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Abstract

We consider linear regression problems with a varying number of random projections, where we
provably exhibit a double descent curve for a fixed prediction problem, with a high-dimensional analysis
based on random matrix theory. We first consider the ridge regression estimator and re-interpret earlier
results using classical notions from non-parametric statistics, namely degrees of freedom, also known as
effective dimensionality. In particular, we show that the random design performance of ridge regression
with a specific regularization parameter matches the classical bias and variance expressions coming
from the easier fixed design analysis but for another larger implicit regularization parameter. We then
compute asymptotic equivalents of the generalization performance (in terms of bias and variance) of the
minimum norm least-squares fit with random projections, providing simple expressions for the double
descent phenomenon.

1 Introduction

Over-parameterized models estimated with some form of gradient descent come in various forms, such
as linear regression with potentially non-linear features, neural networks, or kernel methods. The double
descent phenomenon can be seen empirically in several of these models [5, 10]: Given a fixed prediction
problem, when the number of parameters of the model is increasing from zero to the number of observations,
the generalization performance traditionally goes down and then up, due to overfitting. Once the number
of parameters exceeds the number of observations, the generalization error decreases again, as illustrated
in Figure 1.

The phenomenon has been theoretically analyzed in several settings, such as random features based on
neural networks [19], random Fourier features [17], or linear regression [6, 12]. While the analysis of [19, 17]
for random features corresponds to a single prediction problem with a sequence of increasingly larger
prediction models, the analysis of [12] for linear regression does not consider a single problem, but varying
problems, which does not actually lead to a double descent curve. Random subsampling on a single
prediction problem was analyzed with a simpler model with an isotropic covariance matrix by [6], but
without a proper double descent as the model is too simple to account for a U-shaped curve in the under-
parameterized regime. In work closely related to ours, principal component regression was analyzed by [26]
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Figure 1: Example of a double descent curve, for linear regression with random projections with n = 200
observations, in dimension d = 400 and a non-isotropic covariance matrix. The data are normalized so
that predicting zero leads to an excess risk of 1 and the noise so that the optimal expected risk is 1/4. The
empirical estimate is obtained by sampling 20 datasets and 20 different random projections from the same
distribution and averaging the corresponding excess risks. We plot the empirical performance together
with our asymptotic equivalents from Section 6.

with a double descent curve but with less general assumptions regarding the spectrum of the covariance
matrix and the optimal predictor.

In this paper, we consider linear regression problems and consider random projections, whose number
increases, where we provably exhibit a double descent curve for a fixed prediction problem. Our analysis
follows the high-dimensional analysis of [12, 9, 21] based on random matrix theory [2] which we recall in
Section 3, and we give asymptotic expressions for the (squared) bias and the variance terms of the excess
risk. These expressions and the trade-offs they lead to will be the same as what can be obtained with ridge
regression [14], where a squared Euclidean penalty is added to the empirical risk.

We make the following contributions:

• We first consider in Section 4 the ridge regression estimator and re-interpret the results of [9, 21, 8, 25]
using classical notions from non-parametric statistics, namely the degrees of freedom, a.k.a. effective
dimensionality [27, 7]. In particular, we show that the random design performance of ridge regression
with a specific regularization parameter λ matches the classical bias and variance expressions coming
from the easier fixed design analysis, but for another larger implicit regularization parameter κ(λ).
Our analysis is done with fewer assumptions than previous work, in particular regarding the optimal
predictor.

• With our new interpretation, we consider in Section 5 the minimum norm least-squares estimate in
the over-parameterized regime and analyze its performance (which corresponds to λ = 0 above for
ridge regression), thus complementing the analysis of [12, 4]. This corresponds to the end of the
double descent curve.

• In Section 6, we compute asymptotic equivalents of the generalization performance (in terms of bias
and variance) of the minimum norm least-squares fit with random projections, providing simple
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expressions for the double descent phenomenon. If n is the number of observations and m is the
number of random projections, the variance term goes up and explodes at m = n and then goes down.
In contrast, the bias term may exhibit a U-shaped curve on its own in the under-parameterized regime
(m < n), blows up at m = n, and then goes down. Our result relies on using a high-dimensional
analysis both on the data and on the random projections. We will need new results in random
matrix theory, which we present in Section 3 and, following the existing literature, we only assume
sub-Gaussian distributions (and not necessarily Gaussians).

2 High-dimensional analysis of linear regression

We consider the traditional random design linear regression model, where x1, . . . , xn ∈ Rd are sampled
independently and with identical distributions (i.i.d.) with covariance matrix Σ ∈ Rd×d, and yi = x>i θ∗+εi,
with εi and xi independent, and E[εi] = 0 and var(εi) = σ2.

We denote y ∈ Rn the response vector, X ∈ Rn×d the design matrix, and ε ∈ Rn the noise vector. We
denote by Σ̂ = 1

nX
>X ∈ Rd×d the non-centered empirical covariance matrix, while XX> ∈ Rn×n is the

kernel matrix.

The excess risk for an estimator θ̂ is R(θ̂) = (θ̂−θ∗)Σ(θ̂−θ∗), and we will always consider expectations with
respect to ε, thus conditioned on X and on the potential additional random projections. The expectation
of the excess risk will be composed of two terms: a (squared) “bias” term R(bias)(θ̂) corresponding to σ = 0
(and thus independent of ε), and a “variance” term Eε

[
R(var)(θ̂)

]
corresponding to θ∗ = 0 (and after taking

the expectation with respect to ε). All of our asymptotic results will then be almost surely in all other
random quantities (e.g., X and the random projections S later).

We make similar high-dimensional assumptions as [9, 21], that is:

(A1) X = ZΣ1/2 with Z ∈ Rn×d with sub-Gaussian i.i.d. components with mean zero and unit variance.

(A2) The sample size n and the dimension d go to infinity, with
d

n
tending to γ > 0.

(A3) The spectral measure
1

d

d∑
i=1

δσi of Σ converges to a probability distribution µ on R+, where σ1, . . . , σd

are the eigenvalues of Σ. Moreover, µ has compact support in R∗+, and Σ is invertible and bounded
in operator norm.

(A4) The measure

d∑
i=1

(v>i θ∗)
2δσi converges to a measure ν with bounded mass, where vi is the unit-norm

eigenvector of Σ associated to σi. The norm of θ∗ is bounded.

Assumption (A1) does not assume Gaussian data but includes Z with standard Gaussian components or
Rademacher random variables (uniform in {−1, 1}).
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Assumption (A3) implies that for any bounded function r : R+ → R,
1

d
tr[r(Σ)]→

∫ +∞

0
r(σ)dµ(σ). Note

that in (A3), we assume that the support of the limiting µ is bounded away from zero (e.g., no vanishing
eigenvalues).

Assumption (A4) is equivalent to: for any bounded function r : R+ → R, θ>∗ r(Σ)θ∗ →
∫ +∞

0
r(σ)dν(σ).

Moreover, it is often replaced by θ∗ being random with mean zero and covariance matrix proportional to
identity [9], or a spectral variant of Σ [21]. This corresponds to having ν having a density with respect
to µ.

3 Random matrix theory tools

We consider the kernel matrix XX> = ZΣZ> ∈ Rn×n with all components of Z ∈ Rn×d being i.i.d. sub-
Gaussian with zero mean and unit variance, that is, following Assumption (A1). We also assume (A2)
and (A3) throughout this section. We denote by Σ̂ = 1

nX
>X ∈ Rd×d the empirical covariance matrix.

In this section, we present the tools from random matrix theory that we will need. Most of them have
already been used in the same context [9, 12, 21], but new ones will be needed (Section 3.3) and we will
give new interpretations in terms of degrees of freedom (Section 3.1).

3.1 Summary and re-interpretation of existing results

We will need to relate the spectral properties of the empirical covariance matrix Σ̂ to the ones of the
population covariance matrix Σ. This typically includes the distribution of eigenvalues, but in this paper,
we will only need spectral functions of the form tr[r(Σ̂)], or more general quantities, such as tr[AΣ̂],
tr[AΣ̂BΣ̂], for matrices A,B ∈ Rd×d.

One non-classical way to summarize the relevant results from random matrix theory is through the asymp-
totic equivalence, for any λ > 0,

tr
[
Σ̂(Σ̂ + λI)−1

]
∼ tr

[
Σ
(
Σ + κ(λ)I

)−1]
, (1)

where κ : R+ → R+ is an increasing function. Within the analysis of ridge regression, these are often
referred to as the “degrees of freedom” [7, 13], and denoted1

d̂f1(λ) = tr
[
Σ̂(Σ̂ + λI)−1

]
and df1(κ) = tr

[
Σ(Σ + κI)−1

]
.

In the limit when d tends to infinity, by definition of µ in Assumption (A3), then
1

d
df1(κ)→

∫ +∞

0

σdµ(σ)

σ + κ
,

which is strictly decreasing in κ, with a value of 1 at κ = 0. Since tr
[
Σ̂(Σ̂+λI)−1

]
6 d, this asymptotically

defines uniquely κ(λ).

The extra knowledge from random matrix theory will be the following self-consistency equation that allows
to define κ(λ):

κ(λ)− λ = κ(λ) · γ
∫ +∞

0

σdµ(σ)

σ + κ
,

1We use the notation df1 as we will introduce a related notion df2 later.
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which we will write equivalently

κ(λ)− λ ∼ κ(λ) · 1

n
df1(κ(λ)).

As shown below, for λ large, then κ(λ) ∼ λ, while when λ tends to zero (which will be the case in
classical scenarios where we regularize less as we observe more data), then κ(λ) will tend to zero only
for under-parameterized models (γ < 1), while for over-parameterized model (γ > 1), it will tend to a
constant.

In statistical terms, the degrees of freedom for the empirical covariance matrix correspond to the degrees
of freedom of the population covariance matrix with a larger regularization parameter.

Beyond Eq. (1), we will need asymptotic equivalents for the following quantities tr
[
AΣ̂(Σ̂ + λI)−1

]
and

tr
[
AΣ̂(Σ̂ + λI)−1BΣ̂(Σ̂ + λI)−1

]
for matrices A,B ∈ Rd×d. For the first one, we will obtain tr

[
AΣ̂(Σ̂ +

λI)−1
]
∼ tr

[
AΣ
(
Σ + κ(λ)I

)−1]
, with a more complex equivalent for the second one. That will be valid

when certain quantities for the matrices A and B converge (see Prop. 1 and Prop. 2 below).

These results recover existing work with A,B = I or Σ [16, 9], but are more general, and needed for the
ridge regression results in Section 4 and for the random projection results in Section 6, where they will,
for example, be used with A = θ∗θ

>
∗ .

3.2 Implicit regularization parameter

We consider the Stieltjes transform of the spectral measure of the kernel matrix XX> ∈ Rn×n, with
z ∈ C\R+:

ϕ̂(z) =
1

n
tr
[( 1

n
XX> − zI

)−1]
= tr

[
(XX> − nzI)−1

]
.

This transform is known to fully characterize the spectral distribution of XX> (see, e.g., [2] and references
therein). Then for all z ∈ C\R+, assuming (A1), (A2), and (A3), ϕ̂(z) is known to converge almost
surely, and its limit ϕ(z) satisfies the following equation (see Appendix A.1 for a simple argument leading
to it) [2, 16]:

1

ϕ(z)
+ z = γ

∫ +∞

0

σdµ(σ)

1 + σϕ(z)
. (2)

When Σ = σI, this allows to compute ϕ(z) and, by inversion of the Stieltjes transform, to recover the
Marchenko-Pastur distribution. In this paper, we will not need to know the limiting density (which is
anyway uneasy to describe for general Σ) and only access it through its Stieltjes transform.

Indeed, for z = −λ for λ > 0, we get ϕ̂(−λ) = tr
[
(XX> + nλI)−1

]
→ ϕ(−λ) almost surely, with

1

ϕ(−λ)
− λ = γ

∫ +∞

0

σdµ(σ)

1 + σϕ(−λ)
. (3)

In the ridge regression context, as mentioned above, the quantity df1(κ) = tr[Σ(Σ + κI)−1] ∈ [0, d] is
referred to as the “degrees of freedom”. It is a strictly decreasing function of κ, with df1(0) = rank(Σ). It
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Figure 2: Implicit regularization parameter κ(λ) in the three regimes for isotropic covariance matrices,
with σ = 1. See text for details.

is asymptotically equivalent to
d∑
i=1

σi
σi + κ

∼ d
∫ +∞

0

σdµ(σ)

σ + κ
. Thus, we can rewrite Eq. (3) as

1

ϕ(−λ)
− λ ∼ 1

ϕ(−λ)
· 1

n
df1

( 1

ϕ(−λ)

)
.

Therefore, we can define our equivalent regularization parameter κ(λ) = 1
ϕ(−λ) ∈ R+ which is the almost

sure limit of 1/ tr
[
(XX> + nλI)−1

]
, and such that

κ(λ)− λ ∼ κ(λ) · 1

n
df1(κ(λ)) ⇔ λ ∼ κ(λ)

(
1− 1

n
df1(κ(λ))

)
. (4)

Depending on the relationship between d and n (that is, d < n or d > n), we have different behaviors
for the function κ, see below. Note that in order to compute κ(λ), we can either solve Eq. (4) if we can
compute df1(κ(λ)), or simply use that κ(λ)−1 is the almost sure limit of tr

[
(XX> + nλI)−1

]
, when n, d

go to infinity.

Isotropic covariance matrices. We consider the case Σ = σI to first study the dependence between
κ(λ) and λ. By the use of Jensen’s inequality, this will lead to bounds in the general case. In this isotropic
situation, we have 1

ndf1(κ) = γσ
σ+κ , and Eq. (4) is equivalent to λ = κ(λ)

(
1 − γσ

σ+κ

)
. We can solve it in

closed form as:

κ(λ) =
1

2

(
λ− σ(1− γ) +

√
(σ(1− γ)− λ)2 + 4λσ

)
. (5)

We then have three cases, as illustrated in Figure 2. The function κ is always increasing with the same
asymptote λ+ σγ at infinity, but different behaviors at 0:

• γ < 1: κ(0) = 0 with κ′(0) = 1/(1− γ).

• γ > 1: κ(0) = (γ − 1)σ > 0.

• γ = 1: κ(0) = 0 with κ′(0) = +∞, and κ ∼
√
λ around 0.
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General case. Beyond isotropic covariance matrices, we have a similar behavior in the general case, in
particular, By Jensen’s inequality, the expression in Eq. (5) is an upper-bound with σ replaced by 1

d tr(Σ).

• Under-parameterized (γ < 1⇔ d < n): we then have df1(κ(λ)) 6 d < n, and the function λ 7→ κ(λ)
is strictly increasing with κ(0) = 0 and κ(λ) ∈ [λ, λ/(1− d/n)], with an equivalent κ(λ) ∼ λ+ 1

n tr Σ
when λ tends to infinity, and the equivalent κ(λ) ∼ λ/(1− d/n) when λ tends to zero (since we have
assumed that rank(Σ) = d).

• Over-parameterized (γ > 1 ⇔ d > n): we then have κ(0) > 0, which is defined by df1(κ(0)) = n.
The function λ 7→ κ(λ) is still strictly increasing, with an equivalent κ(λ) ∼ λ+ 1

n tr Σ when λ tends
to infinity. By Jensen’s inequality, we have: df1(κ(λ)) 6 tr Σ

κ(λ)+tr Σ/d 6
tr Σ
κ(λ) . This in turn implies that

κ(λ) ∈ [λ, λ + tr Σ
n ], and also a finer bound based on Eq. (5) with σ replaced by 1

d tr(Σ). Moreover,
we have the bound κ(0) 6 tr Σ

n (1− n/d) = tr Σ
d (γ − 1).

“Classical” statistical asymptotic behaviors. Within positive-definite kernel methods [7], it is com-
mon to have infinite-dimensional covariance operators, with a sequence of eigenvalues of the form λk = τ

kα

with α > 1 and k > 1. To make it correspond to the high-dimensional framework with k ∈ {1, . . . , d}
with d tending to infinity, we need to rescale the eigenvalues by dα, so that the spectral measure is
µ̂ = 1

d

∑d
k=1 δτ(d/k)α which converges to the distribution of τ/uα for u uniform on [0, 1]. The support of

this distribution is bounded from below, but not from above, and thus does not satisfy our assumptions
(but in our simulations, our asymptotic equivalents match the empirical behavior).

In terms of degrees of freedom, we then have, using the same rescaling by dα, and with the change of
variable v = ud(κ/τ)1/α:

df2(κdα)∼d
∫ 1

0

τu−αdu

τu−α + dακ
= d

∫ 1

0

du

1 + (ud)ακτ−1
= (τ/κ)1/α

∫ d(κτ−1)1/α

0

dv

1 + vα
∼(τ/κ)1/α

∫ +∞

0

dv

1 + vα
,

and we get the usual explosion of degrees of freedom in κ−1/α [7]. It can then be shown, if our formulas
apply, that κ(0) ∝ 1

nα . See [8] for a detailed analysis of the consequences of the ridge regression asymptotic
equivalents when such assumptions are made.

3.3 Asymptotic equivalents for spectral functions

Following [16, 9], we can provide asymptotic equivalents for quantities depending on the spectrum of Σ̂.
We prove in Appendix A.2 the following result.

Proposition 1 Assume (A1), (A2), (A3), that A and B are bounded in operator norm, and that the

measures

d∑
i=1

v>i Avi · δσi and

d∑
i=1

v>i Bvi · δσi converge to measures νA and νB with bounded total variation.
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Then, for z ∈ C\R+, with ϕ(z) satisfying Eq. (2),

tr
[
AΣ̂(Σ̂− zI)−1

]
∼ tr

[
AΣ
(

Σ +
1

ϕ(z)
I
)−1]

(6)

tr
[
AΣ̂(Σ̂− zI)−1BΣ̂(Σ̂− zI)−1

]
∼ tr

[
AΣ
(

Σ +
1

ϕ(z)
I
)−1

BΣ
(

Σ +
1

ϕ(z)
I
)−1]

(7)

+
1

ϕ(z)2
tr
[
A
(

Σ +
1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(

Σ +
1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))
.

Eq. (6) can formally be seen as the limit
1

d
tr
[
AΣ̂(Σ̂ − zI)−1

]
→
∫ +∞

0

σdνA(σ)

σ + 1/ϕ(z)
, and a similar result

holds for Eq. (7). From Eq. (6) and Eq. (7), as shown in Appendix A.2, we can also derive results for
slightly modified traces, with Σ̂(Σ̂− zI)−1 replaced by (Σ̂− zI)−1, as:

tr
[
A(Σ̂− zI)−1

]
∼ −1

zϕ(z)
tr
[
A
(

Σ +
1

ϕ(z)
I
)−1]

(8)

tr
[
A(Σ̂− zI)−1B

(
Σ̂− zI

)−1]
∼ 1

z2ϕ(z)2
tr
[
A
(

Σ +
1

ϕ(z)
I
)−1

B
(

Σ +
1

ϕ(z)
I
)−1]

(9)

+
1

z2ϕ(z)2
tr
[
A
(

Σ +
1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(

Σ +
1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))
.

Earlier results [16, 9] were considering A = 1
dr(Σ), where the spectral measure νA has then density r with

respect to µ.

Expectation of kernel matrices. Through the matrix inversion lemma, we have Σ̂(Σ̂ − zI)−1 =
X>X(X>X − nzI)−1 = X>(XX> − nzI)X, and thus we obtain another set of asymptotic results, where
we can replace Σ1/2AΣ1/2 by A.

Proposition 2 Assume (A1), (A2), (A3), that A and B are bounded in operator norm, and that the

measures

d∑
i=1

v>i Avi · δσi and

d∑
i=1

v>i Bvi · δσi converge to measures νA and νB with bounded total variation.

Then, for z ∈ C\R+, with ϕ(z) satisfying Eq. (2),

tr
[
AZ>(ZΣZ>−nzI)−1Z

]
∼ tr

[
A
(

Σ +
1

ϕ(z)
I
)−1]

(10)

tr
[
AZ>(ZΣZ>−nzI)−1ZBZ>(ZΣZ>−nzI)−1Z

]
∼ tr

[
A
(

Σ +
1

ϕ(z)
I
)−1

B
(

Σ +
1

ϕ(z)
I
)−1]

(11)

+
1

ϕ(z)2
tr
[
A
(

Σ +
1

ϕ(z)
I
)−2]

· tr
[
B
(

Σ +
1

ϕ(z)
I
)−2]

· 1

n− df2(1/ϕ(z))
.

Letting λ → 0 for γ > 1. Following arguments from [9, Lemma 6.2], in the high-dimensional situation
where γ > 1, we can take the limit λ = 0, with the implicit regularization parameter κ(0) > 0 defined in
Section 3.1, which is such that df1(κ(0)) = n. This works for the kernel version since we can write

Σ̂(Σ̂− zI)−1 = X>X(X>X − nzI)−1 = X>(XX> − nzI)−1X = Σ1/2Z>(ZΣZ> − nzI)−1Σ1/2,
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which makes sense even with z = 0, as the kernel matrix XX> is then asymptotically almost surely
invertible (since Σ is invertible, and ZZ> almost surely is [3]). This will be used in the over-parameterized
regime in Section 5.

Letting λ → 0 for γ < 1. In this situation, κ(λ) tends to zero, and we can use Eq. (8) and Eq. (9)
instead, that is,

tr
[
A
(
Σ̂ + λI

)−1] ∼ κ(λ)

λ
tr
[
A
(
Σ + κ(λ)I

)−1
],

with κ(λ)
λ ∼

1
1−γ when λ goes to zero, and κ(0) = 0, leading to

tr
[
AΣ̂−1

]
∼ 1

1− d/n
tr[AΣ−1]. (12)

Similarly, we get from Eq. (9):

tr
[
AΣ̂−1BΣ̂−1

]
∼ 1

(1− d/n)2
tr
[
AΣ−1BΣ−1

]
+

1

(1− d/n)2
tr
[
AΣ−1

]
· tr
[
BΣ−1

]
· 1

n− d
.

Equipped with the proper random matrix theory tools, we can apply them to least-squares regression,
starting with ridge regression in Section 4, its limit when λ → 0 in Section 5, and then with random
projections in Section 6.

4 Analysis of ridge regression

We consider the ridge regression estimator, obtained as the unique minimizer of 1
n

∑n
i=1(yi−x>i θ)2 +λ‖θ‖22,

which is equal to:
θ̂ = (X>X + nλI)−1X>y = X>(XX> + nλI)−1y.

In the fixed design framework, its analysis is explicit and leads to usual bias/variance trade-offs based on
simple quantities.

4.1 Fixed design analysis of ridge regression

In the fixed design set-up, we obtain an expected excess risk, with Σ replaced with Σ̂, which considerably
simplifies the analysis (see, e.g., [15]):

Eε
[
(θ̂ − θ∗)>Σ̂(θ̂ − θ∗)

]
= λ2θ>∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.

The (squared) bias term λ2θ>∗ (Σ̂+λI)−2Σ̂θ∗ is increasing in λ, and depends on how the true θ∗ aligns with
eigenvectors of Σ̂, and “source conditions” are typically used to characterized this alignment [7].

This leads us to introduce the two classical different notions degrees of freedom df1(λ) = tr
[
Σ(Σ + λI)−1

]
and df2(λ) = tr

[
Σ2(Σ + λI)−2

]
as key quantities [15]. Typically, they behave similarly when λ tends to
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zero (in particular, they are both equal to the rank of Σ for λ = 0). We will see in Section 5 that when they
differ significantly, this has consequences regarding the relevance of the end of the double descent curve.

Our goal is to obtain similar results to those for fixed design, using degrees of freedom and (squared) bias
close to λ2θ>∗ (Σ + λI)−2Σθ∗. While bounds can be obtained in expectations [20] or high probability [7],
we aim here at getting asymptotic equivalents.

4.2 Random design analysis of ridge regression

In this section, we recover the results from [9, 20] with an interpretation in terms of degrees of freedom
and a weaker assumption regarding the optimal predictor θ∗.

We have, separating the noise from the part coming from θ∗:

θ̂ = (X>X + nλI)−1X>y = (X>X + nλI)−1X>Xθ∗ + (X>X + nλI)−1X>ε. (13)

= (Σ̂ + λI)−1Σ̂θ∗ + (Σ̂ + λI)−1X
>ε

n
.

Proposition 3 Assume (A1), (A2), (A3), and (A4). For the ridge regression estimator in Eq. (13),
we have:

Eε
[
R(var)(θ̂)

]
∼ σ2

n
df2(κ(λ)) · 1

1− 1
ndf2(κ(λ))

R(bias)(θ̂) ∼ κ(λ)2θ>∗ Σ(Σ + κ(λ)I)−2θ∗ ·
1

1− 1
ndf2(κ(λ))

,

with κ(λ) related to λ by κ(λ)
(
1− 1

ndf1(κ(λ))
)
∼ λ.

Proof The variance term is exactly the same as the one from [9], and we simply provide here a rein-
terpretation with degrees of freedom. We obtain it by taking expectations starting from Eq. (13) to get

Eε
[
R(var)(θ̂)

]
=
σ2

n
tr
[
Σ(Σ̂ + λI)−2Σ̂

]
. We can then use Eq. (8) and Eq. (9) with A = I, B = Σ, and

z = −λ, to get, using κ(λ) tr
[
Σ(Σ + κ(λ)I)−2

]
= df1(κ(λ))− df2(κ(λ)):

Eε
[
R(var)(θ̂)

]
=

σ2

n
tr
[
Σ(Σ̂ + λI)−2Σ̂

]
=
σ2

n
tr
[
Σ(Σ̂ + λI)−1

]
− λσ

2

n
tr
[
Σ(Σ̂ + λI)−2

]
∼ σ2

n

κ(λ)

λ
tr
[
Σ(Σ + κ(λ)I)−1

]
− σ2

n

κ(λ)2

λ
tr
[
Σ
(
Σ + κ(λ)I

)−2]
−σ

2

n

κ(λ)2

λ
tr
[
Σ2
(
Σ + κ(λ)I

)−2] · tr [Σ(Σ + κ(λ)I
)−2] · 1

n− df2(κ(λ))

=
σ2

n

κ(λ)

λ
df2(κ(λ))− σ2

n

κ(λ)2

λ
tr
[
Σ
(
Σ + κ(λ)I

)−2] · df2(κ(λ))

n− df2(κ(λ))

=
σ2

n

κ(λ)

λ
df2(κ(λ))− σ2

n

κ(λ)

λ

(
df1(κ(λ))− df2(κ(λ))

)
· df2(κ(λ))

n− df2(κ(λ))

=
σ2

n

κ(λ)

λ

df2(κ(λ))
(
n− df1(κ(λ)))

n− df2(κ(λ))
= σ2 df2(κ(λ))

n− df2(κ(λ))
,
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which is the desired result.

For the bias term, we have:

R(bias)(θ̂) =
∥∥Σ1/2

(
(Σ̂ + λI)−1Σ̂− I

)
θ∗‖22 = λ2θ>∗ (Σ̂ + λI)−1Σ(Σ̂ + λI)−1θ∗.

We then apply Eq. (9) with A = Σ and B = θ∗θ
>
∗ , which applies because of Assumption (A4), to get:

R(bias)(θ̂) = κ(λ)2θ>∗
(
Σ + κ(λ)I

)−2
Σθ∗

+κ(λ)2 tr
[
Σ2
(
Σ + κ(λ)I

)−2] · θ>∗ (Σ + κ(λ)I
)−2

Σθ∗ ·
1

n− df2(κ(λ))

= κ(λ)2θ>∗
(
Σ + κ(λ)I

)−2
Σθ∗ ·

(
1 +

df2(κ(λ))

n− df2(κ(λ))

)
,

which leads to the desired result.

Up to the term
1

1− 1
ndf2(κ(λ))

, we exactly recover the fixed design analysis for the new larger regularization

parameter κ(λ). Note that in most situations, for the optimal regularization parameter, we usually have
df1(κ(λ))� n and df2(κ(λ))� n so that the exploding term disappears.

We thus see two effects when we go from fixed design to random design: (1) an additional regularization
due to moving from λ to κ(λ) > λ, and (2) an explosion of the excess risk if the degrees of freedom get too
large.

In the next section, we consider the limit when λ tends to zero.

5 Minimum norm least-square estimation

The ridge regression estimator converges to the minimum `2-norm estimator when λ tends to zero. It
turns out that this is precisely the estimator found by gradient descent [11]. We consider first the under-
parameterized case (γ < 1) and then the over-parameterized one (γ > 1).

5.1 Under-parameterized regime (ordinary least-squares)

When γ < 1 (that is, n > d), then the OLS estimator is

θ̂ = (X>X)−1X>y = (X>X)−1X>(Xθ∗ + ε) = θ∗ + (X>X)−1X>ε,

and thus we have R(bias)(θ̂) = 0, and:

Eε
[
R(var)(θ̂)

]
= Σ2 tr

[
X(X>X)−1Σ(X>X)−1X>

]
=
σ2

n
tr
[
ΣΣ̂−1

]
.

Using Eq. (12), we obtain the classical equivalent σ2 γ

1− γ
∼ σ2 d

n− d
, as derived, e.g., in [12]. Note that

for Gaussian data, this is, in fact, almost an equality, that is, Eε
[
R(var)(θ̂)

]
= σ2 d

n−d−1 for n > d+ 1.

11



5.2 Over-parameterized regime

We now consider the case γ > 1 (over-parameterized). We can see it as the limit when λ tends to zero
within ridge regression. This is exactly what was obtained in [12] (in a non-asymptotic framework), here
with a new interpretation in terms of degrees of freedom. We obtain, with κ(0) such that df1(κ(0)) = n:

Eε
[
R(var)(θ̂)

]
∼ σ2

n
df2(κ(0)) · 1

1− 1
ndf2(κ(0))

R(bias)(θ̂) ∼ κ(0)2θ>∗ Σ(Σ + κ(0)I)−2θ∗ ·
1

1− 1
ndf2(κ(0))

.

Following [4, 12], we can try to understand when the over-parameterized limit with no regularization makes
statistical sense, with two questions in mind: (1) does it lead to catastrophic over-fitting? (2) can it lead
to a good performance? The answers to these questions will depend on how df1(κ(λ)) and df1(κ(λ)) are
related. Since df1(κ(λ)) = n, we have df2(κ(λ)) 6 df1(κ(λ)) = n, but how much smaller?

Equivalent degrees of freedom. In many standard situations, the two degrees of freedom are con-
stants away from each other, in particular in the infinite-dimensional cases described at the end of Sec-
tion 3.2. Thus the variance term is proportional to σ2, while the bias term is proportional to κ(λ)2θ>∗ Σ(Σ+
κ(λ)I)−2θ∗. There is no catastrophic overfitting, but the variance term cannot go to zero as n tends to
infinity, and we cannot expect a good performance when σ is far from zero. However, in noiseless prob-
lems where σ = 0, the bias term can lead to a better performance than what can be obtained with
under-parameterized problems (see also Section 6).

Unbalanced degrees of freedom. If df2(κ(λ)) � df1(κ(λ)) = n, then the variance term can indeed
go to zero when n tends to infinity. This happens only in particular situations thoroughly described by
[4, 12, 21].

6 Random projections

We consider a random projection matrix S ∈ Rd×m, sampled independently from X with the following
assumptions:

(A5) S ∈ Rd×m has sub-Gaussian i.i.d. components with mean zero and unit variance.

(A6) The number of projections m tends to infinity with
m

n
tending to δ > 0.

As for the linear regression assumptions, we do not assume Gaussian random projections, and in all of our
experiments, we used Rademacher random variables in {−1, 1}. Given the matrix S, we consider projecting
each covariate x ∈ Rd to S>x ∈ Rm. Thus, if η̂ ∈ Rm is the minimum-norm minimizer of ‖y −XSη‖22, we
consider θ̂ = Sη̂ ∈ Rd.

The asymptotic performance can be characterized as follows (again, apart from the expectation with respect
to the noise variable ε, all results are meant almost surely).
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Proposition 4 Assume (A1), (A2), (A3), (A4), (A5), (A6). For the minimum norm least-squares
estimator θ̂ based on random projections, we have for the under-parameterized regime (m < n):

Eε
[
R

var
(θ̂)
]
∼ σ2m

n−m
=

1

1− m
n

· σ
2m

n

R
bias

(θ̂) ∼ 1

1− m
n

· κmθ>∗ Σ(Σ + κmI)−1θ∗,

with κm defined by df1(κm) ∼ m. In the over-parameterized regime, we get, for κn such that df1(κn) ∼ n:

Eε
[
R

var
(θ̂)
]
∼ σ2

n
· df2(κn)

1− 1
ndf2(κn)

+ σ2 n

m− n

R
bias

(θ̂) ∼ κ2
nθ
>
∗ Σ(Σ + κnI)−2θ∗ ·

1

1− 1
ndf2(κn)

+ κnθ
>
∗ Σ(Σ + κnI)−1θ∗ ·

n

m− n
.

We can make the following observations:

• The proof presented in Appendix B relies on applying random matrix theory results on both X
and S.

• In the under-parameterized regime, we recover the traditional bias and variance terms multiplied by(
1 − m

n

)−1
, which leads to the expected catastrophic over-fitting when m is close to n. Moreover,

while the variance term goes up from m = 0 to m = n, the bias term has one decreasing term
κmθ

>
∗ Σ(Σ+κmI)−1θ∗ and one increasing term

(
1−m

n

)−1
. In some cases (e.g., for θ∗ and Σ isotropic),

the overall performance always goes up, but in many situations, we obtain the traditional U-shaped
curve in the under-parameterized regime.

• In the over-parameterized regime, the limit when m tends to infinity is exactly the same as the limit
λ tending to zero for ridge regression in Section 5.2, since κn is exactly what was referred to as κ(0).
Moreover, we have, for both variance and bias, a decreasing function of m. Thus, once in this regime,
it is always best to take m as large as possible. Note that to achieve the performance for m =∞, we
can simply take θ̂ = X>(XX>)−1y, and there is no need to solve a problem in dimension m with m
large.

• Combining the two regimes, we indeed see an actual double descent in many scenarios. See illustrative
experiments in Section 7.

7 Experiments

In this section, we present illustrative experiments to showcase our asymptotic equivalents from Section 6.2

2Matlab code to reproduce figures can be downloaded from https://www.di.ens.fr/~fbach/dd_rp.zip.
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Testing the asymptotic limit. We consider a fixed spectral measure µ = π1δσ1 +π2δσ2 already consid-
ered by [12, 21] and the fixed measure ν = µ for the optimal predictor, for which we can compute all of the
bounds in Section 6 in closed form. We take γ = d/n = 2 and plot the optimal performance for bias and
variance as a function of δ = m/n. We then compare it to samples with finite n (and the corresponding
d = γn and m = δn), where we sample θ∗ and Σ from their distributions (with a matrix of eigenvectors
uniformly at random in the set of orthogonal matrices). We have here, for δ ∈ [0, 1],

κ(δ) =
1

2

(γ
δ

(π1σ1 + π2σ2)− σ1 − σ2 +

√
(
γ

δ
(π1σ1 + π2σ2)− σ1 − σ2)2 + 4σ1σ2(

γ

δ
− 1)

)
.

In Figure 3, we can see that as n gets larger, each realization of the experiment tends to the asymptotic
limit, illustrating almost sure convergence (which we conjecture to be of order O(1/

√
n)), while, when we

consider expectations with respect to several realizations, we get a faster convergence (which we conjecture
to be of order O(1/n))

Illustration of double descent phenomenon. We consider a fixed covariance matrix Σ of size d, with
uniformly random eigenvectors and eigenvalues proportional to 1/k, for k ∈ {1, . . . , d} (non-isotropic), or
constant (isotropic). We normalize the matrix so that tr(Σ) = 1. We generate a vector θ∗ ∈ Rd from a
standard Gaussian distribution and then normalize it so that θ>∗ Σθ∗ = 1. Given this unique prediction
problem, we generate 40 replications of Z and S from Rademacher random variables and plot the empirical
performance for the bias and the variance. For the bounds, we compute κm from κ−1

m = E
[

tr[(S>ΣS)−1]
]
,

using an average over 40 replications.

In Figure 4, we show the results for the non-isotropic covariance matrix, where we see a U-shaped curve for
the bias term. In contrast, in Figure 5, we show the results for the isotropic covariance matrix, where we
do not see a U-shaped curve for the bias term (and thus, there cannot be a U-shaped curve when summing
both bias and variance). The asymptotic limits from Section 6 closely match the empirical behavior in
both cases.

8 Conclusion

In this paper, we have provided a high-dimensional asymptotic analysis of the double descent phenomenon
for random projections. This was done using an interpretation of random matrix theory results for empirical
covariance matrices based on degrees of freedom. Several avenues are worth exploring, such as going beyond
least-squares using tools from [18] or characterizing how quickly our asymptotic analysis kicks in using tools
from [1].
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Figure 3: Comparison of theoretical bounds and empirical estimates for a spectral measure with two
Diracs (see text for details): (left) variance, (right) bias, with three different numbers of observations, with
n = 10 (top), n = 100 (middle), and n = 1000 (bottom). We plot ten realizations with the same spectral
properties, as well as the average excess risk.
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Figure 4: (Left) Variance with σ = 1 and tr(Σ) = 1. (Right) Bias with θ>∗ Σθ∗ = 1. We consider n = 200,
d = 400, with Z and S sampled from Rademacher random variables, and eigenvalues of Σ proportional to
1/k. For the empirical curve, we plot the average performance over 40 replications as well as the standard
deviation in dotted.
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Figure 5: (Left) Variance with σ = 1 and tr(Σ) = 1. (Right) Bias with θ>∗ Σθ∗ = 1. We consider n = 200,
d = 400, with Z and S sampled from Rademacher random variables and uniform eigenvalues for Σ. For
the empirical curve, we plot the average performance over 40 replications as well as the standard deviation
in dotted.
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A Random matrix theory results

In this appendix, we provide a sketch of proof for classical random matrix theory results presented in
Section 3.1 and Section 3.2, with a proof for the new results from Section 3.3. For more details, see [24, 2].

A.1 Self-consistency equation

We follow the proof of [23] and derive it in three steps.

First step. We consider nΣ̂ = X>X =
∑n

i=1 xix
>
i , for xi ∈ Rd sampled with covariance matrix Σ (but

not necessarily Gaussian) and write:

tr
[
X>X(X>X − nzI)−1

]
=

n∑
i=1

tr
[
xix
>
i

(∑
j 6=i

xjx
>
j − nzI + xix

>
i

)−1]

=
n∑
i=1

x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi

1 + x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi

using the matrix inversion lemma,

= n−
n∑
i=1

1

1 + x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi
.

Together with tr
[
X>X(X>X − nzI)−1

]
= tr

[
(XX> − nzI + nzI)(XX> − nzI)−1

]
= n + nzϕ̂(z), this

leads to the identity

− zϕ̂(z) =
1

n

n∑
i=1

1

1 + x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi
. (14)

We also have more generally:

Σ̂(Σ̂− zI)−1 =
n∑
i=1

xix
>
i

(∑
j 6=i

xjx
>
j − nzI + xix

>
i

)−1
=

n∑
i=1

xix
>
i

(∑
j 6=i xjx

>
j − nzI

)−1

1 + x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi
. (15)

Second step. We have, owing to Eq. (14), with the notation Σ̂−i = 1
n

∑
j 6=i xjx

>
j for i ∈ {1, . . . , n}, and

using A−1 −B−1 = −B−1(A−B)B−1:(
Σ̂− zI

)−1 −
(
−zϕ̂(z)Σ−zI

)−1
=

(
zϕ̂(z)Σ + zI

)−1
(

Σ̂− (−zϕ̂(z)Σ)
)(

Σ̂− zI
)−1

=
(
zϕ̂(z)Σ + zI

)−1
( 1

n

n∑
i=1

xix
>
i − (−zϕ̂(z)Σ)

)(
Σ̂− zI

)−1

=
(
zϕ̂(z)Σ + zI

)−1
n∑
i=1

xix
>
i

(∑
j 6=i xjx

>
j − nzI

)−1 − Σ(nΣ̂− nzI)−1

1 + x>i
(∑

j 6=i xjx
>
j − nzI

)−1
xi

=
(
zϕ̂(z)Σ + zI

)−1 1

n

n∑
i=1

xix
>
i

(
Σ̂−i − zI

)−1 − Σ(Σ̂− zI)−1

1 + x>i
(
nΣ̂−i − nzI

)−1
xi

.
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We thus get

(
Σ̂− zI

)−1
=

(
− zϕ̂(z)Σ− zI

)−1
(
I − 1

n

n∑
i=1

xix
>
i

(
Σ̂−i − zI

)−1 − Σ(Σ̂− zI)−1

1 + x>i
(
nΣ̂−i − nzI

)−1
xi

)
(16)

=
(
− zϕ̂(z)Σ− zI

)−1
(I −∆).

The main property we will leverage is that ∆ will almost certainly be “negligible”. For this, we need that
tr
[(
− zϕ̂(z)Σ − zI

)−1
∆
]

= o(d), and we simply need to study each of the n terms, and show that they

are o(d). The key is that
(
Σ̂−i− zI

)−1
is independent of xi and that for any deterministic (or independent

random bounded) matrix, tr[(ziz
>
i − I)N ] is small enough with a strong probabilistic control [24, Lemma

3.1]. This is where we need i.i.d. components for zi with sufficient moments (we assumed sub-Gaussian
for simplicity, but weaker assumptions could be used to obtain the same almost-sure result). We can for
example rely the on Hanson-Wright inequality [22], which leads to, for a constant c > 0:

P
[∣∣z>i Nzi − tr(N)

∣∣ 6 c(t‖N‖op +
√
t‖N‖F

)]
> 1− 2e−t.

This is then applied to N dominated by Σ, and thus ‖N‖F = O(‖Σ‖F ) = O(
√
d) = o(d), which is sufficient

for the asymptotic result and hints at a rate in O(1/
√
d) [1]. See [23] for a detailed proof.

Overall, once we can neglect the term in ∆, we get:

tr
[
(−zϕ̂(z)Σ− zI)−1

]
∼ tr

[
(Σ̂− zI)−1

]
,

and thus

tr
[(

Σ̂− zI
)−1] ∼ −1

zϕ̂(z)
tr
[(

Σ +
1

ϕ̂(z)
I
)−1]

=
−d
z

+
1

z
tr
[
Σ
(

Σ +
1

ϕ̂(z)
I
)−1]

. (17)

Third step. We can rewrite

tr
[(

Σ̂− zI
)−1]

=
1

z
tr
[(
zI − Σ̂ + Σ̂

)(
Σ̂− zI

)−1]
= −d

z
+

1

z
tr
[
Σ̂
(
Σ̂− zI

)−1]
= −d

z
+

1

z
tr
[
XX>

(
XX> − nzI

)−1]
= −d

z
+

1

z
tr
[(
XX> − nzI + nzI

)(
XX> − nzI

)−1]
=
n− d
z

+ nϕ̂(z). (18)

Following [23] and combining Eq. (17) and Eq. (18), this leads to ϕ̂(z)→ ϕ(z), with

ϕ(z) +
1

z
=

1

nz
tr
[
Σ
(

Σ +
1

ϕ(z)
I
)−1]

, (19)

which is the desired self-consistent equation in Eq. (3) in Section 3.2.

And even more intuitively, since tr
[
Σ̂(Σ̂− zI)−1

]
= d + z tr

[
(Σ̂− zI)−1

]
= nz(ϕ̂(z) + 1

z ), we get Eq. (1)
from Section 3.1:

tr
[
Σ̂
(
Σ̂− zI

)−1] ∼ tr
[
Σ
(

Σ +
1

ϕ(z)
I
)−1]

. (20)
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We have for z = −λ, with λ > 0:

tr
[
Σ̂
(
Σ̂ + λI

)−1] ∼ tr
[
Σ
(

Σ +
1

ϕ(−λ)
I
)−1]

.

ϕ(−λ)− 1

λ
= − 1

nλ
tr
[
Σ
(

Σ +
1

ϕ(−λ)
I
)−1]

= − 1

nλ
df1

( 1

ϕ(−λ)

)
,

leading to λϕ(−λ) = 1 − 1

n
df1

( 1

ϕ(−λ)

)
, and thus the desired inequality with κ(λ) = 1

ϕ(−λ) , presented in

Section 3.2.

A.2 Equivalents of spectral functions

In this section, we prove Prop. 1 and Prop. 2. Following [9], we start with an asymptotic equivalent based
on differentiation (see formal justification in [9]).

Using differentiation. We have, by differentiating Eq. (19) with respect to z:

ϕ(z) + zϕ′(z) =
1

n
tr
[
Σ
(

Σ +
1

ϕ(z)
I
)−2] ϕ′(z)

ϕ(z)2
,

which leads to
ϕ(z)

ϕ′(z)
=

1

n
tr
[
Σ
(

Σ +
1

ϕ(z)
I
)−2] 1

ϕ(z)2
− z. Thus, differentiating Eq. (20) with respect to z

and using the bound on ϕ(z)
ϕ′(z) above, we get:

tr
[
Σ̂
(
Σ̂− zI

)−2] ∼ tr
[
Σ
(

Σ +
1

ϕ(z)
I
)−2] ϕ′(z)

ϕ(z)2
=

n tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2]

tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2] 1

ϕ(z) − nzϕ(z)

=
n tr

[
Σ
(
Σ + 1

ϕ(z)I
)−2]

tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2] 1

ϕ(z) + n− tr
[
Σ
(
Σ + 1

ϕ(z)I
)−1] =

n tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2]

n− tr
[
Σ2
(
Σ + 1

ϕ(z)I
)−2] .

This leads to the asymptotic equivalent

tr
[(

Σ̂− zI
)−2]

=
1

z
tr
[
(zI − Σ̂ + Σ̂)

(
Σ̂− zI

)−2]
=

1

z
tr
[
Σ̂
(
Σ̂− zI

)−2]− 1

z
tr
[(

Σ̂− zI
)−1]

∼ 1

z

n tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2]

n− tr
[
Σ2
(
Σ + 1

ϕ(z)I
)−2] − 1

z
tr
[(
− zϕ(z)Σ− zI

)−1]
, (21)

which we will need later.

Proof of Eq. (6) and Eq. (8). We now first show

tr
[
A
(
Σ̂− zI

)−1] ∼ tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
] ∼ tr

[
A
(
− zϕ(z)Σ− zI

)−1
],

=
−1

zϕ(z)
tr
[
A
(

Σ +
1

ϕ(z)
I
)−1]

,
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where the last quantity is equivalent to −d
z

∫ +∞

0

dνA(σ)

1 + σϕ(z)
. We have, using Eq. (16):

tr
[
A
(
Σ̂− zI

)−1]− tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
] = − tr

[
A
(
− zϕ̂(z)Σ− zI

)−1
∆
]
,

which is negligible as soon as ‖A‖op is bounded (using the same arguments as in Appendix A.1). We can

then express tr
[
A
(
Σ + 1

ϕ(z)I
)−1

] as

∫ +∞

0

dνA(σ)

σ + 1
ϕ(z)

. This leads to the desired result in Prop. 1.

Proof of Eq. (7) and Eq. (9). For the quadratic form, we have for any matrices A and B, still using
Eq. (16):

tr
[
A
(
Σ̂− zI

)−1
B
(
Σ̂− zI

)−1]
= tr

[
A
(
− zϕ̂(z)Σ− zI

)−1
(I −∆)B

(
− zϕ̂(z)Σ− zI

)−1
(I −∆)

]
= tr

[
A
(
− zϕ̂(z)Σ− zI

)−1
B
(
− zϕ̂(z)Σ− zI

)−1]
+ tr

[
A
(
− zϕ̂(z)Σ− zI

)−1
∆B

(
− zϕ̂(z)Σ− zI

)−1
∆
]

− tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
∆B

(
− zϕ̂(z)Σ− zI

)−1− tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
B
(
− zϕ̂(z)Σ− zI

)−1
∆
]
.

The last two terms are negligible with the same arguments as in Appendix A.1 as soon as ‖A‖op and ‖B‖op

are bounded. We have, for the second term:

tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
∆B

(
− zϕ̂(z)Σ− zI

)−1
∆
]

=
1

n2

n∑
i,j=1

tr
[
A
(
−zϕ̂(z)Σ−zI

)−1 (xix
>
i − Σ)

(
Σ̂−i−zI

)−1

1 + x>i
(
nΣ̂−i−nzI

)−1
xi
B
(
−zϕ̂(z)Σ−zI

)−1 (xjx
>
j − Σ)

(
Σ̂−j−zI

)−1

1 + x>j
(
nΣ̂−j−nzI

)−1
xj

]

=
1

n2

n∑
i,j=1

tr
[
A
(
−zϕ̂(z)Σ−zI

)−1
(xix

>
i − Σ)

(
Σ̂−i−zI

)−1
B
(
−zϕ̂(z)Σ−zI

)−1
(xjx

>
j − Σ)

(
Σ̂−j−zI

)−1](
1 + x>i

(
nΣ̂−i−nzI

)−1
xi
)(

1 + x>j
(
nΣ̂−j−nzI

)−1
xj
) .

When i 6= j, then we can separate terms with xix
>
i −Σ and xjx

>
j −Σ, which end up being negligible, thus

leading to an equivalent

1

n2

n∑
i=1

tr
[
A
(
−zϕ̂(z)Σ−zI

)−1
(xix

>
i − Σ)

(
Σ̂−i−zI

)−1
B
(
−zϕ̂(z)Σ−zI

)−1
(xix

>
i − Σ)

(
Σ̂−i−zI

)−1](
1 + x>i

(
nΣ̂−i−nzI

)−1
xi
)2 .

To study its asymptotic limit, we need to characterize the asymptotic equivalent of tr
[
C(xix

>
i −Σ)D(xix

>
i −

Σ)
]

= tr
[
Σ1/2CΣ1/2(ziz

>
i − I)Σ1/2DΣ1/2(ziz

>
i − I)

]
, with C and D bounded in operator norm. For

M = Σ1/2CΣ1/2, and N = Σ1/2DΣ1/2, we can write:

tr
[
M(ziz

>
i −I)N(ziz

>
i −I)

]
−tr(M) tr(N) = (z>i Mzi−tr(M))(z>i Nzi−tr(N))

+ tr(M)(z>i Nzi−tr(N)) + tr(N)(z>i Mzi−tr(M))

− tr[(MN +NM)(ziz
>
i −I)]

= Op(‖M‖F · ‖N‖F +tr(M)‖N‖F +tr(N)‖M‖F +‖NM‖F ).

20



using the property from Appendix A.1 obtain from the i.i.d. assumption on the components of zi, which is
negligible compared to the term tr(M) tr(N). Thus, using in addition that Σ̂−j is asymptotically equivalent

to Σ̂, we get the equivalent

1

n2

n∑
i=1

tr
[
(Σ̂− zI)−1A

(
− zϕ̂(z)Σ− zI

)−1
Σ
]
· tr
[
(Σ̂− zI)−1B

(
− zϕ̂(z)Σ− zI

)−1
Σ
](

1 + x>i
(
nΣ̂−i − nzI

)−1
xi
)2 .

We thus overall have

tr
[
A
(
− zϕ̂(z)Σ− zI

)−1
∆B∆>

(
− zϕ̂(z)Σ− zI

)−1]
∼ tr

[
(Σ̂− zI)−1A

(
− zϕ̂(z)Σ− zI

)−1
Σ
]
· tr
[
(Σ̂− zI)−1B

(
− zϕ̂(z)Σ− zI

)−1
Σ
]
·�

∼ tr
[
A
(
− zϕ(z)Σ− zI

)−2
Σ
]
· tr
[
B
(
− zϕ(z)Σ− zI

)−2
Σ
]
·�

with � =
1

n2

n∑
i=1

1(
1 + x>i

(
nΣ̂−i − nzI

)−1
xi
)2 . This leads to:

tr
[
A
(
Σ̂− zI

)−1
B
(
Σ̂− zI

)−1] ∼ tr
[
A
(
− zϕ(z)Σ− zI

)−1
B
(
− zϕ(z)Σ− zI

)−1]
+ tr

[
A
(
− zϕ(z)Σ− zI

)−2
Σ
]
· tr
[
B
(
− zϕ(z)Σ− zI

)−2
Σ
]
·�.

To obtain an equivalent of �, we consider the case A = B = I, to get:

tr
[(

Σ̂− zI
)−2] ∼ tr

[(
− zϕ(z)Σ− zI

)−2]
+
(

tr
[(
− zϕ(z)Σ− zI

)−2
Σ
])2
·�,

which allows to compute an equivalent of �, as, using Eq. (21), with zϕ(z) ∼ df1(1/ϕ(z))− 1
n .

� ∼
tr
[(

Σ̂− zI
)−2]− tr

[(
− zϕ(z)Σ− zI

)−2](
tr
[(
− zϕ(z)Σ− zI

)−2
Σ
])2

∼
1
z

n tr
[
Σ
(

Σ+ 1
ϕ(z)

I
)−2]

n−df2(1/ϕ(z)) − 1
z tr

[(
− zϕ(z)Σ− zI

)−1
]− tr

[(
− zϕ(z)Σ− zI

)−2](
tr
[(
− zϕ(z)Σ− zI

)−2
Σ
])2

∼
1
z

n tr
[
Σ
(

Σ+ 1
ϕ(z)

I
)−2]

n−df2(1/ϕ(z)) + 1
z2ϕ(z)

tr
[(

Σ + 1
ϕ(z)I

)−1
]− 1

z2ϕ(z)
tr
[

1
ϕ(z)

(
Σ + 1

ϕ(z)I
)−2](

1
z2ϕ(z)

tr
[

1
ϕ(z)

(
Σ + 1

ϕ(z)I
)−2

Σ
])2

∼
1
z

n tr
[
Σ
(

Σ+ 1
ϕ(z)

I
)−2]

n−df2(1/ϕ(z)) + 1
z2ϕ(z)

tr
[
Σ
(
Σ + 1

ϕ(z)I
)−2](

1
z2ϕ(z)

tr
[

1
ϕ(z)

(
Σ + 1

ϕ(z)I
)−2

Σ
])2 ∼

1
z

n
n−df2(1/ϕ(z)) + 1

z2ϕ(z)(
1

z2ϕ(z)

)2 1
ϕ(z) tr

[
1

ϕ(z)

(
Σ + 1

ϕ(z)I
)−2

Σ
]

∼
nzϕ(z)

n−df2(1/ϕ(z)) + 1

1
z2ϕ(z)2

tr
[

1
ϕ(z)

(
Σ + 1

ϕ(z)I
)−2

Σ
] =

df1(1/ϕ(z))−n
n−df2(1/ϕ(z)) + 1

1
z2ϕ(z)2

tr
[

1
ϕ(z)

(
Σ + 1

ϕ(z)I
)−2

Σ
]

∼
df1(1/ϕ(z))−n
n−df2(1/ϕ(z)) + 1

1
z2ϕ(z)2

(
df1(1/ϕ(z))− df2(1/ϕ(z))

) =
z2ϕ(z)2

n− df2(1/ϕ(z))
.
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Overall, we get

tr
[
A
(
Σ̂− zI

)−1
B
(
Σ̂− zI

)−1]
∼ 1

z2ϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−1

B
(
Σ +

1

ϕ(z)
I
)−1]

+
1

z4ϕ(z)4
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· z2ϕ(z)2

n− df2(1/ϕ(z))

∼ 1

z2ϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−1

B
(
Σ +

1

ϕ(z)
I
)−1]

+
1

z2ϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))
,

which is Eq. (9).

We also have, by writing Σ̂
(
Σ̂− zI

)−1
= I + z

(
Σ̂− zI

)−1
:

tr
[
AΣ̂
(
Σ̂− zI

)−1
B
(
Σ̂− zI

)−1]
= z tr

[
A
(
Σ̂− zI

)−1
B
(
Σ̂− zI

)−1]
+ tr

[
AB
(
Σ̂− zI

)−1]
∼ − 1

zϕ(z)
tr
[
AB
(
Σ +

1

ϕ(z)
I
)−1]

+
1

zϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−1

B
(
Σ +

1

ϕ(z)
I
)−1]

+
1

zϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))

∼ − 1

zϕ(z)
tr
[
AB
(
Σ +

1

ϕ(z)
I
)−1]

+
1

zϕ(z)
tr
[
A

1

ϕ(z)

(
Σ +

1

ϕ(z)
I
)−1

B
(
Σ +

1

ϕ(z)
I
)−1]

+
1

zϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))

∼ − 1

zϕ(z)
tr
[
AΣ
(
Σ +

1

ϕ(z)
I
)−1

B
(
Σ +

1

ϕ(z)
I
)−1]

+
1

zϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))
.

We also finally have by using again Σ̂
(
Σ̂− zI

)−1
= I + z

(
Σ̂− zI

)−1
:

tr
[
AΣ̂
(
Σ̂− zI

)−1
BΣ̂
(
Σ̂− zI

)−1]
∼ tr

[
AΣ
(
Σ +

1

ϕ(z)
I
)−1

BΣ
(
Σ +

1

ϕ(z)
I
)−1]

+
1

ϕ(z)2
tr
[
A
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· tr
[
B
(
Σ +

1

ϕ(z)
I
)−2

Σ
]
· 1

n− df2(1/ϕ(z))
,

which is Eq. (7).
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B Proof for random projections

We will consider the `2-regularized estimator, with a regularization parameter λ that we will let go to zero.
The validity of such limits follows from the same arguments as [9, Lemma 6.2]. We thus consider:

θ̂ = S(S>X>XS + nλI)−1S>X>y

= S(S>X>XS + nλI)−1S>X>Xθ∗ + S(S>X>XS + nλI)−1S>X>ε

= Mθ∗ + S(S>X>XS + nλI)−1S>X>ε,

with M = S(S>X>XS + nλI)−1S>X>X.

Conditioned on S and X, the expected risk is equal to, for the variance part:

Eε
[
R(var)(θ̂)

]
= σ2 tr

[
XS(S>X>XS + nλI)−1S>ΣS(S>X>XS + nλI)−1S>X>

]
= σ2 tr

[
S>ΣS(S>X>XS + nλI)−2S>X>XS

]
, (22)

while, for the bias, we have:

R(bias)(θ̂) =
(
Mθ∗ − θ∗

)>
Σ
(
Mθ∗ − θ∗

)
= θ>∗ Σθ∗ + θ>∗M

>ΣMθ∗ − 2θ>∗M
>Σθ∗

= θ>∗ Σθ∗ − 2θ>∗ X
>XS(S>X>XS + nλI)−1S>Σθ∗ (23)

+θ>∗ X
>XS(S>X>XS + nλI)−1S>ΣS(S>X>XS + nλI)−1S>X>Xθ∗.

For the proof, we separate the two regimes m < n and m < n. For both of them, we provide asymptotic
expansions in two steps, first with respect to X and then S in the under-parameterized regime and vice-
versa for the over-parameterized regime.

B.1 Under-parameterized regime: expansion with respect to X

Variance term. We consider S fixed and use the random matrix theory arguments from Section 3 for X.
We have a covariance matrix S>ΣS ∈ Rm×m of rank m, so under-parameterized results apply, and we get
for the variance term (first term above), for S fixed, where we can directly consider λ = 0 (because of
cancellations):

Eε
[
R(var)(θ̂)

]
= σ2 tr

(
S>ΣS(S>X>XS)−1

)
∼ σ2

n−m
tr
(
S>ΣS(S>ΣS)−1

)
=

σ2m

m− n
.

Thus Eε
[
R(var)(θ̂)

]
∼ σ2m

n−m
, independently of the sketching matrix S. Note here that S>ΣS is a random

kernel matrix satisfying assumptions of Section 3; thus, its spectral measure has a limit.

Bias term. For the bias term, the computation is more involved. With T = Σ1/2S, and X = Σ1/2Z, it
is equal to:

R(bias)(θ̂) = θ>∗ Σθ∗ − 2θ>∗ Σ1/2Z>ZT (T>Z>ZT + nλI)−1T>Σ1/2θ∗

+θ>∗ Σ1/2Z>ZT (T>Z>ZT + nλI)−1T>T (T>Z>ZT + nλI)−1T>Z>ZΣ1/2θ∗.
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Using the matrix inversion lemma, we get:

R(bias)(θ̂) = θ>∗ Σθ∗ − 2θ>∗ Σ1/2Z>(ZTT>Z> + nλI)−1ZTT>Σ1/2θ∗

+θ>∗ Σ1/2Z>(ZTT>Z> + nλI)−1ZTT>TT>Z>(ZTT>Z> + nλI)−1ZΣ1/2θ∗.

Denoting C = TT>, we then have

R(bias)(θ̂) = θ>∗ Σθ∗ − 2θ>∗ Σ1/2Z>(ZCZ> + nλI)−1ZCΣ1/2θ∗

+θ>∗ Σ1/2Z>(ZCZ> + nλI)−1ZC2Z>(ZCZ> + nλI)−1ZΣ1/2θ∗.

To find expansions of the red terms above, we can directly use the results from Section 3.3, using Eq. (10)
with A = CΣ1/2θ∗θ

>
∗ Σ1/2, and Eq. (11) with A = Σ1/2θ∗θ

>
∗ Σ1/2 and B = C2, with the covariance matrix

C, and thus with degrees of freedom and the implicit regularization parameter κ̃(λ) associated to C.3 We
can apply Prop. 2 since C = TT> = Σ1/2SS>Σ1/2 has almost surely a limiting spectral measure and the
resulting needed traces involving the matrices A and B have well-defined limits. We get:

R(bias)(θ̂) ∼ θ>∗ Σθ∗ − 2θ>∗ Σ1/2(C + κ̃(λ)I)−1CΣ1/2θ∗

+θ>∗ Σ1/2(C + κ̃(λ)I)−1CC(C + κ̃(λ)I)−1Σ1/2θ∗

+κ̃(λ)2 θ
>
∗ Σ1/2(C + κ̃(λ)I)−2Σ1/2θ∗ · tr

[
C2(C + κ̃(λ)I)−2

]
n− d̃f2(κ̃(λ))

∼ θ>∗ Σ1/2
(
I − C(C + κ̃(λ)I)−1

)2
Σ1/2θ∗

+κ̃(λ)2 θ
>
∗ Σ1/2(C + κ̃(λ)I)−2Σ1/2θ∗ · tr

[
C2(C + κ̃(λ)I)−2

]
n− d̃f2(κ̃(λ))

.

When λ goes to zero, we have κ̃(λ) → 0, d̃f2(κ̃(λ)) → m, as well as C(C + κ̃(λ)I)−1 = TT>(TT> +
κ̃(λ)I)−1 = T (T>T + κ̃(λ)I)−1T> → Σ1/2S(S>ΣS)−1S>Σ1/2, and κ̃(λ)(C + κ̃(λ)I)−1 = I − C(C +
κ̃(λ)I)−1 → I − Σ1/2S(S>ΣS)−1S>Σ1/2. This leads to:

R(bias)(θ̂) ∼ θ>∗ Σ1/2
(
I − Σ1/2S(S>ΣS)−1S>Σ1/2

)2
Σ1/2θ∗

+
θ>∗ Σ1/2(I − T (T>T )−1T>)2Σ1/2θ∗ ·m

n−m
= θ>∗

(
Σ−ΣS(S>ΣS)−1S>Σ

)
θ∗ ·

(
1+

m

n−m
)

= θ>∗
(
Σ−ΣS(S>ΣS)−1S>Σ

)
θ∗ ·

n

n−m
. (24)

B.2 Under-parameterized regime: full expansion

Using results from Section 3.3, this time with Z = S> and the covariance matrix Σ, with κm defined by
df1(κm) = m, we get from Prop. 2 the equivalent Σ−ΣS(S>ΣS)−1S>Σ ∼ Σ−Σ1/2(Σ + κmI)−1Σ1/2, and
thus, from Eq. (24), we get the desired result:

R
bias

(θ̂) ∼ 1

1− m
n

κmθ
>
∗ Σ(Σ + κmI)−1θ∗.

3We use a different notation with˜, to avoid confusion with the same quantities with Σ.
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B.3 Over-parameterized regime: expansion with respect to S

Variance term. We have, from Eq. (22):

Eε
[
R(var)(θ̂)

]
=

σ2

n
tr
(
ΣS(S>Σ̂S + λI)−1S>Σ̂S(S>Σ̂XS + λI)−1S>

)
.

To obtain an expansion of the red term, we can use Prop. 2 with covariance matrix Σ̂ and thus degrees of
freedom and κ̃ associated to Σ̂:

Eε
[
R(var)(θ̂)

]
∼ σ2

n
tr
[
ΣΣ̂(Σ̂ + κ̃(λ)I)−2

]
+
σ2

n
κ̃(λ)2 tr

[
Σ(Σ̂ + κ̃(λ)I)−2

]
· tr
[
Σ̂(Σ̂ + κ̃(λ)I)−2

]
m− d̃f2(κ̃(λ))

.

Using that κ̃(λ) → 0 when λ → 0, Σ̂(Σ̂ + κ̃(λ)I)−2 = nX>X(X>X + nκ̃(λ)I)−2 = nX>(XX> +
nκ̃(λ)I)−2X → nX>(XX>)−2X, and κ̃(λ)2(Σ̂+κ̃(λ)I)−2 = n2κ̃(λ)2(X>X+nκ̃(λ)I)−2 = (I−X>(XX>+
nκ̃(λ)I)−1X)2 → (I −X>(XX>)−1X)2 = (I −X>(XX>)−1X), we thus get:

Eε
[
R(var)(θ̂)

]
∼ σ2 tr

[
ΣX>(XX>)−2X

]
+

tr
[
Σ(I −X>(XX>)−1X)

]
· tr
[
(XX>)−1

]
m− n

. (25)

We can now take care of the (squared) bias term with the same technique, with λ → 0, starting from
Eq. (23):

R(bias)(θ̂) = θ>∗ Σθ∗ − 2θ>∗ Σ1/2S(S>Σ̂S + λI)−1S>Σ̂θ∗

+θ>∗ Σ̂S(S>Σ̂S + λI)−1S>ΣS(S>X>XS + nλI)−1S>Σ̂θ∗

∼ θ>∗ Σθ∗ − 2θ>∗ Σ1/2(Σ̂ + κ̃(λ)I)−1Σ̂θ∗

+θ>∗ Σ̂(Σ̂ + κ̃(λ)I)−1Σ(Σ̂ + κ̃(λ)I)−1Σ̂θ∗ + κ̃(λ)2 tr
[
Σ(Σ̂ + κ̃(λ)I)−2

]
· θ>∗ Σ̂(Σ̂ + κ̃(λ)I)−2Σ̂θ∗

m− d̃f2(κ̃(λ))

∼
∥∥Σ1/2

(
I −X>(XX> + κ̃(λ)I)−1X

)
θ∗
∥∥2

2

+κ̃(λ)2 tr
[
Σ(X>X + κ̃(λ)I)−2

]
· θ>∗ X>X(X>X + κ̃(λ)I)−2X>Xθ∗

m− d̃f2(κ̃(λ))

∼ θ>∗ (I −X>(XX>)−1X)Σ(I −X>(XX>)−1X)θ∗ (26)

+
1

m− n
θ>∗ X

>(XX>)−1Xθ∗ · tr
[
Σ(I −X>(XX>)−1X)

]
.

B.4 Over-parameterized regime: full expansion

For κn defined as df1(κn) = n for the full covariance matrix Σ (which is exactly the value of κm above for
m = n), we get, using Prop. 2, with Eq. (25) and Eq. (26):

E
[
R

var
(θ̂)
]
∼ σ2 df2(κn)

df1(κn)− df2(κn)
+ σ2 n

m− n

R
bias

(θ̂) ∼ κ2
nθ
>
∗ Σ(Σ + κnI)−2θ∗ ·

df1(κn)

df1(κn)− df2(κn)
+ κnθ

>
∗ Σ(Σ + κnI)−1θ∗ ·

n

m− n
,

which is the desired result.
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[4] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020. (cited on

pages 2 and 12)

[5] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning
practice and the classical bias–variance trade-off. Proceedings of the National Academy of Sciences,
116(32):15849–15854, 2019. (cited on page 1)

[6] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020. (cited on page 1)

[7] Andrea Caponnetto and Ernesto de Vito. Optimal rates for regularized least-squares algorithm.
Foundations of Computational Mathematics, 7(3):331–368, 2007. (cited on pages 2, 4, 7, 9, and 10)

[8] Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates in
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