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Nicolas Lemoine and Rémi Molinier
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Abstract

In this article, we compare two different notions of partially defined group strutures, namely
partial groups and pregroups, as introduced by Chermak and Stallings respectively. In particular
we prove that the category of pregroups can be seen as a full subcategory of the category of partial
groups. We also bring out some conjugation properties about elements and subgroups of finite order
in pregroups and their universal groups. We then use these to investigate the question of realisability
of fusion systems in finite pregroups.
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Introduction

Pregroups are generalisations of groups, where the product is only partially defined. Specifically, a
pregroup is a set P equipped with a binary product m : D → P , where D is a subset of P × P , subject
to some group-like axioms (see Definition 2.1 for details). Pregroups were introduced by Stallings [17] in
the 70’s, as a tool to study amalgamated product of groups. A crucial property of these pregroups is that
they can always be embedded into a group. More precisely, given a pregroup P there is a group U(P )
containing P , called the universal group of P , such that P generates U(P ) in a strong way, implying
that U(P ) has a solvable word problem when P is finite. In an article published in 1987 [14], Rimlingler
proved that under one finiteness condition on P , its universal group U(P ) is actually the fundamental
group of a graph of groups whose edge and vertex groups are subgroups of P . He also proved that
given a graph of groups of finite diameter, if all the edge maps are injective but not surjective, then its
fondamental group is the universal group of a certain pregroup. Therefore, pregroups can be thought as
combinatorial objects which encode graphs of groups.

With other perspectives in mind, in an article published in 2013 [4], Andrew Chermak introduced
another generalisation of groups with a partially defined product : partial groups. He was interested in
p-local structures of finite groups (i.e. how a group acts by conjugation on its p-subgroups) and more
generally of fusion systems. A fusion system over a finite p-group S is a category whose objects are the
subgroups of S and whose morphism sets are formed by the conjugation maps induced by elements of
S together with other similar injective group homomorphisms (see Definition 4.1 for more details). The
archetypal example of a fusion system is the one induced by a finite group acting by conjugation on one
of its Sylow p-subgroups. If a fusion system satisfies a few more axioms ensuring that it “behaves” like
one of these archetypal examples, we say that the fusion system is saturated. Actually, general fusion
systems give a very large class of mathematical objects, which strictly contains fusion systems induced
by finite groups. There even exist saturated fusion systems, called exotic, which cannot be obtained from
a finite group G containing S as a Sylow p-subgroup. This leads to the question of the realisability of
saturated fusion systems: given a saturated fusion system over a finite p-group S, can it be obtained
from a finite group containing S as a Sylow p-subgroup? This question is also of interest (and leads to
different answers) if we restate it in a larger framework: considering general fusion systems, dropping the
Sylow p-subgroup hypothesis, or enlarging the context of realisability (possibly infinite groups, partial
groups...).

A partial group, as introduced by Chermak, is a setM together with a multivariate product defined
on a subset of the set of words in M and which satisfies some axioms (see Definition 1.1 for details).
One of Chermak’s main achievements was to prove the existence and uniqueness of a so-called linking
system associated to a given saturated fusion system. In the way, he proved that there is a one-to-
one correspondence between localities – a certain type of partial groups that models p-local structures
of finite groups – and transporter systems (see Appendix A in [4]). Linking systems and transporter
systems are categories derived from a given saturated fusion system and they were introduced by Broto,
Levi and Oliver in [3] and Oliver and Ventura in [12] respectively. They used these objects to study
saturated fusion systems, p-completed classifying spaces of finite groups and connections between them,
by developing a theory of classifying spaces for saturated fusion systems. Localities give a more group-like
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point of view on these objects, which allows for instance the use of tools from group theory.
Even though partial groups are combinatorial objects, they can be viewed as simplicial sets as high-

lighted by Broto and Gonzales [2]. For example, the geometric realisation of a locality has the homotopy
type of the geometric realisation of the nerve of the associated transporter system. Therefore it opened
another approach to study these spaces which are crucial in homotopy theory of fusion systems.

In this paper we establish connections between pregroups and partial groups, and we develop the
question of the realisability of fusion systems in this generalised context. In Section 1, we give the basic
definitions and properties concerning Chermak’s partial groups, including the simplicial point of view.
Section 2 is dedicated to pregroups. After giving definitions, examples and some lemmas concerning
conjugation properties and elements of finite order in pregroups, we prove that pregroups can be viewed
as partial groups in a natural way. More precisely, there is a fully faithful functor from the category of
pregroups PrG to the category of partial groups ParG (Proposition 2.23). As a consequence, we get
that the universal group U(P ) of a pregroup P is isomorphic to the fundamental group of the geometric
realisation BP of the corresponding simplicial set B(P ), called the classifying space of P , when P is
considered as a partial group.

Theorem 0.1 (Corollary 2.25 below). Let P be a pregroup. Then, π1(BP ) ∼= U(P ).

In Section 3, we introduce graphs of groups and their fundamental groups, as a key step in answering
the realisability question in the context of pregroups. Indeed, on the one hand we have Rimlinger’s
results that we mentioned above (see Theorems 3.8 and 3.11). On the other hand, Leary & Stancu
proved in [8] that every fusion system is realisable by a fundamental group of a graph of groups. In
Section 4, after stating definitions and explaining how to build fusion systems from partial groups, we
prove that the fusion systems induced on a Sylow p-subgroup by a pregroup or by its universal group
are essentially the same.

Theorem 0.2 (Theorem 4.14 below). Let P be a pregroup and S be a finite p-group. Then S embeds
as a Sylow p-subgroup of P if and only if it embeds as a Sylow p-subgroup of U(P ), and in this case we
have FS

(
U(P )

)
= FS(P ).

Theorems 0.1 and 0.2 together have the following corollary.

Corollary 0.3. Let L be a centric linking locality associated to a fusion system F over a p-group S. If
L is a pregroup, then S is a Sylow p-subgroup of π1(BL) and FS(π1(BL)) = FS(L) = F .

This last corollary (which can be generalised to any locality associated to a fusion system) can give
some insights on the fundamental group of the classifying space of a locality associated to a fusion system.
Finally, we bring all the pieces together and answer the realisability question in the context of pregroups,
with the following result.

Theorem 0.4 (Corollary 4.15 below). Let F be a fusion system over a finite p-group S. There exists a
finite pregroup P , containing S as a Sylow p-subgroup, such that F = FS(P ).

We finish the paper by giving in Section 5 two explicit constructions of pregroups realising fusion
systems. These examples are derived from the already known constructions of infinite groups realising
fusion systems (Leary and Stancu [8] and Robinson [15] respectively). For each case we also ask whether
the constructed pregroup could be equipped with a structure of locality, which seems to be rarely possible.
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1 Partial groups and localities

1.1 Chermak’s partial groups and localities

The notions of partial groups and localities are due to Andrew Chermak. We present here the definitions
and some useful properties, but more details can be found in [4, Section 2] or in the preprint [5, Section
1].

For a set X, we denote the free monoid on X by W(X), and for two words u, v ∈W(X), we denote
the concatenation of u and v by u ◦ v. We also identify X with the subset of words of length 1 in W(X).
Finally, given two sets X and Y and a map ϕ : X → Y , we will denote by ϕ : W(X) → W(Y ) the map
induced by ϕ defined by ϕ(u) = (ϕ(x1), ϕ(x2), · · · , ϕ(xn)) for any u = (x1, x2, · · · , xn) ∈W(X).

Definition 1.1. LetM be a set and let D ⊆W(M) be a subset such that,

(D1) M⊆ D; and

(D2) u ◦ v ∈ D⇒ u, v ∈ D (in particular, the empty word ∅ belongs to D).

A mapping Π : D→M is a product if

(P1) Π restricts to the identity onM; and

(P2) if u ◦ v ◦ w ∈ D then u ◦Π(v) ◦ w ∈ D and

Π(u ◦ v ◦ w) = Π
(
u ◦Π(v) ◦ w

)
.

The unit of Π is then defined as Π(∅) and we will denote it by 1M, or 1 when there is no ambiguities.
An inversion on M is an involutory bijection x 7→ x−1 on M together with the induced mapping

u 7→ u−1 on W(M) defined by,

u = (x1, x2, · · · , xn) 7→ (x−1
n , x−1

n−1, · · · , x
−1
1 ).

A partial group is a tuple
(
M,D,Π, (−)−1) where Π is a product on D and (−)−1 is an inversion onM

satisfying

(P3) If u ∈ D then u−1 ◦ u ∈ D and Π(u−1 ◦ u) = 1.

We will denote by M or (M,D) a partial group when the rest of the data is understood. The set
D =: D(M) is called the domain of the partial group.

Several useful properties follow easily from the above axioms.

Lemma 1.2. Let (M,D) be a partial group.

(1) If u ◦ v ∈ D, then
(
Π(u),Π(v)

)
∈ D and

Π(u ◦ v) = Π(u)Π(v)

where Π(u)Π(v) is short for Π
(
Π(u),Π(v)

)
.

(2) If u ◦ v ∈ D, then u−1 ◦ u ◦ v ∈ D, u ◦ v ◦ v−1 ∈ D and we have

Π(u−1 ◦ u ◦ v) = Π(v) and Π(u ◦ v ◦ v−1) = Π(u) .
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Proof. These are Lemma 2.2. (a) and (d) in [4].

Example 1.3. Any group G forms a partial group, setting D = W(G) and taking the product and
inversion induced by group operations in G. Reciprocally, if M is a partial group whose domain is
D = W(M), thenM is a group via the binary operation (x, y) ∈M2 7→ Π(x, y) ∈M.

Example 1.4. Let F(a) = {1, a, a−1}. We define the non-degenerated words of Da to be all possible
words in W(F(a)) formed by alternating a and a−1. Equivalently, the non-degenerated words of Da are
all the different finite subwords of the “infinite word” (a, a−1, a, a−1, a, a−1, · · · ). The inversion (−)−1 is
understood and, for any word u ∈ Da,

Π(u) =


1 if the number of a’s equals the number of a−1’s,

a if the number of a’s exceeds the number of a−1’s (necessarily by 1),

a−1 if the number of a−1’s exceed the number of a’s (necessarily by 1).

One can then check that
(
F(a),Da,Πa, (−)−1) defines a partial group.

This last example is actually the free partial group on the set {a} as detailed in [5, Lemma 1.12].

Together with the notion of partial group come those of partial subgroup and morphism of partial
groups.

Definition 1.5. Let
(
M,D,Π, (−)−1) be a partial group. A partial subgroup ofM is a subset N ⊆M

such that
(
N ,D ∩W(N ),Π|D∩W(N ), (−)−1) is a partial group. If D ∩W(N ) = W(N ), we say that N is

a subgroup ofM, and if its order is a power of some prime number p, we say that it is a p-subgroup of
M.

Definition 1.6. Let
(
M1,D1,Π1, (−)−1) and (M2,D2,Π2, (−)−1) be two partial groups. A morphism

of partial groups, or partial group homomorphism, is a map ϕ : M1 →M2 such that

(H1) ϕ (D1) ⊆ D2;

(H2) for any u ∈ D1, Π2 (ϕ(u)) = ϕ (Π1(u)).

Moreover, ϕ : M1 →M2 is called an isomorphism of partial groups if the map ϕ is bijective and if ϕ−1

is also a morphism of partial group. Finally, an automorphism ofM1 is an isomorphism ϕ : M1 →M1.

With this notion of morphisms and the usual composition on maps, the class of partial groups forms
a category ParG which contains the category of groups as a full subcategory.

Chermak introduced partial groups to study the p-local structure of finite groups when p is a prime
number. For that purpose he defined the notion of locality, which allows to encode and manipulate these
p-local structures. In order to define localities, we first need to talk about conjugation in partial groups,
and define objective partial groups.

Notation 1.7. Given M a partial group and g ∈ M, we denote by D(g) the set of all x ∈ M such
that (g−1, x, g) ∈ D, and by cg : x 7→ xg the map sending x ∈ D(g) to Π(g−1, x, g). If in addition X is a
subgroup ofM such that X ⊆ D(g), then we denote by Xg the set of all xg for x ∈ X. Beware that Xg

is not a subgroup ofM in general.

Lemma 1.8. Let M be a partial group and g ∈ M. Then cg defines a bijection D(g) → D(g−1) whose
inverse is cg−1 .
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Proof. This is Lemma 2.5. (c) in [4].

Definition 1.9. LetM be a partial group and ∆ a collection of subgroups ofM. Define D∆ to be the
set of all w = (g1, g2, · · · , gn) ∈W(M) such that

∃(X0, X1, · · · , Xn) ∈W(∆), ∀i ∈ {1, · · · , n}, Xi−1 ⊆ D(gi) and (Xi−1)gi = Xi . (\)

We then say that (M,∆) is an objective partial group if the following two conditions holds.

(Oa) D(M) = D∆.

(Ob) Whenever X and Y are in ∆ and g ∈ M is such that X ⊆ D(g) and Xg is a subgroup of Y , then
every subgroup of Y containing Xg is in ∆.

Hence an objective partial group is a particular instance of partial group whose domain is given by
the composable conjugation maps between a fixed set of subgroups. For example, given any group G

and any collection ∆ of subgroups of G, then (G,D∆)) is an objective partial group.

Definition 1.10. Let p be a prime number, let L be a finite partial group. Let S be a p-subgroup of L,
and let ∆ be a collection of subgroups of S such that S ∈ ∆. We say that (L,∆, S) is a locality if:

(La) (L,∆) is objective; and

(Lb) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

1.2 A simplicial point of view on partial groups

Let
(
M,D,Π, (−)−1) be a partial group. Broto and Gonzales [2] pointed out that Π induces a simplicial

set structure on D in the same way that the product in a group G induces a simplicial set structure on
W(G).

Definition 1.11. Let
(
M,D,Π, (−)−1) be a partial group. We denote by B(M) the simplicial set whose

n-simplices, for n ∈ N, are the elements of Bn(M) = Dn, the set of words of length n in D. The face
operators are given, for n ∈ N∗, i ∈ {0, 1, · · · , n− 1} and (m1,m2, · · · ,mn) ∈ Bn(M), by

di(m1,m2, · · · ,mn) =


(m2,m3, · · · ,mn) if i = 0,

(m1, · · · ,Π(mi,mi+1), · · · ,mn) if 1 ≤ i ≤ n− 1,

(m1,m2, · · · ,mn−1) if i = n;

and the degeneracy operators are defined, for n ∈ N, i ∈ {0, 1, · · · , n} and (m1,m2, · · · ,mn) ∈ Bn(M),
by

si(m1,m2, · · · ,mn) = (m1, · · · ,mi, 1,mi+1, · · · ,mn)

where 1 is the unit ofM.
Finally, the geometric realisation of this simplicial set will be denoted by BM := |B(M)| and called

the classifying space ofM.

As mentioned above, when we are working with an actual group G (i.e. D(G) = W(G)) then B(G) is
the classical bar construction and BG is a classifying space for the group G.

Notice also that a map between two partial groups f : M1 →M2 is a partial group homomorphism
if and only if the map induced by f on words, f : B(M1) → B(M2), is a simplicial map. Broto and
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Gonzalez actually showed that this constitutes a fully faithfull embedding B : ParG → sSet of ParG
into sSet the category of simplicial sets (see [2, Section 2] for more details).

There is a deep connection between a partial group and the geometric realisation of its associated
simplicial set. For example, there is a correspondence between extension of partial groups and fiber
bundles of the corresponding simplicial sets as highlighted by Broto and Gonzalez [2, 7]. Here we focus
on the fundamental group π1(BM) of the geometric realisation.

Proposition 1.12. Let M be a partial group. There is a natural morphism of partial groups θ : M→
π1(BM) and for any group G and any morphism of partial groups α : M→ G, there is a unique group
homomorphism α : π1(BM)→ G such that α = α ◦ θ.

Proof. This is a direct consequence of [1, Prop III.2.7]. If we denote K := B(M) = D(M) to follow
the notation of [1, Prop III.2.7], we have that K0 is just a point given by the empty word (and it
will be denoted by x0 in the rest of the proof), and K1 = M. Then the map θ : K1 → π1(|K|, x0) of
[1, Prop III.2.7] is just a map θ : M → π1(|K|, x0) such that for all (g, h) ∈ D2(M) = K2, we have
θ (Π(gh)) = θ(g)θ(h). This is equivalent to state that θ is a partial group homomorphism from M to
the group π1(BM). Finally, the universal property is just a restatement of the second part of [1, Prop
III.2.7].

In particular, B : ParG→ Top∗ is a functor from ParG to the category Top∗ of pointed topological
spaces (because if M is a partial group, B(M) has only one 0-simplex, so there is a canonical choice
of basepoint for BM), and if we denote the category of groups by Grps, the functor ParG → Grps
defined as the composition of B followed by the fundamental group functor π1 : Top∗ → Grps, is left
adjoint to the forgetful functor U : Grps→ ParG.

2 Stallings’ pregroups and their universal groups

2.1 Generalities on pregroups

The notion of pregroup was introduced by Stallings in [17]. This generalisation of the group structure
aims at providing “nice” generating sets for certain families of groups, such as amalgamated products of
groups. Most of the material here comes from [17, Section 3.A] and [14, Part I, section I].

Definition 2.1. A pregroup is a tuple
(
P,D,m, 1P , (−)−1) where P is a set, D is a subset of P × P

called the domain, m : D → P and (−)−1 : P → P are maps and 1P is an element of P called the unit,
such that for all w, x, y, z ∈ P we have:

(Pr1) (1P , x) ∈ D, (x, 1P ) ∈ D and m(1P , x) = m(x, 1P ) = x.

(Pr2) (x, x−1) ∈ D, (x−1, x) ∈ D and m(x, x−1) = m(x−1, x) = 1P .

(Pr3) If (w, x), (x, y) ∈ D, then

(
m(w, x), y

)
∈ D ⇐⇒

(
w,m(x, y)

)
∈ D

and in that case, m
(
m(w, x), y

)
= m

(
w,m(x, y)

)
.

(Pr4) If (w, x), (x, y), (y, z) ∈ D, then
(
w,m(x, y)

)
∈ D or

(
m(x, y), z

)
∈ D.
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To simplify the reading, when (x, y) ∈ D, we will denote xy instead of m(x, y). When w, x, y ∈ P

satisfy (w, x), (x, y) ∈ D and (wx, y) ∈ D (or equivalently, (w, xy) ∈ D by (Pr3)), we say that (w, x, y)
associates.

Considering the above definition, a pregroup
(
P,D,m, 1P , (−)−1) is a group if and only if D = P×P .

Moreover, we deduce easily the following properties from the axioms.

Lemma 2.2. Let
(
P,D,m, 1P , (−)−1) be a pregroup. We have the following:

(1) If x ∈ P , then
(
x−1)−1 = x.

(2) If (x, y) ∈ D, then (x−1, xy) ∈ D and x−1(xy) = y. Similarly, (xy, y−1) ∈ D and (xy)y−1 = x.

(3) Let x, y ∈ P . Then (x, y) ∈ D if and only if (y−1, x−1) ∈ D, and in this case we have y−1x−1 =
(xy)−1.

(4) Let a ∈ P such that (x, a), (a−1, y) ∈ D. Then (x, y) ∈ D if and only if (xa, a−1y) ∈ D. In this
case, we have (xa)(a−1y) = xy.

Proof. These properties are proved in [10] for (3), and in [17] for the others. However we prefer to
give them a proof here to ensure consistency (see next remark).

Let us start with (1). By Axiom (Pr2), (x, x−1) and
(
x−1, (x−1)−1) are in D, and xx−1 = 1P =

x−1(x−1)−1. By Axiom (Pr1),
(
xx−1, (x−1)−1) and (x, x−1(x−1)−1) are in D and their products equal

(x−1)−1 and x respectively. Finally, by Axiom (Pr3), these two products are equal.
For (2), by Axiom (Pr2) we have (x−1, x) ∈ D and x−1x = 1P . Thus by Axiom (Pr1), (x−1x, y) ∈ D

and (x−1x)y = y, so (x−1, xy) ∈ D and x−1(xy) = (x−1x)y = y by Axiom (Pr3). The other case of (2)
follows from the same arguments.

Now for (3), by (1) it is enough to prove that (x, y) ∈ D implies (y−1, x−1) ∈ D. We know
that

(
(xy)−1, (xy)y−1) ∈ D because of (2), and

(
(xy)y−1, x−1) = (x, x−1) ∈ D by Axiom (Pr2).

Moreover
(

(xy)−1,
(
(xy)y−1)x−1

)
=
(
(xy)−1, 1P

)
∈ D. Hence using Axiom (Pr3) we deduce that(

(xy)−1((xy)y−1), x−1
)

=
(
y−1, x−1) ∈ D and y−1x−1 = (xy)−1.

Finally for (4), we know from (2) that (xa, a−1) ∈ D. Since we also have (a−1, y) ∈ D, the result
becomes nothing more than Axiom (Pr3).

Remark 2.3. In [17], Stallings introduces the definition of pregroup with property (3) from Lemma
2.2 as an extra axiom. It appeared later to be redundant, so that this property is no more included as
an axiom in [14]. On the contrary, in the latter Rimlinger assumes that x 7→ x−1 is an involution by
definition, but this is a consequence of the other axioms, as proved in [17].

As for partial groups, we have the notions of subpregroup and morphism of pregroups.

Definition 2.4. Let
(
P,D,m, 1P , (−)−1) be a pregroup. A subset Q ⊂ P induces a subpregroup of P if

the tuple
(
Q,D∩ (Q×Q),m|D∩(Q×Q), 1P , (−)−1) is a pregroup. If Q×Q ⊆ D we will call it a subgroup

of P .

Definition 2.5. Let
(
P1, D1,m1, 11, (−)−1) and

(
P2, D2,m2, 12, (−)−1) be two pregroups. A mor-

phism of pregroups, or pregroup homomorphism, is a map ϕ : P1 → P2 such that for every (x, y) ∈ D1,
(ϕ(x), ϕ(y)) ∈ D2 and m2(ϕ(x), ϕ(y)) = ϕ(m1(x, y)).
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Thus pregroups, together with morphisms of pregroups, define a category that we will denote by
PrG. One important fact about pregroups is that we can associate to any of them a group called its
universal group.

Definition 2.6. Let
(
P,D,m, 1P , (−)−1) be a pregroup. The universal group of P , denoted by U(P ),

is the group with presentation

U(P ) = 〈 P | m(x, y)y−1x−1 for all (x, y) ∈ D 〉

where m(x, y)y−1x−1 is the product of m(x, y), y−1 and x−1 in the free group generated by P (not in
P ).

Notation 2.7. In the rest of the paper, a pregroup
(
P,D,m, 1P , (−)−1) will be often just denoted by

(P,D), or even P when reference to D is not needed.

Before continuing with properties of the universal group, let us introduce a family of examples of
pregroups, naturally arising from amalgamated products of groups.

Example 2.8 ([17, Example 3.A.5.1]). Let A,B and C be three groups, and let ϕA : C → A and
ϕB : C → B be injective group homomorphisms. Set A ∪C B := A t B/ ∼, where ∼ is defined by
ϕA(x) ∼ ϕB(x) for all x ∈ C. We can identify A ∪C B with (A \ ϕA(C)) t C t (B \ ϕB(C)), A with
(A \ ϕA(C)) t C and B with (B \ ϕB(C)) t C, so that A ∪C B contains both A and B, and A ∩B = C

with these identifications. Then A ∪C B has a natural pregroup structure with domain

D := { (x, y) ∈ (A ∪C B)× (A ∪C B) | x, y ∈ A or x, y ∈ B }

and the obvious operations. In this way it can be seen as a subset of the amalgamated product A ∗C B
(see example (1) in 3.5 for the definition), and in fact one can easily see that U(A ∪C B) = A ∗C B.

The following universal property is a direct consequence of the definition of U(P ).

Proposition 2.9. Let P be a pregroup. The natural map ιP : P → U(P ) is a morphism of pregroups,
and for any group G together with a pregroup homomorphism α : P → G, there exists a unique group
homomorphism α : U(P )→ G such that α = α ◦ ιP .

U(P ) ∃! α // G

P

ιP

OO

α

77

In Theorem 3.A.4.5 from [17], Stallings proved that the universal group of a pregroup has a solvable
word problem. A noteworthy corollary of this theorem is that P is injectively embedded in U(P ).

Theorem 2.10 ([17, Corollary 3.A.4.6]). The morphism ιP : P → U(P ) is an injective pregroup homo-
morphism.

Notation 2.11. Let P be a pregroup. In general we will identify P with its image under ιP : P → U(P ),
and for (x1, x2, · · · , xn) ∈W(P ) we will denote by x1x2 · · ·xn its product in U(P ).

We will also need a weaker version of Stallings’ theorem, which we state below, just after defining
P -reduced words.

9



Definition 2.12. A word (x1, x2, · · · , xn) ∈W(P ) is said to be P -reduced if for all i ∈ {1, 2, · · · , n− 1},
(xi, xi+1) 6∈ D. The empty word is P -reduced.

Theorem 2.13 ([17, Theorem 3.A.4.5]). Let P be a pregroup and let (x1, x2, · · · , xn) ∈ W(P ) and
(y1, y2, · · · , ym) ∈W(P ) be two P -reduced words. If x1x2 · · ·xn = y1y2 · · · ym then n = m.

In particular, for n = 2, this result provides a characterisation of the domain D in terms of products
in the universal group.

Corollary 2.14. Let (P,D) be a pregroup and x, y ∈ P . Then (x, y) ∈ D if and only if xy ∈ P , where
the product xy is performed in U(P ).

We also get the following corollary.

Corollary 2.15. Let P be a pregroup and U(P ) be its universal group. Given any subgroup H of U(P ),
H is a subgroup of P if and only it is included in P .

2.2 Elements of finite order, finite subgroups and conjugation in the univer-
sal group

In this section, (P,D) will be a fixed pregroup and U(P ) its universal group. We will have a look at
elements of finite order in the universal group.

Definition 2.16. A cyclic element of P is an element x ∈ P such that 〈x〉 is a subgroup of P (and not
just of U(P )). In view of Corollary 2.15, this is equivalent to ask for 〈x〉 to be included in P .

Lemma 2.17. Let x be an element of P . Then the following are equivalent:

(1) x is cyclic,

(2) (x, x) ∈ D,

(3) x2 ∈ P .

Proof. Rimlinger already proved this result in [14, Corollary 1.10], but the proof is short and is an
easy (warm-up) example for using Axiom (Pr4) in a proof involving pregroups, so we give it here.

The equivalence between (2) and (3) is a direct application of Corollary 2.14, and the fact that (1)
implies (3) is trivial. Now we assume (2) and we prove by induction on n ∈ N that xn ∈ P . The cases
n = 0 and n = 1 are trivial. Let n ≥ 1 and suppose that xi ∈ P for all i ∈ {1, · · · , n}. In particular we
have (xn−1, x) ∈ D, (x, xn−1) ∈ D by induction hypothesis and Corollary 2.14, and (x, x) ∈ D by (2).
Applying Axiom (Pr4) to the tuple (x, xn−1, x, x), we get (x, xn) ∈ D or (xn, x) ∈ D, and both cases
give xn+1 ∈ P by a final application of Corollary 2.14. This concludes the proof by induction.

Lemma 2.18. Let x ∈ U(P ) be an element of finite order.

(i) If x ∈ P then x is a cyclic element of P .

(ii) If x 6∈ P , then x is conjugate (in U(P )) to a cyclic element of P .

Proof. By hypothesis, there exists r ∈ N∗ such that xr = 1 in U(P ). If x ∈ P , then by Theorem 2.13,
the word (x, x, · · · , x) ∈ P r cannot be P -reduced. Therefore (x, x) ∈ D and, by Lemma 2.17, x is a
cyclic element of P . This proves (i).
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Thanks to (i), and since the conjugate of an element of finite order is of finite order, it is enough to
show that x is conjugate to an element of P to prove (ii).

Let w = (p1, p2, · · · , pn) ∈W(P ) be a minimal P -reduced word such that y = p1p2 · · · pn is conjugate
to x in U(P ) and assume that n ≥ 2. Then y is also an element of finite order so there exists r ∈ N∗ such
that yr = 1. This implies that the concatenation wr of w with itself r times is not P -reduced. Since w
is P -reduced, this implies that (pn, p1) ∈ D. Therefore p−1

1 yp1 = p2p3 · · · pnp1 is conjugate to x and is
the product of the word (p2, p3, · · · , pnp1) which is of length n − 1. This contradicts the minimality of
w. Hence n = 1, i.e. y ∈ P .

In particular, this lemma allows us to talk about elements of P of finite order without ambiguity.

Lemma 2.19. Let x, g ∈ P . If x is an element of P of finite order, then the following are equivalent.

(1) g−1x ∈ P ,

(2) xg ∈ P .

Proof. According to Lemma 2.18, x is cyclic. Assume that g−1x ∈ P but xg 6∈ P . We have x−1g ∈ P
by items (1) and (3) of Lemma 2.2, and (g−1, x), (x, x), (x, x−1g) ∈ D by Lemma 2.2. Hence, by (Pr4),
since xg 6∈ P , g−1x2 ∈ P . Now we proceed by induction to prove that g−1xk ∈ P for every k ∈ N. We
already proved it for k ≤ 2, so let k ∈ N, k ≥ 2 and assume that g−1xk ∈ P . Then we also have x−kg ∈ P
by Lemma 2.2, so that (g−1, x), (x, xk), (xk, x−kg) ∈ D. Applying Axiom (Pr4), we get g−1xk+1 ∈ P ,
and this concludes the induction. But x is assumed to be of finite order, so x−1 = xk for some k ∈ N.
Therefore, g−1x−1 ∈ P , so xg ∈ P by item (3) of Lemma 2.2, which contradicts the initial assumption.

For the other implication, notice that x−1 is also an element of P of finite order, and xg ∈ P if and
only if g−1x−1 ∈ P . Thus, applying the previous implication, we get x−1g ∈ P , which is equivalent to
g−1x ∈ P .

Now we establish some facts about conjugation in U(P ), beginning with a technical lemma.

Lemma 2.20. Let k ∈ N∗, let x be an element of P of finite order, and let (g0, g1, · · · , gk−1) ∈ W(P )
be a P -reduced word such that g−1

k−1g
−1
k−2 · · · g

−1
0 xg0g1 · · · gk−1 ∈ P . Then for every i ∈ {1, 2, · · · , k},

g−1
i−2 · · · g

−1
0 xg0g1 · · · gi−2 ∈ P and

(
g−1
i−1, g

−1
i−2 · · · g

−1
0 xg0g1 · · · gi−2, gi−1

)
associates.

Proof. We proceed by induction on k. For k = 1, let g ∈ P and x be a cyclic element of P such that
gxg−1 ∈ P . In particular, we know that the word (g−1, x, g) is not P -reduced thanks to Theorem 2.13.
Thus g−1x ∈ P or xg ∈ P , and by Lemma 2.19 this implies that g−1x ∈ P and xg ∈ P . Since (g−1x)g
is in P , (g−1, x, g) associates.

Now let k ∈ N∗ and assume the result is true for the rank k. Let (g0, g1, · · · , gk) ∈ W(P ) be a
P -reduced word, let x be a cyclic element of P and assume that g−1

k g−1
k−1 · · · g

−1
0 xg0g1 · · · gk ∈ P . In par-

ticular, the word (g−1
k , g−1

k−1, · · · , g
−1
0 , x, g0, g1, · · · , gk) is not P -reduced according to Theorem 2.13. Since

(g0, g1, · · · , gk) is P -reduced, this is also the case of (g−1
k , g−1

k−1, · · · , g
−1
0 ), so we have g−1

0 x ∈ P or xg0 ∈ P .
By Lemma 2.19, they are both in P . Moreover, the word (g−1

k , g−1
k−1, · · · , g

−1
1 , g−1

0 x, g0, g1, · · · , gk) is still
not P -reduced. Therefore g−1

1 (g−1
0 x) ∈ P or (g−1

0 x)g0 ∈ P . Assume the latter is true, then we can
conclude directly using the induction hypothesis, because the conjugate of an element of finite order is
again of finite order. Else, if g−1

1 (g−1
0 x) ∈ P then (g−1

1 , g−1
0 x), (g−1

0 x, x−1), (x−1, xg0) ∈ D and by (Pr4),
this implies g−1

0 xg0 = (g−1
0 xx−1)xg0 ∈ P or g−1

1 g−1
0 = g−1

1 (g−1
0 xx−1) ∈ P (which is absurd). Thus we

also get g−1
0 xg0 ∈ P , and we can apply the induction hypothesis, taking g−1

0 xg0 ∈ P for the element of
finite order and (g1, g2, · · · , gk) for the P -reduced word.
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Proposition 2.21. Let x, y ∈ P be two elements of finite order. If x and y are conjugate in U(P ) then
there exist two finite sequences x =: x0, x1, · · · , xk−1, xk := y and g0, g1, · · · , gk−1 of elements of P such
that for all i ∈ {1, · · · , k − 1}, (g−1

i , xi, gi) associates and g−1
i xigi = xi+1.

Proof. Let g ∈ U(P ) be such that g−1xg = y, and let (g0, g1, · · · , gk−1) ∈W(P ) be a P -reduced word
representing g. Then the result follows directly from Lemma 2.20, if we define the xi ∈ P inductively by
xi+1 := g−1

i xigi.

Proposition 2.22. Let Q and R be two finite subgroups of P . If Q and R are conjugate in U(P ) then
there exist a sequence Q0 = Q,Q1, · · · , Qk = R of finite subgroups of P and a sequence g0, g1, · · · , gk−1

of elements of P , such that for each i ∈ {1, · · · , k − 1} and every x ∈ Qi, (g−1
i , x, gi) associates, and

g−1
i Qigi = Qi+1.

Proof. Let g ∈ U(P ) be such that g−1Qg = R, and let (g0, g1, · · · , gk−1) ∈ W(P ) be a P -reduced
word representing g. Define the subgroups Qi of U(P ) inductively by Q0 := Q and Qi+1 := g−1

i Qigi,
so that Qk = R. Fix i ∈ {0, · · · , k − 1} and xi ∈ Qi. By definition of Qi, there exists x0 ∈
Q such that xi = g−1

i−1 · · · g
−1
0 x0g0 · · · gi−1, where the products are performed in U(P ). Moreover,

g−1
k−1 · · · g

−1
0 x0g0 · · · gk−1 ∈ R ⊆ P by hypothesis. Applying Lemma 2.20, we get in particular that

xi ∈ P and (g−1
i , xi, gi) associates. As this holds for general xi ∈ Qi, we deduce that Qi ⊆ P , so by

Corollary 2.15, Qi is a subgroup of P and the proof is complete.

2.3 Pregroups are partial groups

Let (P,D) be a pregroup and let U(P ) be its universal group. Consider the following subset of W(P ):

DP = { (x1, x2, . . . , xn) ∈W(P ) | ∀i, j ∈ {1, 2, . . . , n} with i < j, xixi+1 · · ·xj ∈ P }

By repeated applications of Corollary 2.14 and Axiom (Pr3), there exists a well-defined map ΠP from
DP to P assigning w = (x1, x2, . . . , xn) ∈ DP to

ΠP (w) = x1x2 · · ·xn.

This defines a partial group structure on P , as stated in the following proposition.

Proposition 2.23. Let P be a pregroup. Then
(
P,DP ,ΠP , (−)−1) is a partial group. This construction

induces a fully faithful functor PrG→ ParG.

Proof. First, let us check the axioms for partial groups. By construction, the domain DP satisfies
(D1) and (D2). It is also clear by definition that ΠP restricts to identity on P . Condition (P2) is a
consequence of the fact that ΠP is well-defined from the above formula. Finally, the fact that x 7→ x−1

is an involutory bijection comes from item (1) in Lemma 2.2, and (P3) comes from Axiom (Pr2) for
pregroups.

Now, if P and Q are two pregroups and ϕ : P → Q is a pregroup homomorphism, one has to check that
ϕ is in fact a partial group homomorphism between the associated partial groups. If (x1, x2, . . . , xn) ∈ DP ,
we prove by induction on j − i that ϕ(xi) · · ·ϕ(xj) ∈ Q and ΠQ

(
ϕ(xi), . . . , ϕ(xj)

)
= ϕ

(
ΠP (xi, . . . , xj)

)
for all i, j ∈ {1, 2, . . . , n} such that i < j. For j − i = 1, this is just the fact that ϕ is a pregroup
homomorphism. For j − i > 1, by induction hypothesis we have

ϕ(xi) · · ·ϕ(xj) = ΠQ

(
ϕ(xi), . . . , ϕ(xj−1)

)
· ϕ(xj) = ϕ

(
ΠP (xi, . . . , xj−1)

)
· ϕ(xj) .
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Since ΠP (xi, . . . , xj−1) · xj = xi · · ·xj ∈ P , applying the definition of pregroup homomorphism for ϕ, we
deduce from the above that ϕ(xi) · · ·ϕ(xj) ∈ Q and

ΠQ

(
ϕ(xi), . . . , ϕ(xj)

)
= ϕ(xi) · · ·ϕ(xj) = ϕ

(
ΠP (xi, . . . , xj−1)

)
· ϕ(xj)

= ϕ
(
ΠP (xi, . . . , xj−1) · xj

)
= ϕ

(
ΠP (xi, . . . , xj)

)
.

Hence we get a functor PrG → ParG, and there only remains to check that it is full and faithful.
The faithfulness is obvious, since the underlying set map of a pregroup homomorphism is the same as that
of the associated partial group homomorphism. Finally, the axioms for pregroup homomorphisms are
just restrictions of those for partial group homomorphisms (applying them only for couples of elements
in the domain), so that any partial group homomorphism between pregroups is clearly a pregroup
homomorphism. This gives the fullness.

Example 2.24. Let A,B,C be as in Example 2.8 and P = A∪C B be the pregroup constructed in that
example. Considering the underlying set of P as a subset of A ∗C B, we then have DP = W(A)∪W(B).

Going back to the simplicial point of view on partial groups, this reveals a relation between the
universal group of a pregroup and the fundamental group of the classifying space of the associated
partial group.

Corollary 2.25. Let P be a pregroup and let P denote its image under the embedding PrG → ParG.
Then, π1(BP) ∼= U(P ).

Proof. Through the embedding of Proposition 2.23, the universal property satisfied by U(P ) (Propo-
sition 2.9) becomes exactly the one satisfied by π1(BP) (Proposition 1.12).

Remark 2.26. At first glance, one may wonder whether this construction of a partial group from a
pregroup could be reciprocal: if we restrict the domain of a given partial group to words of length two,
do we actually get a pregroup? A second look at the axioms for pregroups might convince you that the
answer is “no” in general: the Axioms (Pr3) and (Pr4) allow to deduce that some words belong to the
domain without already knowing that a bigger word containing them belongs to it too, and this kind of
property does not seem to appear in the definition of a partial group.

Now, we give two examples of localities (cf. Definition 1.10). The first example is actually a pregroup,
but the second one is not, so that it provides an example of a partial group which is not a pregroup.

Example 2.27. Let G = GL3(F2) and let S ≤ G be the subgroup of upper-triangular matrices with
diagonal coefficients equal to 1. Then S is a 2-subgroup of G isomorphic to the dihedral group of order
8. As such, it contains three subgroups of order 4: two of them, that we will denote by V and V ′,
are isomorphic to C2 × C2, and the last one is cyclic and denoted by C. Set ∆ = {C, V, V ′, S} and
L = {g ∈ G | ∃Q ∈ ∆, Qg ∈ ∆}. Then one can check that, taking D∆ to be the domain (cf. Definition
1.9), (L,∆, S) is a locality. Also, the subgroups V and V ′ are not conjugate in G and thus not in
L, and both are clearly not conjugate to C. Moreover, NG(V ) ∩ NG(V ′) = S = NG(C). Hence one
gets that D∆ = W(NG(V )) ∪W(NG(V ′)), so, by Example 2.24, L is obtained as in Example 2.8, i.e.
L = NG(V ) ∪S NG(V ′).

Example 2.28. Let T be one of the linking systems constructed in [6] such that the fundamental
group of the geometric realisation of T is trivial. The associated locality L (through the correspondence
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highlighted by Chermak in [4, Appendix A]) also satisfies that π1(BL) is trivial thanks to [7, Theorem
A.5]. Hence if L were a pregroup, then by Corollary 2.25, U(L) ∼= π1(BL) would be trivial, and thus L
would be too. However, L is clearly non trivial, so L is not a pregroup.

3 Graphs of groups

3.1 Graphs of groups and their fundamental group

Definition 3.1. A graph Y = (V,E) is the data of:

(i) a set V of vertices,

(ii) a set E of edges,

(iii) two maps ι : E → V and τ : E → V mapping each edge e to its initial vertex and terminal vertex
respectively,

(iv) a fixed point-free involution of the edges, denoted e 7→ e, such that for all e ∈ E, ι(e) = τ(e).

A graph is said to be connected if for every x, y ∈ V there exist edges e0, e1, · · · , en such that ι(e0) = x,
τ(en) = y and for all i ∈ {0, 1, · · · , n− 1}, τ(ei) = ι(ei+1).

Definition 3.2. A graph of groups (G, Y ) consists of a connected graph Y = (V,E), a group Gv for
every vertex v ∈ V , and a group Ge for every edge e ∈ E, together with a monomorphism Ge → Gτ(e)

denoted by g 7→ ge, such that Ge = Ge. The Gv and Ge are called vertex groups and edge groups
respectively, and the maps g 7→ ge and g 7→ ge are called the edge maps. Thus there is one edge group
and two edge maps by geometric edge, i.e. by pair (e, e).

To every graph of group, we can associate a particular group called its fundamental group.

Definition 3.3. Let (G, Y ) be a graph of groups, with Y = (V,E), and let T = (V,E′) be a maximal
tree in Y . The fundamental group of (G, Y ) is the group generated by the vertex groups Gv for v ∈ V
and by the edges e ∈ E, subject to the following relations:

• e−1 = e for each e ∈ E,

• eaee−1 = ae for each e ∈ E and each a ∈ Ge,

• e = 1 for each e ∈ E′.

We speak about “the” fundamental group of (G, Y ) and not about the fundamental group of (G, Y )
with respect to the tree T because it is in fact independent of the choice of T . This result is a direct
consequence of [16, I, Proposition 20].

Proposition 3.4. The fundamental group of a graph of groups (G, Y ), as defined above, does not depend
on the choice of the maximal tree in Y .

Several classical constructions in combinatorial group theory arise as fundamental groups of particular
graphs of groups. Let us mention two of them.
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Examples 3.5. (1) Let A and B be two groups, and consider a third group C with two monomor-
phisms ϕ : C → A and ψ : C → B. This forms a graph of groups whose underlying graph has two vertices
with one geometric edge between them, the vertex groups being A and B, and the edge group being C
with edge maps ϕ and ψ (see Figure 3.1). Then the fundamental group of this graph of groups is the
amalgamated product of A and B over C (or the free product of A and B amalgamating C), denoted
A ∗C B. It equals (A ∗B)/N , where N is the normal subgroup of A ∗B generated by all relations of the
form ϕ(c)ψ(c)−1 for c ∈ C.

A B
C

Figure 3.1: A graph of groups whose fundamental group is A ∗C B.

(2) Let G be a group, H a subgroup of G, and let α : H → G be a group monomorphism. We
construct a graph of groups by taking only one vertex, with vertex group G, and one geometric edge, with
edge group H (see Figure 3.2). We take α and the inclusion H ↪→ G as edge maps. The fundamental
group of this graph of groups is the HNN extension of G by α, denoted G∗α. It is the group (G ∗ Z)/N
where N is the normal subgroup generated by all relations of the form tht−1α(h)−1 for h ∈ H, t being
a fixed generator of Z called the stable letter of the HNN extension.

G

H

Figure 3.2: A graph of groups whose fundamental group is G∗α.

It is well-known (cf. [16, I, Theorem 8]) that any finite subgroup of the amalgamated product A∗C B
is conjugate to a subgroup of A or B. It is in fact a general property of fundamental groups of graphs
of groups.

Proposition 3.6 ([8, Corollary 28]). Every finite subgroup of the fundamental group of a graph of groups
is conjugate to a subgroup of a vertex group.

Remark 3.7. The article [8], which is our reference for the above proposition, works with a topological
definition for the fundamental group of a graph of groups, which is apparently different from ours.
However both definitions lead to isomorphic groups, as can be seen in [9]. In a nutshell: the topological
approach defines the fundamental group of a given graph of groups (G, Y ) as the π1 of the homotopy
colimit of the graph of spaces obtained by application of the classifying-space functor B(−) on (G, Y ).
Proposition 3.2 in [9] then tells us that this homotopy colimit is homeomorphic to the classifying space
of the fundamental group as defined in Definition 3.3. Taking the π1 on both sides gives us the desired
isomorphism.

3.2 Graphs of groups and universal groups of pregroups

In [14], Rimlinger makes an extensive study of the relations between pregroups and graphs of groups.
In fact, he proved that universal groups of pregroups and fundamental groups of graphs of groups are
closely related constructions: the universal group of a pregroup P is, under one condition on P (that
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of being of finite height - which includes finite pregroups and a lot more), the fundamental group of a
particular graph of groups constructed from P . Reciprocally, the fundamental group of a graph of groups
G is, under some conditions on G, the universal group of a particular pregroup constructed from G. For
our purpose, we only need these results for finite pregroups and finite graphs of finite groups, so we state
them in this particular case.

Theorem 3.8 (cf. [14, Theorem A]). Let P be a finite pregroup. We denote U(P ) its universal group.
Then there exists a finite graph of finite groups G whose edge groups are subgroups of P and whose
fundamental group is isomorphic to U(P ).

From Theorem 3.8 and Proposition 3.6, we deduce the following result.

Corollary 3.9. Let P be a finite pregroup and U(P ) its universal group. Then every finite subgroup of
U(P ) is conjugate to a subgroup of P .

For the reciprocal of Theorem 3.8, apart from being finite, we need another condition on the graph
of groups.

Definition 3.10. Let (G, Y ) be a graph of groups. We say that (G, Y ) is proper if none of its edge maps
are surjective.

Theorem 3.11 (cf. [14, Theorem B]). Let (G, Y ) be a finite graph of finite groups which is proper.
Then there exists a finite pregroup Q whose universal group is isomorphic to the fundamental group of
(G, Y ).

Remark 3.12. As the statement of Theorem B in [14] is fairly indigestible, the careful reader is entitled
to ask how we can see that the pregroup is finite whenever (G, Y ) is a finite graph of finite pregroups.
Let us give some elements of exegesis of Rimlinger’s proof to reassure our reader. Here we refer only to
[14] and stick to its notations (exept that we denoted our graph of groups (G, Y ) instead of (H, Y )).
The pregroup Q constructed for Theorem B is defined in Definition 7.13 as the preimage in F (G, Y )
of a finite set of paths in Y (in bijection with the disjoint union of the set of vertices and the set of
edges outside a maximal subtree) under a certain map also denoted Y . For our explanation, one only
needs to know that F (G, Y ) is the universal group of a pregroup P (Theorem 7.7) which is the quotient
under a certain equivalence relation of the pregroup P ′ defined at the beginning of Chapter 7. In the
case where (G, Y ) is a finite graph of finite groups, the definition of the pregroup P ′ clearly implies that
it is finite (hence P is finite too). Moreover Y is a map defined on P ′ which is compatible with the
quotient P ′ → P , and extends to words in P ′ via (x1, · · · , xn) 7→

(
Y (x1), · · · , Y (xn)

)
. By Lemma 7.9,

the map Y is well-defined on F (G, Y ) considering its value on P -reduced representative P -words. Now,
given a fixed path (y1, · · · , yn), for each i ∈ {1, · · · , n} there exists only a finite number of xi ∈ P such
that Y (xi) = yi because P is finite. Thus there exists only a finite number of (P -reduced) P -words
(x1, · · · , xn) such that Y (x1, · · · , xn) = (y1, · · · , yn). As Q is defined to be the preimage of a finite set
of paths under Y , we can conclude that Q is finite.

4 Fusion systems and realisability

4.1 Definitions and examples

Let p be a fixed prime number. A fusion system over a finite p-group S is a way to abstract the action of
a group G containing S on the subgroups of S by conjugation. Given a group G and an element g ∈ G,
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we will denote by cg the homomorphism x ∈ G 7→ g−1xg ∈ G (this is consistent with Notation 1.7).
Our convention for the composition of two maps f : X → Y and f ′ : Y → Z is to denote it by f ′ ◦ f , so
that cg1 ◦ cg2 equals cg2g1 . For H,K two subgroups of G, HomG(H,K) will denote the set of all group
homomorphisms cg, for g ∈ G such that cg(H) ≤ K. Finally, Sylp(G) will denote the collection of all
Sylow p-subgroups of G.

Definition 4.1. Let S be a finite p-group. A fusion system over S is a small category F whose object
set Obj(F) is the set of all subgroups of S and whose morphism sets MorF (P,Q), for P,Q ≤ S, satisfy
the following two properties:

(F1) HomS(P,Q) ⊆ MorF (P,Q) ⊆ Inj(P,Q);

(F2) each ϕ ∈ MorF (P,Q) is the composite of an F-isomorphism followed by an inclusion.

The composition law in a fusion system is given by composition of homomorphisms. We usually write
HomF (P,Q) := MorF (P,Q) to emphasise the fact that the morphisms in F are group homomorphisms.

Remarks 4.2. (1) Over a fixed p-group S, there is a minimal fusion system. Its morphism sets are
the HomS(P,Q), for P,Q ≤ S. It is called the inner fusion system of S and denoted FS(S). There
is also a maximal fusion system over S, with morphism sets equal to Inj(P,Q) for P,Q ≤ S.

(2) The intersection of two (or more) fusion systems over the same p-group S is obtained by taking the
intersection of the morphism sets for each fusion system. This forms again a fusion system. Thus
it makes sense to talk about the fusion system over S generated by a certain family of injective
group homomorphisms between subgroups of S.

The typical example of a fusion system is the fusion system of a finite group G over one of its Sylow
p-subgroups, but we can define more generally the fusion system of any group over one of its p-subgroups.

Example 4.3. Let S be a finite p-group, and let G be a group containing S. The fusion system of G
over S is the category FS(G) where Obj(FS(G)) is the set of all subgroups of S and MorFS(G)(P,Q) =
HomG(P,Q) for all P,Q ≤ S. One can easily check that the category FS(G) defines a fusion system over
S.

In fact we can generalise even further, considering the fusion system of a partial group over one of
its p-subgroups. We use Notation 1.7 in the definition.

Definition 4.4. Let M be a partial group and let S be a p-subgroup of M. We define the fusion
system of M over S, denoted FS(M), to be the fusion system over S generated by conjugation maps
cg : Q→ Qg, whenever g ∈M is such that Q ⊆ D(g), Qg is a subgroup of S and cg : Q→ Qg is a group
homomorphism. For FS(M) to be well-defined, one only needs to check that cg is injective, which is
already known from Lemma 1.8.

As a particular case, we recover the fusion system of a locality, which was introduced by Chermak
in [4]. Notice that ifM = L is a locality associated to S, whenever cg : Q → S is defined, then Qg is a
subgroup of S and cg is a group homomorphism (cf. Proposition 2.6 in [5]). Hence, morphisms in FS(L)
are then just compositions of restrictions of conjugation maps cg (for g ∈ L) between subgroups of S.
This does not seem to be the case in general partial groups.

The fusion system of a locality, as well as the fusion system of a finite group over one of its Sylow p-
subgroups, belong to the important family of saturated fusion systems. This notion will not be discussed
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here (see for example [1]), but the idea is that F “behaves” like FS(G) when S is a Sylow p-subgroup
of a finite group G. In the literature, when a saturated fusion system is isomorphic to a fusion system
of the form FS(G) for G a finite group and S ∈ Sylp(G), the fusion system is said to be realisable (it is
called exotic otherwise). In the following we enlarge this notion, discussing about the “realisability” of
general fusion systems in some subclass of the class of partial groups. First, we need to define a notion
of Sylow p-subgroups for partial groups.

Definition 4.5. LetM be a partial group and let S be a p-subgroup ofM. We say that S is a Sylow
p-subgroup ofM if for every p-subgroup P ofM there exists a sequence (g1, · · · , gr) of elements ofM
and a sequence (P0, · · · , Pr) of p-subgroups ofM such that:

• P0 = P ;

• for each i ∈ {1, · · · , r}, Pi ⊆ D(gi), cgi : Pi → Pi
gi is a group homomorphism, and Pigi = Pi+1;

• Pr ≤ S.

Remarks 4.6. (1) A Sylow p-subgroup ofM, if it exists, is a p-subgroup of maximal order. However
it could happen that S is a p-subgroup of maximal order inM but not a Sylow p-subgroup. For
example, if we consider the pregroup P = A ∪C B as in Example 2.8, with A = C2, B = C4 and
C = 1, then B is a 2-subgroup of P of maximal order but the 2-subgroup A is not conjugate to any
subgroup of B because the only conjugation maps in P defined on A are conjugation by elements
in A.

(2) IfM is a group, this definition is equivalent to asking that any p-subgroup ofM is conjugate inM
to some subgroup of S. In particular whenM is a finite group, we recover the classical definition
of Sylow p-subgroup, by the Sylow theorems.

(3) IfM = L is a locality, Andrew Chermak (see [5, Definition 2.16]) also gave a definition of a Sylow
p-subgroup S, which asks for the existence of a set ∆ of subgroups of S such that (L,∆, S) is again
a locality. Our definition is a priori broader, as when (L,∆, S) is a locality, every p-subgroup of L
is conjugate to a subgroup of S by [5, Proposition 2.11.(c)].

Definition 4.7. Let C be a subclass of the class of partial groups. Given a fusion system F over a
finite p-group S, we say that F is realisable in C if there exists an objet X in C, containing S as a Sylow
p-subgroup, such that F is isomorphic to FS(X). We say that F is weakly realisable in C if there exists
an objet X in C containing S such that F is isomorphic to FS(X).

Of course, this definition will only be of interest for some particular classes C. As examples, we restate
several results from the literature in these terms.

Examples 4.8. (a) Let C be the class of finite groups. If we consider the property of being realisable
in C for saturated fusion systems, we recover the classical use of the terminology. Saturated fusion
systems which are not realisable in C are the so-called exotic fusion systems. Moreover, in [13],
Sejong Park proved that any fusion system is weakly realisable in C.

(b) Let C be the class of localities. In [4, Main theorem], Andrew Chermak proved that any saturated
fusion system is realisable in C. In this case, the Sylow p-subgroup of the locality is even a Sylow
p-subgroup in the sense of Chermak (see (3) in Remarks 4.6 above).
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(c) Let C be the class of (not necessarily finite) groups. Leary & Stancu, in [8], proved that any fusion
system is realisable in C. Independently at the same time, Robinson (in [15]), using a different
construction, also proved that a large class of fusion systems (including saturated fusion systems)
is realisable in C.

(d) Let C = PrG be the class of finite pregroups. In the following section we prove that any fusion
system is realisable in C.

We detail here a slightly adapted version of the result of Leary and Stancu mentioned in Example
(c) above, in view of a further use.

Theorem 4.9 (cf. [8, Theorem 2]). Let F be a fusion system over a finite p-group S. Assume that F
is generated by Φ = {Φ1, · · · ,Φr}, where each Φi is an injective group homomorphism Pi → Qi between
subgroups of S. Let U be any finite group whose order is prime to p. Let G be the iterated HNN-extension(
· · ·
(
(S × U) ∗Φ1

)
∗Φ2 · · ·

)
∗Φr

. Then S embeds as a Sylow p-subgroup of G, and FS(G) = F .

The group G in Theorem 4.9 above is the fundamental group of the graph of groups in Figure 4.1,
where for each i ∈ {1, · · · , r}, the two edge maps Pi → S × U are Φi and the inclusion Pi ↪→ S, both
post-composed with the inclusion S ↪→ S × U .

S × U

. . .

P1

P2

P3
P4

Pr

Figure 4.1: A graph of groups whose fundamental group is the group G in Theorem 4.9.

Proof (sketch). Most of the proof of [8, Theorem 2] remains valid mutatatis mutandi if we replace
S with S × U . Let us just mention the two small arguments that need to be added. First, any finite
p-subgroup of G being conjugate to a subgroup of S × U , it is in fact conjugate to a subgroup of S
because |U | is prime to p, so FS(G) remains well-defined. Secondly, when one takes an element g ∈ G
which conjugates two subgroups of S, the proof of [8, Theorem 2] tells us that cg is a composition of
morphisms of the form Φi or Φ−1

i for some i ∈ {1, · · · , r} and of conjugation morphisms ct for some
t ∈ S×U , defined between subgroups of S×U . But in fact, since we start with a subgroup of S, we must
arrive on a p-subgroup of S ×U (i.e. a subgroup of S) at each composition step. Moreover, conjugation
by an element of S ×U between subgroups of S is nothing but conjugation by an element of S, because
U commutes with S. Thus, cg can be expressed as a composition of morphisms of the form Φi or Φ−1

i

for some i ∈ {1, · · · , r} and of conjugation morphisms cs for some s ∈ S, all defined between subgroups
of S. In other words, cg belongs to F .

Finally, we will use the notion of morphism of fusion systems.

Definition 4.10. Let F and F ′ be two fusion systems over finite p-groups S and S′ respectively. A
morphism of fusion systems from F to F ′ is a group homomorphism α0 : S → S′ together with a covariant
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functor α : F → F ′, so that α(P ) = α0(P ) and
(
α(ϕ)◦α0

)
(u) = (α0◦ϕ)(u) for any P ≤ S, any ϕ : P → S

in F and any u ∈ P .

Fusion systems, together with morphisms of fusion systems and the usual composition of both group
homomorphism and functors, form a category. In particular, we are usually interested in fusion systems
up to isomorphism in this category.

Lemma 4.11. Let G be a group, let S be a p-subgroup of G. For any g ∈ G, the fusion systems FS(G)
and FSg (G) are isomorphic.

Proof. Consider the group homomorphism cg : S → Sg and the functor cg∗ : FS(G)→ FSg (G) defined
on subgroups of S by P 7→ P g. The action of cg∗ on a morphism ϕ : P → Q in FS(G) is given by

cg
∗(ϕ) = cg ◦ ϕ ◦ c−1

g : P g −→ Qg .

This clearly defines a morphism of fusion systems between FS(G) and FSg (G). Moreover, cg−1 : Sg → S

is the inverse of cg and one can check that cg−1
∗ is an inverse for cg∗, so this morphism of fusion systems

is an isomorphism.

4.2 Realisability of fusion systems in finite pregroups

As we proved in Proposition 2.23, pregroups are particular instances of partial groups. Thus, we can
construct the fusion system of a pregroup over one of its (Sylow) p-subgroups and ask if any fusion
system can be obtained in this way, i.e. if any fusion system is realisable in the class of finite pregroups.

First, considering a pregroup (P,D) as a partial group through the embedding of Proposition 2.23
and using Notation 1.7, it is straightforward to check that if g ∈ P we have

D(g) = {x ∈ P | (g−1, x), (x, g) ∈ D and (g−1x, g) ∈ D}

= {x ∈ P | (g−1, x), (x, g) ∈ D and (g−1, xg) ∈ D} thanks to Axiom (Pr3)

= {x ∈ P | (g−1, x, g) associates} .

The following lemma shows that conjugation maps are always group homomorphisms in the context
of pregroups.

Lemma 4.12. Let (P,D) be a pregroup. Let g ∈ P and let Q be a subgroup of P such that Q ⊆ D(g). We
denote Qg the image of Q by cg as in Notation 1.7. Then Qg is a subgroup of P , contained in D(g−1),
and cg : Q→ Qg is a group isomorphism whose inverse is cg−1 : Qg → Q.

Proof. It is enough to prove 1P ∈ Qg, Qg ×Qg ⊆ D and that Qg is a group for the operations iduced
by those of P to conclude that it is a subgroup of P . As 1P ∈ Q and g−11P g = 1P , it is clear that
1P ∈ Qg. Moreover, the fact that Qg is stable under (−)−1 comes from items (1) and (3) in Lemma 2.2.

Now let x1, x2 ∈ Q, hence (x1, x2) ∈ D and x1x2 ∈ Q. We want to prove that (xg1, x
g
2) ∈ D and

xg1x
g
2 ∈ Qg. On the one hand we have (g−1x1, g), (g−1, x2g) ∈ D, so by item (4) in Lemma 2.2 we have

the following equivalence:
(xg1, x

g
2) ∈ D ⇐⇒ (g−1x1, x2g) ∈ D

On the other hand, using x1x2 ∈ Q and two applications of Axiom (Pr3), we know that

(g−1, (x1x2)g) ∈ D ⇐⇒ (g−1, x1(x2g)) ∈ D ⇐⇒ (g−1x1, x2g) ∈ D .
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Thus (xg1, x
g
2) ∈ D, and repeated use of Axiom (Pr3) gives

(xg1)(xg2) = g−1(x1x2)g ∈ Qg.

The above equality also tells us that cg : Q → Qg is a group homomorphism. The rest of the proof is
just Lemma 1.8.

Remark 4.13. If P be a pregroup and S is a p-subgroup of P , then the morphisms of the fusion system
FS(P ), as defined in Definition 4.4, are precisely the maps Q → R between subgroups of S which are
composition of restrictions of conjugation maps cg for g ∈ P .

Now we can prove that the fusion system of a finite pregroup P and that of its universal group U(P ),
over the same Sylow p-subgroup S, coincide.

Theorem 4.14. Let P be a pregroup and S be a finite p-group. Then S embeds as a Sylow p-subgroup of
P if and only if it embeds as a Sylow p-subgroup of U(P ), and in this case we have FS

(
U(P )

)
= FS(P ).

Proof. We identify P with its image through the canonical embedding P ↪→ U(P ). It is clear that
any Sylow p-subgroup S of P is a p-subgroup of U(P ). According to Corollary 3.9, any p-subgroup Q of
U(P ) is conjugate to a p-subgroup R of P and hence there exists a sequence Q = Q0, R = Q1, Q2, · · · , Qr
of subgroups of U(P ) such that each Qi+1 is conjugate (in U(P )) to Qi and Qr ≤ S. So S is in fact a
Sylow p-subgroup of U(P ).

Reciprocally, if S is a Sylow p-subgroup of U(P ), then by Corollary 3.9 it embeds in P via a con-
jugation morphism cg, with g ∈ U(P ). Then any p-subgroup of P being a p-subgroup of U(P ), it is
conjugate to a subgroup of S, and hence conjugate in U(P ) to a subgroup of Sg. We then deduce what
we need from Proposition 2.22, so that Sg is a Sylow p-subgroup of P .

By Lemma 4.11, the fusion systems FS
(
U(P )

)
and FSg

(
U(P )

)
are isomorphic for all g ∈ G. We

can thus assume that S is a Sylow p-subgroup of P . The fusion system FS
(
U(P )

)
clearly contains all

the morphisms in FS(P ). Since FS
(
U(P )

)
is generated by conjugation maps cg : Q→ R with g ∈ U(P )

and Q,R ≤ S, it is enough to prove that any such morphism belongs to FS(P ). We can assume that
R = cg(Q). Now Proposition 2.22 precisely tells us that cg is equal to some composition of conjugation
maps cgi

defined between subgroups of S, with gi ∈ P for each i. In other words, cg belongs to FS(P ),
which concludes the proof.

Combining this theorem with the result of Leary & Stancu and the second theorem of Rimlinger, we
can prove that every fusion system is realisable in the class of finite pregroups.

Corollary 4.15. Every fusion system F over a finite p-group S is the fusion system of a finite pregroup
containing S as a Sylow p-subgroup.

Proof. Suppose that F is generated by {Φ1, · · · ,Φr}, where Φi is a morphism defined on a subgroup
Pi of S for each i ∈ {1, · · · , r}. Let q be a prime number different from p and let Cq denote the cyclic
subgroup of order q (but we could take any non-trivial finite group whose order is prime to p instead).
Set G :=

(
· · · ((S × Cq)∗Φ1) ∗Φ2 · · ·

)
∗Φr

. Then S embeds in G, and G is the fundamental group of the
graph of groups in Figure 4.1.

This finite graph of finite groups is proper (that was the whole purpose of adding the Cq part to S),
so by Theorem 3.11 there exists a finite pregroup P whose universal group is isomorphic to G. Moreover,
according to Theorem 4.9, G contains S as a Sylow p-subgroup and the fusion system of G over S is
nothing but F .
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Finally, by Theorem 4.14, we get that S embeds as a Sylow p-subgroup of P , and

FS(G) = FS
(
U(P )

)
= FS(P ) .

5 Examples of pregroups realising fusion systems

In this section, we detail two constructions of pregroups realising fusion systems, according to Theorem
4.14. The first construction leads to a pregroup whose universal group is the “Leary-Stancu group” given
in Theorem 4.9, thus providing a more direct way to prove Corollary 4.15 (without refering to Theorem
3.11). The second construction similarly leads to a pregroup whose universal group is the “Robinson
group” used in [15, Theorem 2].

5.1 A pregroup for the Leary-Stancu group

Let F be any fusion system over a finite pregroup S. Assume that F is generated by a certain family of
morphisms {φ1, · · · , φr}, where each φi is a group isomorphism Pi → Qi, with Pi, Qi ≤ S. We associate
a symbol ti to each φi, i ∈ {1, · · · , r}, and we take the free product F of S with the free group generated
by {t1, · · · , tr}. The Leary-Stancu group G is the quotient of F by the normal closure of the elements
ti
−1utiφi(u)−1, where i ∈ {1, · · · , r} and u ∈ Pi. The elements ti ∈ G will sometimes be referred to as

the stable letters of G.

5.1.1 Constructing the pregroup

Informally, we consider the subset P of G formed by the elements s ∈ S ≤ G and all the elements of the
form atia

′ or bt−1
i b′, with a, a′, b, b′ ∈ S and i ∈ {1, · · · , r}. A pair (x, y) ∈ P ×P belongs to the domain

D if and only if the product xy in G belongs to P , and we define the inverse and multiplication in P as
it is in G.

More formally, for each i ∈ {1, · · · , r}, we fix a system Ai (resp. Bi) of representatives of right cosets
for Qi (resp. Pi) in S. Then we define P as the following set of symbols (not as a subset of G):

P := S t { atia′ , bt−1
i b′ | i ∈ [[1; r]], a, b ∈ S, a′ ∈ Ai, b′ ∈ Bi }

We define D to be the subset of P ×P formed by all the pairs (x, y) listed below. The possible values
for parameters in x and y (regarding the above parametrisation) are specified only when some values are
not included. We also precise the value of m(x, y) in each case.

â (s, s′), with product m(s, s′) = ss′ ;

â (s, atia′), with product m(s, atia′) = (sa)tia′ ;

â (s, bt−1
i b′), with product m(s, bt−1

i b′) = (sb)t−1
i b′ ;

â (atia′, s), with product m(atia′, s) = ati(a′s), which is rewritten (au)tia′′, for u ∈ Pi and a′′ ∈ Ai
satisfying φi(u)a′′ = a′s ;

â (bt−1
i b′, s), with product m(bt−1

i b′, s) = bt−1
i (b′s), which is rewritten (bv)t−1

i b′′, for v ∈ Qi and
b′′ ∈ Bi satisfying φ−1

i (v)b′′ = b′s ;
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â (atia′, bt−1
i b′) if and only if a′b ∈ Qi, with product m(atia′, bt−1

i b′) = aφ−1
i (a′b)b′ ;

â (bt−1
i b′, atia

′) if and only if b′a ∈ Pi, with product m(bt−1
i b′, atia

′) = bφi(b′a)a′.

The inverse operation x 7→ x−1 is defined on P in the following way:

ü (s)−1 = s−1 ∈ S ;

ü (atia′)−1 = a′−1t−1
i a−1, which is rewritten (a′−1v)t−1

i b′, for v ∈ Qi and b′ ∈ Bi satisfying
φ−1
i (v)b′ = a−1 ;

ü (bt−1
i b′)−1 = b′−1tib

−1, which is rewritten (b′−1u)tia′, for h ∈ Pi and a′ ∈ Ai satisfying φi(u)a′ =
b−1.

In the following, we include some implicit hypotheses in our notations. First, unless specified, any
letter x appearing as a subscript in tx, t−1

x , Px, Qx, Ax or Bx signifies that x is an integer belonging
to {1, · · · , r}. When dealing with elements of P , the letter s (or one of its variants such as s′ or sj for
j ∈ N) stands for an element of S seen as a subset of P . Similarly, denoting an element of P by xtiy
(where x and y are some letters) implicitly means that x and y are elements of S such that y ∈ Ai, and
denoting an element of P by xt−1

i y (where x and y are some letters) implicitly means that x and y are
elements of S such that y ∈ Bi.

5.1.2 Inclusion of P in G

The chosen parametrisation allows to embed P in G just by sending the elements s, atia′ and bt−1
i b′ of

P on the corresponding elements of G. To prove that this mapping is an inclusion, the easiest way is to
use Britton’s Lemma for HNN extensions.

Definition 5.1. Let H := U∗α be the HNN extension of a group U relative to an isomorphism α : U1 →
U2, with U1, U2 ≤ U . We denote t the stable letter. A sequence (u0, t

ε1 , u1, · · · , tεn , un), where n ∈ N,
each εj is in {−1, 1} and each uj belongs to U is said to be reduced if there is no consecutive subsequence
of the form (t−1, uj , t) with uj ∈ U1, or (t, uj , t−1) with uj ∈ U2.

Proposition 5.2 ([11, Chapter IV, Britton’s Lemma]). With the notations of Definition 5.1, if the
sequence (u0, t

ε1 , u1, · · · , tεn , un) is reduced and n ≥ 1, then u0t
ε1u1 · · · tεnun 6= 1 in H.

As a consequence, we can get an analogous result for the group G, which can be obtained by a
succession of HNN extensions from S.

Definition 5.3. A sequence (s0, t
ε1
i1
, s1, · · · , tεn

in
, sn), where n ∈ N, each εj is in {−1, 1} and each sj

belongs to S, is said to be reduced if it admits no consecutive subsequence of the form (t−1
i , sj , ti) with

sj ∈ Pi or (ti, sj , t−1
i ) with sj ∈ Qi.

Corollary 5.4. With the notations of Definition 5.3, if the sequence (s0, t
ε1
i1
, s1, · · · , tεn

in
, sn) is reduced

and n ≥ 1, then s0t
ε1
i1
s1 · · · tεn

in
sn 6= 1 in G.

Proof. First, notice that, in Definition 5.1, for any u ∈ U , (u0, t
ε1 , u1, · · · , tεn , un) is reduced if and only

if (u−1u0, t
ε1 , u1, · · · , tεn , un) is reduced. In particular, if u0t

ε1u1 · · · tεnun = u ∈ U , then the sequence
(u0, t

ε1 , u1, · · · , tεn , un) is necessarily not reduced by Proposition 5.2. It is this particular formulation of
the statement that we use in the following proof.
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Assume w := (s0, t
ε1
i1
, s1, · · · , tεn

in
, sn) is a sequence such that s0t

ε1
i1
s1 · · · tεn

in
sn = 1. Let K(0) be the set

of all ij for j ∈ {1, · · · , n}. If K(0) is empty, then necessarily n = 0 and we are done. Otherwise, we will
prove that w is not reduced. Pick k1 ∈ K(0). We can see G as an HNN extension of a certain group G(1)

relative to φk1 , G(1) being the “HNN extension tower” of S relative to φi for every i ∈ {1, · · · , r} \ {k1}.
Now we can reduce (s0, t

ε1
i1
, s1, · · · , tεn

in
, sn) to get a word in G(1) and the symbols tk1 , t−1

k1
, and then apply

Proposition 5.2 in the HNN extension G = G(1)∗φk1
. It implies that there exists a subsequence w(1) of

w, composed only with elements of S and symbols tk, t−1
k , for k ∈ K(0) \ {k1}, whose product belongs

either to Pk1 , in which case (t−1
k1
, w(1), tk1) is a subsequence of w, or to Qk1 , in which case (tk1 , w

(1), t−1
k1

)
is a subsequence of w. Let us denote K(1) the subset of K(0) containing the index of the stable letters
appearing in w(1). The size of K(1) is strictly less than that of K(0).

We prove by induction on j ∈ N∗ that either w is not reduced, or there exists a tuple (kj ,K(j), w(j))
where kj ∈ K(j−1), K(j) is a proper subset of K(j−1), and w(j) is a subsequence of w containing only
letters in S or symbols tk, t−1

k with k ∈ K(j), satisfying either that the product of w(j) is in Pkj
and

(t−1
kj
, w(j), tkj ) is a subsequence of w, or that the product of w(j) is in Qkj and (tkj , w

(j), t−1
kj

) is a
subsequence of w.

The case j = 1 is treated above. Now assume we already proved case j ∈ N, and let us prove case
j + 1. If K(j) is empty, we are done because it means that w(j) is just a letter in S, either in Pkj

with
(t−1
kj
, w(j), tkj

) contained in w, or in Qkj
with (tkj

, w(j), t−1
kj

) contained in w, and in both cases w is not
reduced.

Otherwise, consider any element kj+1 ∈ K(j). We can see G as an HNN extension of a certain
group G(j+1) relative to φkj+1 , G(j+1) being the “HNN extension tower” of S relative to φi for every
i ∈ {1, · · · , r} \ {kj+1}. Then we can reduce w(j) to get a word in G(j+1) and the symbols tkj+1 , t−1

kj+1
,

and then apply Proposition 5.2 in the HNN extension G = G(j+1)∗φkj+1
to this word, implying that

it is not reduced (because the product of w(j) belongs to S). Thus there exists a subsequence w(j+1)

of w(j), composed only with elements of S and symbols tk, t−1
k , for k ∈ K(j) \ {kj+1}, whose product

belongs either to Pkj+1 , in which case (t−1
kj+1

, w(j+1), tkj+1) is a subsequence of w, or to Qkj+1 , in which
case (tkj+1 , w

(j+1), t−1
kj+1

) is a subsequence of w. Denoting by K(j+1) the (proper) subset of K(j) formed
by the index of the stable letters appearing in w(j), this concludes the induction.

The size of K(j) strictly decreases as j grows, but those are finite sets, so the process has to stop and
we necessarily get that w is not reduced.

Now if s and ctεi c
′ in P satisfy s = ctεi c

′ in G, we can rewrite this equality as s−1ctεi c
′ = 1, and

Britton’s Lemma to get a contradiction (because (s−1c, tεi , c
′) obviously is a reduced word). It is also

clear that two elements of S which are distinct in P can’t be equal in G. Which leaves us with the case
where two elements ctεi c′ and dtejd′ in P are equal in G. This means that ctεi c′d′−1t−ej d−1 = 1. We can
apply Corollary 5.4 to the word (c, tεi , c′d′−1, t−ej , d−1), which implies that necessarily j = i, e = ε and
either ε = 1 and c′d′−1 ∈ Qi, or ε = −1 and c′d′−1 ∈ Pi. In both cases, as we chose c′ and d′ to be fixed
representatives of right cosets for Qi or Pi in S, we get that c′ = d′. Now ctεi c

′d′−1t−ej d−1 = 1 becomes
cd−1 = 1, so c = d and ctεi c′ and dtejd′ are equal in P .

Remark 5.5. Corollary 5.4 can also be used to prove a normal form theorem for “HNN extension
towers” similar to G.

Thus, there is a natural inclusion of P in G. Moreover, one can check that whenever (x, y) ∈ D, the
product m(x, y) in P coincides with the multiplication xy in G through this inclusion, and the inverses
of an element x in P and G also coincide.
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5.1.3 Proof that P is a pregroup

Lemma 5.6. For any x, y ∈ P and s ∈ S ⊆ P , we have (s, x) ∈ D, and (x, y) ∈ D if and only if
(sx, y) ∈ D. Similarly, we have (y, s) ∈ D, and (x, y) ∈ D if and only if (x, ys) ∈ D.

Proof. First, D contains all elements of the form (s, x) for x ∈ P and s ∈ S. To prove the equivalence
(x, y) ∈ D ⇐⇒ (sx, y) ∈ D, as multiplying by an element of S does not change the “type” of x (element
of S ; atia′ ; or bt−1

i b′), we only have to check a few cases. Since the result is clear if x ∈ S or y ∈ S, we
can assume that x = atia

′ and y = bt−1
i b′ (or the converse, which is similar). In this case,

(x, y) ∈ D ⇐⇒ a′b ∈ Qi ⇐⇒
(
(sa)tia′, bt−1

i b′
)
∈ D ⇐⇒ (sx, y) ∈ D .

The proof of the other assertion is similar.

Proposition 5.7. As defined above, (P,D) is a pregroup.

Proof. Axioms (Pr1) and (Pr2) are easily verified. For Axiom (Pr3), we only have to check the
conditions on D, because the associativity of the product is a consequence of the fact that multiplication
in P and G coincide. Considering Lemma 5.6, we are left with only two main cases to check for Axiom
(Pr3). Here, Xi stands for ti or t−1

i (and X−1
i stands for the other one).

- If (cXic
′, s) ∈ D and (s, dXjd

′) ∈ D, then we have (cXic
′s, dXjd

′) ∈ D ⇐⇒
(
cXic

′, (sd)Xjd
′) ∈ D

because the condition (i = j, (Xi)−1 = Xj and c′sd ∈ Pi or Qi) is the same in both cases.

- If (cXic
′, dX−1

i d′) ∈ D and (dX−1
i d′, eXie

′) ∈ D: the product of each of these pairs belongs to S,
so everything is defined.

Finally, for Axiom (Pr4), take (w, x), (x, y), (y, z) ∈ D. If w ∈ S, z ∈ S or m(x, y) ∈ S, then the
conclusion holds. Otherwise, we necessarily have x ∈ S or y ∈ S, so (x,m(y, z)) ∈ D or (m(w, x), y) ∈ D,
and Axiom (Pr3) allows to conclude.

Corollary 5.8. The finite pregroup P has universal group G, the Leary-Stancu group associated to F
and the family of generators {φ1, · · · , φr}.

Proof. We already proved that P is a subpregroup of G, because it is a pregroup contained in G and
the multiplication laws are compatible. Moreover, P contains S and the ti for i ∈ {1, · · · , r}, which
generate G, so G = U(P ) by Proposition 2.9.

5.1.4 Can P be a locality?

Here we ask whether the finite pregroup P constructed above (or more precisely: the underlying partial
group of P ) can be a locality over S, for a certain set of objets ∆.

First, let us describe the domain DP of P when it is considered as a partial group.

Proposition 5.9. The domain DP is constituted of all the words w ∈ W(P ) satisfying the following
conditions:

(i) w does not contain simultaneaously a term of the form ctεi c
′ and another of the form dtε

′

j d
′ unless

i = j. Hence w only contains terms of the form s ∈ S, atia′ or bt−1
i b′ for a fixed i.

(ii) The terms in w that are not elements of S should alternate between the forms atia′ and bt−1
i b′

(possibly with terms in S interposed).
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(iii) Between any term atia
′ in w and the next term of the form bt−1

i b′, if we denote by s the product
of all the (possible) terms in S interposed between atia′ and bt−1

i b′, then we should have a′sb ∈ Qi.

(iv) Between any term bt−1
i b′ in w and the next term of the form atia

′, if we denote by s the product
of all the (possible) terms in S interposed between bt−1

i b′ and atia′, then we should have b′sa ∈ Qi.

Proof (sketch). Recall that we defined the domain DP as follows (just before Proposition 2.23):

DP = { (x1, x2, . . . , xn) ∈W(P ) | ∀k, l ∈ {1, 2, . . . , n} with k < l, xkxk+1 · · ·xl ∈ P }

First, let w = (x1, x2, . . . , xn) ∈ W(P ) be any word satisfying the four conditions in the statement.
Denote by i the index of the symbol ti possibly appearing in the terms of w (unique by condition (i)).
We can prove by induction on m ∈ N that for any subword (xk, · · · , xk+m) of w, we are in one of the
following cases (where the symbols y1, · · · , yq refer to any allowed elements of P ):

- xkxk+1 · · ·xk+m = atia
′ if (xk, · · · , xk+m) = (s1, · · · , sj , ctic′, y1, · · · , yq, dtid′, s′1, · · · , s′j′) where

s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case we have a ∈ (s1 · · · sjc)Pi and
a′ ∈ Qi(d′s′1 · · · s′j′) ;

- xkxk+1 · · ·xk+m = bt−1
i b′ if (xk, · · · , xk+m) = (s1, · · · , sj , ct−1

i c′, y1, · · · , yq, dt−1
i d′, s′1, · · · , s′j′)

where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case we have b ∈ (s1 · · · sjc)Qi
and b′ ∈ Pi(d′s′1 · · · s′j′) ;

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , ct−1
i c′, y1, · · · , yq, dtid′, s′1, · · · , s′j′) where

s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case s ∈ (s1 · · · sjc)Qi(d′s′1 · · · s′j′) ;

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , ctic′, y1, · · · , yq, dt−1
i d′, s′1, · · · , s′j′) where

s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case s ∈ (s1 · · · sjc)Pi(d′s′1 · · · s′j′) ;

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sm+1) where s1, · · · , sm+1 ∈ S, and in this
case s = s1 · · · sm+1.

The case m = 0 is trivial. Assume the fact is proved for the rank m ∈ N. In order to prove it for the rank
m + 1, take a subword (xk, · · · , xk+m+1) of w, and apply the induction hypothesis on (xk, · · · , xk+m).
Then check what we need for (xk, · · · , xk+m+1), distinguishing between the five cases listed above for
(xk, · · · , xk+m), also distinguishing between the two or three possibilities for the term xk+m+1, and using
conditions (iii) and (iv).

Now let us prove by contraposition that any word in DP satisfies the four conditions. If w ∈ W(P )
does not satisfy condition (i), consider the smallest subword of w of the form (ctεi c′, x1, · · · , xk, dtε

′

j d
′)

with i 6= j. Necessarily, x1, · · · , xk ∈ S so x1 · · ·xk =: s ∈ S, so the product of (ctεi c′, x1, · · · , xk, dtε
′

j d
′)

belongs to P if and only if (ctεi c′s, dtε
′

j d
′) ∈ D, which is excluded since i 6= j.

If w ∈ W(P ) does not satisfy condition (ii), we can consider the smallest subword of w of the form
(ctεi c′, x1, · · · , xk, dtεid′). Necessarily, x1, · · · , xk ∈ S so x1 · · ·xk =: s ∈ S, so the product of the sequence
(ctεi c′, x1, · · · , xk, dtεid′) belongs to P if and only if (ctεi c′s, dtεid′) ∈ D, which can’t be true.

If w ∈ W(P ) does not satisfy condition (iii), then we can consider a subword of w of the form
(atia′, x1, · · · , xk, bt−1

i b′) where each xj belongs to S and a′x1 · · ·xkb /∈ Qi. Then
(
ati(a′x1 · · ·xk), bt−1

i b′
)

is not in D, so the product (atia′, x1, · · · , xk, bt−1
i b′) is not in P . The argument is identical if w ∈W(P )

does not satisfy condition (iv).
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Now we can look for a candidate for the set of objects ∆, included in the set of subgroups of S since
we want (P,∆, S) to be a locality. Remark that for any subgroup R ≤ S, we have R ⊆ DP (s) for all
s ∈ S (using Notation 1.7). Moreover, for all i ∈ {1, · · · , r}, a ∈ S and a′ ∈ Ai we have

R ⊆ DP (atia′) ⇐⇒ ∀s ∈ R,
(
(atia′)−1s, atia

′) ∈ D
⇐⇒ ∀s ∈ R, a−1sa ∈ Pi
⇐⇒ R ≤ aPi

In this case, we get Ratia′ =
(
φi(Ra)

)a′ . Similarly, R ⊆ DP (bt−1
i b′) ⇐⇒ R ≤ bQi and in that case

Rbt
−1
i
b′ =

(
φ−1
i (Rb)

)b′ .
Since DP contains all the words of length one (atia′) and (bt−1

i b′), since ∆ has to be closed under
taking overgroups in S, and because we need DP = D∆, the above remark implies that ∆ must contain
the groups Pi and Qi and all their S-conjugate for every i ∈ {1, · · · , r}.

However, the equality DP = D∆ can’t hold whenever there exists i 6= j such that Pi = Pj . Indeed,
in such a case (t−1

i , tj) is in D∆ via (Qi, Pi, Qj), but (t−1
i , tj) /∈ DP . Similarly, we can’t have DP = D∆

if Pi = Qi for a certain i, because in this case (ti, ti) is in D∆ via (Pi, Pi, Pi) but not in DP .
Even worse, if there is an i ∈ {1, · · · , r} such that Pi < S, then there exists s ∈ NS(Pi) \ Pi and

(t−1
i , s, ti) is in D∆ via (Qi, Pi, Pi, Qi), but not in DP . In conclusion, the pregroup P is never a locality.

5.2 A pregroup for the Robinson group

Let F be a fusion system over S generated by a family {FS1(G1), · · · ,FSr (Gr)} of realisable fusion
subsystems, where S1, · · · , Sr are subgroups of S and G1, · · · , Gr are finite groups. For each i ∈ [[1; r]],
assume that Si is contained in Gi as a Sylow p-subgroup via a morphism fi : Si ↪→ Gi, whose image will
be denoted by S′i. Let F be the free product of S and the groups Gi. Then the Robison group G is
defined to be the quotient of F by the normal closure of the elements ufi(u)−1 for any i ∈ {1, · · · , r}
and u ∈ Si. The group G can be seen as an iterated free product with amalgamation:

G =
(
· · ·
(
(S ∗S1 G1) ∗S2 G2

)
· · ·
)
∗Sr

Gr

Remark 5.10. In his article [15], Robinson states a result (Theorem 2) saying that F = FS(G), but
only in the case of “Alperin fusion systems”, which is a class of fusion systems containing saturated fusion
systems. However, Theorem 1 in the same article implies that the result remains true for the larger class
of fusion systems generated by families of realisable fusion subsystems, which is our framework here.

5.2.1 Constructing the pregroup

Informally, P is the subset of G containing S together with all the elements of the form aga′ where
g ∈ Gi for a certain i ∈ {1, · · · , r} and a, a′ ∈ S. A pair (x, y) belongs to the domain D if and only if
the product xy in G belongs to P , and multiplication and inverses of elements of P are then defined as
in G.

Because of the relations that exist in G, elements of the form aga′ in G can admit several such
representations. In order to get a bijective parametrisation, we need to fix for each i ∈ {1, · · · , r} a
systemHi of representatives of non-trivial double cosets S′igS′i in Gi. Moreover we also need to introduce,
for each g ∈ Hi, the subgroup Ti,g := f−1

i

(
S′i ∩ gS′i

)
of Si, and fix a system Ai,g of representatives of
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cosets in S/Ti,g. Beware that Ti,g depends on the choice of the representative in the double coset S′igS′i
(however, the Si-conjugacy class of Ti,g does not depend on it). Then we can define P explicitly as the
following set of symbols:

P := S t { aga′ | i ∈ [[1; r]], g ∈ Hi, a ∈ Ai,g, a′ ∈ S }

We define D to be the subset of P ×P formed by all the pairs (x, y) listed below. The possible values
for parameters in x and y (regarding the above parametrisation) are specified only when some values are
not included. We also precise the value of m(x, y) in each case.

â (s, s′), with product m(s, s′) = ss′ ;

â (s, aga′), with productm(s, aga′) = (sa)ga′, which is rewritten a′′g
(
f−1
i (g−1fi(v)g)a′

)
for a′′ ∈ Ai,g

and v ∈ Ti,g satisfying a′′v = sa (where i ∈ {1, · · · , r} is such that g ∈ Hi) ;

â (aga′, s), with product m(aga′, s) = ag(a′s) ;

â (aga′, bhb′) if and only if g, h ∈ Hi, for a certain i ∈ {1, · · · , r}, and a′b ∈ Si. The product
m(aga′, bhb′) then equals afi−1(gfi(a′b)h)b′ ∈ S if gfi(a′b)h ∈ Gi belongs to S′i. Otherwise, we
have gfi(a′b)h = fi(u)kfi(u′) for certain k ∈ Hi and u, u′ ∈ Si, and the product m(aga′, bhb′)
equals (au)k(u′b′), which is rewritten ck

(
f−1
i (k−1fi(v)k)u′b′

)
for c ∈ Ai,k and v ∈ Ti,k satisfying

cv = au.

The inverse operation x 7→ x−1 is defined on P in the following way:

ü (s)−1 = s−1 ∈ S ;

ü (aga′)−1 = a′−1g−1a−1 in G, which equals (a′−1u)h(u′a−1) for certain h ∈ Hi (index i being the
same as for g) and u, u′ ∈ Si (satisfying fi(u)hfi(u′) = g−1 in Gi), and leads to the element
a′′h

(
f−1
i (h−1fi(v)h)u′a−1) in P , with a′′ ∈ Ai,h and v ∈ Ti,h satisfying a′′v = a′−1u.

In the following, we include some implicit hypotheses in our notations. First, unless specified, any
letter x appearing as a subscript in fx, Gx, Sx, S′x or Hx signifies that x is an integer belonging to
{1, · · · , r}. When dealing with elements of P , the letter s (or one of its variants such as s′ or sj for
j ∈ N) stands for an element of S seen as a subset of P . Similarly, denoting an element of P by xgy
when g is in some Hi (and with x and y being some letters) implicitly means that x and y are elements
of S such that x ∈ Ai,g.

Remark 5.11. In the case where r = 1, we already know a finite pregroup whose universal group is
S ∗S1 G1, namely S ∪S1 G1 as in Example 2.8. Notice that this pregroup does not coincide with the set
P we just introduced. In fact, it is strictly contained in P . One could ask if instead of defining P as
above, we could just define it to be

(
· · · (S ∪S1 G1)∪S2 G2 · · ·

)
∪Sr

Gr. This is not a pregroup in general
as soon as r ≤ 2, because of the need for Axiom (Pr4) to be satisfied.

5.2.2 Inclusion of P in G

We defined the elements of P as symbols of certain elements in G, so there is an obvious mapping
P → G. Moreover, the products of elements in P (when defined) coincide with the products of the same
elements in G. Indeed, the only cases where it is not obvious in the way we defined m(x, y) is when it
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is rewritten, and all the rewritings result from the relations in G such as fi(u) = u for all u ∈ Si, or
vg = gf−1

i (g−1fi(v)g) for all g ∈ Hi and v ∈ Ti,g.
There remains to prove that two distinct elements of P can not be equal when considered as elements

of G. For this, we need the Normal Form Theorem for free product with amalgamation, which we state
below.

Definition 5.12. Let A ∗C B be the free product of groups A and B amalgamating C, where C is a
subgroup of A isomorphic to a subgroup C ′ of B via a morphism f . A sequence (x1, · · · , xn) of elements
of A ∗C B is said to be reduced if:

- each xi belongs to one of the factors A or B ;

- xi and xi+1 always come from different factors ;

- if n > 1, no xi belongs to C or C ′ ;

- if n = 1, then x1 6= 1.

Proposition 5.13 ([11, Chapter IV, Theorem 2.6]). With the notations of Definition 5.12, if (x1, · · · , xn)
is reduced, then x1 · · ·xn 6= 1 in A ∗C B.

First, if s and aga′ in P , with g in some Hi, are equal as elements of G, then s−1aga′ = 1 in S ∗Si Gi

(seen as a subgroup of G). Applying Proposition 5.13 (more precisely its contrapositive) to the sequence
(s−1a, g, a′), we get that s−1a ∈ Si or a′ ∈ Si. Replacing g with fi(s−1a)g, gfi(a′) or fi(s−1a)gfi(a′), we
can apply Proposition 5.13 to a new reduced sequence whose product is s−1aga′ and get a contradiction,
so s and aga′ can’t be equal in G.

Now assume that aga′ and bhb′ are two elements of P , with g in some Hi and h in some Hj , such that
aga′ = bhb′ in G, i.e. a′−1g−1a−1bhb′ = 1. If i 6= j, we can consider this equality in Gi ∗Si

(
S ∗Sj

Gj
)

(seen as a subgroup of G) and apply Proposition 5.13 to the sequence (a′−1, g−1, a−1bhb′), leading to a
contradiction, unless a′−1 ∈ Si or a−1bhb′ ∈ Si (or both). Up to replacing g−1 with another representative
of its double coset, we can apply Proposition 5.13 to a reduced sequence and get a contradiction.

Hence i = j, and we want to apply Proposition 5.13 to (a′−1, g−1, a−1b, h, b′) seen as a sequence in
S ∗Si Gi. If a′−1 or b′ is in Si, we can do the same trick as before to get a reduced sequence. Proposition
5.13 then implies that a−1b is in Si. Thus we can rewrite a′−1g−1a−1bhb′ = a′−1(g−1fi(a−1b)h

)
b′, and

again by Proposition 5.13 we get that g−1fi(a−1b)h ∈ S′i, and still a′−1f−1
i

(
g−1fi(a−1b)h

)
b′ = 1 in S

(and these two facts precisely hold with our former g and h, no matter the “tricks” we had to do). In
particular, there exists u ∈ S′i such that gu = fi(a−1b)h. As g and h were fixed representatives of double
cosets for S′i, this means that g = h and, denoting v := fi(a−1b) ∈ S′i, that g−1vg ∈ S′i. This amounts
to v ∈ S′i ∩ gS′i, or equivalently a−1b ∈ Ti,g. Thus b ∈ aTi,g, but we chose a and b to be representatives
of left cosets for Ti,g in Si, so a = b. Now a′−1f−1

i

(
g−1fi(a−1b)h

)
b′ = 1 becomes a′−1b′ = 1, i.e. a′ = b′.

Finally, aga′ and bhb′ are equal in P , so the natural mapping P → G is an inclusion.

5.2.3 Proof that P is a pregroup

Lemma 5.14. The (P,D) constructed above satisfies the two following properties:

(1) For all x, y ∈ P and s ∈ S ⊆ P , we always have (s, x) ∈ D, and (x, y) ∈ D if and only if
(sx, y) ∈ D. Similarly, we always have (y, s) ∈ D, and (x, y) ∈ D if and only if (x, ys) ∈ D.
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(2) Let y ∈ P \ S. If x ∈ P satisfies (x, y) ∈ D, then for all z ∈ P , (y, z) ∈ D implies (xy, z) ∈ D.
Similarly, if z ∈ P satisfies (y, z) ∈ D, then for all x ∈ P , (x, y) ∈ D implies (x, yz) ∈ D.

Proof. For the first property, let x, y ∈ P and s ∈ S ⊆ P . The fact that (s, x) ∈ D (and (y, s) ∈ D) is
clear in how we defined D. Now if y ∈ S, the equivalence (x, y) ∈ D ⇐⇒ (sx, y) ∈ D is true for the same
reason, and it is also true if x ∈ S (because then sx ∈ S too). So we can assume x = aga′ and y = bhb′

with g in some Hi, h in some Hj , a ∈ Ai,g, b ∈ Aj,h and a′, b′ ∈ S. Then sx = a′′g
(
f−1
i (g−1fi(v)g)a′

)
for a′′ ∈ Ai,g and v ∈ Ti,g satisfying a′′v = sa. Thus

(x, y) ∈ D ⇐⇒ (aga′, bhb′) ∈ D ⇐⇒ i = j and a′b ∈ Si
⇐⇒ i = j and f−1

i (g−1fi(v)g)a′b ∈ Si
⇐⇒ (sx, y) ∈ D .

The proof of (x, y) ∈ D ⇐⇒ (x, ys) ∈ D is similar.
For the second property, fix y ∈ P \S and x ∈ P such that (x, y) ∈ D, and take any z ∈ P . If x ∈ S,

we have an equivalence (y, z) ∈ D ⇐⇒ (xy, z) ∈ D, which comes from the first property. If z ∈ S, we
also have an obvious equivalence. So we can assume that x = aga′ with g in some Hi, y = bhb′ with h
in the same Hi (because (x, y) ∈ D), and z = ckc′ with k in some Hj . Moreover we have a′b ∈ Si and
we can assume that xy ∈ P \ S (otherwise it is clear that (xy, z) ∈ D), i.e. gfi(a′b)h = fi(u)g̃fi(u′) for
certain g̃ ∈ Hi and u, u′ ∈ Si. Then xy = dg̃

(
f−1
i (g̃−1fi(v)g̃)u′b′

)
for d ∈ A

i,̃g
and v ∈ T

i,̃g
satisfying

dv = au. Thus

(y, z) ∈ D ⇐⇒ (bhb′, ckc′) ∈ D ⇐⇒ i = j and b′c ∈ Si
⇐⇒ i = j and f−1

i (g̃−1fi(v)g̃)u′b′c ∈ Si

⇐⇒
(
dg̃
(
f−1
i (g̃−1fi(v)g̃)u′b′

)
, ckc′

)
∈ D

⇐⇒ (xy, z) ∈ D .

In particular, the implication (y, z) ∈ D =⇒ (xy, z) ∈ D holds. The proof of the last assertion is
similar.

Proposition 5.15. As defined above, (P,D) is a pregroup.

Proof. Axioms (Pr1) and (Pr2) are easily verified. In order to verify the “domain part” of Axiom (Pr3)
on a triplet (x, y, z) of elements of P , the first property in Lemma 5.14 implies that we can assume x /∈ S,
because otherwise we would have (xy, z) ∈ D and also (x, yz) ∈ D (since x would be in S). Similarly, we
can assume z /∈ S. By the second property, if y /∈ S then we have both (xy, z) and (x, yz) in D. Thus
we can assume y ∈ S, so that (x, y, z) = (aga′, s, bhb′) with g in some Hi and h in some Hj . In this case
we have

(xy, z) ∈ D ⇐⇒
(
(aga′)s, bhb′

)
∈ D

⇐⇒ i = j and a′sb ∈ Si
⇐⇒ i = j and ∀v ∈ Ti,h, a′sbv−1 ∈ Si
⇐⇒

(
aga′, s(bhb′)

)
∈ D because s(bhb′) = b′′h

(
f−1
j (g−1fj(v)h)b′

)
for some

b′′ ∈ Aj,h and v ∈ Tj,h satisfying b′′ = sbv−1.

⇐⇒ (x, yz) ∈ D .
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One also have to check that the (xy, z) and (x, yz) coincide, but this is a consequence of the fact that
P is contained in G with consistent products and the associativity of the group law in G.

Finally, for Axiom (Pr4), assume that (w, x), (x, y), (y, z) ∈ D. The conclusion is then obvious if
w ∈ S or z ∈ S. By the first property in Lemma 5.14, the conclusion is also true whenever x ∈ S or
y ∈ S. Thus we are left with checking the result in the case where none of the four elements is in S, but
then it directly follows from the second property in Lemma 5.14.

Remark 5.16. One can check that each Gi embeds in P as a subgroup, via the following mapping: if
x ∈ Gi belongs to Si, send it directly to x ∈ S in P ; otherwise, write it x = fi(a)gfi(a′) with g ∈ Hi,
a ∈ Ai,g and a′ ∈ Si, and send it to aga′ in P . With this embedding of Gi, Si and S′i become indentified
in P and S ∩Gi = Si.

Corollary 5.17. The finite pregroup P has universal group G, the Robinson group associated to F and
the generating family {FS1(G1), · · · ,FSr

(Gr)}.

Proof. We already proved that P is a subpregroup of G, because it is a pregroup contained in G and
the multiplication laws are compatible. Moreover, P contains S and the Gi for i ∈ {1, · · · , r}, which
generate G, so G = U(P ) by Proposition 2.9.

5.2.4 Can P be a locality?

As for the pregroup associated with the Leary-Stancu group, we can wonder if (the underlying partial
group of) P can be equipped with a set of objects ∆ such that (P,∆, S) is a locality. First, we describe
the domain DP of P seen as a partial group.

Proposition 5.18. The domain DP is constituted of all the words w ∈ W(P ) satisfying the following
conditions:

(i) w does not contain simultaneously a term of the form aga′ and a term of the form bhb′ if g ∈ Hi

and h ∈ Hj with i 6= j.

(ii) Between any term aga′ in w and the next term of the form bhb′ (necessarily with g, h ∈ Hi for a
fixed i), if we denote by s the product of all the (possible) terms in S interposed between aga′ and
bhb′, then we should have a′sb ∈ Si.

Proof (sketch). The domain DP is defined to be

DP = { (x1, x2, . . . , xn) ∈W(P ) | ∀k, l ∈ {1, 2, . . . , n} with k < l, xkxk+1 · · ·xl ∈ P } .

Let w = (x1, x2, . . . , xn) ∈ W(P ) be a word satisfying the two conditions in the statement. By the
first condition, there exists i ∈ {1, · · · , r} such that each xj is either an element of S or an element of
the form aga′ with g ∈ Hi. We can prove by induction on m ∈ N that for any subword (xk, · · · , xk+m)
of w, we are in one of the following cases (where the symbols y1, · · · , yq refer to any allowed elements of
P ):

- xkxk+1 · · ·xk+m equals some aga′ if (xk, · · · , xk+m) = (s1, · · · , sj , bhb′, y1, · · · , yq, ch̃c′, s′1, · · · , s′j′)
where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case we have a ∈ (s1 · · · sjb)Si and
a′ ∈ Si(c′s′1 · · · s′j′) ;

- xkxk+1 · · ·xk+m equals some s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , aga′, y1, · · · , yq, bhb′, s′1, · · · , s′j′)
where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case s ∈ (s1 · · · sja)Si(b′s′1 · · · s′j′) ;
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- xkxk+1 · · ·xk+m equals some s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sm+1) where s1, · · · , sm+1 ∈ S,
and in this case s = s1 · · · sm+1.

The case m = 0 is trivial. Assume the fact is proved for the rank m ∈ N. In order to prove it for the rank
m + 1, take a subword (xk, · · · , xk+m+1) of w, and apply the induction hypothesis on (xk, · · · , xk+m).
Then check what we need for (xk, · · · , xk+m+1), distinguishing between the three cases listed above for
(xk, · · · , xk+m), also distinguishing between the two possibilities for the term xk+m+1, and using the two
conditions of the statement.

Reciprocally, take w ∈ DP . Consider any subword of w of the form (aga′, s1, · · · , sk, bhb′), with
s1, · · · , sk ∈ S. Then s := s1 · · · sk is in S too, and we have (aga′)s1 · · · sk(bhb′) ∈ P if and only if(
ag(a′s), bhb′

)
∈ D, because all any product involving an element of S is defined in P . In particular, g

and h must belong to the same Hi, and a′sb must belong to Si. Considering that it has to be true for
every subword of w of this form, this proves that w fulfills the two conditions.

Now we can look for a subset ∆ of the subgroups of S such that (P,∆, S) would be a locality. Remark
that for any subgroup R ≤ S, we have R ⊆ DP (s) for all s ∈ S. Moreover, for all i ∈ {1, · · · , r}, g ∈ Hi,
a ∈ Ai,g and a′ ∈ S we have

R ⊆ DP (aga′) ⇐⇒ ∀s ∈ R,
(
(aga′)−1s, aga′

)
∈ D

⇐⇒ a−1sa ∈ Si
⇐⇒ R ≤ aSi .

In this case, Raga′ is a subgroup of Sgi
a′ . Moreover, Raga′ ≤ S ⇐⇒ Rag ≤ S, and Rag is a subgroup of

Sgi (hence of Gi). But for a subgroup of Gi it is equivalent to be contained in S and to be contained in
Si, so if we want Raga′ ≤ S, i.e. Rag ≤ S, it is equivalent to ask Rag ≤ Si, which is rewritten Ra ≤ gSi.
Since we are in the case where R ≤ aSi, this amounts to Ra ≤ Si ∩ gSi, i.e. R ≤ aTi,g.

Thus, because DP contains all the words of length one (aga′) and ∆ has to be closed under taking
overgroups in S, ∆ must contain all the subgroups Ti,g, for i ∈ {1, · · · , r} and g ∈ Hi, together with all
their S-conjugate (and the overgroups of all these in S).

The picture is more complex than for the pregroup associated to the Leary-Stancu group. So far we
don’t know a characterisation of P being a locality. An interesting candidate for ∆ would be to take all
the Op(Gi) for i ∈ {1, · · · , r}, together with their S-conjugate and the overgroups of all these in S. We
then need to assume Si = NS

(
Op(Gi)

)
(otherwise it is easy to construct a triple (g, s, g) ∈ D∆ but not

in DP ). One can then prove that DP ⊆ D∆. However the converse inclusion does not hold in general:
for example we need that any R ≤ S such that Op(Gi) ≤ R ≤ Ti,g for an i ∈ {1, · · · , r} and a g ∈ Hi

satisfies NS(R) ≤ Si (otherwise the word (g−1, s, g) with s ∈ NS(R) \ Si is in D∆ via (gR,R,R,Rg) but
not in DP ). There are other necessary conditions coming from the fact that DP does not contain any
words of the form (aga′, s, bhb′) with g in some Hi, h in some Hj and i 6= j. In any event, this seems to
significantly reduce the possibilities for P to be a locality.
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