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In this article, we compare two different notions of par-
tially defined group structures, namely partial groups and 
pregroups, as introduced by Chermak [4] and Stallings [18]
respectively. In particular we prove that the category of pre-
groups can be seen as a full subcategory of the category of 
partial groups. We also bring out some conjugation properties 
about elements and subgroups of finite order in pregroups and 
their universal groups. We then use these to investigate the 
question of realisability of fusion systems in finite pregroups.

© 2024 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC license (http://

creativecommons .org /licenses /by -nc /4 .0/).

Introduction

Pregroups are generalisations of groups, their product being only partially defined. 
Specifically, a pregroup is a set P equipped with a binary product m : D → P , where D
is a subset of P × P , subject to some group-like axioms (see Definition 2.1 for details). 
Pregroups were introduced by Stallings [18] in 1971, as a tool to study amalgamated 
products of groups. A crucial property of these pregroups is that they can always be 
embedded into a group. More precisely, given a pregroup P there is a group U(P )
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containing P , called the universal group of P , such that P generates U(P ) in a strong way, 
implying that U(P ) has a solvable word problem when P is finite. In an article published 
in 1987, Rimlingler proved that under one finiteness condition on P , its universal group 
U(P ) is actually the fundamental group of a graph of groups whose edge and vertex 
groups are subgroups of P [15, Theorem A]. He also proved that given a graph of groups of 
finite diameter, if all the edge maps are injective but not surjective, then its fundamental 
group is the universal group of a certain pregroup. Therefore, pregroups can be thought 
of as combinatorial objects which encode graphs of groups.

With other perspectives in mind, in [4], Chermak introduced another generalisation 
of groups with a partially defined product: partial groups. He was interested in p-local 
structures of finite groups (i.e. how a group acts by conjugation on its p-subgroups) 
and more generally of fusion systems. A fusion system over a finite p-group S is a cat-
egory whose objects are the subgroups of S and whose morphism sets are formed by 
the conjugation maps induced by elements of S together with other similar injective 
group homomorphisms (see Definition 4.1 for more details). The archetypal example of 
a fusion system is the one induced by a finite group acting by conjugation on one of its 
Sylow p-subgroups. If a fusion system satisfies a few more axioms ensuring that it “be-
haves” like one of these archetypal examples, we say that the fusion system is saturated. 
Actually, general fusion systems give a very large class of mathematical objects, which 
strictly contains fusion systems induced by finite groups. There even exist saturated fu-
sion systems, called exotic, which cannot be obtained from a finite group G containing S
as a Sylow p-subgroup. This leads to the question of the realisability of saturated fusion 
systems: given a saturated fusion system over a finite p-group S, can it be obtained from 
a finite group containing S as a Sylow p-subgroup? This question is also of interest (and 
leads to different answers) if we restate it in a larger framework: considering general 
fusion systems, dropping the Sylow p-subgroup hypothesis, or enlarging the context of 
realisability (possibly to infinite groups, or partial groups, etc).

A partial group, as introduced by Chermak, is a set M together with a multivariate 
product defined on a subset of the set of words in M which satisfies some axioms (see 
Definition 1.1 for details). One of Chermak’s main achievements was to prove the exis-
tence and uniqueness of a so-called linking system associated to a given saturated fusion 
system. Along the way, he proved that there is a one-to-one correspondence between lo-
calities – a certain type of partial groups that models p-local structures of finite groups – 
and transporter systems (see [4, Appendix A]). Linking systems and transporter systems 
are categories derived from a given saturated fusion system and they were introduced 
by Broto, Levi and Oliver in [3, Definition 1.7] and Oliver and Ventura in [13, Definition 
3.1] respectively. They used these objects to study saturated fusion systems, p-completed 
classifying spaces of finite groups and connections between them, by developing a theory 
of classifying spaces for saturated fusion systems. Localities give a more group-like point 
of view on these objects, which allows for instance the use of tools from group theory.

Even though partial groups are combinatorial objects, they can be seen as simplicial 
sets as highlighted by Broto and Gonzales [2, Section 2], just as a group (or a monoid) 
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can be seen as a simplicial set, through what is sometimes called the bar construction, 
in order to construct its classifying space. For example, the geometric realisation of a 
locality has the homotopy type of the geometric realisation of the nerve of the associated 
transporter system. Therefore it opened another approach to study these spaces which 
are crucial in homotopy theory of fusion systems.

In this paper we establish connections between pregroups and partial groups, and we 
develop the question of the realisability of fusion systems in this generalised context. 
In Section 1, we give the basic definitions and properties concerning Chermak’s partial 
groups, including the simplicial point of view. Section 2 is dedicated to pregroups. After 
giving definitions, examples and some lemmas concerning conjugation properties and 
elements of finite order in pregroups, we prove that pregroups can be viewed as partial 
groups in a natural way. More precisely, there is a fully faithful functor from the category 
of pregroups PrG to the category of partial groups ParG (Proposition 2.23).

In terms of simplicial sets, one then gets what we can call the classifying space of a 
pregroup. The simplicial set obtained from a pregroup P was in fact already considered 
by Stallings in [19, Section 2, page 172-173], where he gives all the ingredients to prove 
that its geometric realisation, that we denote by BP , is actually an Eilenberg-MacLane 
space K(U(P ), 1).

Theorem 0.1 (Stallings, [19, Section 6]). Let P be a pregroup and set BP to be the 
geometric realisation of the partial group (seen as a simplicial set) induced by P . Then 
BP is an Eilenberg-MacLane space K(U(P ), 1). In particular, its fundamental group is 
U(P ).

In Section 3, we introduce graphs of groups and their fundamental groups, as a key 
step in answering the realisability question in the context of pregroups. Indeed, on the 
one hand we have Rimlinger’s results that we mentioned above (see Theorems 3.8 and 
3.11). On the other hand, Leary and Stancu proved in [8, Theorem 2] that every fusion 
system is realisable by a fundamental group of a graph of groups. In Section 4, after 
stating definitions and explaining how to build fusion systems from partial groups, we 
prove that the Sylow p-subgroups of a pregroup P are Sylow p-subgroups of its universal 
group U(P ) and that the fusion systems induced by P , or by U(P ), on a Sylow p-subgroup 
of P (and thus of U(P )) are essentially the same.

Theorem 0.2 (Theorem 4.13 below). Let P be a pregroup and S be a finite p-group. Then 
S embeds as a Sylow p-subgroup of P if and only if it embeds as a Sylow p-subgroup of 
U(P ), and in this case we have FS

(
U(P )

)
= FS(P ).

Theorems 0.2 and 0.1 together have the following corollary, which may give some 
insights on the fundamental group of the classifying space of a locality associated to a 
fusion system, when this locality is a pregroup.
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Corollary 0.3. Let L be a locality associated to a finite p-group S, and let F be its fusion 
system. If L is a pregroup, then S is a Sylow p-subgroup of π1(BL) and FS(π1(BL)) =
FS(L) = F .

Proof. By [5, Proposition 2.11.(c)], every p-subgroup of L is conjugate to a subgroup of 
S, hence S is a Sylow p-subgroup of the partial group L in the sense of Definition 4.5. 
Assuming that L is a pregroup, Theorem 0.1 states that π1(BL) � U(L), and our 
conclusion follows directly from Theorem 0.2. �

Finally, we bring all the pieces together and answer the realisability question in the 
context of pregroups, with the following result.

Theorem 0.4. Let F be a fusion system over a finite p-group S. There exists a finite 
pregroup P , containing S as a Sylow p-subgroup, such that F = FS(P ).

In fact, this paper gives two proofs of Theorem 0.4, both relying on Theorem 0.2 and 
the result of Leary and Stancu. The first one uses the above-mentioned Theorem 3.11 of 
Rimlinger, which is kind of a black box, but it tells us that for any fusion system F over 
S, whenever F is realised by a group G which is the fundamental group of a (proper) 
finite graph of finite groups, then we can find a finite pregroup P inside of G which 
realises F (see Corollary 4.14 below). The second proof is constructive: in Section 5 we 
give two explicit constructions of pregroups realising fusion systems. These examples are 
derived from the already known constructions of infinite groups realising fusion systems 
(Leary and Stancu [8, Theorem 2] and Robinson [16, Theorem 2] respectively). The first 
construction is applicable to any fusion system F , and it provides in fact a stronger 
realisability result, because F is obtained as the fusion system of a pregroup P whose 
only maximal subgroup is S (see Corollary 5.9). Finally for each construction we also 
ask whether the constructed pregroup could be equipped with a structure of locality, 
which unfortunately seems to be rarely possible.

Acknowledgements. The authors would like to thank Antonio Viruel for bringing 
to their attention the existence of pregroups. They are also grateful to Jean-Baptiste 
Meilhan, Radu Stancu and Jérôme Scherer for their revision of different versions of this 
paper. Finally, they thank the referee for carefully reading the submitted version.

1. Partial groups and localities

1.1. Chermak’s partial groups and localities

The notions of partial groups and localities are due to Chermak. We present the 
definitions and some useful properties. More details can be found in [4, Section 2] or in 
the preprint [5, Section 1].
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For a set X, we denote the free monoid on X by W (X), and for two words u, v ∈
W (X), we denote the concatenation of u and v by u ◦ v. We also identify X with the 
subset of words of length 1 in W (X). Finally, given two sets X and Y and a map 
ϕ : X → Y , we denote by ϕ : W (X) → W (Y ) the map induced by ϕ defined by ϕ(u) =
(ϕ(x1), ϕ(x2), · · · , ϕ(xn)) for any u = (x1, x2, · · · , xn) ∈ W (X).

Definition 1.1. Let M be a set and let D ⊆ W (M) be a subset such that,

(D1) M ⊆ D; and
(D2) u ◦ v ∈ D ⇒ u, v ∈ D (in particular, the empty word ∅ belongs to D).

A mapping Π : D → M is a product if

(P1) Π restricts to the identity on M; and
(P2) if u ◦ v ◦ w ∈ D then u ◦ Π(v) ◦ w ∈ D and

Π(u ◦ v ◦ w) = Π
(
u ◦ Π(v) ◦ w

)
.

The unit of Π is then defined as Π(∅) and we denote it by 1M, or 1 when there is no 
ambiguity.

An inversion on M is an involutory bijection x �→ x−1 on M together with the 
induced mapping u �→ u−1 on W (M) defined by,

u = (x1, x2, · · · , xn) �−→ (x−1
n , x−1

n−1, · · · , x−1
1 ).

A partial group is a tuple 
(
M,D,Π, (−)−1) where Π is a product on D and (−)−1 is an 

inversion on M satisfying

(P3) If u ∈ D then u−1 ◦ u ∈ D and Π(u−1 ◦ u) = 1.

We denote by M or (M, D) a partial group when the other data is implicit in the context. 
The set D =: D(M) is called the domain of the partial group.

Several useful properties follow easily from the above axioms.

Lemma 1.2 ([4, Lemma 2.2.(a) and (d)]). Let (M, D) be a partial group.

(1) If u ◦ v ∈ D, then 
(
Π(u), Π(v)

)
∈ D and

Π(u ◦ v) = Π(u)Π(v)

where Π(u)Π(v) is short for Π
(
Π(u), Π(v)

)
.
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(2) If u ◦ v ∈ D, then u−1 ◦ u ◦ v ∈ D, u ◦ v ◦ v−1 ∈ D and we have

Π(u−1 ◦ u ◦ v) = Π(v) and Π(u ◦ v ◦ v−1) = Π(u) .

Example 1.3. Any group G forms a partial group, setting D = W (G) and taking the 
product and inversion induced by the group operations in G. Reciprocally, if M is a 
partial group whose domain is D = W (M), then M is a group via the binary operation 
(x, y) ∈ M2 �→ Π(x, y) ∈ M.

Example 1.4. Let F(a) = {1, a, a−1}. We define the set Da of non-degenerated words 
on F(a) to be the set of all possible words in W (F(a)) formed by alternating a and 
a−1. Equivalently, the elements of Da are all the different finite subwords of the “infinite 
word” (a, a−1, a, a−1, a, a−1, · · · ). The inversion (−)−1 is understood and, for any word 
u ∈ Da,

Π(u) =

⎧⎪⎪⎨
⎪⎪⎩

1 if the number of a’s equals the number of a−1’s,
a if the number of a’s exceeds the number of a−1’s (necessarily by 1),
a−1 if the number of a−1’s exceed the number of a’s (necessarily by 1).

One can then check that 
(
F(a),Da,Πa, (−)−1) defines a partial group.

This last example is actually the free partial group on the set {a} as detailed in [5, 
Example 1.12].

Together with the notion of partial group comes that of morphisms of partial groups.

Definition 1.5. Let 
(
M1,D1,Π1, (−)−1) and 

(
M2,D2,Π2, (−)−1) be two partial groups. 

A morphism of partial groups, or partial group homomorphism, is a map ϕ : M1 → M2
such that

(H1) ϕ (D1) ⊆ D2;
(H2) for any u ∈ D1, Π2 (ϕ(u)) = ϕ (Π1(u)).

Moreover, ϕ : M1 → M2 is called an isomorphism of partial groups if the map ϕ is 
bijective and if ϕ−1 is also a morphism of partial groups. Finally, an automorphism of 
M1 is an isomorphism ϕ : M1 → M1.

With this notion of morphisms and the usual composition on maps, the class of partial 
groups forms a category ParG which contains the category of groups as a full subcate-
gory.

Chermak introduced partial groups to study the p-local structure of finite groups 
when p is a prime number. For that purpose he defined the notion of locality, which 
allows to encode and manipulate these p-local structures. In order to define localities, 
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we first need to talk about subgroups and conjugation in partial groups, and then define 
objective partial groups.

Definition 1.6. Let 
(
M,D,Π, (−)−1) be a partial group. A subgroup of M is a subset 

N ⊆ M such that D ∩W (N ) = W (N ), Π
(
W (N )

)
= N , and N is stable under (−)−1. 

Then N is a group for the operations induced by those of M. Moreover, if its order is a 
power of some prime number p, we say that N is a p-subgroup of M.

Notation 1.7. Given a partial group M and g ∈ M, we denote by D(g) the set of all 
elements of M which can be conjugated by g, i.e. all x ∈ M such that (g−1, x, g) ∈ D. We 
also denote by cg : x �→ xg the conjugation map, which sends x ∈ D(g) to Π(g−1, x, g). 
If in addition X is a subgroup of M such that X ⊆ D(g), then we denote by Xg the set 
of all xg for x ∈ X. Beware that Xg is not a subgroup of M in general.

Lemma 1.8 ([4, Lemma 2.5.(c)]). Let M be a partial group and g ∈ M. Then cg defines 
a bijection D(g) → D(g−1) whose inverse is cg−1 .

An objective partial group is a partial group M whose domain consists of all words 
which correspond to sequences of composable conjugation maps between subgroups be-
longing to a particular set of subgroups of M. In order to state a formal definition, we 
need one more notation.

Notation 1.9. Given a partial group M and a collection Δ of subgroups of M, we write 
DΔ for the set of all w = (g1, g2, · · · , gn) ∈ W (M) such that

∃(X0, X1, · · · , Xn) ∈ W (Δ), ∀i ∈ {1, · · · , n}, Xi−1 ⊆ D(gi) and (Xi−1)gi = Xi ,

where W (Δ) denotes the set of all words on the alphabet Δ.

Definition 1.10. Let M be a partial group and Δ a collection of subgroups of M. We 
then say that (M, Δ) is an objective partial group if the following two conditions hold.

(Oa) D(M) = DΔ.
(Ob) Whenever X and Y are in Δ and g ∈ M is such that X ⊆ D(g) and Xg is a 

subgroup of Y , then every subgroup of Y containing Xg is in Δ.

In this case, we say that Δ is the set of objects of the objective partial group.

Hence an objective partial group is a particular instance of a partial group whose 
domain is given by the composable conjugation maps between subgroups belonging to 
a fixed set of subgroups. Below is an example of how we can construct objective partial 
groups starting from a group G and considering particular sets of subgroups of G.
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Example 1.11. Let G be a group and Δ be a nonempty set of subgroups of G satisfying 
that for any X, Y ∈ Δ and any g ∈ G such that Xg ≤ Y , all subgroups of Y containing 
Xg are in Δ. We define

M := {g ∈ G | ∃X ∈ Δ, Xg ∈ Δ} and

D := { (g1, g2, · · · , gn) ∈ W (M) | ∃(X0, X1, · · · , Xn) ∈ W (Δ),

∀i ∈ {1, · · · , n}, (Xi−1)gi = Xi } .

Then (M, D) is a partial group with the operations coming from those of G, and this 
partial group is objective for the set of objects Δ. Notice that if Δ contains a whole 
G-conjugacy class of subgroups of G, then M = G and D = W (G). In particular, every 
group admits a structure of objective partial group.

Definition 1.12. Let p be a prime number, let L be a finite partial group. Let S be a 
p-subgroup of L, and let Δ be a collection of subgroups of S such that S ∈ Δ. We say 
that (L, Δ, S) is a locality if:

(La) (L, Δ) is objective; and
(Lb) S is maximal in the poset (ordered by inclusion) of finite p-subgroups of L.

1.2. A simplicial point of view on partial groups

Let 
(
M,D,Π, (−)−1) be a partial group. Broto and Gonzales [2, Section 2] pointed 

out that Π induces a simplicial set structure on D in the same way that the product in 
a group G induces a simplicial set structure on W (G).

Definition 1.13. We denote by B(M) the simplicial set whose n-simplices, for n ∈ N, are 
the elements of Bn(M) = Dn, the set of words of length n in D. The face operators are 
given, for n ∈ N∗, i ∈ {0, 1, · · · , n − 1} and (m1, m2, · · · , mn) ∈ Bn(M), by

di(m1,m2, · · · ,mn) =

⎧⎪⎪⎨
⎪⎪⎩

(m2,m3, · · · ,mn) if i = 0,
(m1, · · · ,Π(mi,mi+1), · · · ,mn) if 1 ≤ i ≤ n− 1,
(m1,m2, · · · ,mn−1) if i = n;

and the degeneracy operators are defined, for n ∈ N, i ∈ {0, 1, · · · , n} and (m1,m2, · · · ,
mn) ∈ Bn(M), by

si(m1,m2, · · · ,mn) = (m1, · · · ,mi, 1,mi+1, · · · ,mn)

where 1 is the unit of M.
Finally, the geometric realisation of this simplicial set is denoted by BM := |B(M)|

and it is called the classifying space of M.
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As mentioned above, when we are working with an actual group G (i.e. D(G) = W (G)) 
then B(G) is the classical bar construction and BG is a classifying space for the group 
G.

Notice also that a map between two partial groups f : M1 → M2 is a partial group 
homomorphism if and only if the map induced by f on words, f : B(M1) → B(M2), is a 
simplicial map. Broto and Gonzalez actually showed [2, Section 2] that this constitutes 
a fully faithfull embedding B : ParG → sSet into the category of simplicial sets.

There is a deep connection between a partial group and the geometric realisation of 
its associated simplicial set. For example, there is a correspondence between extensions 
of partial groups and fiber bundles of the corresponding simplicial sets as highlighted 
by Broto and Gonzalez [2,7]. Here we focus on the fundamental group π1(BM) of the 
geometric realisation.

Proposition 1.14. Let M be a partial group. There is a natural morphism of partial groups 
θ : M → π1(BM) and for any group G and any morphism of partial groups α : M → G, 
there is a unique group homomorphism α : π1(BM) → G such that α = α ◦ θ.

Proof. This is a direct consequence of [1, Proposition III.2.7]. If we denote K := B(M) =
D(M) to follow the notation of [1, Proposition III.2.7], we have that K0 is just a point 
given by the empty word (and it is denoted by x0 in the rest of the proof), and K1 = M. 
Then the map θ : K1 → π1(|K|, x0) of [1, Proposition III.2.7] is just a map θ : M →
π1(|K|, x0) such that for all (g, h) ∈ D2(M) = K2, we have θ (Π(gh)) = θ(g)θ(h). This 
is equivalent to state that θ is a partial group homomorphism from M to the group 
π1(BM). Finally, the universal property is just a restatement of the second part of [1, 
Proposition III.2.7]. �

In particular, B : ParG → Top∗ is a functor from ParG to the category Top∗ of 
pointed topological spaces (because if M is a partial group, B(M) has only one 0-simplex, 
so there is a canonical choice of basepoint for BM), and if we denote the category of 
groups by Grps, the functor ParG → Grps defined as the composition of B followed 
by the fundamental group functor π1 : Top∗ → Grps, is left adjoint to the forgetful 
functor U : Grps → ParG.

2. Stallings’ pregroups and their universal groups

2.1. Generalities on pregroups

The notion of pregroup was introduced by Stallings in [18, Definition 3.A.1.1]. This 
generalisation of the group structure aims at providing “nice” generating sets for certain 
families of groups, such as amalgamated products of groups. Most of the material here 
comes from [18, Section 3.A] and [15, Part I, section I].
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Definition 2.1. A pregroup is a tuple 
(
P, D, m, 1P , (−)−1) where P is a set, D is a subset 

of P × P called the domain, m : D → P and (−)−1 : P → P are maps, and 1P is an 
element of P called the unit, such that for all w, x, y, z ∈ P we have:

(Pr1) (1P , x) ∈ D, (x, 1P ) ∈ D and m(1P , x) = m(x, 1P ) = x.
(Pr2) (x, x−1) ∈ D, (x−1, x) ∈ D and m(x, x−1) = m(x−1, x) = 1P .
(Pr3) If (w, x), (x, y) ∈ D, then

(
m(w, x), y

)
∈ D ⇐⇒

(
w,m(x, y)

)
∈ D

and in that case, m
(
m(w, x), y

)
= m

(
w, m(x, y)

)
.

(Pr4) If (w, x), (x, y), (y, z) ∈ D, then 
(
w, m(x, y)

)
∈ D or 

(
m(x, y), z

)
∈ D.

To simplify the reading, when (x, y) ∈ D, we write xy instead of m(x, y). When w, x, y ∈
P satisfy (w, x), (x, y) ∈ D and (wx, y) ∈ D (or equivalently, (w, xy) ∈ D by (Pr3)), we 
say that (w, x, y) associates.

Considering the above definition, a pregroup 
(
P, D, m, 1P , (−)−1) is a group if and 

only if D = P ×P . Moreover, we deduce easily the following properties from the axioms.

Lemma 2.2. Let 
(
P, D, m, 1P , (−)−1) be a pregroup. We have the following:

(1) If x ∈ P , then 
(
x−1)−1 = x.

(2) If (x, y) ∈ D, then (x−1, xy) ∈ D and x−1(xy) = y. Similarly, (xy, y−1) ∈ D and 
(xy)y−1 = x.

(3) Let x, y ∈ P . Then (x, y) ∈ D if and only if (y−1, x−1) ∈ D, and in this case we 
have y−1x−1 = (xy)−1.

(4) Let a ∈ P such that (x, a), (a−1, y) ∈ D. Then (x, y) ∈ D if and only if (xa, a−1y) ∈
D. In this case, we have (xa)(a−1y) = xy.

Proof. These properties are proved in [11, Section 2] for (3), and in [18, 3.A.2] for the 
others. However we prefer to give them a proof here to ensure consistency (see next 
remark).

Let us start with (1). By Axiom (Pr2), (x, x−1) and 
(
x−1, (x−1)−1) are in D, and 

xx−1 = 1P = x−1(x−1)−1. By Axiom (Pr1), 
(
xx−1, (x−1)−1) and 

(
x, x−1(x−1)−1) are 

in D and their products equal (x−1)−1 and x respectively. Finally, by Axiom (Pr3), these 
two products are equal.

For (2), by Axiom (Pr2) we have (x−1, x) ∈ D and x−1x = 1P . Thus by Axiom (Pr1), 
(x−1x, y) ∈ D and (x−1x)y = y, so (x−1, xy) ∈ D and x−1(xy) = (x−1x)y = y by Axiom 
(Pr3). The other case of (2) follows from the same arguments.

Now for (3), by (1) it is enough to prove that (x, y) ∈ D implies (y−1, x−1) ∈ D. We 
know that 

(
(xy)−1, (xy)y−1) ∈ D because of (2), and 

(
(xy)y−1, x−1) = (x, x−1) ∈ D
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by Axiom (Pr2). Moreover 
(
(xy)−1, 

(
(xy)y−1)x−1

)
=

(
(xy)−1, 1P

)
∈ D. Hence using 

Axiom (Pr3) we deduce that 
(
(xy)−1((xy)y−1), x−1

)
=

(
y−1, x−1) ∈ D and y−1x−1 =

(xy)−1.
Finally for (4), we know from (2) that (xa, a−1) ∈ D. Since we also have (a−1, y) ∈ D, 

the result becomes nothing more than Axiom (Pr3). �
Remark 2.3. In [18, Definition 3.A.1.1], Stallings introduces the definition of pregroup 
with property (3) from Lemma 2.2 as an extra axiom. It appeared later to be redundant, 
so that this property is no longer included as an axiom in [15, Section 1, Definition 1]. 
On the contrary, in [15, Section 1, Definition 1], Rimlinger assumes that x �→ x−1 is an 
involution by definition, but this is a consequence of the other axioms, as proved in [18, 
3.A.2.1].

As for partial groups, we can define subgroups and morphisms of pregroups.

Definition 2.4. Let 
(
P, D, m, 1P , (−)−1) be a pregroup. A subset Q ⊂ P is a subgroup of 

P if Q ×Q ⊆ D, if m(Q ×Q) ⊆ Q, and if Q is stable under the inversion (−)−1. Then Q
is a group for the operations coming from those of P . Moreover, we call it a p-subgroup
of P if its order is a power of a given prime p.

Definition 2.5. Let 
(
P1, D1, m1, 11, (−)−1) and 

(
P2, D2, m2, 12, (−)−1) be two pregroups. 

A morphism of pregroups, or pregroup homomorphism, is a map ϕ : P1 → P2 such that 
for every (x, y) ∈ D1, (ϕ(x), ϕ(y)) ∈ D2 and m2(ϕ(x), ϕ(y)) = ϕ(m1(x, y)).

Thus pregroups, together with morphisms of pregroups, define a category that we 
denote by PrG. One important fact about pregroups is that we can associate to any of 
them a group called its universal group.

Definition 2.6. Let 
(
P, D, m, 1P , (−)−1) be a pregroup. The universal group of P , denoted 

by U(P ), is the group with presentation

U(P ) = 〈 P | m(x, y)y−1x−1 for all (x, y) ∈ D 〉

where m(x, y)y−1x−1 is the product of m(x, y), y−1 and x−1 in the free group generated 
by P .

Notation 2.7. In the rest of the paper, a pregroup 
(
P, D, m, 1P , (−)−1) will be often just 

denoted by (P, D), or even P when reference to D is not needed.

Before continuing with properties of the universal group, let us introduce a family of 
examples of pregroups, naturally arising from amalgamated products of groups.
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Example 2.8 ([18, Example 3.A.5.1]). Let A, B and C be three groups, and let ϕA : C →
A and ϕB : C → B be injective group homomorphisms. Set A ∪C B := A � B/ ∼, 
where ∼ is defined by ϕA(x) ∼ ϕB(x) for all x ∈ C. We can identify A ∪C B with 
(A \ ϕA(C)) � C � (B \ ϕB(C)), A with (A \ ϕA(C)) � C and B with (B \ ϕB(C)) � C, 
so that A ∪C B contains both A and B, and A ∩B = C with these identifications. Then 
A ∪C B has a natural pregroup structure with domain

D := { (x, y) ∈ (A ∪C B) × (A ∪C B) | x, y ∈ A or x, y ∈ B }

and the obvious operations. In this way it can be seen as a subset of the amalgamated 
product A ∗C B (see (1) in Examples 3.5 for a definition of A ∗C B), and in fact one can 
easily see that U(A ∪C B) = A ∗C B.

The following universal property is a direct consequence of the definition of U(P ).

Proposition 2.9. Let P be a pregroup. The natural map ιP : P → U(P ) is a morphism 
of pregroups, and for any group G together with a pregroup homomorphism α : P → G, 
there exists a unique group homomorphism α : U(P ) → G such that α = α ◦ ιP .

U(P ) ∃! α
G

P

ιP
α

In [18, Theorem 3.A.4.5], Stallings proved that the universal group of a pregroup 
has a solvable word problem for the above presentation. A noteworthy corollary of this 
theorem is that P is injectively embedded in U(P ).

Theorem 2.10 ([18, Corollary 3.A.4.6]). The morphism ιP : P → U(P ) is an injective 
pregroup homomorphism.

Notation 2.11. Let P be a pregroup. In general we identify P with its image under 
ιP : P → U(P ), and for (x1, x2, · · · , xn) ∈ W (P ) we denote by x1x2 · · ·xn its product in 
U(P ).

We also need a weaker version of Stallings’ theorem, which we state below, just after 
defining P -reduced words.

Definition 2.12. A word (x1, x2, · · · , xn) ∈ W (P ) is said to be P -reduced if it is empty 
or for all i ∈ {1, 2, · · · , n − 1}, (xi, xi+1) �∈ D.

Theorem 2.13 ([18, Theorem 3.A.4.5]). Let P be a pregroup and let (x1, x2, · · · , xn) ∈
W (P ) and (y1, y2, · · · , ym) ∈ W (P ) be two P -reduced words. If x1x2 · · ·xn = y1y2 · · · ym
in U(P ), then n = m.
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In particular, for n = 2, this result provides a characterisation of the domain D in 
terms of products in the universal group.

Corollary 2.14. Let (P, D) be a pregroup and x, y ∈ P . Then (x, y) ∈ D if and only if 
xy ∈ P , where the product xy is performed in U(P ).

We also get the following corollary.

Corollary 2.15. Let P be a pregroup and U(P ) be its universal group. Given any subgroup 
H of U(P ), H is a subgroup of P if and only if it is included in P .

2.2. Elements of finite order, finite subgroups and conjugation in the universal group

In this section, (P, D) is a fixed pregroup and U(P ) its universal group. We have a 
look at elements of finite order in the universal group.

Definition 2.16. A cyclic element of P is an element x ∈ P such that 〈x〉 is a subgroup 
of P (and not just of U(P )). In view of Corollary 2.15, this is equivalent to ask for 〈x〉
to be included in P .

Lemma 2.17. Let x be an element of P . Then the following are equivalent:

(1) x is cyclic,
(2) (x, x) ∈ D,
(3) x2 ∈ P .

Proof. Rimlinger already proved this result in [15, Corollary 1.10], but the proof is short 
and is a good first example for using Axiom (Pr4) in a proof involving pregroups, so we 
give it here.

The equivalence between (2) and (3) is a direct application of Corollary 2.14, and the 
fact that (1) implies (3) is trivial. Now we assume (2) and we prove by induction on 
n ∈ N that xn ∈ P . The cases n = 0 and n = 1 are trivial. Let n ≥ 1 and suppose that 
xi ∈ P for all i ∈ {1, · · · , n}. In particular we have (xn−1, x) ∈ D, (x, xn−1) ∈ D by 
induction hypothesis and Corollary 2.14, and (x, x) ∈ D by (2). Applying Axiom (Pr4) to 
the tuple (x, xn−1, x, x), we get (x, xn) ∈ D or (xn, x) ∈ D, and both cases give xn+1 ∈ P

by a final application of Corollary 2.14. This concludes the proof by induction. �
Lemma 2.18. Let x ∈ U(P ) be an element of finite order.

(i) If x ∈ P then x is a cyclic element of P .
(ii) If x �∈ P , then x is conjugate to a cyclic element of P in U(P ).
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Proof. By hypothesis, there exists r ∈ N∗ such that xr = 1 in U(P ). If x ∈ P , then by 
Theorem 2.13, the word (x, x, · · · , x) ∈ P r cannot be P -reduced. Therefore (x, x) ∈ D

and, by Lemma 2.17, x is a cyclic element of P . This proves (i).
Thanks to (i), and since the conjugate of an element of finite order is of finite order, 

it is enough to show that x is conjugate to an element of P to prove (ii).
Let w = (p1, p2, · · · , pn) ∈ W (P ) be a minimal P -reduced word such that y =

p1p2 · · · pn is conjugate to x in U(P ) and assume that n ≥ 2. Then y is also an ele-
ment of finite order so there exists r ∈ N∗ such that yr = 1. This implies that the 
concatenation wr of w with itself r times is not P -reduced. Since w is P -reduced, this 
implies that (pn, p1) ∈ D. Therefore p−1

1 yp1 = p2p3 · · · pnp1 is conjugate to x and is 
the product of the word (p2, p3, · · · , pnp1) which is of length n − 1. This contradicts the 
minimality of w. Hence n = 1, i.e. y ∈ P . �

In particular, this lemma allows us to talk about elements of P of finite order without 
ambiguity.

Lemma 2.19. Let x, g ∈ P . If x is an element of P of finite order, then the following are 
equivalent.

(1) g−1x ∈ P ,
(2) xg ∈ P .

Proof. According to Lemma 2.18, x is cyclic. Assume that g−1x ∈ P but xg �∈ P . We 
have x−1g ∈ P by items (1) and (3) of Lemma 2.2, and (g−1, x), (x, x), (x, x−1g) ∈ D by 
Lemma 2.2. Hence, by (Pr4), since xg �∈ P , g−1x2 ∈ P . Now we proceed by induction 
to prove that g−1xk ∈ P for every k ∈ N. We already proved it for k ≤ 2, so let k ∈ N, 
k ≥ 2 and assume that g−1xk ∈ P . Then we also have x−kg ∈ P by Lemma 2.2, so that 
(g−1, x), (x, xk), (xk, x−kg) ∈ D. Applying Axiom (Pr4), we get g−1xk+1 ∈ P , and this 
concludes the induction. But x is assumed to be of finite order, so x−1 = xk for some 
k ∈ N. Therefore, g−1x−1 ∈ P , so xg ∈ P by item (3) of Lemma 2.2, which contradicts 
the initial assumption.

For the other implication, notice that x−1 is also an element of P of finite order, and 
xg ∈ P if and only if g−1x−1 ∈ P . Thus, applying the previous implication, we get 
x−1g ∈ P , which is equivalent to g−1x ∈ P . �

Now we establish some facts about conjugation in U(P ), beginning with a technical 
lemma.

Lemma 2.20. Let k ∈ N∗, let x be an element of P of finite order, and let (g0, g1, · · · ,
gk−1) ∈ W (P ) be a P -reduced word such that g−1

k−1g
−1
k−2 · · · g−1

0 xg0g1 · · · gk−1 ∈ P . Then 
for every i ∈ {1, 2, · · · , k}, g−1

i−2 · · · g−1
0 xg0g1 · · · gi−2 ∈ P and (g−1

i−1, g
−1
i−2 · · · g−1

0 xg0g1 · · ·
gi−2, gi−1) associates.
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Proof. We proceed by induction on k. For k = 1, let g ∈ P and x be a cyclic element of P
such that gxg−1 ∈ P . In particular, we know that the word (g−1, x, g) is not P -reduced 
thanks to Theorem 2.13. Thus g−1x ∈ P or xg ∈ P , and by Lemma 2.19 this implies 
that g−1x ∈ P and xg ∈ P . Since (g−1x)g is in P , (g−1, x, g) associates.

Now let k ∈ N∗ and assume the result is true for the rank k. Let (g0, g1, · · · , gk) ∈
W (P ) be a P -reduced word, let x be a cyclic element of P and assume that 
g−1
k g−1

k−1 · · · g−1
0 xg0g1 · · · gk ∈ P . In particular, the word (g−1

k , g−1
k−1, · · · , g−1

0 , x, g0, g1,

· · · , gk) is not P -reduced according to Theorem 2.13. Since (g0, g1, · · · , gk) is P -reduced, 
this is also the case of (g−1

k , g−1
k−1, · · · , g−1

0 ), so we have g−1
0 x ∈ P or xg0 ∈ P . By 

Lemma 2.19, they are both in P . Moreover, the word (g−1
k , g−1

k−1, · · · , g−1
1 , g−1

0 x, g0,

g1, · · · , gk) is still not P -reduced. Therefore g−1
1 (g−1

0 x) ∈ P or (g−1
0 x)g0 ∈ P . As-

sume the latter is true, then we can conclude directly using the induction hypothesis, 
because the conjugate of an element of finite order is again of finite order. Else, if 
g−1
1 (g−1

0 x) ∈ P then (g−1
1 , g−1

0 x), (g−1
0 x, x−1), (x−1, xg0) ∈ D and by (Pr4), this implies 

g−1
0 xg0 = (g−1

0 xx−1)xg0 ∈ P or g−1
1 g−1

0 = g−1
1 (g−1

0 xx−1) ∈ P (which is absurd). Thus 
we also get g−1

0 xg0 ∈ P , and we can apply the induction hypothesis, taking g−1
0 xg0 ∈ P

for the element of finite order and (g1, g2, · · · , gk) for the P -reduced word. �

Proposition 2.21. Let x, y ∈ P be two elements of finite order. If x and y are conju-
gate in U(P ) then there exist two finite sequences x =: x0, x1, · · · , xk−1, xk := y and 
g0, g1, · · · , gk−1 of elements of P such that for all i ∈ {1, · · · , k − 1}, (g−1

i , xi, gi) asso-
ciates and g−1

i xigi = xi+1.

Proof. Let g ∈ U(P ) be such that g−1xg = y, and let (g0, g1, · · · , gk−1) ∈ W (P ) be a 
P -reduced word representing g. Then the result follows directly from Lemma 2.20, if we 
define the xi ∈ P inductively by xi+1 := g−1

i xigi. �

Proposition 2.22. Let Q and R be two finite subgroups of P . If Q and R are conjugate in 
U(P ) then there exist a sequence Q0 = Q, Q1, · · · , Qk = R of finite subgroups of P and 
a sequence g0, g1, · · · , gk−1 of elements of P , such that for each i ∈ {1, · · · , k − 1} and 
every x ∈ Qi, (g−1

i , x, gi) associates, and g−1
i Qigi = Qi+1.

Proof. Let g ∈ U(P ) be such that g−1Qg = R, and let (g0, g1, · · · , gk−1) ∈ W (P ) be a 
P -reduced word representing g. Define the subgroups Qi of U(P ) inductively by Q0 := Q

and Qi+1 := g−1
i Qigi, so that Qk = R. Fix i ∈ {0, · · · , k− 1} and xi ∈ Qi. By definition 

of Qi, there exists x0 ∈ Q such that xi = g−1
i−1 · · · g−1

0 x0g0 · · · gi−1, where the products 
are performed in U(P ). Moreover, g−1

k−1 · · · g−1
0 x0g0 · · · gk−1 ∈ R ⊆ P by hypothesis. 

Applying Lemma 2.20, we get in particular that xi ∈ P and (g−1
i , xi, gi) associates. As 

this holds for general xi ∈ Qi, we deduce that Qi ⊆ P , so by Corollary 2.15, Qi is a 
subgroup of P and the proof is complete. �
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2.3. Pregroups are partial groups

Let (P,D) be a pregroup and let U(P ) be its universal group. Consider the following 
subset of W (P ):

DP =
{

(x1, x2, . . . , xn) ∈ W (P )
∣∣ ∀i, j ∈ {1, 2, . . . , n} with i < j, xixi+1 · · ·xj ∈ P

}
(✼)

By repeated applications of Corollary 2.14 and Axiom (Pr3), there exists a well-defined 
map ΠP from DP to P assigning w = (x1, x2, . . . , xn) ∈ DP to

ΠP (w) = x1x2 · · ·xn.

This defines a partial group structure on P , as stated in the following proposition.

Proposition 2.23. Let P be a pregroup. Then 
(
P,DP ,ΠP , (−)−1) is a partial group. This 

construction induces a fully faithful functor PrG → ParG.

Proof. First, let us check the axioms for partial groups. By construction, the domain 
DP satisfies (D1) and (D2). It is also clear by definition that ΠP restricts to identity 
on P . Condition (P2) is a consequence of the fact that ΠP is well-defined by the above 
formula. Finally, the fact that x �→ x−1 is an involutory bijection comes from item (1)
in Lemma 2.2, and (P3) comes from Axiom (Pr2) for pregroups.

Now, if P and Q are two pregroups and ϕ : P → Q is a pregroup homomor-
phism, one has to check that ϕ is in fact a partial group homomorphism between 
the associated partial groups. If (x1, x2, . . . , xn) ∈ DP , we prove by induction on 
j − i that ϕ(xi) · · ·ϕ(xj) ∈ Q and ΠQ

(
ϕ(xi), . . . , ϕ(xj)

)
= ϕ

(
ΠP (xi, . . . , xj)

)
for all 

i, j ∈ {1, 2, . . . , n} such that i < j. For j− i = 1, this is just the fact that ϕ is a pregroup 
homomorphism. For j − i > 1, by induction hypothesis we have

ϕ(xi) · · ·ϕ(xj) = ΠQ

(
ϕ(xi), . . . , ϕ(xj−1)

)
· ϕ(xj) = ϕ

(
ΠP (xi, . . . , xj−1)

)
· ϕ(xj) .

Since ΠP (xi, . . . , xj−1) · xj = xi · · ·xj ∈ P , applying the definition of pregroup homo-
morphism for ϕ, we deduce from the above that ϕ(xi) · · ·ϕ(xj) ∈ Q and

ΠQ

(
ϕ(xi), . . . , ϕ(xj)

)
= ϕ(xi) · · ·ϕ(xj) = ϕ

(
ΠP (xi, . . . , xj−1)

)
· ϕ(xj)

= ϕ
(
ΠP (xi, . . . , xj−1) · xj

)
= ϕ

(
ΠP (xi, . . . , xj)

)
.

Hence we get a functor PrG → ParG, and it only remains to check that it is full and 
faithful. The faithfulness is obvious, since the underlying set map of a pregroup homo-
morphism is the same as that of the associated partial group homomorphism. Finally, 
the axioms for pregroup homomorphisms are just restrictions of those for partial group 
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homomorphisms (applying them only for couples of elements in the domain), so that any 
partial group homomorphism between pregroups is clearly a pregroup homomorphism. 
This gives the fullness. �

Example 2.24. Let A, B, C be as in Example 2.8 and P = A ∪C B be the pregroup 
constructed in that example. Considering the underlying set of P as a subset of A ∗C B, 
we then have DP = W (A) ∪W (B).

Going back to the simplicial point of view on partial groups, this reveals a relation 
between the universal group of a pregroup and the fundamental group of the classifying 
space of the associated partial group.

Corollary 2.25. Let P be a pregroup and let P denote its image under the embedding 
PrG → ParG. Then, π1(BP) ∼= U(P ).

Proof. Through the embedding of Proposition 2.23, the universal property satisfied 
by U(P ) (Proposition 2.9) becomes exactly the one satisfied by π1(BP) (Proposi-
tion 1.14). �

Actually, the simplicial set P induced by a pregroup P with construction (✼) was 
already considered by Stallings in [19, Section 2] where the whole point of the paper is 
to prove that BP has the homotopy type of a K(U(P ), 1).

Remark 2.26. One may wonder whether this construction of a partial group from a 
pregroup could be reciprocal: if we restrict the domain of a given partial group to words 
of length two, do we actually get a pregroup? The answer is “no” in general: the Axioms 
(Pr3) and (Pr4) have no reason to be satisfied in a general partial group. Let us give an 
example of a partial group which does not satisfy Axiom (Pr4). Consider three copies A1, 
A2 and B of the dihedral group of order 8. Denote V1 and V2 the two copies of the Klein 
four-group contained in B, and consider injective group homomorphisms ρ1 : V1 → A1

and ρ2 : V2 → A2. Define the set M to be A1 ∪V1 B ∪V2 A2, i.e. the set A1 � B � A2

quotiented by the equivalence relation associating x to ρ1(x) for all x ∈ V1 and y to 
ρ2(y) for all y ∈ V2. Then A1, A2 and B naturally embed in M and we can define 
the domain D of M to be W (A1) ∪W (B) ∪W (A2). One can check that this defines a 
partial group, the product being given by the multiplication in each group. Now take r1
(resp. r2) an element of order 4 in A1 (resp. A2), and take s1 (resp. s2) an element of 
order 2 in V1 (resp. V2) which does not lie in the centre of B, so that s1s2 is of order 4
in B. If we consider those elements as elements of M, we have that (r1, s1) ∈ W (A1), 
(s1, s2) ∈ W (B) and (s2, r2) ∈ W (A2), but neither (r1, s1s2) nor (s1s2, r2) belongs to 
D, so Axiom (Pr4) does not hold in M.
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Now, we give two examples of localities (cf. Definition 1.12). The first example is 
actually a pregroup, but the second one is not, so that it provides another example of a 
partial group which is not a pregroup.

Example 2.27. Let G = GL3(F2) and let S ≤ G be the subgroup of upper-triangular 
matrices with diagonal coefficients equal to 1. Then S is a 2-subgroup of G isomorphic 
to the dihedral group of order 8. As such, it contains three subgroups of order 4: two 
of them, that we denote by V and V ′, are isomorphic to C2 × C2, and the last one is 
cyclic and denoted by C. Set Δ = {C, V, V ′, S} and L = {g ∈ G | ∃Q ∈ Δ, Qg ∈ Δ}. 
Then one can check that, taking DΔ to be the domain (cf. Definition 1.10), (L, Δ, S) is 
a locality. Also, the subgroups V and V ′ are not conjugate in G and thus not in L, and 
both are clearly not conjugate to C. Moreover, NG(V ) ∩NG(V ′) = S = NG(C). Hence 
one gets that DΔ = W (NG(V )) ∪W (NG(V ′)), so, by Example 2.24, L is obtained as in 
Example 2.8, i.e. L = NG(V ) ∪S NG(V ′).

Example 2.28. Let T be the linking system associated to one of the Solomon fusion 
systems and constructed in [9, Proposition 3.3] for which it is known that the fundamental 
group of the geometric realisation is trivial [6, Theorem A]. The associated locality L
(through the correspondence highlighted by Chermak in [4, Appendix A]) also satisfies 
that π1(BL) is trivial thanks to [7, Theorem A.5]. Hence if L were a pregroup (under the 
embedding PrG → ParG), then by Corollary 2.25, U(L) ∼= π1(BL) would be trivial, 
and thus L would be too by Theorem 2.10. However, L is clearly non trivial, so L is not 
a pregroup.

3. Graphs of groups

In this section we review some notions about graphs of groups, then we state finite 
versions of Rimlinger’s results concerning the link between fundamental groups of graphs 
of groups and universal groups of pregroups.

3.1. Graphs of groups and their fundamental group

Definition 3.1. A graph Y = (V, E) is given by

(i) a set V of vertices,
(ii) a set E of edges,

(iii) two maps ι : E → V and τ : E → V mapping each edge e to its initial vertex and 
terminal vertex respectively,

(iv) a fixed point-free involution of the edges, denoted e �→ e, such that for all e ∈ E, 
ι(e) = τ(e).
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A graph is said to be connected if for every x, y ∈ V there exist edges e0, e1, · · · , en such 
that ι(e0) = x, τ(en) = y and for all i ∈ {0, 1, · · · , n − 1}, τ(ei) = ι(ei+1). A pair {e, e}
is called a geometric edge of the graph.

Definition 3.2. A graph of groups (G, Y ) consists of a connected graph Y = (V, E), a 
family G =

(
(Gv)v∈V , (Ge)e∈E

)
of groups composed of a group Gv for every vertex 

v ∈ V and a group Ge for every edge e ∈ E, together with a family of monomorphisms 
(Ge → Gτ(e), g �→ ge)e∈E such that for each e ∈ E, Ge = Ge. The Gv and Ge are called 
vertex groups and edge groups respectively, and the maps g �→ ge and g �→ ge are called 
the edge maps. Thus there is one edge group and two edge maps for each geometric edge.

To every graph of group, we can associate a particular group called its fundamental 
group.

Definition 3.3. Let (G, Y ) be a graph of groups, with Y = (V, E), and let T = (V, E′)
be a maximal tree in Y . The fundamental group of (G, Y ) is the group generated by the 
vertex groups Gv for v ∈ V and by the edges e ∈ E, subject to the following relations:

• e−1 = e for each e ∈ E,
• eaee−1 = ae for each e ∈ E and each a ∈ Ge,
• e = 1 for each e ∈ E′.

We speak about “the” fundamental group of (G, Y ) and not about the fundamental 
group of (G, Y ) with respect to the tree T because it is in fact independent of the choice 
of T . This result is a direct consequence of [17, I, Proposition 20].

Proposition 3.4. The fundamental group of a graph of groups (G, Y ), as defined above, 
does not depend on the choice of the maximal tree in Y .

Several classical constructions in combinatorial group theory arise as fundamental 
groups of particular graphs of groups. Let us mention two of them.

Examples 3.5. (1) Let A and B be two groups, and consider a third group C with 
two monomorphisms ϕ : C → A and ψ : C → B. This forms a graph of groups whose 
underlying graph has two vertices with one geometric edge between them, the vertex 
groups being A and B, and the edge group being C with edge maps ϕ and ψ (see Fig. 3.1). 
Then the fundamental group of this graph of groups is the amalgamated product of A
and B over C (or the free product of A and B amalgamating C), denoted A ∗C B. It 
equals (A ∗ B)/N , where N is the normal subgroup of A ∗ B generated by all relations 
of the form ϕ(c)ψ(c)−1 for c ∈ C.

(2) Let G be a group, H a subgroup of G, and let α : H → G be a group monomor-
phism. We construct a graph of groups by taking only one vertex, with vertex group G, 
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A B
C

Fig. 3.1. A graph of groups whose fundamental group is A ∗C B.

G

H

Fig. 3.2. A graph of groups whose fundamental group is G∗α.

and one geometric edge, with edge group H (see Fig. 3.2). We take α and the inclusion 
H ↪→ G as edge maps. The fundamental group of this graph of groups is the HNN exten-
sion of G by α, denoted G∗α. It is the group (G ∗Z)/N where N is the normal subgroup 
generated by all relations of the form tht−1α(h)−1 for h ∈ H, t being a fixed generator 
of Z called the stable letter of the HNN extension.

It is well-known (cf. [17, I, Theorem 8]) that any finite subgroup of the amalgamated 
product A ∗C B is conjugate to a subgroup of A or B. It is in fact a general property of 
fundamental groups of graphs of groups.

Proposition 3.6 ([8, Corollary 28]). Every finite subgroup of the fundamental group of a 
graph of groups is conjugate to a subgroup of a vertex group.

Remark 3.7. The article [8], which is our reference for the above proposition, works 
with a topological definition for the fundamental group of a graph of groups, which is 
apparently different from ours. However both definitions lead to isomorphic groups, as 
can be seen using [10, Proposition 3.2]. In a nutshell: the topological approach defines the 
fundamental group of a given graph of groups (G, Y ) as the π1 of the homotopy colimit 
of the graph of spaces obtained by application of the classifying-space functor B(−) on 
(G, Y ). Proposition 3.2 in [10] then tells us that this homotopy colimit is homeomorphic 
to the classifying space of the fundamental group as defined in Definition 3.3. Taking the 
π1 on both sides gives us the desired isomorphism.

3.2. Graphs of groups and universal groups of pregroups

In [15], Rimlinger makes an extensive study of the relations between pregroups and 
graphs of groups. In fact, he proved that universal groups of pregroups and fundamental 
groups of graphs of groups are closely related constructions: the universal group of a 
pregroup P is, under one technical condition on P (that of being of finite height1 - which 
strictly includes finite pregroups), the fundamental group of a particular graph of groups 

1 The definition of pregroups of finite height is stated in [15, Section 2, Definition 15] and is slightly out 
of scope for our paper.
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constructed from P . Reciprocally, the fundamental group of a graph of groups G is, under 
some conditions on G, the universal group of a particular pregroup constructed from G. 
For our purpose, we only need these results for finite pregroups and finite graphs of finite 
groups, so we state them in this particular case.

Theorem 3.8 (cf. [15, Theorem A]). Let P be a finite pregroup. We denote U(P ) its 
universal group. Then there exists a finite graph of finite groups G whose edge groups are 
subgroups of P and whose fundamental group is isomorphic to U(P ).

From Theorem 3.8 and Proposition 3.6, we deduce the following result.

Corollary 3.9. Let P be a finite pregroup and U(P ) its universal group. Then every finite 
subgroup of U(P ) is conjugate to a subgroup of P .

For the converse of Theorem 3.8, apart from being finite, we need another condition 
on the graph of groups.

Definition 3.10. Let (G, Y ) be a graph of groups. We say that (G, Y ) is proper if none of 
its edge maps are surjective.

Theorem 3.11 (cf. [15, Theorem B]). Let (G, Y ) be a finite graph of finite groups which 
is proper. Then there exists a finite pregroup Q whose universal group is isomorphic to 
the fundamental group of (G, Y ).

Remark 3.12. As the statement of Theorem B in [15] does not explicitly give this infor-
mation, the careful reader is entitled to ask how we can see that the pregroup is finite 
whenever (G, Y ) is a finite graph of finite groups. Let us give some elements of exegesis 
of Rimlinger’s proof to reassure our reader. Here we refer only to [15] and stick to its 
notations (exept that we denoted our graph of groups (G, Y ) instead of (H, Y )). The 
pregroup Q constructed for Theorem B is defined in Definition 7.13 as the preimage in 
F (G, Y ) of a finite set of paths in Y (in bijection with the disjoint union of the set of ver-
tices and the set of edges outside a maximal subtree) under a certain map also denoted 
Y . For our explanation, one only needs to know that F (G, Y ) is the universal group of a 
pregroup P (Theorem 7.7) which is the quotient under a certain equivalence relation of 
the pregroup P ′ defined at the beginning of Chapter 7. In the case where (G, Y ) is a finite 
graph of finite groups, the definition of the pregroup P ′ clearly implies that it is finite 
(hence P is finite too). Moreover Y is a map defined on P ′ which is compatible with the 
quotient P ′ → P , and extends to words in P ′ via (x1, · · · , xn) �→

(
Y (x1), · · · , Y (xn)

)
. 

By Lemma 7.9, the map Y is well-defined on F (G, Y ) considering its value on P -reduced 
representative P -words. Now, given a fixed path (y1, · · · , yn), for each i ∈ {1, · · · , n}
there exists only a finite number of xi ∈ P such that Y (xi) = yi because P is finite. 
Thus there exists only a finite number of (P -reduced) P -words (x1, · · · , xn) such that 
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Y (x1, · · · , xn) = (y1, · · · , yn). As Q is defined to be the preimage of a finite set of paths 
under Y , we can conclude that Q is finite.

4. Fusion systems and realisability

4.1. Definitions and examples

Let p be a fixed prime number. A fusion system over a finite p-group S is a way to 
abstract the action of a group G containing S on the subgroups of S by conjugation. 
Given a group G and an element g ∈ G, we denote by cg the homomorphism G → G, x �→
g−1xg (this is consistent with Notation 1.7). Our convention for the composition of two 
maps f : X → Y and f ′ : Y → Z is to denote it by f ′ ◦ f , so that cg1 ◦ cg2 equals cg2g1 . 
For H, K two subgroups of G, HomG(H, K) denotes the set of all group homomorphisms 
cg, for g ∈ G such that cg(H) ≤ K. Finally, Sylp(G) denotes the collection of all Sylow 
p-subgroups of G.

Definition 4.1 ([3]). Let S be a finite p-group. A fusion system over S is a small category 
F whose object set Obj(F) is the set of all subgroups of S and whose morphism sets 
MorF (P, Q), for P, Q ≤ S, satisfy the following two properties:

(F1) HomS(P, Q) ⊆ MorF (P, Q) ⊆ Inj(P, Q);
(F2) each ϕ ∈ MorF (P, Q) is the composite of an F-isomorphism followed by an inclu-

sion.

The composition law in a fusion system is given by composition of group homomor-
phisms. We usually write HomF (P, Q) := MorF (P, Q) to emphasise the fact that the 
morphisms in F are group homomorphisms.

Remarks 4.2.

(1) Over a fixed p-group S, there is a minimal fusion system. Its morphism sets are the 
HomS(P, Q), for P, Q ≤ S. It is called the inner fusion system of S and denoted 
FS(S). There is also a maximal fusion system over S, with morphism sets equal to 
Inj(P, Q) for P, Q ≤ S.

(2) The intersection of two (or more) fusion systems over the same p-group S is obtained 
by taking the intersection of the morphism sets for each fusion system. This forms 
again a fusion system. Thus it makes sense to talk about the fusion system over S
generated by a certain family of injective group homomorphisms between subgroups 
of S.
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The typical example of a fusion system is the fusion system of a finite group G over 
one of its Sylow p-subgroups, but we can define more generally the fusion system of any 
group over one of its p-subgroups.

Example 4.3. Let S be a finite p-group, and let G be a group containing S. The fusion 
system of G over S is the category FS(G) where Obj(FS(G)) is the set of all subgroups 
of S and MorFS(G)(P, Q) = HomG(P, Q) for all P, Q ≤ S. One can easily check that the 
category FS(G) defines a fusion system over S.

In fact we can generalise even further, considering the fusion system of a partial group 
over one of its p-subgroups. The definition we propose below thus generalises both the 
previous construction and Chermak’s definition of the fusion system of a locality. We 
use Notation 1.7.

Definition 4.4. Let M be a partial group and let S be a p-subgroup of M. We define the 
fusion system of M over S, denoted FS(M), to be the fusion system over S generated by 
conjugation maps cg : Q → Qg, whenever g ∈ M is such that Q ⊆ D(g), Qg is a subgroup 
of S and cg : Q → Qg is a group homomorphism. For FS(M) to be well-defined, one 
only needs to check that cg is injective, which is already known from Lemma 1.8.

As a particular case, we recover the fusion system of a locality, which was introduced 
by Chermak in [4, Remark 2.8. (2)]. Notice that if M = L is a locality associated to S, 
whenever cg : Q → S is defined, then Qg is a subgroup of S and cg is a group homomor-
phism (cf. [5, Proposition 2.6]). Hence, morphisms in FS(L) are then just compositions 
of restrictions of conjugation maps cg (for g ∈ L) between subgroups of S. This does not 
seem to be the case in general partial groups.

The fusion system of a locality, as well as the fusion system of a finite group over one of 
its Sylow p-subgroups, belong to the important family of saturated fusion systems. This 
notion will not be discussed here (see for example [1, I, Definition 2.2] for a definition), 
but the idea is that F “behaves” like FS(G) when S is a Sylow p-subgroup of a finite 
group G. In the literature, when a saturated fusion system is isomorphic to a fusion 
system of the form FS(G) for G a finite group and S ∈ Sylp(G), the fusion system is said 
to be realisable (it is called exotic otherwise). In the following we enlarge this notion, 
discussing about the “realisability” of general fusion systems in some subclass of the 
class of partial groups. First, we need to define a notion of Sylow p-subgroups for partial 
groups.

Definition 4.5. Let M be a partial group and let S be a p-subgroup of M. We say that 
S is a Sylow p-subgroup of M if for every p-subgroup P of M there exists a sequence 
(g1, · · · , gr) of elements of M and a sequence (P0, · · · , Pr) of p-subgroups of M such 
that:

• P0 = P ;
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• for each i ∈ {1, · · · , r}, Pi ⊆ D(gi), cgi : Pi → Pi
gi is a group homomorphism, and 

Pi
gi = Pi+1;

• Pr ≤ S.

Remarks 4.6.

(1) A Sylow p-subgroup of M, if it exists, is a p-subgroup of maximal order. However 
it could happen that S is a p-subgroup of maximal order in M but not a Sylow p-
subgroup. For example, if we consider the pregroup P = A ∪C B as in Example 2.8, 
with A = C2, B = C4 and C = 1, then B is a 2-subgroup of P of maximal order but 
the 2-subgroup A is not conjugate to any subgroup of B because the only conjugation 
maps in P defined on A are conjugation by elements in A.

(2) If M is a group, this definition is equivalent to asking that any p-subgroup of M is 
conjugate in M to some subgroup of S. In particular when M is a finite group, we 
recover the classical definition of Sylow p-subgroup, by the Sylow theorems.

(3) If M = L is a locality, Chermak (see [5, Definition 2.16]) also gave a definition of a 
Sylow p-subgroup S, which asks for the existence of a set Δ of subgroups of S such 
that (L, Δ, S) is again a locality. Our definition is a priori broader, as when (L, Δ, S)
is a locality, every p-subgroup of L is conjugate to a subgroup of S by [5, Proposition 
2.11.(c)].

Definition 4.7. Let C be a subclass of the class of partial groups. Given a fusion system 
F over a finite p-group S, we say that F is realisable in C if there exists an object X
in C, containing S as a Sylow p-subgroup, such that F is isomorphic to FS(X). We say 
that F is weakly realisable in C if there exists an object X in C containing S such that 
F is isomorphic to FS(X).

Of course, this definition is only of interest for some particular classes C. As examples, 
we restate several results from the literature in these terms.

Examples 4.8.

(a) Let C be the class of finite groups. If we consider the property of being realisable in 
C for saturated fusion systems, we recover the classical use of the terminology. As 
we already mentioned, saturated fusion systems which are not realisable in C are the 
so-called exotic fusion systems. Moreover, in [14, Theorem 1.1], Park proved that 
any fusion system is weakly realisable in C.

(b) Let C be the class of localities. In [4, Main theorem], Chermak proved that any 
saturated fusion system is realisable in C. In this case, the Sylow p-subgroup of the 
locality is even a Sylow p-subgroup in the sense of Chermak (see (3) in Remarks 4.6
above).
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(c) Let C be the class of (not necessarily finite) groups. Leary and Stancu, in [8, Theorem 
2], proved that any fusion system is realisable in C. Independently at the same time, 
Robinson (in [16, Theorem 2]), using a different construction, also proved that a 
large class of fusion systems (including saturated fusion systems) is realisable in C.

(d) Let C = PrG be the class of finite pregroups. In the following subsection we prove 
that any fusion system is realisable in C.

Finally, we need the notion of morphism of fusion systems.

Definition 4.9. Let F and F ′ be two fusion systems over finite p-groups S and S′ re-
spectively. A morphism of fusion systems from F to F ′ is a group homomorphism 
α0 : S → S′ together with a covariant functor α : F → F ′, so that α(P ) = α0(P )
and 

(
α(ϕ) ◦ α0

)
(u) = (α0 ◦ ϕ)(u) for any P ≤ S, any ϕ : P → S in F and any u ∈ P .

Fusion systems, together with morphisms of fusion systems and the usual composition 
of both group homomorphism and functors, form a category. In particular, we are usually 
interested in fusion systems up to isomorphism in this category.

Lemma 4.10. Let G be a group, let S be a p-subgroup of G. For any g ∈ G, the fusion 
systems FS(G) and FSg (G) are isomorphic.

Proof. Consider the group homomorphism cg : S → Sg and the functor cg∗ : FS(G) →
FSg (G) defined on subgroups of S by P �→ P g. The action of cg∗ on a morphism 
ϕ : P → Q in FS(G) is given by

cg
∗(ϕ) = cg ◦ ϕ ◦ c−1

g : P g −→ Qg .

This clearly defines a morphism of fusion systems between FS(G) and FSg (G). Moreover, 
cg−1 : Sg → S is the inverse of cg and one can check that cg−1

∗ is an inverse for cg∗, so 
this morphism of fusion systems is an isomorphism. �
4.2. Realisability of fusion systems in finite pregroups

As we proved in Proposition 2.23, pregroups are particular instances of partial groups. 
Thus, we can construct the fusion system of a pregroup over one of its (Sylow) p-
subgroups and ask if any fusion system can be obtained in this way, i.e. if any fusion 
system is realisable in the class of finite pregroups.

First, considering a pregroup (P, D) as a partial group through the embedding of 
Proposition 2.23 and using Notation 1.7, it is straightforward to check that if g ∈ P we 
have

D(g) = {x ∈ P | (g−1, x), (x, g) ∈ D and (g−1x, g) ∈ D}
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= {x ∈ P | (g−1, x), (x, g) ∈ D and (g−1, xg) ∈ D} thanks to Axiom (Pr3)

= {x ∈ P | (g−1, x, g) associates} .

The following lemma shows that conjugation maps are always group homomorphisms 
in the context of pregroups.

Lemma 4.11. Let (P, D) be a pregroup. Let g ∈ P and let Q be a subgroup of P such 
that Q ⊆ D(g). We denote Qg the image of Q by cg as in Notation 1.7. Then Qg is 
a subgroup of P , contained in D(g−1), and cg : Q → Qg is a group isomorphism whose 
inverse is cg−1 : Qg → Q.

Proof. It is enough to prove 1P ∈ Qg, Qg × Qg ⊆ D and that Qg is a group for the 
operations induced by those of P to conclude that it is a subgroup of P . As 1P ∈ Q and 
g−11P g = 1P , it is clear that 1P ∈ Qg. Moreover, the fact that Qg is stable under (−)−1

comes from items (1) and (3) in Lemma 2.2.
Now let x1, x2 ∈ Q, hence (x1, x2) ∈ D and x1x2 ∈ Q. We want to prove that 

(xg
1, x

g
2) ∈ D and xg

1x
g
2 ∈ Qg. On the one hand we have (g−1x1, g), (g−1, x2g) ∈ D, so by 

item (4) in Lemma 2.2 we have the following equivalence:

(xg
1, x

g
2) ∈ D ⇐⇒ (g−1x1, x2g) ∈ D

On the other hand, using x1x2 ∈ Q and two applications of Axiom (Pr3), we know that

(g−1, (x1x2)g) ∈ D ⇐⇒ (g−1, x1(x2g)) ∈ D ⇐⇒ (g−1x1, x2g) ∈ D .

Thus (xg
1, x

g
2) ∈ D, and repeated use of Axiom (Pr3) gives

(xg
1)(x

g
2) = g−1(x1x2)g ∈ Qg.

The above equality also tells us that cg : Q → Qg is a group homomorphism. The rest of 
the proof is just Lemma 1.8. �
Remark 4.12. If P be a pregroup and S is a p-subgroup of P , then the morphisms of 
the fusion system FS(P ), as defined in Definition 4.4, are precisely the maps Q → R

between subgroups of S which are composition of restrictions of conjugation maps cg for 
g ∈ P .

Now we can prove that the fusion system of a finite pregroup P and that of its 
universal group U(P ), over the same Sylow p-subgroup S, coincide.

Theorem 4.13. Let P be a finite pregroup and S be a finite p-group. Then S embeds as 
a Sylow p-subgroup of P if and only if it embeds as a Sylow p-subgroup of U(P ), and in 
this case we have FS

(
U(P )

)
= FS(P ).



N. Lemoine, R. Molinier / Journal of Algebra 659 (2024) 859–901 885
Proof. We identify P with its image through the canonical embedding P ↪→ U(P ). 
It is clear that any Sylow p-subgroup S of P is a p-subgroup of U(P ). According to 
Corollary 3.9, any p-subgroup Q of U(P ) is conjugate to a p-subgroup R of P and hence 
there exists a sequence Q = Q0, R = Q1, Q2, · · · , Qr of subgroups of U(P ) such that 
each Qi+1 is conjugate (in U(P )) to Qi and Qr ≤ S. So S is in fact a Sylow p-subgroup 
of U(P ).

Reciprocally, if S is a Sylow p-subgroup of U(P ), then by Corollary 3.9 it embeds in 
P via a conjugation morphism cg, with g ∈ U(P ). Then any p-subgroup of P being a 
p-subgroup of U(P ), it is conjugate to a subgroup of S, and hence conjugate in U(P ) to 
a subgroup of Sg. We then deduce what we need from Proposition 2.22, so that Sg is a 
Sylow p-subgroup of P .

By Lemma 4.10, the fusion systems FS

(
U(P )

)
and FSg

(
U(P )

)
are isomorphic for 

all g ∈ G. We can thus assume that S is a Sylow p-subgroup of P . The fusion system 
FS

(
U(P )

)
clearly contains all the morphisms in FS(P ). Since FS

(
U(P )

)
is generated by 

conjugation maps cg : Q → R with g ∈ U(P ) and Q, R ≤ S, it is enough to prove that any 
such morphism belongs to FS(P ). We can assume that R = cg(Q). Now Proposition 2.22
precisely tells us that cg is equal to some composition of conjugation maps cgi defined 
between subgroups of S, with gi ∈ P for each i. In other words, cg belongs to FS(P ), 
which concludes the proof. �

Combining this theorem with the second theorem of Rimlinger, we get the following 
result.

Corollary 4.14. Let F be a fusion system over a finite p-group S, and let G be the fun-
damental group of a proper finite graph of finite groups. If S embeds into G as a Sylow 
p-subgroup and if FS(G) = F , then there exists a finite pregroup P whose universal group 
is G, which contains S as a Sylow p-subgroup and satisfies FS(P ) = F .

Proof. According to Theorem 3.11, there exists a finite pregroup P whose universal 
group is isomorphic to G. Then Theorem 4.13 directly provides the desired result. �

With this corollary, we get some hints on where to look for finite pregroups realising 
particular fusion systems: if we can realise a given fusion system with the fundamental 
group of a proper finite graph of finite groups, then this group contains a finite pregroup 
realising our fusion system. In practice, it seems that we could often circumvent the 
“proper” hypothesis in Corollary 4.14, using some “p′ trick”. For example, we can slightly 
modify the result of Leary and Stancu [8, Theorem 2], as detailed below, in order to be 
able to apply Corollary 4.14 and deduce that every fusion system F over a finite p-group 
S is the fusion system of a finite pregroup containing S as a Sylow p-subgroup.

Theorem 4.15 (cf. [8, Theorem 2]). Let F be a fusion system over a finite p-group S. 
Assume that F is generated by Φ = {Φ1, · · · , Φr}, where each Φi is an injective group 
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S × U

. . .

P1

P2

P3

P4

Pr

Fig. 4.1. A graph of groups whose fundamental group is the group G in Theorem 4.15.

homomorphism Pi → Qi between subgroups of S. Let U be any finite group whose order 
is prime to p. Let G be the iterated HNN-extension 

(
· · ·

(
(S×U) ∗Φ1

)
∗Φ2 · · ·

)
∗Φr

. Then 
S embeds as a Sylow p-subgroup of G, and FS(G) = F .

The group G in Theorem 4.15 above is the fundamental group of the graph of groups 
in Fig. 4.1, where for each i ∈ {1, · · · , r}, the two edge maps Pi → S×U are Φi and the 
inclusion Pi ↪→ S, both post-composed with the inclusion S ↪→ S × U .

Proof (sketch). Most of the proof of [8, Theorem 2] remains valid mutatis mutandi if 
we replace S with S × U . Let us just mention the two small arguments that need to be 
added. First, any finite p-subgroup of G being conjugate to a subgroup of S × U , it is 
in fact conjugate to a subgroup of S because |U | is prime to p, so FS(G) remains well-
defined. Secondly, when one takes an element g ∈ G which conjugates two subgroups of 
S, the proof of [8, Theorem 2] tells us that cg is a composition of morphisms of the form 
Φi or Φ−1

i for some i ∈ {1, · · · , r} and of conjugation morphisms ct for some t ∈ S × U , 
defined between subgroups of S × U . But in fact, since we start with a subgroup of S, 
we must arrive on a p-subgroup of S×U (i.e. a subgroup of S) at each composition step. 
Moreover, conjugation by an element of S × U between subgroups of S is nothing but 
conjugation by an element of S, because U commutes with S. Thus, cg can be expressed 
as a composition of morphisms of the form Φi or Φ−1

i for some i ∈ {1, · · · , r} and of 
conjugation morphisms cs for some s ∈ S, all defined between subgroups of S. In other 
words, cg belongs to F . �

This provides a proof for Theorem 0.4, but it is rather indirect since it makes use of 
Theorem 3.11. In fact, we can be more constructive by explicitly describing a pregroup 
P whose universal group is the group given in [8, Theorem 2]. This is the point of the 
first example in Section 5.

5. Examples of pregroups realising fusion systems

In this section, we detail two constructions of pregroups realising fusion systems, 
according to Theorem 4.13. The first construction leads to a pregroup whose universal 
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group is the “Leary-Stancu group” given in [8, Theorem 2]. The second construction 
similarly leads to a pregroup whose universal group is the “Robinson group” used in [16, 
Theorem 2].

5.1. A pregroup for the Leary-Stancu group

Let F be any fusion system over a finite p-group S. Assume that F is generated 
by a certain family of morphisms {φ1, · · · , φr}, where each φi is a group isomorphism 
Pi → Qi, with Pi, Qi ≤ S. We associate a symbol ti to each φi, i ∈ {1, · · · , r}, and we 
take the free product F of S with the free group generated by {t1, · · · , tr}. The Leary-
Stancu group G is the quotient of F by the normal closure of the elements ti−1utiφi(u)−1, 
where i ∈ {1, · · · , r} and u ∈ Pi. The elements ti ∈ G will sometimes be referred to as 
the stable letters of G.

5.1.1. Constructing the pregroup
Informally, we consider the subset P of G formed by the elements s ∈ S ≤ G and all 

the elements of the form atia′ or bt−1
i b′, with a, a′, b, b′ ∈ S and i ∈ {1, · · · , r}. A pair 

(x, y) ∈ P × P belongs to the domain D if and only if the product xy in G belongs to 
P , and we define the inverse and multiplication in P as it is in G.

More formally, for each i ∈ {1, · · · , r}, we fix a system Ai (resp. Bi) of representatives 
of right cosets for Qi (resp. Pi) in S. Then we define P as the following set of symbols 
(not as a subset of G):

P := S � { atia
′ , bt−1

i b′ | i ∈ {1, · · · , r}, a, b ∈ S, a′ ∈ Ai, b′ ∈ Bi }

We define D to be the subset of P × P formed by all the pairs (x, y) listed below. 
The possible values for parameters in x and y (regarding the above parametrisation) are 
specified only when some values are not included. We also precise the value of m(x, y)
in each case.

➢ (s, s′), with product m(s, s′) = ss′;
➢ (s, atia′), with product m(s, atia′) = (sa)tia′;
➢ (s, bt−1

i b′), with product m(s, bt−1
i b′) = (sb)t−1

i b′;
➢ (atia′, s), with product m(atia′, s) = ati(a′s), which is rewritten (au)tia′′, for u ∈ Pi

and a′′ ∈ Ai satisfying φi(u)a′′ = a′s;
➢ (bt−1

i b′, s), with product m(bt−1
i b′, s) = bt−1

i (b′s), which is rewritten (bv)t−1
i b′′, for 

v ∈ Qi and b′′ ∈ Bi satisfying φ−1
i (v)b′′ = b′s;

➢ (atia′, bt−1
i b′) if and only if a′b ∈ Qi, with product m(atia′, bt−1

i b′) = aφ−1
i (a′b)b′;

➢ (bt−1
i b′, atia′) if and only if b′a ∈ Pi, with product m(bt−1

i b′, atia′) = bφi(b′a)a′.

The inverse operation x �→ x−1 is defined on P in the following way:
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➼ (s)−1 = s−1 ∈ S;
➼ (atia′)−1 = a′ −1t−1

i a−1, which is rewritten (a′ −1v)t−1
i b′, for v ∈ Qi and b′ ∈ Bi

satisfying φ−1
i (v)b′ = a−1;

➼ (bt−1
i b′)−1 = b′ −1tib

−1, which is rewritten (b′ −1u)tia′, for h ∈ Pi and a′ ∈ Ai satisfy-
ing φi(u)a′ = b−1.

In the following, we include some implicit hypotheses in our notations. First, unless 
specified, any letter x appearing as a subscript in tx, t−1

x , Px, Qx, Ax or Bx signifies 
that x is an integer belonging to {1, · · · , r}. When dealing with elements of P , the letter 
s (or one of its variants such as s′ or sj for j ∈ N) stands for an element of S seen as 
a subset of P . Similarly, denoting an element of P by xtiy (where x and y are some 
letters) implicitly means that x and y are elements of S such that y ∈ Ai, and denoting 
an element of P by xt−1

i y (where x and y are some letters) implicitly means that x and 
y are elements of S such that y ∈ Bi.

5.1.2. Inclusion of P in G
The chosen parametrisation allows to embed P in G just by sending the elements s, 

atia
′ and bt−1

i b′ of P on the corresponding elements of G. To prove that this mapping 
is an inclusion, the easiest way is to use Britton’s Lemma for HNN extensions (see 5.2
below).

Definition 5.1. Let H := U∗α be the HNN extension of a group U relative to an iso-
morphism α : U1 → U2, with U1, U2 ≤ U . We denote t the stable letter. A sequence 
(u0, tε1 , u1, · · · , tεn , un), where n ∈ N, each εj is in {−1, 1} and each uj belongs to U
is said to be reduced if there is no consecutive subsequence of the form (t−1, uj , t) with 
uj ∈ U1, or (t, uj , t−1) with uj ∈ U2.

Proposition 5.2 ([12, Chapter IV, Britton’s Lemma]). With the notations of Def-
inition 5.1, if the sequence (u0, tε1 , u1, · · · , tεn , un) is reduced and n ≥ 1, then 
u0t

ε1u1 · · · tεnun �= 1 in H.

As a consequence, we can get an analogous result for the group G, which can be 
obtained by a succession of HNN extensions from S.

Definition 5.3. A sequence (s0, t
ε1
i1
, s1, · · · , tεnin , sn), where n ∈ N, each εj is in {−1, 1}

and each sj belongs to S, is said to be reduced if it admits no consecutive subsequence 
of the form (t−1

i , sj , ti) with sj ∈ Pi or (ti, sj , t−1
i ) with sj ∈ Qi.

Corollary 5.4. With the notations of Definition 5.3, if the sequence (s0, t
ε1
i1
, s1, · · · , tεnin , sn)

is reduced and n ≥ 1, then s0t
ε1
i1
s1 · · · tεnin sn �= 1 in G.

Proof. First, notice that, in Definition 5.1, for any u ∈ U , (u0, tε1 , u1, · · · , tεn , un)
is reduced if and only if (u−1u0, tε1 , u1, · · · , tεn , un) is reduced. In particular, if 
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u0t
ε1u1 · · · tεnun = u ∈ U , then the sequence (u0, tε1 , u1, · · · , tεn , un) is necessarily not 

reduced by Proposition 5.2. It is this particular formulation of the statement that we 
use in the following proof.

Assume w := (s0, t
ε1
i1
, s1, · · · , tεnin , sn) is a sequence such that s0t

ε1
i1
s1 · · · tεnin sn = 1. Let 

K(0) be the set of all ij for j ∈ {1, · · · , n}. If K(0) is empty, then necessarily n = 0
and we are done. Otherwise, we prove that w is not reduced. Pick k1 ∈ K(0). We can 
see G as an HNN extension of a certain group G(1) relative to φk1 , G(1) being the 
“HNN extension tower” of S relative to φi for every i ∈ {1, · · · , r} \ {k1}. Now we can 
reduce (s0, t

ε1
i1
, s1, · · · , tεnin , sn) to get a word in G(1) and the symbols tk1 , t−1

k1
, and then 

apply Proposition 5.2 in the HNN extension G = G(1)∗φk1
. It implies that there exists 

a subsequence w(1) of w, composed only with elements of S and symbols tk, t−1
k , for 

k ∈ K(0) \ {k1}, whose product belongs either to Pk1 , in which case (t−1
k1

, w(1), tk1) is a 
subsequence of w, or to Qk1 , in which case (tk1 , w

(1), t−1
k1

) is a subsequence of w. Let us 
denote K(1) the subset of K(0) containing the index of the stable letters appearing in 
w(1). The size of K(1) is strictly less than that of K(0).

We prove by induction on j ∈ N∗ that either w is not reduced, or there exists a 
tuple (kj , K(j), w(j)) where kj ∈ K(j−1), K(j) is a proper subset of K(j−1), and w(j) is a 
subsequence of w containing only letters in S or symbols tk, t−1

k with k ∈ K(j), satisfying 
either that the product of w(j) is in Pkj

and (t−1
kj

, w(j), tkj
) is a subsequence of w, or that 

the product of w(j) is in Qkj
and (tkj

, w(j), t−1
kj

) is a subsequence of w.
The case j = 1 is treated above. Now assume we already proved case j ∈ N, and let us 

prove case j +1. If K(j) is empty, we are done because it means that w(j) is just a letter 
in S, either in Pkj

with (t−1
kj

, w(j), tkj
) contained in w, or in Qkj

with (tkj
, w(j), t−1

kj
)

contained in w, and in both cases w is not reduced.
Otherwise, consider any element kj+1 ∈ K(j). We can see G as an HNN extension of 

a certain group G(j+1) relative to φkj+1 , G(j+1) being the “HNN extension tower” of S
relative to φi for every i ∈ {1, · · · , r} \ {kj+1}. Then we can reduce w(j) to get a word in 
G(j+1) and the symbols tkj+1 , t−1

kj+1
, and then apply Proposition 5.2 in the HNN extension 

G = G(j+1)∗φkj+1
to this word, implying that it is not reduced (because the product of 

w(j) belongs to S). Thus there exists a subsequence w(j+1) of w(j), composed only with 
elements of S and symbols tk, t−1

k , for k ∈ K(j) \ {kj+1}, whose product belongs either 
to Pkj+1 , in which case (t−1

kj+1
, w(j+1), tkj+1) is a subsequence of w, or to Qkj+1 , in which 

case (tkj+1 , w
(j+1), t−1

kj+1
) is a subsequence of w. Denoting by K(j+1) the (proper) subset 

of K(j) formed by the index of the stable letters appearing in w(j), this concludes the 
induction.

The size of K(j) strictly decreases as j grows, but those are finite sets, so the process 
has to stop and we necessarily get that w is not reduced. �

Now if s and ctεi c
′ in P satisfy s = ctεi c

′ in G, we can rewrite this equality as 
s−1ctεi c

′ = 1, and Britton’s Lemma to get a contradiction (because (s−1c, tεi , c
′) ob-

viously is a reduced word). It is also clear that two elements of S which are distinct in 
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P can’t be equal in G. Which leaves us with the case where two elements ctεi c′ and dtejd
′

in P are equal in G. This means that ctεi c′d′ −1t−e
j d−1 = 1. We can apply Corollary 5.4

to the word (c, tεi , c′d′ −1, t−e
j , d−1), which implies that necessarily j = i, e = ε and either 

ε = 1 and c′d′ −1 ∈ Qi, or ε = −1 and c′d′ −1 ∈ Pi. In both cases, as we chose c′ and 
d′ to be fixed representatives of right cosets for Qi or Pi in S, we get that c′ = d′. Now 
ctεi c

′d′ −1t−e
j d−1 = 1 becomes cd−1 = 1, so c = d and ctεi c

′ and dtejd
′ are equal in P .

Remark 5.5. Corollary 5.4 can also be used to prove a normal form theorem for “HNN 
extension towers” similar to G.

Thus, there is a natural inclusion of P in G. Moreover, one can check that whenever 
(x, y) ∈ D, the product m(x, y) in P coincides with the multiplication xy in G through 
this inclusion, and the inverses of an element x in P and G also coincide.

5.1.3. Proof that P is a pregroup

Lemma 5.6. For any x, y ∈ P and s ∈ S ⊆ P , we have (s, x) ∈ D, and (x, y) ∈ D if 
and only if (sx, y) ∈ D. Similarly, we have (y, s) ∈ D, and (x, y) ∈ D if and only if 
(x, ys) ∈ D.

Proof. First, D contains all elements of the form (s, x) for x ∈ P and s ∈ S. To prove 
the equivalence (x, y) ∈ D ⇐⇒ (sx, y) ∈ D, as multiplying by an element of S does not 
change the “type” of x (element of S; atia′; or bt−1

i b′), we only have to check a few cases. 
Since the result is clear if x ∈ S or y ∈ S, we can assume that x = atia

′ and y = bt−1
i b′

(or the converse, which is similar). In this case,

(x, y) ∈ D ⇐⇒ a′b ∈ Qi ⇐⇒
(
(sa)tia′, bt−1

i b′
)
∈ D ⇐⇒ (sx, y) ∈ D .

The proof of the other assertion is similar. �
Proposition 5.7. As defined above, (P, D) is a pregroup.

Proof. Axioms (Pr1) and (Pr2) are easily verified. For Axiom (Pr3), we only have to 
check the conditions on D, because the associativity of the product is a consequence of 
the fact that multiplication in P and G coincide for pairs in D. Considering Lemma 5.6, 
we are left with only two main cases to check for Axiom (Pr3). Here, Xi stands for ti or 
t−1
i (and X−1

i stands for the other one).

- If (cXic
′, s) ∈ D and (s, dXjd

′) ∈ D, then we have (cXic
′s, dXjd

′) ∈ D ⇐⇒(
cXic

′, (sd)Xjd
′) ∈ D because the condition (i = j, (Xi)−1 = Xj and c′sd ∈ Pi

or Qi) is the same in both cases.
- If (cXic

′, dX−1
i d′) ∈ D and (dX−1

i d′, eXie
′) ∈ D: the product of each of these pairs 

belongs to S, so everything is defined.
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Finally, for Axiom (Pr4), take (w, x), (x, y), (y, z) ∈ D. If w ∈ S, z ∈ S or 
m(x, y) ∈ S, then the conclusion holds. Otherwise, we necessarily have x ∈ S or y ∈ S, 
so (x, m(y, z)) ∈ D or (m(w, x), y) ∈ D, and Axiom (Pr3) allows to conclude. �
Corollary 5.8. The finite pregroup P has universal group G, the Leary-Stancu group 
associated to F and the family of generators {φ1, · · · , φr}.

Proof. We already proved that P is a pregroup contained in G so that the multiplication 
laws are compatible. In other words, P is included in G via a pregroup homomorphism. 
Moreover, P contains S and the ti for i ∈ {1, · · · , r}, which generate G, so G = U(P )
by Proposition 2.9. �

Thus, applying Theorem 4.13, we get that F is the fusion system of P over S. This 
provides another proof, more constructive, of the fact that every fusion system is real-
isable in the class of finite pregroups (in the sense of Definition 4.7). But in fact, the 
structure of the above-constructed pregroup P implies that we have realisability in a 
stronger sense. Indeed, here S is the only maximal subgroup of P , so every (p-)subgroup 
of P is a subgroup of S. In order to see that S is the only maximal subgroup of P , juste 
notice that any element x of a subgroup P has to be cyclic, i.e. to verify (x, x) ∈ D. 
Considering the definition of the domain D of P , it is then obvious that any such element 
has to belong to S. Hence we get the following corollary.

Corollary 5.9. Every fusion system over a finite p-group S is the fusion system of a finite 
pregroup whose only maximal subgroup is S.

5.1.4. Can P be a locality?
Here we ask whether the finite pregroup P constructed above (or more precisely: the 

underlying partial group of P ) can be a locality over S, for a certain set of objects Δ.
First, let us describe the domain DP of P when it is considered as a partial group. 

We then explain why P is never a locality.

Proposition 5.10. The domain DP is constituted of all the words w ∈ W (P ) satisfying 
the following conditions:

(i) w does not contain simultaneously a term of the form ctεi c
′ and another of the form 

dtε
′

j d
′ unless i = j. Hence w only contains terms of the form s ∈ S, atia′ or bt−1

i b′

for a fixed i.
(ii) The terms in w that are not elements of S should alternate between the forms atia′

and bt−1
i b′ (possibly with terms in S interposed).

(iii) Between any term atia′ in w and the next term of the form bt−1
i b′, if we denote by 

s the product of all the (possible) terms in S interposed between atia′ and bt−1
i b′, 

then we should have a′sb ∈ Qi.
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(iv) Between any term bt−1
i b′ in w and the next term of the form atia′, if we denote by 

s the product of all the (possible) terms in S interposed between bt−1
i b′ and atia′, 

then we should have b′sa ∈ Qi.

Proof (sketch). Recall that we defined the domain DP as follows (just before Proposi-
tion 2.23):

DP = { (x1, x2, . . . , xn) ∈ W (P ) | ∀k, l ∈ {1, 2, . . . , n} with k < l, xkxk+1 · · ·xl ∈ P }

First, let w = (x1, x2, . . . , xn) ∈ W (P ) be any word satisfying the four conditions in 
the statement. Denote by i the index of the symbol ti possibly appearing in the terms of 
w (unique by condition (i)). We can prove by induction on m ∈ N that for any subword 
(xk, · · · , xk+m) of w, we are in one of the following cases (where the symbols y1, · · · , yq
refer to any allowed elements of P ):

- xkxk+1 · · ·xk+m = atia
′ if (xk, · · · , xk+m) = (s1, · · · , sj , ctic′, y1, · · · , yq, dtid′, s′1, · · · ,

s′j′) where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case we have 
a ∈ (s1 · · · sjc)Pi and a′ ∈ Qi(d′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m = bt−1
i b′ if (xk, · · · , xk+m) = (s1, · · · , sj , ct−1

i c′, y1, · · · , yq, dt−1
i d′,

s′1, · · · , s′j′)
where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case we have b ∈
(s1 · · · sjc)Qi and b′ ∈ Pi(d′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , ct−1
i c′, y1, · · · , yq, dtid′,

s′1, · · · , s′j′) where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case 
s ∈ (s1 · · · sjc)Qi(d′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , ctic′, y1, · · · , yq, dt−1
i d′,

s′1, · · · , s′j′) where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case 
s ∈ (s1 · · · sjc)Pi(d′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m = s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sm+1) where s1, · · · , sm+1 ∈ S, 
and in this case s = s1 · · · sm+1.

The case m = 0 is trivial. Assume the fact is proved for the rank m ∈ N. In order to prove 
it for the rank m + 1, take a subword (xk, · · · , xk+m+1) of w, and apply the induction 
hypothesis on (xk, · · · , xk+m). Then we need to proceed by exhaustion, distinguishing 
between the five cases of the induction hypothesis for (xk, · · · , xk+m), also distinguishing 
between the two or three possibilities for the term xk+m+1 (considering conditions (i)
and (ii)), and then prove that in each case (xk, · · · , xk+m+1) falls into one of the five 
situations, using conditions (iii) and (iv).2

2 We have decided to omit this proof by exhaustion. Firstly, because it requires no mathematical argument 
other than direct applications of the definition of the multiplication in P along with the above-mentioned 
conditions. Secondly, because it would involve the introduction of several new notations and sub-notations, 
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Now let us prove by contraposition that any word in DP satisfies the four conditions. If 
w ∈ W (P ) does not satisfy condition (i), consider the smallest subword of w of the form 
(ctεi c′, x1, · · · , xk, dtε

′

j d
′) with i �= j. Necessarily, x1, · · · , xk ∈ S, so x1 · · ·xk =: s ∈ S, 

thus the product of (ctεi c′, x1, · · · , xk, dtε
′

j d
′) belongs to P if and only if (ctεi c′s, dtε

′

j d
′) ∈

D, which is excluded since i �= j.
If w ∈ W (P ) does not satisfy condition (ii), we can consider the smallest subword 

of w of the form (ctεi c′, x1, · · · , xk, dtεid
′). Necessarily, x1, · · · , xk ∈ S so x1 · · ·xk =: s ∈

S, so the product of the sequence (ctεi c′, x1, · · · , xk, dtεid
′) belongs to P if and only if 

(ctεi c′s, dtεid′) ∈ D, which can’t be true.
If w ∈ W (P ) does not satisfy condition (iii), then we can consider a subword of w

of the form (atia′, x1, · · · , xk, bt
−1
i b′) where each xj belongs to S and a′x1 · · ·xkb /∈ Qi. 

Then 
(
ati(a′x1 · · ·xk), bt−1

i b′
)

is not in D, so the product (atia′, x1, · · · , xk, bt
−1
i b′) is not 

in P . The argument is identical if w ∈ W (P ) does not satisfy condition (iv). �
Now we can look for a candidate for the set of objects Δ, included in the set of 

subgroups of S since we want (P, Δ, S) to be a locality. Remark that for any subgroup 
R ≤ S, we have R ⊆ DP (s) for all s ∈ S (using Notation 1.7). Moreover, for all 
i ∈ {1, · · · , r}, a ∈ S and a′ ∈ Ai we have

R ⊆ DP (atia′) ⇐⇒ ∀s ∈ R,
(
(atia′)−1s, atia

′) ∈ D

⇐⇒ ∀s ∈ R, a−1sa ∈ Pi

⇐⇒ R ≤ aPi .

In this case, we get Ratia
′ =

(
φi(Ra)

)a′
. Similarly, R ⊆ DP (bt−1

i b′) ⇐⇒ R ≤ bQi and 

in that case Rbt−1
i b′ =

(
φ−1
i (Rb)

)b′ .
Since DP contains all the words of length one (atia′) and (bt−1

i b′), since Δ has to be 
closed under taking overgroups in S, and because we need DP = DΔ, the above remark 
implies that Δ must contain the groups Pi and Qi and all their S-conjugates for every 
i ∈ {1, · · · , r}.

However, the equality DP = DΔ can’t hold whenever there exists i �= j such that 
Pi = Pj . Indeed, in such a case (t−1

i , tj) is in DΔ via (Qi, Pi, Qj), but (t−1
i , tj) /∈ DP . 

Similarly, we can’t have DP = DΔ if Pi = Qi for a certain i, because in this case (ti, ti)
is in DΔ via (Pi, Pi, Pi) but not in DP .

Even worse, if there is an i ∈ {1, · · · , r} such that Pi < S, then there exists s ∈
NS(Pi) \Pi and (t−1

i , s, ti) is in DΔ via (Qi, Pi, Pi, Qi), but not in DP . In conclusion, the 
pregroup P is never a locality.

which would make our proof more cumbersome to read and understand. Finally, because we believe that 
the full proof would be too lengthy regarding the fact that this proposition is not at the core of our article.
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5.2. A pregroup for the Robinson group

Let F be a fusion system over a finite p-group S generated by a family {FS1(G1),
· · · ,FSr

(Gr)} of realisable fusion subsystems, where S1, · · · , Sr are subgroups of S and 
G1, · · · , Gr are finite groups. For each i ∈ {1, · · · , r}, assume that Si is contained in Gi

as a Sylow p-subgroup via a morphism fi : Si ↪→ Gi, whose image is denoted by S′
i. Let F

be the free product of S and the groups Gi. Then the Robinson group G is defined to be 
the quotient of F by the normal closure of the elements ufi(u)−1 for any i ∈ {1, · · · , r}
and u ∈ Si. The group G can be seen as an iterated free product with amalgamation:

G =
(
· · ·

(
(S ∗S1 G1) ∗S2 G2

)
· · ·

)
∗Sr

Gr

Remark 5.11. In [16, Theorem 2], Robinson states that F = FS(G), but only in the 
case of “Alperin fusion systems”, which is a class of fusion systems containing saturated 
fusion systems. However, [16, Theorem 1] implies that the result remains true for the 
larger class of fusion systems generated by families of realisable fusion subsystems, which 
is our framework here.

5.2.1. Constructing the pregroup
Informally, P is the subset of G containing S together with all the elements of the 

form aga′ where g ∈ Gi for a certain i ∈ {1, · · · , r} and a, a′ ∈ S. A pair (x, y) belongs 
to the domain D if and only if the product xy in G belongs to P , and multiplication and 
inverses of elements of P are then defined as in G.

Because of the relations that exist in G, elements of the form aga′ in G can admit 
several such representations. In order to get a bijective parametrisation, we need to fix for 
each i ∈ {1, · · · , r} a system Hi of representatives of non-trivial double cosets S′

igS
′
i in Gi. 

Moreover we also need to introduce, for each g ∈ Hi, the subgroup Ti,g := f−1
i

(
S′
i ∩ gS′

i

)
of Si, and fix a system Ai,g of representatives of cosets in S/Ti,g. Beware that Ti,g depends 
on the choice of the representative in the double coset S′

igS
′
i (however, the Si-conjugacy 

class of Ti,g does not depend on it). Then we can define P explicitly as the following set 
of symbols:

P := S � { aga′ | i ∈ {1, · · · , r}, g ∈ Hi, a ∈ Ai,g, a′ ∈ S }

We define D to be the subset of P × P formed by all the pairs (x, y) listed below. 
The possible values for parameters in x and y (regarding the above parametrisation) are 
specified only when some values are not included. We also precise the value of m(x, y)
in each case.

➢ (s, s′), with product m(s, s′) = ss′;
➢ (s, aga′), with product m(s, aga′) = (sa)ga′, which is rewritten

a′′g
(
f−1
i (g−1fi(v)g)a′

)
for a′′ ∈ Ai,g and v ∈ Ti,g satisfying a′′v = sa (where 

i ∈ {1, · · · , r} is such that g ∈ Hi);
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➢ (aga′, s), with product m(aga′, s) = ag(a′s);
➢ (aga′, bhb′) if and only if g, h ∈ Hi, for a certain i ∈ {1, · · · , r}, and a′b ∈ Si. The prod-

uct m(aga′, bhb′) then equals afi−1(gfi(a′b)h)b′ ∈ S if gfi(a′b)h ∈ Gi belongs to S′
i. 

Otherwise, we have gfi(a′b)h = fi(u)kfi(u′) for certain k ∈ Hi and u, u′ ∈ Si, and the 
product m(aga′, bhb′) equals (au)k(u′b′), which is rewritten ck

(
f−1
i (k−1fi(v)k)u′b′

)
for c ∈ Ai,k and v ∈ Ti,k satisfying cv = au.

The inverse operation x �→ x−1 is defined on P in the following way:

➼ (s)−1 = s−1 ∈ S;
➼ (aga′)−1 = a′ −1g−1a−1 in G, which equals (a′ −1u)h(u′a−1) for certain h ∈ Hi (index 

i being the same as for g) and u, u′ ∈ Si (satisfying fi(u)hfi(u′) = g−1 in Gi), and 
leads to the element a′′h

(
f−1
i (h−1fi(v)h)u′a−1) in P , with a′′ ∈ Ai,h and v ∈ Ti,h

satisfying a′′v = a′ −1u.

In the following, we include some implicit hypotheses in our notations. First, unless 
specified, any letter x appearing as a subscript in fx, Gx, Sx, S′

x or Hx signifies that x
is an integer belonging to {1, · · · , r}. When dealing with elements of P , the letter s (or 
one of its variants such as s′ or sj for j ∈ N) stands for an element of S seen as a subset 
of P . Similarly, denoting an element of P by xgy when g is in some Hi (and with x and 
y being some letters) implicitly means that x and y are elements of S such that x ∈ Ai,g.

Remark 5.12. In the case where r = 1, we already know a finite pregroup whose universal 
group is S ∗S1 G1, namely S ∪S1 G1 as in Example 2.8. Notice that this pregroup does 
not coincide with the set P we just introduced. In fact, it is strictly contained in P . One 
could ask if instead of defining P as above, we could just define it to be 

(
· · · (S ∪S1

G1) ∪S2 G2 · · ·
)
∪Sr

Gr. This is not a pregroup in general as soon as r ≥ 2, because of 
the need for Axiom (Pr4) to be satisfied.

5.2.2. Inclusion of P in G
We defined the elements of P as symbols of certain elements in G, so there is an obvious 

mapping P → G. Moreover, the products of elements in P (when defined) coincide with 
the products of the same elements in G. Indeed, the only cases where it is not obvious in 
the way we defined m(x, y) is when it is rewritten, and all the rewritings result from the 
relations in G such as fi(u) = u for all u ∈ Si, or vg = gf−1

i (g−1fi(v)g) for all g ∈ Hi

and v ∈ Ti,g.
There remains to prove that two distinct elements of P can not be equal when con-

sidered as elements of G. For this, we need the Normal Form Theorem for free product 
with amalgamation, which we state below.
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Definition 5.13. Let A ∗C B be the free product of groups A and B amalgamating C, 
where C is a subgroup of A isomorphic to a subgroup C ′ of B via a morphism f . A 
sequence (x1, · · · , xn) of elements of A ∗C B is said to be reduced if:

- each xi belongs to one of the factors A or B;
- xi and xi+1 always come from different factors;
- if n > 1, no xi belongs to C or C ′;
- if n = 1, then x1 �= 1.

Proposition 5.14 ([12, Chapter IV, Theorem 2.6]). With the notations of Definition 5.13, 
if (x1, · · · , xn) is reduced, then x1 · · ·xn �= 1 in A ∗C B.

First, if s and aga′ in P , with g in some Hi, are equal as elements of G, then s−1aga′ =
1 in S ∗Si

Gi (seen as a subgroup of G). Applying Proposition 5.14 (more precisely its 
contrapositive) to the sequence (s−1a, g, a′), we get that s−1a ∈ Si or a′ ∈ Si. Replacing 
g with fi(s−1a)g, gfi(a′) or fi(s−1a)gfi(a′), we can apply Proposition 5.14 to a new 
reduced sequence whose product is s−1aga′ and get a contradiction, so s and aga′ can’t 
be equal in G.

Now assume that aga′ and bhb′ are two elements of P , with g in some Hi and h in 
some Hj , such that aga′ = bhb′ in G, i.e. a′ −1g−1a−1bhb′ = 1. If i �= j, we can consider 
this equality in Gi ∗Si

(
S ∗Sj

Gj

)
(seen as a subgroup of G) and apply Proposition 5.14

to the sequence (a′ −1, g−1, a−1bhb′), leading to a contradiction, unless a′ −1 ∈ Si or 
a−1bhb′ ∈ Si (or both). Up to replacing g−1 with another representative of its double 
coset, we can apply Proposition 5.14 to a reduced sequence and get a contradiction.

Hence i = j, and we want to apply Proposition 5.14 to (a′ −1, g−1, a−1b, h, b′) seen 
as a sequence in S ∗Si

Gi. If a′ −1 or b′ is in Si, we can do the same trick as before to 
get a reduced sequence. Proposition 5.14 then implies that a−1b is in Si. Thus we can 
rewrite a′ −1g−1a−1bhb′ = a′ −1(g−1fi(a−1b)h

)
b′, and again by Proposition 5.14 we get 

that g−1fi(a−1b)h ∈ S′
i, and still a′ −1f−1

i

(
g−1fi(a−1b)h

)
b′ = 1 in S (and these two facts 

precisely hold with our former g and h, no matter the “tricks” we had to do). In particular, 
there exists u ∈ S′

i such that gu = fi(a−1b)h. As g and h were fixed representatives of 
double cosets for S′

i, this means that g = h and, denoting v := fi(a−1b) ∈ S′
i, that 

g−1vg ∈ S′
i. This amounts to v ∈ S′

i ∩ gS′
i, or equivalently a−1b ∈ Ti,g. Thus b ∈ aTi,g, 

but we chose a and b to be representatives of left cosets for Ti,g in Si, so a = b. Now 
a′ −1f−1

i

(
g−1fi(a−1b)h

)
b′ = 1 becomes a′ −1b′ = 1, i.e. a′ = b′. Finally, aga′ and bhb′ are 

equal in P , so the natural mapping P → G is an inclusion.

5.2.3. Proof that P is a pregroup

Lemma 5.15. The (P, D) constructed above satisfies the two following properties:
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(1) For all x, y ∈ P and s ∈ S ⊆ P , we always have (s, x) ∈ D, and (x, y) ∈ D if and 
only if (sx, y) ∈ D. Similarly, we always have (y, s) ∈ D, and (x, y) ∈ D if and only 
if (x, ys) ∈ D.

(2) Let y ∈ P \ S. If x ∈ P satisfies (x, y) ∈ D, then for all z ∈ P , (y, z) ∈ D implies 
(xy, z) ∈ D. Similarly, if z ∈ P satisfies (y, z) ∈ D, then for all x ∈ P , (x, y) ∈ D

implies (x, yz) ∈ D.

Proof. For the first property, let x, y ∈ P and s ∈ S ⊆ P . The fact that (s, x) ∈ D (and 
(y, s) ∈ D) is clear in how we defined D. Now if y ∈ S, the equivalence (x, y) ∈ D ⇐⇒
(sx, y) ∈ D is true for the same reason, and it is also true if x ∈ S (because then sx ∈ S

too). So we can assume x = aga′ and y = bhb′ with g in some Hi, h in some Hj , a ∈ Ai,g, 
b ∈ Aj,h and a′, b′ ∈ S. Then sx = a′′g

(
f−1
i (g−1fi(v)g)a′

)
for a′′ ∈ Ai,g and v ∈ Ti,g

satisfying a′′v = sa. Thus

(x, y) ∈ D ⇐⇒ (aga′, bhb′) ∈ D ⇐⇒ i = j and a′b ∈ Si

⇐⇒ i = j and f−1
i (g−1fi(v)g)a′b ∈ Si

⇐⇒ (sx, y) ∈ D .

The proof of (x, y) ∈ D ⇐⇒ (x, ys) ∈ D is similar.
For the second property, fix y ∈ P \ S and x ∈ P such that (x, y) ∈ D, and take any 

z ∈ P . If x ∈ S, we have an equivalence (y, z) ∈ D ⇐⇒ (xy, z) ∈ D, which comes 
from the first property. If z ∈ S, we also have an obvious equivalence. So we can assume 
that x = aga′ with g in some Hi, y = bhb′ with h in the same Hi (because (x, y) ∈ D), 
and z = ckc′ with k in some Hj . Moreover we have a′b ∈ Si and we can assume that 
xy ∈ P \ S (otherwise it is clear that (xy, z) ∈ D), i.e. gfi(a′b)h = fi(u)g̃fi(u′) for 
certain g̃ ∈ Hi and u, u′ ∈ Si. Then xy = dg̃

(
f−1
i (g̃−1fi(v)g̃)u′b′

)
for d ∈ Ai,g̃ and 

v ∈ Ti,g̃ satisfying dv = au. Thus

(y, z) ∈ D ⇐⇒ (bhb′, ckc′) ∈ D ⇐⇒ i = j and b′c ∈ Si

⇐⇒ i = j and f−1
i (g̃−1fi(v)g̃)u′b′c ∈ Si

⇐⇒
(
dg̃

(
f−1
i (g̃−1fi(v)g̃)u′b′

)
, ckc′

)
∈ D

⇐⇒ (xy, z) ∈ D .

In particular, the implication (y, z) ∈ D =⇒ (xy, z) ∈ D holds. The proof of the last 
assertion is similar. �
Proposition 5.16. As defined above, (P, D) is a pregroup.

Proof. Axioms (Pr1) and (Pr2) are easily verified. In order to verify the “domain part” 
of Axiom (Pr3) on a triplet (x, y, z) of elements of P , the first property in Lemma 5.15
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implies that we can assume x /∈ S, because otherwise we would have (xy, z) ∈ D and 
also (x, yz) ∈ D (since x would be in S). Similarly, we can assume z /∈ S. By the second 
property, if y /∈ S then we have both (xy, z) and (x, yz) in D. Thus we can assume y ∈ S, 
so that (x, y, z) = (aga′, s, bhb′) with g in some Hi and h in some Hj . In this case we 
have

(xy, z) ∈ D ⇐⇒
(
(aga′)s, bhb′

)
∈ D

⇐⇒ i = j and a′sb ∈ Si

⇐⇒ i = j and ∀v ∈ Ti,h, a′sbv−1 ∈ Si

⇐⇒
(
aga′, s(bhb′)

)
∈ D because s(bhb′) = b′′h

(
f−1
j (g−1fj(v)h)b′

)
for some

b′′ ∈ Aj,h and v ∈ Tj,h satisfying b′′ = sbv−1.

⇐⇒ (x, yz) ∈ D .

One also has to check that the (xy, z) and (x, yz) coincide, but this is a consequence 
of the fact that P is contained in G with consistent products and the associativity of the 
group law in G.

Finally, for Axiom (Pr4), assume that (w, x), (x, y), (y, z) ∈ D. The conclusion is then 
obvious if w ∈ S or z ∈ S. By the first property in Lemma 5.15, the conclusion is also 
true whenever x ∈ S or y ∈ S. Thus we are left with checking the result in the case 
where none of the four elements is in S, but then it directly follows from the second 
property in Lemma 5.15. �
Remark 5.17. One can check that each Gi embeds in P as a subgroup, via the following 
mapping: if x ∈ Gi belongs to Si, send it directly to x ∈ S in P ; otherwise, write it 
x = fi(a)gfi(a′) with g ∈ Hi, a ∈ Ai,g and a′ ∈ Si, and send it to aga′ in P . With this 
embedding of Gi, Si and S′

i become identified in P and S ∩Gi = Si.

Corollary 5.18. The finite pregroup P has universal group G, the Robinson group asso-
ciated to F and the generating family {FS1(G1), · · · , FSr

(Gr)}.

Proof. We already proved that P is a pregroup contained in G so that the multiplication 
laws are compatible. In other words, P is included in G via a pregroup homomorphism. 
Moreover, P contains S and the Gi for i ∈ {1, · · · , r}, which generate G, so G = U(P )
by Proposition 2.9. �
5.2.4. Can P be a locality?

As for the pregroup associated with the Leary-Stancu group, we can wonder if (the 
underlying partial group of) P can be equipped with a set of objects Δ such that (P, Δ, S)
is a locality. First, we describe the domain DP of P seen as a partial group, then we 
explain why we believe that P is (almost) never a locality.

Proposition 5.19. The domain DP is constituted of all the words w ∈ W (P ) satisfying 
the following conditions:
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(i) w does not contain simultaneously a term of the form aga′ and a term of the form 
bhb′ if g ∈ Hi and h ∈ Hj with i �= j.

(ii) Between any term aga′ in w and the next term of the form bhb′ (necessarily with 
g, h ∈ Hi for a fixed i), if we denote by s the product of all the (possible) terms in 
S interposed between aga′ and bhb′, then we should have a′sb ∈ Si.

Proof (sketch). The domain DP is defined to be

DP = { (x1, x2, . . . , xn) ∈ W (P ) | ∀k, l ∈ {1, 2, . . . , n} with k < l, xkxk+1 · · ·xl ∈ P } .

Let w = (x1, x2, . . . , xn) ∈ W (P ) be a word satisfying the two conditions in the 
statement. By the first condition, there exists i ∈ {1, · · · , r} such that each xj is either 
an element of S or an element of the form aga′ with g ∈ Hi. We can prove by induction 
on m ∈ N that for any subword (xk, · · · , xk+m) of w, we are in one of the following cases 
(where the symbols y1, · · · , yq refer to any allowed elements of P ):

- xkxk+1 · · ·xk+m equals some aga′ if (xk, · · · , xk+m) = (s1, · · · , sj , bhb′, y1, · · · , yq,
ch̃c′, s′1, · · · , s′j′) where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case 
we have a ∈ (s1 · · · sjb)Si and a′ ∈ Si(c′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m equals some s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sj , aga′, y1, · · · , yq,
bhb′, s′1, · · · , s′j′) where s1, · · · , sj , s′1, · · · , s′j′ ∈ S (with j, j′, q ∈ N), and in this case 
s ∈ (s1 · · · sja)Si(b′s′1 · · · s′j′);

- xkxk+1 · · ·xk+m equals some s ∈ S if (xk, · · · , xk+m) = (s1, · · · , sm+1) where 
s1, · · · , sm+1 ∈ S, and in this case s = s1 · · · sm+1.

The case m = 0 is trivial. Assume the fact is proved for the rank m ∈ N. In order to prove 
it for the rank m + 1, take a subword (xk, · · · , xk+m+1) of w, and apply the induction 
hypothesis on (xk, · · · , xk+m). Then we need to proceed by exhaustion, distinguishing 
between the three cases of the induction hypothesis for (xk, · · · , xk+m), also distinguish-
ing between the two possibilities for the term xk+m+1, and using the two conditions of 
the statement along with the definition of the multiplication in P in order to prove that 
in each case, (xk, · · · , xk+m+1) falls into one of the three situations listed above.3

Reciprocally, take w ∈ DP . Consider any subword of w of the form (aga′, s1,

· · · , sk, bhb′), with s1, · · · , sk ∈ S. Then s := s1 · · · sk is in S too, and we have 
(aga′)s1 · · · sk(bhb′) ∈ P if and only if 

(
ag(a′s), bhb′

)
∈ D, because any product in-

volving an element of S is defined in P . In particular, g and h must belong to the same 
Hi, and a′sb must belong to Si. Considering that it has to be true for every subword of 
w of this form, this proves that w fulfills the two conditions. �

3 As with the proof of Proposition 5.10, we have decided to omit this exhaustion part, for the same reasons.
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Now we can look for a subset Δ of the subgroups of S such that (P, Δ, S) would be 
a locality. Remark that for any subgroup R ≤ S, we have R ⊆ DP (s) for all s ∈ S. 
Moreover, for all i ∈ {1, · · · , r}, g ∈ Hi, a ∈ Ai,g and a′ ∈ S we have

R ⊆ DP (aga′) ⇐⇒ ∀s ∈ R,
(
(aga′)−1s, aga′

)
∈ D

⇐⇒ a−1sa ∈ Si

⇐⇒ R ≤ aSi .

In this case, Raga′ is a subgroup of Sg
i
a′

. Moreover, Raga′ ≤ S ⇐⇒ Rag ≤ S, and Rag is 
a subgroup of Sg

i (hence of Gi). But for a subgroup of Gi it is equivalent to be contained 
in S and to be contained in Si, so if we want Raga′ ≤ S, i.e. Rag ≤ S, it is equivalent to 
ask Rag ≤ Si, which is rewritten Ra ≤ gSi. Since we are in the case where R ≤ aSi, this 
amounts to Ra ≤ Si ∩ gSi, i.e. R ≤ aTi,g.

Thus, because DP contains all the words of length one (aga′) and Δ has to be closed 
under taking overgroups in S, Δ must contain all the subgroups Ti,g, for i ∈ {1, · · · , r}
and g ∈ Hi, together with all their S-conjugates (and the overgroups of all these in S).

The picture is more complex than for the pregroup associated to the Leary-Stancu 
group. So far we don’t know a characterisation of P being a locality. An interesting 
candidate for Δ would be to take all the Op(Gi) for i ∈ {1, · · · , r}, together with 
their S-conjugates and the overgroups of all these in S. We then need to assume 
Si = NS

(
Op(Gi)

)
(otherwise it is easy to construct a triple (g, s, g) ∈ DΔ but not 

in DP ). One can then prove that DP ⊆ DΔ. However the converse inclusion does not 
hold in general: for example we need that any R ≤ S such that Op(Gi) ≤ R ≤ Ti,g

for an i ∈ {1, · · · , r} and a g ∈ Hi satisfies NS(R) ≤ Si (otherwise the word (g−1, s, g)
with s ∈ NS(R) \ Si is in DΔ via (gR, R, R, Rg) but not in DP ). There are other neces-
sary conditions coming from the fact that DP does not contain any words of the form 
(aga′, s, bhb′) with g in some Hi, h in some Hj and i �= j. In any event, this seems to 
significantly reduce the possibilities for P to be a locality.
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