | An elementary proof of the existence of a competitive equilibrium with weak gross substitutes[END_REF], [START_REF] Barbolla | An elementary proof of the existence of a competitive equilibrium in a special case[END_REF] and [START_REF] Frayssé | A simple proof of the existence of an equilibrium when the weak axiom holds[END_REF][START_REF] Frayssé | A simple proof of the existence of an equilibrium when the weak axiom holds[END_REF] are more specific than one considered here. Indeed, they assume the stronger assumption that the excess demand correspondence is a continuous single-valued mapping with the (strong) gross substitute property.

The paper proceeds as follows. In the next section, we begin with some notations and definitions, the Hartman-Stampacchia theorem (Theorem 1) and its generalization (Theorem 2), which is of fundamental importance for the proof of the GND lemma and its extended version. Section 3 contains the main result of the paper, namely the proofs of the GND lemma and its extended version without the Kakutani fixed point argument. Section 4 is dedicated to show how the Hartman-Stampacchia theorem can be used to prove Brouwer and Kakutani theorems. Additionally, we demonstrate in Section 5 that Hartman-Stampacchia theorem is a consequence of Brouwer theorem. Finally, some extended proofs are given the Appendix A.

Preliminaries

We start by introducing some notations using through this paper.

General Notations and Definitions

We shall denote by ⟨x, y⟩ the inner product between x and y, and ||x|| the norm of x for any x, y ∈ R N , by 0 N , 0 m the zero vector in R N , R m respectively, by P c the complement of P for any P ⊂ R N , by int(P ), ri(P ) and Bd r (P ) the interior, relative interior and relative boundary sets of a given set P respectively.

Let us recall the definition and some properties of upper-semi correspondence. Let X, Y be non-empty topological spaces. A correspondence Γ : X → Y is upper semi-continuous (u.s.c) at point x if for every open set V of Y for which Γ(x) ⊂ V , there exists a neighborhood U of x such that Γ(z) ⊂ V ∀z ∈ U . The correspondence Γ is said to be upper semi-continuous on X if it is upper continuous at every point of X.

Notice that if X is compact then Γ is upper semi-continuous if and only if Γ is closed, namely, the graph of Γ is closed. It is also clear that if Γ is upper semi-continuous and K ⊂ X is compact, then Γ(K) is compact. Recall that if Γ is single-valued, the notions of continuity, upper semi-continuity, and the lower semi-continuity turn out to be equivalent.

Hartman-Stampachia Theorem and its Generalization

Let us first recall the theorem from [START_REF] Hartman | On some non-linear elliptic differential-functional equations[END_REF] in the finite dimensional setting.

Theorem 1 (Hartman-Stampacchia theorem).2 Let K be a convex and compact set of R N , f a continuous mapping from K into R N . Then there exists ū ∈ K such that ⟨v, f (ū)⟩ ≤ ⟨ū, f (ū)⟩ ∀v ∈ K.

(2.1)

Remark 1. One of the possible proof of Theorem 1 is to make use of the index theory or the topological degree theory.

Remark 2. The point f (u 0 ) ∈ N K (u 0 ), namely, it belongs to the normal cone to the set K at u 0 .

Before going to a detailed generalization of the Hartman-Stampacchia theorem, we introduce a useful lemma 3 describing the value of a continuous mapping in terms of a finite linear combination of vectors. We will later see that Lemma 1 below is the critical factor in the proof of a generalized Hartman-Stampachia theorem and enables us to use the compactness argument.

Lemma 1. Let C be a non-empty and compact set of R N , ζ a non-empty valued correspondence from C into R N . Let r > 0. There exists a continuous mapping f from C into R N satisfying the following condition:

Condition R. For each x ∈ C, there are at most N + 1 vectors z 1 , . . . , z N +1 in ζ B(x, r) and positive numbers β 1 , . . . , β N +1 such that 4 f (x) = N +1 i=1 β i z i (2.2) with N +1 i=1 β i = 1.
See the Proof of Lemma 1 in Appendix A on page 14. Note that the N + 1 vectors z 1 , . . . , z N +1 and numbers β 1 , . . . , β N +1 are allowed to depend on the parameters of x, r and M functions (α i ) M i=1 (see these functions in the proof). However for simplicity, these elements are omitted.

Remark 3. We could explain this lemma as follows: the value f (x) of a continuous mapping is expressed as a convex combination of, at most, length N + 1 of elements belonging to ζ B(x, r) . The feature, in which the length of the combination is fixed, enable us to deploy the "compactness argument".

Remark 4. The conclusion of Lemma 1 still holds under two extra assumptions. More precisely, in addition to the hypotheses of Lemma 1, we assume that C is convex in R N and the correspondence ζ is from C into C. The conclusion of the existence of a continuous mapping f satisfying Condition R is the same. Besides, the mapping f is admitted from C into C.

We now introduce an extension of Hartman-Stampacchia theorem (Theorem 1) to correspondence. Such extension concerns some characteristics of the correspondence. The extension of Hartman-Stampacchia to upper semi-continuous correspondence seems to be the key in getting a proof of the generalized GND lemma. In this case, the generalization of the theorem is precisely stated in Theorem 2. The corresponding proof of the theorem will be relied on the original theorem and the "compactness argument", involving the concept of unity subordinated to a covering and Caratheodory convexity theorem. We also provide another generalized Hartman-Stampacchia theorem with lower semi-continuity, expressed in Corollary 1, where the proof makes use of a continuous selection theorem, based on the work of [START_REF] Michael | Continuous selections[END_REF]. 

Gale-Nikaido-Debreu Lemmas

We aim in this section to provide proofs of not only Gale-Nikaido-Debreu lemma (Theorem 3) but also its generalized version (Theorem 4) by the means of Hartman-Stampacchia theorem. These lemmas are precisely recalled in Section 3.1. The main arguments involved in the proofs are Lemma 1 or Hartman-Stampacchia theorem for convex-valued and upper semi-continuous correspondence and the concept of retract mapping. The former is introduced in Section 2.2. The latter and a supporting lemma are given in Section 3.2. Finally, by the means of Hartman-Stampacchia theorem (Theorem 1) and its generalized version (Theorem 2), we give the direct proofs in Sections 3.3 and 3.4 respectively.

Gale-Nikaido-Debreu Lemma and its Generalized Version

Arrow and [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF] prove a fundamental equilibrium existence result of theoretical economics. Later with the papers of [START_REF] Gale | The law of supply and demand[END_REF] [START_REF] Debreu | Market equilibrium[END_REF] and [START_REF] Nikaidô | On the classical multilateral exchange problem[END_REF], a celebrated formulation so-called Gale-Nikaido-Debreu lemma provides more inside economic explanation. The core argument for the classic proof5 of the lemma is based on the Kakutani fixed point theorem. Let us recall the GND lemma. From Theorem 3, there exits

p ∈ ∆ such that ζ ′ (p) ∩ R N -̸ = ∅. Since ζ ′ (p) ⊂ ζ(p), it follows ζ(p) ∩ R N -̸ = ∅.
If the correspondence ζ is a mapping, Theorem 3 is restated as follows:

Theorem 3 ′ . Let ∆ be the unit-simplex of R N , ζ a continuous mapping from ∆ into R N .
Suppose ζ satisfies the following condition:

∀p ∈ ∆, ⟨p, ζ(p)⟩ ≤ 0. Then there exists p ∈ ∆ such that ζ(p) ∈ R N -.
Now we turn our attention to a generalization of Gale-Nikaido-Debreu lemma which is established by [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF]. One of the interest of Geistdoerfer- [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF] is to give a proof of the lemma without Kakutani fixed point argument, where she provides the proof by contradiction6 . It makes use of the strict separation theorem for two disjoint convex sets (one of them is closed, the other one is compact) and a partition of unity subordinated to a covering, together with the Brouwer theorem.

Theorem 4 [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF]). Let P be a closed convex cone with vertex 0 N in R N . Let ζ be an upper semi-continuous and non-empty, compact convex valued correspondence from 

B ∩ P into R N . If ζ satisfies the condition ∀p ∈ S ∩ P, ∃z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0, ( 3 

Retract Mapping and Supporting Lemma

By preparing the proof in the next sections, we introduce the concept of retract mapping. The existence of such a mapping is showed by structuring an explicit one in Lemma 2. This concept is used in the proof of Theorem 4 in the cases where the cone P is not a linear subspace of R N . Besides, we state and prove Lemma 3, a supporting lemma.

Definition 1 (Retract mapping). A subspace A of a topological space X is a retract of X if there is a continuous mapping f : X → A such that f (y) = y for all y ∈ A. The mapping f is called a retraction of X onto A.

Lemma 2. Let P be a closed convex cone in R N . If P ⊊ span(P ), then there exists a retract r from B ∩ P into S ∩ P .

See Proof of Lemma 2 in Appendix A on page 15.

Remark 7. Lemma 2 means that if the cone P is not a vector space, then there is some retract mapping from B ∩ P into S ∩ P . 

then z ∈ P • ∩ ζ(x).
See the Proof of Lemma 3 in Appendix A on page 17.

Remark 8. Normally, the class of correspondence for which conditions (3.6) and (3.7) hold is upper semi-continuous. However, it is not the case in Lemma 3.

Remark 9. In the case ζ is single-valued, the conclusion of Lemma 3 means that there is some x ∈ B ∩ P such that ζ(x) ∈ P • .

Proof of Theorem 3 (Gale-Nikaido-Debreu Lemma)

In Section 3.3, we present the proof of Theorem 3. The proof splits into 2 cases associating with the correspondence ζ being either single-or multi-valued. Section 3.3.1 carries out single-valued correspondence. As for multi-valued correspondence, the proof is shown in Section 3.3.2. We directly apply Theorem 1 and the generalized Hartman-Stampacchia theorem (Theorem 2) to the cases respectively. Equivalently, z ∈ ∆

• = R N -. We have proved that z ∈ ζ(x) ∩ R N -.
3.4. Proof of Theorem 4 [START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF]) Section 3.4 is dedicated to prove Theorem 4 with condition (3.3) replaced by condition (3.4). One of the main aims of this paper is to give alternative and direct proofs for not only the original GND lemma (Theorem 3) but also its generalized version (Theorem 4). As a result of the extension, the proof of Theorem 4 is done with cost, i.e., the complicated proof with more tools deployed, compared with that of Theorem 3. To make the proof easy to read, each section below deals with separate cases of the correspondence: ζ is either single-or multi-valued. In both cases, when the cone P is not linear space of R N , the proofs are based on the concept of retract mapping together with Theorem 1 and Theorem 2 respectively; the existence result is a direct consequence of Lemma 3. When the cone P is a subspace of R N , in both cases, the existence results are reduced from Theorem 1 and Theorem 2 respectively. (3.10)

Since P is a cone , it follows that inequality (3.10) can be extended to any p ∈ P . As a result, ζ(p) ∈ P 0 .

In conclusion, there is some p ∈ B ∩ P such that ζ(p) ∈ P 0 . The proof for the mapping is over. Remark 10. In the statement of Theorem 4, it is possible that p equals 0 N . It is worth pointing out that in the direct proof of Theorem 4, p is different from 0 N when the cone P is not a linear subspace of R N .

The Correspondence

Brouwer and Kakutani Fixed Point Theorems

In Section 4, we first show in Proposition 1 that the Brouwer theorem is a direct consequence of the Hartman-Stampacchia theorem. Second, we demonstrate the proofs of the Kakutani theorem using the Brouwer fixed point and Hartman-Stampacchia arguments in Proposition 2.

Proposition 1 (Brouwer theorem). Let C be a non-empty, convex, compact set in R N . Let f be a continuous mapping from C into itself. Then, there exists a fixed point of f . Proof. Define g(x) = f (x) -x. Applying Hartman-Stampacchia theorem to the mapping g, we obtain some x ∈ C such that ⟨p, g(x)⟩ ≤ ⟨x, g(x)⟩ ≤ 0 ∀p ∈ C.

We claim that x is a fixed point of f . Indeed, take p

= f (x) ∈ C. Then ⟨f (x) -x, f (x) -x⟩ ≤ 0.
In other words, f (x) = x.

Proposition 2 (Kakutani theorem). Let C be a non-empty, convex, compact, subset of R N . Let ζ be a non-empty, convex, compact, valued correspondence from C into itself. If ζ is an upper semi-continuous, then there exists a fixed point of the correspondence ζ. That is, there exists some

x ∈ C such that x ∈ ζ(x).
Proof of Proposition 2 using the Brouwer's fixed point theorem. Let (ε k ) be a non-negative sequence being decreasing and convergent to 0. According to Remark 4 on page 5, for any k ∈ N * , there is some continuous mapping f k for which Condition R (on page 5) holds. From Proposition 1, there exists some fixed point x k of the mapping f k for any k ≥ 1. Again, by Remark 4, there exist at most

N + 1 vectors z 1,k . . . , z N +1,k in ζ B(x k , ε k ) and strictly positive numbers β 1,k , . . . , β N +1,k such that f k (x k ) = N +1 i=1 β i,k z i,k , (4.1) 
with N +1 i=1 β i,k = 1. Now using the compactness argument shows the existence of a fixed point of ζ. Indeed, note that there exists u

i,k ∈ B such that z i,k ∈ ζ(x k + ε k u i,k ) for any i = 1, . . . , N + 1 and k ∈ N * . Since the sequence x k , (β i,k ) N +1 i=1 , (u i,k ) N +1 i=1 k in a compact set C × [0, 1] N +1 × BN+1
, without of loss generality, we might assume that the sequence converges to x, (β i ) N +1 i=1 , (u i ) N +1 i=1 . For any i = 1, . . . , N + 1, since lim

k→∞ x k + ε k u i,k = x ,
by the compactness of ζ(x) and upper semi-continuity of ζ, we conclude that there is some

z i ∈ C and a subsequence (z i n k ) such that lim k→∞ z i n k = z i and z i ∈ ζ(x). It is clear that N +1 i=1 β i = 1. The convexity of ζ(x) implies N +1 i=1 β i z i ∈ ζ(x). As proved above, x k is the fixed point of f k and lim k→∞ x n k = x, implying that lim k→∞ f n k (x n k ) = x.
On the other hand, the convergences of

{β n k i } and {z i n k } implies lim k→∞ N +1 i=1 β n k i z i n k = N +1 i=1 β i z i .
Combining the above convergences with identity (4.1) proves x =

N +1 i=1 β i z i . Since the set ζ(x) is convex and z i ∈ ζ(x) for i = 1, . . . , N + 1, it follows that N +1 i=1 β i z i ∈ ζ(x). As a result, x ∈ ζ(x)
. This concludes the existence of a fixed point of ζ.

Proof of Proposition 2 using Hartman-Stampacchia theorem.

Let (ε k ) be a decreasing non-negative sequence converging to 0. By Remark 4, for any k ∈ N * , there is some continuous mapping f k satisfying Condition R . Applying the Hartman-Stampacchia gives x k such that

⟨f k (x k ) -x k , p -x k ⟩ ≤ 0 ∀p ∈ C.
Substituting p for f k (x k ) into the above inequality implies f k (x k ) = x k . Then we repeat the procedure of the proof of Proposition 2 using fixed point theorem on page 12 and conclude that there exists a fixed point of ζ. Case 2. ζ is multi-valued upper semi-continuous See Theorem 2 on page 6.

Case 3. ζ is multi-valued lower semi-continuous See Corollary 1 on page 6.
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A. Appendix

A.1. Proof of Lemma 1 First we build a mapping f using the partition of unity subordinated to a covering. Second, we show that such a mapping satisfies Condition R .

By the compactness of C, there exists a finite covering of C, say B(x i , r), i = 1, . . . , M . Let (α i ) be a partition of unity 10 over C subordinated to the covering B(x i , r) M i=1 . Take y i ∈ ζ(x i ) for all i = 1, . . . , M . Set

f (x) = M i=1 α i (x)y i
for all x ∈ C. Obviously, the mapping f is continuous on C. Now we prove that Condition R holds for the mapping f . Indeed, fix some x in C. Let J = {i ∈ N : 1 ≤ i ≤ M and x ∈ B(x i , r)}. Observe that x ∈ ∩ i∈J B(x i , r) implying that x i ∈ B(x, r) and y i ∈ ζ(B(x, r)) for all i ∈ J. Note that if i / ∈ J, it follows that x / ∈ B(x i , r) and thus that the partition of unity over C subordinated to the covering B(x j , r)

M j=1 implies α i (x) = 0. Consequently, f (x) = M i=1 α i (x)y i = i∈J α i (x)y i + i / ∈J α i (x)y i = i∈J α i (x)y i .
Since i∈J α i (x) = 1, we conclude that f (x) ∈ co ζ B(x, r) . According to Carathéodory's convexity theorem 11 , there exist at most N +1 vectors z 1 , . . . , z N +1 in ζ B(x, r) and strictly positive numbers β 1 , . . . , β N +1 such that

f (x) = N +1 i=1 β i z i with N +1 i=1 β i = 1.
A.2. Proof of Theorem 2 Let (ε k ) k be a non-negative sequence converging to 0. For any k ≥ 1, apply Lemma 1 on page 5 with r = ε k and obtain some continuous mapping f k : C → R N satisfying Condition 10 For the notion of partition of unity, see, for instance, [START_REF] Aliprantis | Infinite Dimensional Analysis A Hitchhiker's Guide[END_REF]'s Section 2.19. on page 66.

11 Carathéodory (1907)'s convexity theorem states that: In an n-dimensional vector space, every vector in the convex hull of a nonempty set can be written as a convex combination using no more than n + 1 vectors from the set. For a simple proof, see [START_REF] Florenzano | Finite Dimensional Convexity and Optimization[END_REF]'s Proposition 1.1.2 or [START_REF] Aliprantis | Infinite Dimensional Analysis A Hitchhiker's Guide[END_REF]'s Theorem 5.32. R. Applying Hartman-Stampacchia theorem on page 4 to the mapping f k on C, we obtain some

x k ∈ C such that ⟨p, f k (x k )⟩ ≤ ⟨x k , f k (x k )⟩ ∀p ∈ C. (A.1)
Again, according to Lemma 1, there exist12 at most (N + 1) vectors z 1,k , . . . , z N +1,k in ζ B(x k , ε k ) and positive numbers β 1,k . . . , β N +1,k such that

f k (x k ) = N +1 i=1 β i,k z i,k (A.2) with N +1 i=1 β i,k = 1. For any i = 1, . . . , N + 1 and k ∈ N * , since z i,k ∈ ζ B(x k , ε k ) , there is some u i,k in closed unit ball B such that z i,k ∈ ζ x k + ε k u i,k . Observe that the sequence x k , (β i,k ) N +1 i=1 , (u i,k ) N +1 i=1 k is in the compact set C × [0, 1] N +1 × BN+1 implying
that, without loss of generality, the sequence converges to x, The proof of Theorem 2 is over.

(β i ) N +1 i=1 , (u i ) N +1 i=1 . Note that lim k→∞ ε k = 0. Consequently, lim k→∞ x k + ε k u i,k = x. In addition, since ζ(x) is compact and z i,k ∈ ζ(x k + ε k u i,k ), the upper semi-continuity of ζ implies that there is a subsequence z i,n k k being convergent to z i ∈ ζ(x) for all i = 1, . . . , N + 1. It is obvious from identity (A.2) that lim k→∞ f n k (x n k ) = N +1 i=1 β i z i := z. (A.3) Note that z i ∈ ζ(x) and

A.3. Proof of Corollary 1

Indeed, since ζ is lower semi-continuous, due to Michael (1956)(Theorem 3.1 ′′′ ), we obtain13 a continuous selection mapping f of ζ. Applying Theorem 1 to mapping f with K replaced by C, we obtain

x ∈ C such that ⟨p, f (x)⟩ ≤ ⟨x, f (x)⟩ ∀p ∈ C. (A.4) Since f is a selection mapping of ζ, it follows that f (x) ∈ ζ(x). Define z = f (x) to end the proof.
A.4. Proof of Lemma 2 Since P ⊊ span(P ), then P is not a subspace of R N , consequently, there exists a ∈ -P \P . We show in Claim 1 below that it is possible to choose such a satisfying a ∈ P 0 .

Claim 1. There is some a ∈ P • ∩ (-P ) ∩ P c and a ̸ = 0 N . Proof of Claim 1. Since P is not a subspace, there is some x ∈ P , but x / ∈ -P . Define y to be the orthogonal projection of x onto -P . Let a = y + (-x). Since x / ∈ -P and -P is closed, it follows that a ̸ = 0 N . On one hand, because -P is a convex cone, y and -x belong to -P , hence a belongs to -P . On the other hand, by the choice of y, ⟨y -x, y -ȳ⟩ ≤ 0 for all ȳ ∈ -P.

Note that ȳ = -nz ∈ -P with n > 0 and z ∈ P , and that a = y -x. Substituting them into the above inequality, we get ⟨a, ȳ + nz⟩ ≤ 0.

This leads to ⟨a, z⟩ ≤ -1 n ⟨a, y⟩ for all n > 0 and z ∈ P.

Letting n go to infinity proves that⟨a, z⟩ ≤ 0 for all z ∈ P . In other words, a ∈ P • . Furthermore, since a ∈ P • and ⟨a, a⟩ > 0, we can deduce that a / ∈ P or a ∈ P c . The proof of Claim 1 is over. Now we construct a retract mapping r. According to Claim 1, there exists a ∈ P • ∩ (-P ). Fix x ∈ B ∩ P . Consider the following equation with some real variable λ a (x): On one hand, by the construction, ||r(x)|| = 1. On the other hand, r(x) can be alternately described as r(x) = 1 + λ a (x) x + λ a (x)(-a). Because x and -a are in the convex cone P and λ a (x) ≥ 0, it follows that r(x) belongs to P . Therefore, we have constructed the well-defined mapping r from B ∩ P to S ∩ P . Since λ a (x) is continuous with respect to x on B ∩ P , then so is the mapping r. To end the proof, it remains to show that r |S∩P = id S∩P . Indeed, consider x ∈ S ∩ P , then ||x|| = 1. Since a ∈ P • and x ∈ P then ⟨x, a⟩ ≤ 0 implying ⟨x, x -a⟩ ≥ 0. From (A.6) we get λ a (x) = 0. Consequently, (A.7) leads to r(x) = x.

A.5. Proof of Lemma 3 First we claim that ⟨x, z⟩ ≤ 0.

Indeed, the proof of the claim splits into two cases: Note that 1 -1 ||x|| > 0, hence ⟨x, z⟩ ≤ 0. We have finished proving the claim.

We now turn to show that z ∈ P • ∩ ζ(x). Since ⟨x, z⟩ ≤ 0, it follows from inequality (3.7) that ⟨p, z⟩ ≤ 0 ∀p ∈ B ∩ P. 
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 1 Figure 1: The full equivalence circle: Hartman Stampacchia theorem (Theorem 1, HS1), generalized version of Hartman Stampacchia for correspondence(Theorem 2, HS2), GND lemma, Kakutani and Brouwer fixed point theorems.

  by B and B the open and closed unit-ball in R N centered at 0 N respectively, S the unit-sphere associated with B, by B(x, r) and B(x, r) open and closed balls with center at x and radius r respectively for any x ∈ R N and r > 0, by P • = {z ∈ R N : ⟨p, z⟩ ≤ 0, ∀p ∈ P } the polar cone of P , by ∆ the unit-simplex of R N , by N C (x) the normal cone to the set C at the point x for any C ⊂ R N and x ∈ C.

Theorem 2 (

 2 Hartman-Stampacchia theorem for convex-valued and upper semi-continuous correspondence). Let C be a compact and convex set in R N , ζ a non-empty, convex and compact valued correspondence from C into R N . If ζ is upper semi-continuous, then there are some x ∈ C and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C. See Proof of Theorem 2 in the Appendix A on page 14. Corollary 1 (Hartman-Stampacchia theorem for lower semi-continuous correspondence). Let C be a compact and convex set in R N , ζ a non-empty, convex and compact valued correspondence from C into R N . If ζ is lower semi-continuous, then there are some x ∈ C and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C. See Proof of Corollary 1 in Appendix A on page 15.

  Theorem 3 (Gale-Nikaido-Debreu lemma). Let ∆ be the unit-simplex of R N . Let ζ be an upper semi-continuous correspondence with non-empty, compact, convex values from ∆ into R N . Suppose ζ satisfies the following condition:∀p ∈ ∆, ∀z ∈ ζ(p), ⟨p, z⟩ ≤ 0.(3.1)Then there exists p ∈ ∆ such that ζ(p) ∩ R N -̸ = ∅.Remark 5. An equivalent statement of Theorem 3 is obtained by replacing condition (3.1) by condition (3.2) below ∀p ∈ ∆, ∃z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0. (3.2) It is clear that condition (3.1) implies condition (3.2). Conversely, assume that the correspondence ζ satisfies condition (3.2). We define the correspondence ζ ′ : ∆ → R N by ζ ′ (p) = {z ∈ ζ(p) : ⟨p, z⟩ ≤ 0}. It follows that ζ ′ is non-empty, convex, compact valued and upper semi-continuous correspondence from ∆ into R N such that ∀p ∈ ∆, ∀z ∈ ζ ′ (p), ⟨p, z⟩ ≤ 0.

  .3) then there exists p ∈ B ∩ P such that ζ(p) ∩ P • ̸ = ∅. Remark 6. Obviously, without loss of generality, we can replace condition (3.3) by ∀p ∈ S ∩ P, ∀z ∈ ζ(p) such that ⟨p, z⟩ ≤ 0.(3.4)Note that Florenzano and Le[START_REF] Florenzano | A note on the Gale-Nikaido-Debreu lemma and the existence of general equilibrium[END_REF] provided the following example, showing that in general the vector p of Theorem 4 might be 0 N .Example 1. Consider a cone P = R 2 and a single-valued correspondence ζ from B(0, 1) into R 2 defined as follows: ζ(p) = -p for all p ∈ B(0, 1). Obviously, all conditions of Theorem 4 hold.Indeed, it is easy to see that ζ(p)∩P • ̸ = ∅ if and only if p = 0 2 . In the case ζ is a single-valued correspondence, we could rewrite Theorem 4 as follows: Theorem 4 ′ . Let P be a closed convex cone with vertex 0 N in R N . Let ζ be a continuous mapping from B ∩ P into R N . If ζ satisfies the condition ∀p ∈ S ∩ P, ⟨p, ζ(p)⟩ ≤ 0, (3.5) then there exists p ∈ B ∩ P such that ζ(p) ∈ P 0 .

Lemma 3 .

 3 (Supporting Lemma) Let P be a closed convex cone with vertex 0 N in R N . Let ζ be a correspondence from B ∩ P into R N satisfying condition: ∀p ∈ S ∩ P, ∀z ∈ ζ(p) : ⟨p, z⟩ ≤ 0. (3.6) If there are some x ∈ B ∩ P and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B ∩ P, (3.7)

  3.3.1. The Correspondence ζ is Single-valued Continuous Proof. 7 In this case, we need to seek p ∈ ∆ such that ζ(p) ∈ R N -. Indeed, applying Hartman-Stampacchia theorem to the mapping ζ on ∆, we obtain some p ∈ ∆ such that ⟨p, ζ(p)⟩ ≤ ⟨p, ζ(p)⟩ ∀p ∈ ∆. Since the hypothesis on ζ of Theorem 3 (or condition (3.1)) implies ⟨p, ζ(p)⟩ ≤ 0, we see that ⟨p, ζ(p)⟩ ≤ 0 ∀p ∈ ∆. It is obvious that this implies ζ(p) ∈ ∆ • = R N -. 3.3.2. The Correspondence ζ is Upper Semi-continuous with Non-empty, Compact, Convex Values Proof. Since ζ is upper semi-continuous, we apply Theorem 2 with C replaced by ∆; consequently, we obtain x ∈ ∆ and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ ∆. Since z ∈ ζ(x), by the hypotheses on ζ of Theorem 3 (or condition (3.1)), it follows ⟨x, z⟩ ≤ 0. Therefore, ⟨p, z⟩ ≤ 0, ∀p ∈ ∆.

  3.4.1. The Correspondence ζ is Single-valued ContinuousProof. In this case, we need to seek p ∈ B ∩ P such that ζ(p) ∈ P • . The proof splits into 2 separate cases:Case 1. P ⊊ span(P ) According to the hypothesis on ζ, the mapping ζ is continuous. By Lemma 2 on page 8, there is some retract r : B ∩ P → S ∩ P . Since ζ and r are continuous on B ∩ P , it follows that so is the mapping ζ • r. We apply Theorem 1 to the mapping ζ • r on B ∩ P , and thus obtain some x ∈ B ∩ P such that⟨p, ζ • r(x)⟩ ≤ ⟨x, ζ • r(x)⟩ ∀p ∈ B ∩ P. (3.8) We now deploy Lemma 3 with ζ replaced by ζ • r, x by x, z by ζ(r(x)) to prove that p = r(x) satisfies Theorem 4. It remains to verify conditions (3.6) and (3.7) of Lemma 3. On one hand, for condition (3.6), let p ∈ S ∩ P . Since r is a retract mapping, it follows r(p) = p, and consequently ζ • r(p) = ζ(p). Combining this with condition (3.4) (more precisely condition (3.5)), we obtain ⟨p, ζ • r(p)⟩ = ⟨p, ζ(p)⟩ ≤ 0, implying that condition (3.6) holds. On the other hand, by inquality (3.8), condition (3.7) holds for x = x and z = ζ(r(x)). The proof is over. Case 2. P = span(P ) Appy Theorem 1 to the mapping ζ on B ∩ P , and obtain some p ∈ B ∩ P such that ⟨p, ζ(p)⟩ ≤ ⟨p, ζ(p)⟩ for all p ∈ B ∩ P. (3.9) We want to conclude that ζ(p) ∈ P 0 ; we split the argument into three subcases: If p ∈ int( B ∩ P ), since ζ(p) ∈ N B∩P (p), where N B∩P (p) is the normal cone to B ∩ P at p, we conclude ζ(p) = 0 N . Consequently, ζ(p) ∈ P 0 . Note that this circumstance happens only if the cone P is R N . If p ∈ ri( B ∩ P ), i.e., p belongs to the relative interior 8 of B ∩ P then ζ(p) ∈ N B∩P (p). We know that since P is the subspace, it follows N B∩P (p) = N P (p) = P ⊥ = P 0 . Hence ζ(p) ∈ P 0 . If p / ∈ ri( B ∩ P ), then p ∈ Bd r ( B ∩ P ), i.e., the relative boundary 9 of B ∩ P . Since P is the subspace, Bd r ( B ∩ P ) = S ∩ P . Consequently, p ∈ S ∩ P . By the hypotheses on ζ, we deduce that ⟨p, ζ(p)⟩ ≤ 0. Combining this with inequality (3.9), we obtain, ⟨p, ζ(p)⟩ ≤ 0 for any p ∈ B ∩ P.

  ζ is Upper Semi-continuous with Non-empty, Compact, Convex Values Case 1. P ⊊ span(P ) By Lemma 2 on page 8, there is some retract mapping r from B ∩ P into S ∩ P . Since r is continuous and according to the hypotheses of Theorem 4, ζ is upper semi-continuous, we obtain that ζ • r is upper semi-continuous. Obviously, ζ • r is also non-empty, convex, compact valued. We are now applying Theorem 2 with C replaced by B ∩ P , ζ by ζ • r, and thus obtain x ∈ B ∩ P and z ∈ ζ • r(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B ∩ P. (3.11) We verify that conditions (3.6) and (3.7) of Lemma 3 hold with ζ replaced by ζ • r. On one hand, inequality (3.11) leads to condition (3.7) holding (with ζ replaced by ζ • r). On the other hand, noting that ζ(x) = ζ • r(x) for all x ∈ S ∩ P , from the hypothesis on ζ of Theorem 4 (or condition (3.4)), we see that condition (3.7) of Lemma 3 holds. As a result of Lemma 3, we obtain z ∈ P • ∩ ζ • r(x). Case 2. P = span(P ) On one hand, according to Theorem 2 with C replaced by B ∩ P , we obtain that there are some x ∈ B ∩ P and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ B ∩ P. On the other hand, by the hypothesis on ζ of Theorem 4 ∀p ∈ S ∩ P, ∀z ∈ ζ(p) ⟨p, z⟩ ≤ 0. (3.12) Lemma 3 implies that z ∈ P • ∩ ζ(x). This concludes Theorem 4.

  5. Hartman-Stampacchia and Brouwer Theorems Theorem 5 (Generalized Hartman-Stampacchia theorem). Let C be a non-empty, compact and convex set of R N . Let ζ be a correspondence from X into R N . If ζ is lower or upper semi-continuous, then there exist x ∈ C and z ∈ ζ(x) such that ⟨p, z⟩ ≤ ⟨x, z⟩ ∀p ∈ C. (5.1) Proof of Theorem 5. We consider three cases: Case 1. ζ is single-valued. Let g(x) = π C (x + ζ(x)) for any x ∈ C, where π C denotes the convex projection of R N onto C. The mapping g is continuous from C into C. From Proposition 1 (Brouwer theorem), there is a fixed-point of g, i.e., x = g(x) or equivalently x = π C (x + ζ(x)). In this case ζ(x) = x + ζ(x) -x belongs to normal cone of C at x. We get inequality (2.1) of Hartman-Stampacchia theorem.

N

  +1 i=1 β i = 1. By the convexity of ζ(x), we obtain z ∈ ζ(x). Since lim k→∞ x k = x, combining inequality (A.1) with identity (A.2) and convergence (A.3), we obtain ⟨p, z⟩ ≤ ⟨x, z⟩, ∀p ∈ ∆.

  ||x + λ a (x)(x -a)|| = 1. This leads the quadratic equation:||x -a|| 2 λ 2 a (x) + 2⟨x, x -a⟩λ a (x) + ||x|| 2 -1 = 0. (A.5)Since ||x-a|| 2 (||x|| 2 -1) ≤ 0, the quadratic equation has at least one non-negative solution.We are able to compute an explicit formula for this solution as follows:λ a (x) = -⟨x, x -a⟩ + ⟨x, x -a⟩ 2 + (1 -||x|| 2 )||x -a|| 2 ||x -a|| 2 . (A.6)Let 14 r(x) = x + λ a (x)(x -a).(A.7)

Case 1 .

 1 ||x|| = 0 or ||x|| = 1 If ||x|| = 0, then obvious ⟨x, z⟩ = 0. If ||x|| = 1, in the case x ∈ S∩P . By condition (3.6), we consequently obtain ⟨x, z⟩ ≤ 0. Case 2. 0 < ||x|| < 1 Take p = x ||x|| . Since P is a cone, x ∈ P , and ||p|| = 1, it follows p ∈ B ∩ P . Inequality (3

  a cone and {x ∈ P : ||x|| ≤ 1} ⊂ B ∩ P , we could extend inequality (A.8) to all p ∈ P . In other words, z ∈ P • . According to condition (3.7), z ∈ ζ(x). Therefore, we obtain z ∈ P • ∩ ζ(x), and this concludes the proof of Lemma 3.

See Lemma

3.1 in[START_REF] Hartman | On some non-linear elliptic differential-functional equations[END_REF] on page 276. 3 A very similar idea in Lemma 1 can be found in[START_REF] Cellina | Approximation of set valued functions and fixed point theorems[END_REF]. However, the formulation of the mapping f in the lemma differs from that of Theorem 1 in[START_REF] Cellina | Approximation of set valued functions and fixed point theorems[END_REF] since both mappings are based on 2 different structures of finite covering. Besides, this version was written before reading his paper.

Note the convention that superscripts are used for labelling vectors while subscripts give real numbers. For example, as in Condition R , the parameters β 1 , . . . , β N +1 are real numbers and z 1 , . . . z N +1 are vectors belonging to the finite dimensional space R N .

We refer to[START_REF] Debreu | Theory of Value -An Axiomatic Analysis of Economic Equilibrium[END_REF] or[START_REF] Debreu | Existence of competitive equilibrium[END_REF] for more details.

See Lemma 1 in Geistdoerfer-[START_REF] Geistdoerfer-Florenzano | The Gale-Nikaido-Debreu lemma and the existence of transitive equilibrium with or without the free-disposal assumption[END_REF] on page 115 or Lemma 2.1.1 in[START_REF] Florenzano | General Equilibrium Analysis: Existence and Optimality Properties of Equilibria[END_REF] on page 45

For the sake of providing intuition, we provide the proof for this case. Actually, the proof for this case could be viewed as to be included in the case of correspondence

For notion of relative interior and relative boundary, see, for example,[START_REF] Florenzano | Finite Dimensional Convexity and Optimization[END_REF]'s Section 1.2.2 on page 11.

See footnote 8

Upper indices mark vectors and lower indices real numbers.

This is a particular case of Theorem 3.1 ′′′ in[START_REF] Michael | Continuous selections[END_REF]. For detailed proof, see, e.g., Proposition 10 in[START_REF] Florenzano | L' Équilibre économique général transitif et intransitif: problemes d'existence[END_REF] or Proposition 1.5.3 in[START_REF] Florenzano | General Equilibrium Analysis: Existence and Optimality Properties of Equilibria[END_REF] on page 31.

By the construction, the retract r is dependent on the vector a.