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STOCHASTIC HOMOGENIZATION OF NONLOCAL
REACTION-DIFFUSION PROBLEMS OF GRADIENT FLOW TYPE

OMAR ANZA HAFSA, JEAN-PHILIPPE MANDALLENA, AND GERARD MICHAILLE

ABSTRACT. In this paper we study the stochastic homogenization of reaction-diffusion
problems whose the diffusion terms are gradients of random nonlocal convex and Fréchet-
differentiable functionals and the reaction terms are random CP-structured reaction func-
tionals as introduced in [AHMMI9]. We provide an application to spatial population dy-

namics.
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STOCHASTIC HOMOGENIZATION OF NONLOCAL REACTION-DIFFUSION PROBLEMS 3

1. INTRODUCTION

Let (Q, F,P) be a complete probability space, let T > 0 and let O = R? be a bounded open
domain with Lipschitz boundary. In this paper we study the stochastic homogenization of
reaction-diffusion problems of the form:

d;lé} (t) + V& (w,u? (1)) = F. (w,t,u? (t)) for Lra.a. te|0,T]
(Pe) t (1.1)
u? (0) = ug. € L* (O),

£

where, for each € > 0, the diffusion term is the gradient of a random nonlocal functional
&.: Q x L*(0) — [0, 0 of type:

£, ( 46df J f Y ‘”_y) (u<x);u(y>>2dxdy+@8 (w, ) (1.2)

£

with J : R x R4 x R¢ — [0, 00[ and D, : Qx L? (O) — R a nonlocal functional characterizing
the fact that (2. ) is of Neumann—Cauchy nonhomogenous or Dirichlet-Cauchy type, and the
reaction term is a random CP-structured reaction functional F. : Qx [0, T]x L? (0O) — L? (O),
see Definition 2.9

Roughly, our main result (see Theorem [3.19)) is to prove that as ¢ — 0, (P.,,) converges
almost surely, in a variational sense, to

du” (t) + V&hom (w,u” () = G¥ (t,u” (t)) for Lr-a.a. te[0,T]

((@hom,u) di (13)
u? (0) = u§ € dom (Enom (w, -)),

where uf . — uf in L? (O), F. (w,-,u¢) — G¥ (-,u”) in L*([0,T]; L* (O)) with G* € F(r,)-(r,)
(see the definition in §2.1). The functional & : Q x L2 (O) — [0,0] is the almost sure
Mosco-limit of &. (see Theorem and is given in its domain by

B (10, 1) = L from (@, Vi (1))

with from : @ xR? — [0, o[ a quadratic function defined as the limit of a suitable subadditive

process (see Propositions and [3.17)).

To our knowledge, in a deterministic framework, the convergence of problems of type
without reaction term and with J depending only on the third variable has been firstly ad-
dressed by Andreu, Mazén, Rossi and Toledo in [AMRTOS,[AMRT09] (see also [AVMRTM10])
using semi-group theory and the convergence of their resolvents. They prove the convergence
to a local Cauchy problem. In the scope of homogenization, the convergence of nonlocal en-
ergies of type has been recently studied by Braides and Piatnitski in [BP22] in the
periodic case, and in [BP21] in a stochastic case.

In our work, under a stationarity hypothesis on J but without ergodicity assumption, we
establish the almost sure Mosco convergence of such nonlocal functionals (see Theorem {4.8))
yielding, as a consequence, the almost sure convergence of (2 ,,) t0 (Phom) With Neumann-
Cauchy homogeneous or Dirichlet-Cauchy boundary conditions (see Theorem [3.19)).
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Nonlocal problems of type (|1.1]) are well adapted for spatial population dynamics where the
density J in accounts for the numbers of individuals at time ¢ in O which jump from y to
x. The nonlocal diffusion term can be explained for example by the dispersion of population
of species (seeds, larvae) by wind or water, the population can be transported over long
distances which increases their survival and reproduction (see [Mur02, Mur03, Turl5]). In
Section |5 we consider such a population dynamics model with a reaction term of the form:

F. (w,t,u) (z) =r(w,t,z)u(x) (1 - %) — hu (zx),

with A > 0 and r, K € L* (Q x [0,T] x ]Rd) such that » > 0 and K > v > 0, where r is the
growth rate, K is the carrying capacity and h the percentage of harversting. By applying our
convergence result, we show (see Corollary that as € — 0, the nonlocal reaction-diffusion
problems (2. ,,) almost surely converge to a local reaction-diffusion problem of type
with G* = Fyom (w, -, -) where

From (w, t,u) (z) := rpom (W, t) u (z) (1 - #ﬁiﬂ) — hu (x),

where rpom (w, ) : [0, T] — [0, 00[ and Kpom (w, ) : [0,T] — [0, o[ are given by

[ hom (w,t) =E (S]()’l[d r (-t y) dy> (W)

< E7 (S]o,1[d r(ty) dy) (w)
Khom ((x), t) = - ()
E (S]o,l[d K(ty) dy) (w)

with E7 being the conditional mathematical expectation with respect to o-algebra # of
invariant sets with respect to the dynamical system (Q, F, P {T,}.czq) (see for more
details). The distinguishing feature here is that in the formula of the homogenized reaction
functional, the homogenized carrying capacity Kyom is given by a mixture between carrying
capacity and growth rate.

\

Plan of the paper. Section [2|is devoted to existence and uniqueness for nonlocal reaction
diffusion problems of gradient flow type. After stating in a general theorem (see Theorem
which is a straightforward consequence of [AHMM22, Theorem 2.2, pp. 16]) we develop
in the nonlocal framework for dealing with Neumann-Cauchy homogeneous (see ,
nonhomogeneous (see and Dirichlet-Cauchy (see [2.2.3)) nonlocal reaction-diffusion
problems and we give, as a direct consequence of Theorem [2.1] existence and uniqueness
results for such nonlocal boundary problems (see Corollary . In we prove existence
and uniqueness (see Corollary for Neumann-Cauchy nonhomgeneous and Dirichlet-
Cauchy nonlocal problems when the reaction term is a CP-structured reaction functional
(see Definition . In addition, in §2.4] we treat the invasion property for for nonlocal
problems with CP-structured autonomous reaction functionals.

Section [3| is devoted to the statement of the main result. In we precise the probability
setting and recall some tools from ergodic theory (see Definitions and and
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Theorem. By applying Corollary we obtain existence and uniqueness of bounded so-
lutions for random Neumann-Cauchy homogeneous and Dirichlet-Cauchy nonlocal reaction-
diffusion problems: this is discribed in The main result of the paper is stated in
(see Theorem . To identify the homogenized diffusion term we need a suitable subad-
ditive theorem that we state and prove in (see Proposition . Note that we do not
deal with the convergence of Neumann-Cauchy nonhomogeneous nonlocal reaction-diffusion
problems. Indeed, the mathematical analysis seems technically more tricky but we hope to
cover this case in the future.

Section [ is devoted to the proof of Theorem [3.19 Its proof, which is given in §4.4] follows
from two theorems. The first one (see Theorem is an abstract convergence result for
passing from nonlocal to local: it is stated and proved in . The second one (see Theorem
4.8)) establishes the almost sure Mosco-convergence of the energies corresponding to the
diffusion term: it is stated and proved in §4.3] The proof of Theorem uses Proposition
together with some lemmas. These lemmas are stated and proved in §4.2]

Section [5| is devoted to the application of the results to spatial population dynamics. In

d5.1] we begin by giving a heuristic derivation of the model. Then, in §5.1, we precise

the mathematical description of the model in showing that it can studied in the general
framework developed in Sections 2H3] Finally, by applying Theorem [3.19] in we obtain
the homogenized model (see Corollary .

For convenience of the reader, in the appendix we recall some classical definitions and results
that we use in the paper.

Notation. Throughout the paper we will use the following notation.

e Given 7y € R? we - denote the open (resp. closed) ball of radius 7 > 0 centered at g
by Br (l’o) (resp, Br (xO))
e The closure (resp. interior) of a set A = R? is denoted by A (resp. int (A)).

e The Lebesgue measure on R? with d € IN* is denoted by #? and for each Borel set
A = R% the measure of A with respect to £¢ is denoted by &4 (A).

e The class of bounded Borel subsets of R? is denoted by %y, (Rd).
e The space of continuous piecewise affine functions from O to R is denoted by Aff (O).

e Given (a,b) € R? with a < b, the space of u € L? (O) such that a < u < b is denoted
by L*(O; [a, b]).

e The space of continuous functions from [0, 7] to L? (O) is denoted by C ([0, T]; L? (O)).

e The space of absolutely continuous functions from [0,7] to L? (O) is denoted by
AC([0,T]; L* (0)).

e The class of reaction functionals F : [0, T] x L? (O) — L*(O) satisfying is
denoted by 9‘7(R1)_(R2).

e The class of CP-structured reaction functionals F' : [0,T] x L*(0O) — L*(O) is
denoted by Fcp.
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e Given {u,}, < C([0,T];L*(0)), by u, — u in C([0,T];L?(0)) we mean that
Tsn supeeyry [in (6) — 0 (6) |20y = 0. By % — % in 12([0, 7 L2 (0)) we mean

that for every v e L? ([0, T]; L* (O So dun (1), 0 (t))dt — So S (t),v(t))dt asn —
o0, where (-, -) denotes the scalar product 1n L2 (0).

2. NONLOCAL REACTION-DIFFUSION PROBLEMS OF GRADIENT FLOW TYPE

2.1. Existence and uniqueness for reaction-diffusion problems of gradient flow
type. Given T'> 0 and & : L?(0) — [0, [ a convex and Fréchet-differentiable function,
we consider the following reaction-diffusion problem of gradient flow type:

d
W+ VE@®) = F(tu(t) for Llaa. tel0,T]
( @;O,F ) dt
where the reaction term F : [0,T] x L? (O) — L?(O) is a Borel measurable map satisfying
the following two conditions:

(R1) there exists L € L*([0,T]) such that for every (u,v) € L?(0O) x L*(0O) and every
te 0,7,

u(0) = ug e L?(0),

|F (t,u) — F (t,v) |20y < L (t) [u—v]r200);

(R2) [ (-,0)[[z2(0) € L* ([0, T]).

From now on, the class of Borel measurable maps F : [0,T] x L? (O) — L?(O) verifying
is denoted by F(g,)-(r,)- The following result is a straightforward consequence of
IAHMM22, Theorem 2.2, pp. 16].

Theorem 2.1. If ug € L* (0) and F € F(p,)-(r,) then (@gO’F> admits a unique solution
u e AC ([0, ] L?(0)). Moreover, if F (-,u(-)) € AC([0,T]; L? (O)) then u admits a right
derivative & dt L (t) at every t €]0, T which satisfies % (t) + V& (u(t)) = F(t,u(t)).

2.2. Existence and uniqueness for nonlocal problems. In this paper we consider

reaction-diffusion problems with nonlocal diffusion terms, i.e. when & : L? (O) — [0, 00|
is a nonlocal functional.

2.2.1. Neumann-Cauchy homogeneous nonlocal problems. Let J : R4 x R x R¢ — [0, o0 be
a Borel measurable function satisfying the following conditions:

(NL;) J is symmetric, i.e. for every (z,y) € R? x R,
J('rayvx_y) = J(y,l’,y—ﬂf),

(NL,) there exists a (% (RY) , % (R))-measurable function J : R? — [0, co[ with supp (J) =
Bg, (0) for some R; > 0 and §,J (£)d¢ = 1 such that for every (z,y,§) € R? x
R¢ x RY,
0<J (2,9, <J(E).



STOCHASTIC HOMOGENIZATION OF NONLOCAL REACTION-DIFFUSION PROBLEMS 7

Remark 2.2. The function J is assumed to be compactly supported for simplifying certain
calculations. Without major difficulties, by using a truncation argument, we could take J

gI‘OWng as W with x > 0.

Let O < R? be a bounded open set and let £ : L? (O) — [0, [ be defined by

7@ [ | 7@ =) ) - u) iy

It is easy to see that £ is convex and Fréchet-differentiable, and by the Riesz representation
theorem, for each u € L? (0), the gradient of £ at u, denoted by V £ (u), is such that

F'(u) (v) =(VF (u),v) = Jo V.7 (u) () v (z) dx for all ve L? (O),
where V # (u) € L? (O) and is given by

vzwwm=—j}ua%x—w@mw—u@»@.

The problem <9’§,°’F>, which corresponds to (@;°’F> with & = 7, is a nonlocal reaction-
diffusion problem of gradient flow type that is called “Neumann-Cauchy homogeneous non-
local reaction-diffusion problem”. Note that (@;°F> can be rewritten as follows:

a—u(t,x)—fOJ(x,y,x—y) (u(t,y) —u(t,z))dy = F (t,u(t,z)) in [0,T] x O

uo,F at
(77)
u(0,) =up € L?(0).

Remark 2.3. The term “Neumann-Cauchy homogeneous nonlocal problem” refers to homoge-
neous Neumann-Cauchy boundary conditions for local reaction-diffusion problems. Indeed,
by suitably rescaling J and K, it can be established that the solutions of the rescaled corre-
sponding problems converges to the solution of a “standard” local reaction-diffusion problem
with the homogeneous Neumann boundary condition (see [AVMRTMI0, Chapter 3, §3.1, pp.
41) for J = J and F = 0).

2.2.2. Neumann-Cauchy nonhomogeneous nonlocal problems. Let h € L* (Rd\O), let K €
L (O x R?) and let #}, x : L* (O) — R be defined by

Wi (0) := f

0 < pao X @T=WRG) dy) u (z) da.

It is easy to see that J}, i is a continuous linear form and for every u € L? (O), VA, k (u) €
L?(0) and is given by

Vb (u) (x) = o K (2,2 —y)h(y)dy.
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The problem (@“0 P ), which corresponds to (9§O’F> with & = # — M}, i, is a nonlocal
reaction-diffusion problem of gradient flow type that is called “Neumann-Cauchy nonho-

mogeneous nonlocal reaction-diffusion problem”. Note that <9’;° Zh K) can be rewritten as

follows:
f g_ju,@_Lm,y,x—w(u(t,y)—u(t,x»dy
(75) ] - J, Kby = Flua)  w(0.1)x0
u(0,:) =ug e L?(0).

\

Remark 2.4. The term “Neumann-Cauchy nonhomogeneous nonlocal problem” refers to non-
homogeneous Neumann-Cauchy boundary conditions for local reaction-diffusion problems.
Indeed, by suitably rescaling J and K, it can be established that the solutions of the rescaled
corresponding problems converges to the solution of a “standard” local reaction-diffusion
problem with the nonhomogeneous Neumann boundary condition g—ﬁ = h where n denotes
the unit outward normal to 02 (see [AVMRTMI0, Chapter 3, §3.2, pp. 45] for J = J and

F=0).

2.2.3. Dirichlet-Cauchy nonlocal problems. Set O7 := O + supp (7) = O + Bg, (0), let
g€ L?(0\O) and let 9, : L* (0) — R be defined by

JLJ\O (29,2 —y) (9 (y) — u(z))” dwdy.

It is easy to see that 9, is convex and Fréchet-differentiable, and for every u € L? (O),
VP, (u) € L* (0) and is given by

VD) (@) =~ [T (0 ) )

The problem <9’;ﬂgg>, which corresponds to (@;“F) with & = 7 + 9, is a nonlocal
reaction-diffusion problem of gradient flow type that is called “Dirichlet-Cauchy nonlocal
reaction-diffusion problem”. Note that <g’;0£zg) can be rewritten as follows:

( Ou

E(t,ﬂf)_J\OJ(l’,y,l‘—y) (u(ty)_u(t’x))dy

(9}0+;g> — JOJ\OJ(x,y,x —y)(g(y) —u(t,z))dy = F (t,u(t,x)) in[0,T] x O

| u(0,-) =up e L?(0).

Remark 2.5. In the spirit of Remarks 2.4} the term “Dirichlet-Cauchy nonlocal problem”
refers to Dirichlet-Cauchy boundary conditions for local reaction-diffusion problems (see
[AVMRTMI10, Chapter 2, §2.1, pp. 31] for J = J and F' = 0).
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From the above it is clear that 7, 7 — )} x and # +9, are convex and Fréchet-differentiable.
Hence, as a direct consequence of Theorem [2.1] we have the folowing result.

Corollary 2.6. Under the hypotheses of Theorem the same conclusions hold for & €
{f?j _/Vh,K7j +@g}

2.3. Existence and uniqueness of bounded solutions for nonlocal problems with
CP-structured reaction functionals. We begin by establishing comparison principles.
For each ug € L? (O) and each F € F(g,)-(r,), we consider the following two problems:

(du (t)+ V& (u(t)) < F(t,u(t)) for Lla.a. tel0,T]

(25) 4 @
[ ©(0) =uge L*(0);

() VE () > F(tu(t) for Plaa. te0,T]

(25) 1
L w(0) =ug e L?(0).

Definition 2.7. A solution v € C ([0, T]; L? (O)) of (@;?’5> (resp. (9’;?5)) is called a sub-
solution (resp. super-solution) of (@;‘”F). (If w is both a sub-solution and a super-solution

of (@§°’F> then w is solution of (@;O’F> )

Proposition 2.8. Let ug 1, uo2 € L? (O) and let Fy, F> € F(gr,)-(r,) be such

Fy(tu) (x) = fi(t2,u(x))

By (tu) (x) = f2 (£, 2,u (x))
for all (t,u,z) € [0,T] x L*(0) x O, where fi,fo : [0,T] x R x R — R are two Borel
measurable functions with fo Lipschitz continuous uniformly with respect to (t,x), i.e. there
exists L > 0 such that for every (£,&') € R x R,

‘f? ('a'ag)_fQ ('7'a§/)| <L‘§_€/| (21)
Let K € L™ (O x RY; [0,00D, let hy,hy € L! (Rd\O) and let g1, gy € L? (OJ\a). If uy is a

. uo,1,F1 u0,1,51 . . . ug,2,5%
sub-solution of (@]_/VM’K) (resp. <9’j+991)) and if ug is a super-solution of (g’f_/‘/h%K)

(resp. (@;ﬁ?’;ﬁ) ) then

Up,1 < Up,2
hy < hg (resp. g1 < g2) ¢ = uy (t) < ug (t) for allt €[0,T].
F < F,

Proof of Proposition [2.8, We only give the proof in the Neumann-Cauchy case. (In the
Dirichlet-Cauchy case, the proof follows by similar arguments.) Set u := uy — uy, u* =
max (u,0) and v~ := max (—u,0). To prove that us (t) < wuy (¢) for all ¢ € [0,T7], it suffices
to show that

u (t)=0forallte0,T] (2.2)
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First of all, it is clear that for ' ® £%a.e. (t,z) € [0,T] x O,

?Z 2 L‘](%y,x—y) (u(t,y) —u(t,z))dy

_ o K (x, €T — y) (hQ (y) - hl <y>> dy

> fo(t,z,us (t,x)) — f1(t,z,uy (t,x)).
Then, by taking u~ € L? (O) as a test function and by integrating over O,

056_7;56( x)u” (t,z)dz JPO(JOJ(x,y,x—y)(u(t,y)—u(t,x))dy)u—(t’x)dx
JO < Rd\oK (z,2 —y) (h2 (y) — h1 () dy) u” (t,z)dx
= (f2 (t, @, us (8, 2)) = f1 (82,0 (,2))) u” (¢, z) da.

But, taking into account, by an easy computation we see that
- [ ([ 7 @a =i - uta i) o
o \Jo
1 _ _
3] | Tema - ) (0 69— () doay,

and consequently, since fo > fi,

o%< r)u” (t,z)dr+ = ff (x,y,z —y) (u(t,y) —u(t,x)) (u_ (t,y) —u~ (t,x))dxdy

JO < RA\O K (2,2 =y) (ha (y) = ha (y)) dy> u” (t,z)dx
z Jo (fo (t,zuz (L, 7)) = f2 (L2, wa (8 @) u™ (L, @) do.

Noticing that:
eu=ut—u";
o utu = ag—:u* = 0;
o —ut (,x)u (,y) <0 forall (z,y) e O x O,

and using we deduce that
Jau(t:v) “(t,x)dx — ff (x,y,x —y (_(ty)—u_(t.r))2da:dy
ot ’ ’ ’
- (] K@= e ) - @) ) (o) e
o \Jr#0

> —LJ |u_ (t,x)|2dx
@]
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with L > 0 given by (2.1 . As hy = hy it follows that for Ll-a.e. t € [0,T],
_ ou
thf] tx’dxfat(t:v) J‘u t:c‘dx

and so, by integrating over s € [0, 77,

t
J lu™ (s, :L‘)‘le' < J |u™ (O,x)‘zdx + 2LJ (J lu™ (¢, x)|2dx) dt for all s € [0,T].
) o o \Jo

Noticing that, since u~ € C ([0, T]; L* (0)), the function [0,T] 3 s — §,, |u™ (s, x)‘zda: is con-
tinuous, from Gronwall’s lemma (see Lemma |C.1|that we apply with ¢ (s) = §, [u™ (s, x)‘de,
a={,lu" (0,x)‘2d3: and m (t) = 2L) we see that

f lu™ (sw)‘zdav < eQLSJ |u™ (O,x)‘zdx for all s € [0,T]. (2.3)
o) )

But us (0) = up2 = w1 = u1(0), i.e. u(0) = ug(0) —uy (0) = 0, hence u= (0) = 0, i.e.
~(0,2) = 0 for L%a.a. x € O, and so, by using (2.3), $olu™ (s,x)’de =0 for all s € [0,7]

which implies that u~ (s,2) = 0 for £%-a.a. x € O and all s € [0,T], and (2.2) follows. W

The following class of reaction functionals, called the class of CP-structured reaction func-

tionals and denoted by Fcp, was introduced in [AHMMI19] (see also [AHMM22] §2.2.2; pp.
27)).

Definition 2.9. A map F : [0,7] x L?*(O) — L*(0) is called a CP-structured reaction
functional if

F(tu) () = f(t2,u(r))
for all (t,u,z) € [0,T] x L*(O) x O, where f : [0,T] x R? x R — R is a Borel measurable

function satisfying the following three properties:

(CPy) f(t,x,() islocally Lipschitz continuous in ¢ uniformly with respect to (¢, x) € [0, T] x

RY;
(CP2) f(-,-,0) € L*([0,T]; L* (0));
(CP3) there exist f, f:[0,T] x R — R with f < < f and (p,p) € R* with p < p such

that each of the two following ordinary d1ﬂerent1al equations
/ _ 1_
(ODE){ y (t) = f(ty(t)) for £ -a.a. te0,T]

y(0)=p
(m){ z’(((;f)):g(t ,y (t)) for Lla.a. te|0,T]
admits at least a solution, y for (Obe) and ¥ for (O_) satisfying
fty®) < [(twy)
L s s fm s 24

for 1@ L'-a.a. (t,z)€[0,T] x R.
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Remark 2.10. Note that Fcp © F(g,)-(r,).- From we see that y and y are decreasing
and increasing respectively, and so y (T) < y(t) <y (0) = p<p <y (0) <y (t) <y(T) for
all t € [0,T7].

For each (a,b) € R? with a < b, we consider the following problem:

d
)+ VE () = F(tu(t) for Laa. tel0,T]
@UO,F dt
&,[a,b]
u (0) = ug € L? (0;]a,b]) .
From Corollary and Proposition we can establish the existence and uniqueness of
bounded solutions for nonlocal problems with CP-structured reaction functionals.

Corollary 2.11. Let F € Fcp with (f f) ( P, P ) and (g,y) given by |(CPs)|, let uy €
L2 (05 [p,pl) and let g € L* (O\O) be such that:

_Songd @y, x—y)g(y)dy
I, := essinf > —0;
2€0N\O SOJ\5 J(z,y,x —y)dy
Sorngd (9,2 —y) g (y) dy
Sy 1= esssup < 0;
ze0J\O Sof\bj('r?yax_y) d?/
p<lIyandp=S,. (2.5)

Then (99“0 - ) (resp. @;ﬁ; ])) admits a unique solution u € AC ([0,T]; L* (O)) such
that

y(M) <yt) <u(t) <y) <y(T) foraltel0,T].
Moreover, if F (-,u(-)) € C’ ([0,T]; L? (O)) then u admits a right derivative < * dt L (t) at every
t € [0, T[ which satisfies <" (t) + V& (u(t)) = F (t,u(t)) with®& = 7 (resp. & = F + D).

Proof of Corollary m We only give the proof in the Neumann-Cauchy case. (In the
Dirichlet-Cauchy case, the proof follows by similar arguments, where in addition the inequal-
ities in (2.5 are used for dealing with the concept of sub-solution and super-solution.) The
proof is adapted from [AHMM19| Theorem 3.1] (see also [AHMM?22], Corollary 2.1, pp. 39]).

Firstly, let f: [0,T] x RY x R — R be given by Definition . Taking into account,
from McShane extension’s theorem we can assert that there exists f: [0,7] x R x R — R
such that:

o f(t,x,Q) = f(t,x,¢) forall (t,2,¢)€[0,T] x R x [y (T),5(T)]; (2.6)
. f(t, x,() is Lipschitz continuous in ¢ uniformly with respect to (¢,z) € [0,T] x R%.

~

Let F: [0,T] x L2(0) — L2(0) be given by F (t,u) (z) := f(t,z,u(x)). Then, it is
clear that F € F(Ri)-(rs)- Hence, by Theorem , <9’“05 admits a unique solution

i e AC ([0,T]; L? (0)).
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Secondly, by (CP3)| m we see that y and 7 are decreasing and increasing respectively, so that,
since y (0) = p < p =7(0),

[y @),y ()] < [y(T),y(T)] for all € [0, T7]. (2.7)
As y does not depend on the space variable we have V7 (y (t)) = 0 for all t € [0,77]. Then,

by using and (OpE) in [(CPs)| F (t,y (1)) = F(ty(t)) = f(t.y (@) = f(t,y(t) =
Y (t)+ V.7 (y(t) for £'-aa. te[0,T], and consequently, since y (0) = p, y is sub-solution

of (@;F) But, u is a solution (and so a super-solution) of (@}OF> and p < ug, hence

A~

from Proposition (that we apply with ug; = p, ug2 = g, h1 = hg = 0 and Iy = Fy = F)
it follows that

y(t) <u(t) forall t e [0,T]. (2.8)
In the same manner we can see that
y(t) =u(t) for all t € [0,T]. (2.9)
From , and we deduce that
u(t)ely(t),y@t)] cly(T),y(T)] for all t € [0,T]. (2.10)

Finally, from (2.6) and (2.10]) we see that F (t,u(t)) = F(t,u(t)) for all t € [0,T] so that u

is the unique solution of ('@;Offﬁ] , and the proof is complete. B

Remark 2.12. Under additional assumptions on the structure of F', we automatically have
F(-,u) e AC([0,T]; L*(0)) (see [AHMMT19] or [AHMM?22, §2.2.2, pp. 27| and the example
treated in Section [5).

Remark 2.13. Roughly, the inequalities in (2.5) mean that p and » bound the proportion
of g with respect to the density J in a neighborhood of the boundary 0. Physically, this
implies that there is no dissipation of the energy along the trajectories y and 7. Indeed, we

can show that V& (y (¢)) <0 (resp. V& (7 (¢)) = 0) so that 4& (y (¢)) = V& (y (¢)) % =0
(resp. L& (y(t)) = V& (¥ (t)) Z > 0) because y is decreasing (resp. 7 is increasing).

2.4. Invasion property for nonlocal problems with CP-structured autonomous
reaction functionals. Let F' : L? (0) — L*(O) be such that F € Fcp with (f, f), (p,p)
and (y,7) given by |(CPs)| let ug € L? (O; [p,p]) and let g € L? (O7\O) be such that (2.5)
holds. From Corollary [2.11| we can assert that (9}‘3[550 (resp. <g’§,‘ﬁr; ]>) admits a
unique solution u € AC ([0, T]; L* (O)) such that

y(T)<y(t)<u(t)<y(t) <y(T) forallte[0,T]
Moreover, if F (u(-)) € AC ([0,T]; L* (O)) then:

d+
e u admits a right derivative d_tu (t) at every t € [0,T; (2.11)

+

o T (1) + V8 (u(0) = F(u(0)) for all & [0.7] (2.12)
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with & = 7 (resp. & = 7 + 2,). The following theorem shows that under some conditions

on F, the solution u of ('@;O,fgﬁo (resp. (9’;&; ]>) satisfies the invasion property, i.e.

u grows over time.

Theorem 2.14. If there exists f : R — R with f € C* ([y (T),y(T)]) such that

F(v)(z) = f(v(z))
for all (v,x) € L? (0) x O and if
VI (ug) < F (uo) (resp. V (F + D) (uo) < F (up)),
then u is differentiable at every t €]0,T| and

du du dtu
- (t) =0 for all t € [0, T[ (with n (0) = = (0)). (2.13)

Proof of Theorem [2.14. We only give the proof in the Neumann-Cauchy case (in the
Dirichlet-Cauchy case, the proof follows by similar arguments). By assumption, we see that

F(u(-)) € AC([0,T]; L*(0O)) and so and hold. Let G, : [0,T] x L*(0) —
L?(O) be given by

Gu (t,v (1) = [ (u(t))v ()
for all (¢t,v) € [0,T] x L* (O) and consider the following problem:
dv
u dt ®)
(25)

v (0) = L2 (0).

+ VI (w(t) =Gy, (tv(t)) for Laa. te0,T]

It is easy to show that G' € F(g,)-(r,). By Theorem n it follows that (9’ j) admits a unique
solutlon ve AC ([0,T]; L*(0)). But, by taklng time derivative in (2.12) with & = 7 we see

that 2 t“ is a solution of (£%), hence v = L2 € AC([0,T]; L* (0)), and consequently u is
differentiable at every t €]0,T[ by [Br73, Proposition 3.3, pp. 68], i.e
du du dtu

= — for all T h — = — . 2.14

v =% 1) for all v [0,77 (with % (0) = % (0) (2.14)

Set v := max (v,0) and v~ := max (—v,0). Taking (2.14) into account, to prove (2.13) it

suffices to show that
v (t) =0 for all ¢t € [0,T7. (2.15)

By taking v~ as a test function in (9’;) and by integrating over O, we see that
0
[ Geavaw — [ ([ swmne-nan- o)t
J [ (u(t,x))v(t,z)v™ (t,2) dz in [0,T].
o
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But, taking into account, by an easy computation we have
- [ ([ r@ra-nean-otoya) v ot
o \Jo
1 _ _
3| [ 7@ @) <00 (0 ()~ o (62 dady,
oJo

hence
0 1
| Gt a3 | | T@ae =) @) —o0) (@ 69 =0 o)y
:J [ (u(t,z))v(t,x)v™ (t,x)dr in [0,T]. (2.16)
o)
Noticing that:
e v=0"—0v";
o vt =2y =0

at
o — vt (x)v (n,y) <O0forall (z,y) € O x O,

we see that

ov ov~
(ta:) (t:c)dxz—oat (t,x)v (txdx——iajw (z,t) |*dx;

f f (x,y,x —y) (v(t,y) —v(t,x)) (v_ (t,y) — v~ (t,x)) dxdy < 0;
J [ (u(t,z)v(t,z)v” (t,z)de = —J f(u(t,z)) v (t,2)|*dr,
and, recalling that f € C* ([y (T') .,y (T)]), from we deduce that

thJ v~ (z,t) |Pdr < J lv™ (t,2) [*dz in [0, T

with C' := sup{|f' (§)]: ¢ (T),y (T)]}. Consequently, by integrating over s € [0, 77,

f v~ (s,x)‘de < J v~ (O,x)‘Qdm + QCJ <f v~ (¢, x)|2dx) dt for all s € [0,T].
o) o) o \Jo

Noticing that, since v~ € C ([0, T]; L* (O)), the function [0,T] 3 5 — §, |v_ S, 1) ‘2dx is con-
tinuous, from Grénwall’s lemma (see Lemma|C.1|that we apply with ¢ (s So v~ (s, ’ dzx,
a=§,lv" (O,ZL‘)‘Qde‘ and m (t) = 2C') we see that

J v~ (s, m)‘Qdm < eQCSJ v~ (O,x)‘de for all s € [0,T]. (2.17)
o o

But v (0) = d;—t“ (0), hence v (0) = =V 7 (ug) + F (up) by using with & = 7, which

implies that v (0) > 0 because V7 (ug) < F (up) by assumption. Thus v~ (0) = 0, i.e.
~(0,z) = 0 for Z%a.a. z € O, and so, by using [2.17), §,, [v~ (s, x)‘de =0 for all s € [0, T]

which implies that v~ (s,z) = 0 for £%a.a. z € O and all s € [0,T], and follows. W
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3. MAIN RESULT

3.1. Probability setting and ergodic theory. Let (2, #,P) be a complete probability
space and let {7,},cza be satisfying the following three properties:

e (mesurability) T, : Q — Q is F-measurable for all z € Z¢;
e (group property) T, o Ty =T, and T_, = T ! for all 2,2’ € Z4;
e (mass invariance) P (T,A) = P (A) for all Ae F and all z € Z¢.
Definition 3.1. Such a {7}, is said to be a (discrete) group of P-preserving transfor-

mation on (Q, F,P) and the quadruplet (2, F,P,{T.},czq) is called a (discrete) dynamical
system.

Let 5 == {Ae F :P(T.LAAA) = 0 for all z € Z?} be the o-algebra of invariant sets with
respect to (2, F, P, {T.},cz4).

Definition 3.2. When P (A) € {0,1} for all A € .7, the measurable dynamical system
(Q, F P {T.,},czaq) is said to be ergodic.

Remark 3.3. A sufficient condition to ensure the ergodicity of (2, F,P,{T}}.czq¢) is the so-
called mixing condition, i.e. for every (E, F) e F x F,

lim P(T.E n F) =P (E)P(F).

|2 =0

For each X € Ly (), let E7 (X) be the conditional mathematical expectation of X with
respect to 7, i.e. the unique (J , B (R))-measurable function in L} (Q2) such that for every
Fes,

f E7 (X) (w) dP (w) f X (w) dP ().
E E
Remark 3.4. If (Q, F , P, {T.}.cza) is ergodic then E” (X) is constant and equal to the math-
ematical expectation E (X) of X, i.e. EZ (X) = E(X) := {, X (w) dP (w).
Let %, (Rd) be the class of bounded Borel subsets of R? and let % (Zd) be the class of
half-open intervals [a, b[ with (a,b) € Z x 7.
Definition 3.5. We say that & : %, (R?) — L} (Q) is a subadditive process covariant (or
stationary) with respect to {T.}.cza if the following four conditions hold:
e (subadditivity) for every (A, B) € %, (R?) x By, (RY), if An B = & and Z? (0A) =
Z4(0B) = 0 then
Savp < Sa + SB;
e (covariance or stationarity) for every A € %, (Rd) and every z € Z¢,
CS)A-i-z =840 Tza
e (domination) there exists © € L} (Q; [0, 0]) such that for every A € % (R?),
Sy < 0L (A);
ST

e (spatial constant property) 7 (&) := inf ——dP:1e 7 (Z%) ¢ > —.
o Z(I)
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In order to study the pointwise convergence of subadditive processes introduced in the paper,
we need the following notion of regularity for sequences of sets in 9%, (]Rd).

Definition 3.6. We say that {A.}.-o © %), (RY) is regular if there exists {I.}.-o < J (Z%)
with I, c I, if e > & and C > 0 such that:

o A. c I, for all € > 0;

7 (1)
PR ZIV N R

For each A € %, (]R ) we set
p(A) :=sup {7’ >0:B,(0) c A}.

The following theorem can be found in [ABM14] Theorem 12.4.3, pp. 514] (see also [AK81],
LMO02]).

Theorem 3.7. Let § : %y, (]Rd — L} (Q) be a subadditive process covariant with respect to
{T.}.cza and let {A.}.n0 < By, (R?) be such that

{Ac}eso is regular
A, is convex for all e > 0
hm p(A:) = 0.

Then, for P-a.e. w € (Q,

. 6)145 (CU) . 5 CS)[O:k[d
i s - g ()

If moreover (0, F , P, {T.},cza) is ergodic then, for P-a.e. we Q,

. (§JA8 (w) . CS)[O,k[d .
3.2. Random nonlocal reaction-diffusion problems of gradient flow type. Let J :

QxR x R* x R* — [0,00] be a (F®%(RY) @ % (R?) @ % (R?) , % (R))-measurable
satisfying the following conditions:

(PNL;) J is symmetric, i.e. for every (w,z,y,§),
J(w7x7y7£) = J(w7y7x7£)7

and J is bi-stationary with respect to (7). ,q, i.e. for every z € Z* and every

(w,2,9,6) € Q@ x R x RY x R,
J(w,z+2,y+28) =J(Tw,z,y,8);
(PNLy) there exist J, J : RY — [0, oo with

J#0
for every (£,¢) € R? x RY, if [§] < |¢] then J (£) = J (C) (3.1)
supp (J) Bpg, (0) is compact with Ry > 0,
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such that for every (w,z,y,£) € Q x R? x R? x RY,

J(€) < J(w2,y,6) < T ().

Remark 3.8. The monotony condition (3.1]) (firstly introduced in [BBMO1), Theorem 4 and
Remark 4]) allows to obtain the strong compactness in L? (O) for sequences of solutions of
nonlocal reaction-diffusion problems (see Lemma [4.2). This condition is also essential to
show that ['-convergence implies Mosco-convergence of the corresponding nonlocal energies.

Remark 3.9. From (3.1)) we see that inf J(§) = J (&) £o0.

1< 5

Fix any € > 0. Let O < R¢ be an open set and let £ : Q x L?(0) — [0, 0| be defined by

e [ ELIEY (D

Given T > 0, let F. : Q x [0,T] x L?(O) — L?(0O) be such that F. (w,-,-) € Fcp for all
w e Q. Given T' > 0, for each w € , let <£‘:,ﬁ‘:> and <gj,@§’> be given by |(CP3)| with
F = F. (w,-,-), where, taking Remark into account, we further assume that

—oo < infy* (T) < supy? (T) < o, (3.3)
e>0=*¢ e>0
and consider the Neumann-Cauchy homogencous nonlocal problem (2XF) := (93"0 fagufp )p ]) ,
ie.
d w
Z;; () + VL (w,u® () = F. (w, t,u® (1)) for Pl-aa. te[0,T]

(722)
u

2 (0) = ug, e L2 (0s [, 721) .

D
Let g € H' (O/\O) with O’ := O + supp (J) = O + Bp, (0) be such that:
(

JEw SOJ\5J w??%%)ﬂ( )dy
;1= essinf s > —oo;
010 fongd (w 2,25 dy
§Ew SOJ\6 J (w7 %7 %7 %) g (y) dy )
;1= esssup b =Y < oo
2e07\0 SOJ\5 (w, PER T) Y
pr <15 and p2 > 5, (3.4)

for all z € O and and all w € Q, let P} : Q x L*(0) — [0, o[ be defined by

D (w,u) = JLI\O gg’x;y><g(y);uw)>2dxdy (3.5)
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and consider the Dirichlet-Cauchy nonlocal problem (#P,) := (9“3’%)(152@ e ﬁw]>, ie.
) g\Ws)s1P S HPe

Je(w,
d:;te (t) + VZI (w,u? (1) = F. (w,t,u? (t)) for Lla.a. te0,T]

(#2)
ug (0) = ug. € L2 (03 [¢2,721)
with £9 := 7 + 9. The following result is a straightforward consequence of Corollary [2.11]

Corollary 3.10. For each w € Q and each ¢ > 0, (P2 (resp. (92,)) admits a unique
solution u® € AC ([0,T]; L*? (O)) such that

Y (T) <yl () <u2 () <72 (1) <72 (T)
for all t e [0 T]. Moreover, if F. (w,-,u? (-)) € AC ([0,T]; L* (O)) then v admits a right de-
mvatwe dug = (t) at every t € [0, T[ which satisfies +dt (1) + V7 (w,u? (1) = Fo (w,t,u? (1))
( )+ VI (w,ug (1) = Fe (W, t,ug (1))
Our purpose is to look for the almost sure limit of (@fﬁ) and (@?w
object of the next section.

) as € — 0. This is the

3.3. Stochastic homogenization theorem. For each # € R? each R > 0 and each A ¢
B, (Rd), set

Liona (RY) = {ue L (RY) su =ty in o (4) }, (3.6)

where £y : RY — R is the linear map defined by ¢y (r) = 0z and g (A) denotes the R-
neighborhood of the boundary 0A of A, i.e.

O (A) = {x e RY : dist (z, 0A) < R}. (3.7)
In what follows, we also set
Ap = {x e A: dist (z,04) > R}. (3.8)
Let 8, &, % : By, (R?) x Q x R? — [0, o[ be defined by:

Sa (w,0) :=inf {7 (w,u, R, A) cu€ L op, A (RN}

©4 (w,0) :=inf {F (w,u, 4, A): ueL%OC(,RJA(Rd)};

Ha(w,0) :=inf {7 (w,u,Ar,, Ag,) + Dy, (w,u, Ap,, A\Ag,) :ue L yp 4 (R},
where R; > 0 is given by and 7, D, : @ x L} (RY) x B, (R?) x By, (RY) — [0, 0]
are defined by:

7@ A B) =1 | | T =) i) - )’ dedy

Dy, (w,u, A, B) : JJ (w, 2,9, — 1) (by (y) — u(x))® dedy.
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Remark 3.11. The random variational nonlocal functional (u, A) +— £ (,u, Ag,, Ag,) +
Dy, (-,u,ARJ,A\XRJ) arising in the definition of the process A — F4 (-,0) is the energy
of the Dirichlet-Cauchy nonlocal problem introduced in with g = ¢y, O/ = A and
O = Ag,. Consequently, the process A — F4 (-,0) is the natural nonlocal version of the
standard local process whose almost sure limit gives the homogenized density in standard
stochastic homogenization. The processes A — &4 (+,0) and A — &, (-, 0) are introduced

for technical reasons.
The following lemma makes clear the link between &', @ and % .

Lemma 3.12. For every A € %, (Rd), every w € ) and every 0 € R, we have:

6

0 < 61 (660) @ (0.60) < 2% (0n, () - | 6P (©) e

0 @i (w0) ~ A (w0) < 2 0n, () 1 [ (€T (6) e

Proof of Lemma [3.12. Fix 4 € %), (R?), w e Q and 6 € R”.

Proof of 1) Fix any € > 0. Let u. € L gp, 4 (R?) be such that &, (w

j (wa U, A7 A) —&. Then7 by using ]

Sy (w,0) — Fa (w,0) < f(w u, RYA) — 7 (w,u., A, A) + €
= (w, ue, R\A, A) +€

< J J (z —y) (ue (z) — ue (y)* dady + ¢.
RY\A
But supp (7) = Bg, (0) and u. = £ in Jg, (A), hence

0|? —
@)= Hato.0) < o[ [ Tyl ypdrdy e
4 Jon,(4) Jon,

6]

< 2100, () | €T ) de 4

and (3.9) follows by letting ¢ — 0.

JA) >

Proof of (3.10). Fix any ¢ > 0. Let u. € L ;5 4 (R?) be such that H,(w,0) >

I (w,ue, Ar,, Ar,) + Dy, (w,ua,ARl,A\ZRJ) — ¢. Then, by using [(PNL,)|

@A (wve) _‘%A <w70)<j<wau€aA7A) _j(w7u67AR17ARJ) _9&; ((U)uE?ARJ?A\zRJ) +e

<J (Wa U, A\ZRJ’ A\ZRJ) +e

1 — 2
4 L\AR L\ARJ Tl mue s
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But A\Ag, = 0g, (A) and u. = g in g, (A), hence...

% _
@ (w,0) — Ha(w,0) < —|f f Tz —y) |z — yl2dedy + ¢
4 Jon, () Jor, )

d 6] 27
< L, (A) - | T ©ds e,
R4

and (3.10)) follows by letting ¢ — 0. B

Remark 3.13. When A is a cube of size L it is easy to see that £? (0g, (A)) ~ 2R;# 1 (0A)
for large L.

Proposition 3.14. Let {A.}.-o = B, (R?) be such that:

{Ac}eso is reqular
A, is convex for all € > 0 (3.11)
lim p (A) = o0;

d
PR, (A)
=0 Z4(A.)
Then, for every § € R there exists Qp € F with P (Qy) = 1 such that for every w € Q,

: ‘%Ae (w79) . @As (UJ,Q) I CS)AE (W,Q) oz 5 S[Ofk[d (79>
iy M eday M ia) AaLE kA ().

— 0. (3.12)

Remark 3.15. Let @, (o) be the cube of size p > 0 centered at zg € R?. Then, it is easily

seen that {%Qp (20)}e=o satisfies (3.11)—(3.12)).

Proof of Proposition [3.14] Let § € RY. As A +— 84 (-, 0) is clearly a subadditive process
covariant with respect to {T,}.czq, taking (3.11) into account, from Theorem we can
assert that there exists Qy € F with P () = 1 such that

iy Sy (S
On the other hand, by Lemma [3.12] for every € > 0 and every w € ), we have:
Sa. @,0) @ (w.0) _ L(0, (A)) |0
(A ZLU(A) T Zi(A) 4

@a. (. 0)  Ha. (w.0) _ ZL(dr, (A)) 0

Zi(A,) Fi(A) T LA TJRd €7 () d€. (3.15)

Consequently, from (3.12)) and (3.13]) we deduce that

o Ha (w,0) L Gy (w,0) 7 Stk (+50)
lﬂm = ll_r}r(l)m = klerﬁ\f*E T (W) for all w e Qg,

) (w) for all w e Q. (3.13)

0<

| 7@ e

0<

and the proof is complete. B
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Now, we can define the homogenized density. First of all, it is not difficult to establish that
for every A € Ay, (]Rd), every w €  and every (6,0') € R x R,

G4 (w,0) Ga(w,b)

zi) i) | Sl -0+ (3.16)
with C:=  {g |27 (€) dE. Set
Vim0 % (3.17)

with Qy given by Proposition [3.14f Then ' € & and P (') = 1. By using Proposition [3.14]
from (3.16)) we deduce that for every w € €’ and every (6,6') € Q¢ x Q¢,

Stora (-0 Stoa (0"
inf B <M) (w) — inf E7 (M) W) <clo—e]0 +0),

kelN* kd kelN* kd
which allows to define fiom : 2 x R? — [0, o[ by
RY , 0
ing g7 (Sorte (-6) (w if 0 e Q¢

keIN* kd

)
Y -,
lim inf EZ (M

fhom (w, 0) = ) | d
Qds(— kelN* L ) (w) if0¢ Q7

Remark 3.16. It is easy to see that for every w € ', fiom (w,-) is quadratic, i.e. for every

w € €, there exists a symmetric d x d matrix AY  such that for every 6 € R¢,

From (w, 0) = %<A‘” 0.0), (3.18)

hom
where (-, -) denotes the scalar product in R

Proposition 3.17. Let {A.}.-0 = B, (R?) be such that (3.11)) and (3.12) hold. Then, for
every w € ', where ' is given by (3.17), and every 6 € RY,

hm %As (W, 0) . hm @AE (w7 9) _ hm (SJAS (CL), 0)
=0 Z4(A.) 0 g (Ae) 0 7 (Ae)

Proof of Proposition .17 Let w € Q' and let § € RY. By density, there exists {0, }n>1 =
Q? such that

= fhom (w, 9) .

lim [ — 6,] = 0. (3.19)

n—ao0

(In particular sup,,-, [0,] < 00.) Setting C" := C (|0] + sup,>; |6»]), by (3.16) we have

@As (w7 Qn) @As (U}, 9) < @As (W, 0”)
Fi(A,) Z(AL) Sl (A.)
foralle >0and alln > 1. Asw e Q and {0, },>1 = Q¢ we have w € Qy_ for all n > 1, and

so, by using Proposition [3.14]

. @Ag (Waen) . 7
S IR

—C'0-0,] < +C"|0 — 0, (3.20)

<§[o,k[d (-, 0n)

1 >(w) for all n > 1.
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Letting ¢ — 0 in (3.20]) we deduce that:

. S0, k[ ( en) . © (w 0)
5 [ka[ ) _ / _ Ac Y
L E < o >(°") 10 = Ol < lim =25

— Gy (w, 9) . 7 <§)[O k[4 ('7 gn) /
P N < et 2 — 0.,
llr% () kgﬁ\lf*E i (w)+C"6 — 6,
and consequently, by letting n — oo and using (3.19)),

@y (w,0) s (Stokga (5 0n) -
i) AmBLE T ) )= S (00).
On the other hand, by Lemma [3.12] (3.14]) and (3.15) hold for all £ > 0, and so, taking

(3.12) into account, we have:

hm OS)AE <w7 0) _ hm ©AE (W, 9)

=0 Z4(A) 0 (Ae)
. e%As (W, 9) 1 @Aa (w’ 9)
L ZI R 2 P

which completes the proof. B
Let hom, £, : Q' x L? (0) — [0, 0] be defined by:

Foom (w0, 1) 1= Jo Jhom (w, Vu (z))dzx if ue H' (O) (3.21)
0 ifue L? (O)\H' (0);
79 (w,u) = Jo Jhom (W, Vu (z))dx ifue Hg1 (0) (3.22)

0 if L? (0)\H, (O)
with H) (O) := {ue H' (O) : v (u) = v, (g9)}, where 7 (resp. ;) is the trace operator v :
H' (0) — L?(00) (resp. v, : H* (O’\O) — L?(00)).

Remark 3.18. By Remark we see that for P-a.e. w € €, Fom (w,-) (resp. F2 (w,-))
is proper, convex and lower semicontinuous, and Fréchet-differentiable on dom (0 fom (w, *))

(resp. dom (0,77  (w,-))).
For P-a.e. we Q,let G¥ : [0,T] x L? (O) — L?(O) be such that G¥ € F(r,)-(r,) and consider
the following Neumann-Cauchy homogeneous local problem:

( gpNH ) ] di

[ (0) = ug € dom (Fhom (w, )

and the following Dirichlet-Cauchy local problem:
(- du”

- (t) + VAL (w,u” (1)) = G¥ (t,u (t)) for Ll-aa. te[0,T]

() + V Fom (W, u® (t)) = G¥ (t,u” (t)) for Ll-a.a. te[0,T]

(Priom) 4

[ u”(0) = ug € dom (g, (w,)) -
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Here is the main result of the paper.

Theorem 3.19. For P-a.e. we 2 and every € > 0, let u¥ be the unique solution of (9’55)
(resp. (@Qw)), see Corollary and assume that:

(Hy) sup 7. (w,ug.) < o0 (resp. sup J9 (w,ug.) < 0);
e>0 e>0
(HY) ug. — ug in L*(0);

(Hg) sup | £2 (w, - u2)| r2qo.17:02(0)) < -
e>0

Then, there exists Qe F with P (@) = 1 such that for every w € Q there exists u® €
C ([0, T]; L* (O)) such that up to a subsequence:

u? —u” in C ([0,T]; L% (0)) ; (3.23)
du?  du” ., -
s in L* ([0,T7; L* (0)) . (3.24)

Moreover, we have

inf y* (T) < u” (t) <supy? (T) for allte|[0,T].

e>07¢ >0
Assume furthermore that
(HY) for every ve C ([0,T]; L? (0)),
u? — v in C ([0,T);L*(0)) = F. (w,-,u?) — G (-,v) in L*([0,T]; L*(0)) .

Then, (3.23])—(3.24) hold for the whole sequence ¢ and
is the unique solution of (PN ) (resp. (Poons))-

hom,w

uw

Moreover, ug € H' (O) n L* (O;[p*, p*]) (resp. ug € H} (O) n L* (O; [p*,p*]) ) where p* :=
infe~o p? and p* := sup.o -

Remark 3.20. If is satisfied uniformly with respect to £ then a sufficient condition

to ensure is that supe.g [ F= (w, ", 0)[ 2o 70200y < - It is indeed a straightforward
consequence of the uniform boundedness of ¥ together with the local Lipschitz hypothesis
on F..

Remark 3.21. Taking (3.18) into account, for P-a.e. w € €2, we have:

( dom (ajhom (w, )) = {U € Hl (O) s div (Aolfom

Vv) e L?(O) and AY,

hom

Vv-nz()oné’O}

| Viiom (W, ) (v) = —div (A},

hom

Vo) for all v € dom (0 fom (w,*)) ;

[ dom (087, (w,)) = {ve H}(0): div (4

hom

Vo) € L2 (0) }

| VAL (w,) (v) = —div (A%, Vo) for all v e dom (057, (w,)),
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where n denotes the unit outward normal to 00. So, (PN ) and (P

om0 D ) can be rewritten
as follows:

ddit (t) — div (Ay, Vu® (t) = G (t) for L'-a.a. t€[0,T]
(g)NH ) ) u” (0) =ug € H' (O) n L? (O§ [Bwaﬁw])
hom,w
u” (t) € H' (O) and div (A¥, Vu¥ (t)) € L* (O) for L'-a.a. t € [0,T]
| A¢  Vu® (t) -n=0on 00 for £'-a.a. te|0,T];
ddlt (t) — div (A2, Vu® (1)) = G (t) for L1-a.a. t€[0,T]
(2. )] u” (0) = ug € H} (0) n L* (03 [p*, 7])
hom,w

u” (t) e H' (O) and div (AY

hom

Vu¥ (t)) € L? (0) for Lt-a.a. te[0,T]

L 7 (u¥ (t)) =77 (g) on 0O for L'-a.a. t € [0,T].

4. PROOF OF THE MAIN RESULT
In this section we prove Theorem [3.19
4.1. Convergence of reaction-diffusion problems of gradient flow type. Let T" > 0,
let {(a.,@:)}es0 = R x R with a. < @, for all ¢ > 0 and

—w < infa, <supa. < 0,
e>0 e>0

let {(z.,Zc)}e=0 < C ([0, T];R) x C ([0,T];R) be such that z_ (T) < z. < z. <z (T) for all
e >0 and
—oo < infz_ (T) <supz. (T) < . (4.1)
e>0 e>0

For each € > 0, let &. : L?*(O) — [0, be a convex and Fréchet-differentiable functional,
let F. : [0,T] x L? (O) — L*(O) and consider the following reaction-diffusion problem of
gradient flow type:

du,
(2){ @
ue (0) = ug. € L* (0 [a,, a.]) .

(t) + V& (u. (t)) = F. (t,u (t)) for Lr-aa. te0,T]

Let & : L?(0) — [0,%0] be a proper, convex and lower semicontinuous functional, let
G :10,T] x L*(O) — L* (0O) be such that G € F(g,)-(r,) and consider the following problem
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of gradient flow type:
— () + 0& (u(t)) 2 G (t,u(t)) for Ll-a.a. te[0,T]

P dt

(Z0)

u (0) = up € dom (&) .

To establish the following result, which gives sufficient conditions for the convergence of (2,)
to (%) as € — 0, we do not need the existence but only the uniqueness of the solution of
(%), which is straightforward because G € F(g,)-(r,)-
Theorem 4.1. Assume that:

(Cy) sup&. (upe) < 0;

e>0

(Cq) wpe — ug in L2 (0);

(C3) for each € > 0, (P.) admits a solution u. € AC ([0, T]; L* (0)) with z.(T) < 2. <
ue < Ze < Ze (T) and sup.g | Fz (-, ue) | r2ory;02(0)) < 05

(Cy) for every {v.}eso = L2(0), if sup&. (v.) < o0 then {v.}.~o is relatively compact in
e>0

L*(0).
Then, there exists u € C ([0, T]; L? (O)) such that up to a subsequence:
u. — u in C ([0,T]; L*(0)) ; (4.2)
du.  du ., o
o il L?([0,T]; L* (0)) . (4.3)

Moreover, we have

inf z_(T) <u(t) <supzZ. (T) forallte|0,T].

e>0 e>0
Assume furthermore that:
(Cs) for every ve C([0,T]; L?(0)),
u. — v in C ([0,T]; L? (0)) = F. (-,u.) — G (-,v) in L* ([0,T7]; L* (O)) ;

(Co) & L &[]
Then, (4.2)—(4.3) hold for the whole sequence £ and

u® is the unique solution of (%) .

Moreover, ug € dom (&) n L*(0O; [a,a]) where a := inf.oqa. and @ := sup. Q..

Proof of Theorem [4.9]. In what follows the scalar product in L?(O) is denoted by (-, -).
The proof is divided into three steps.

Step 1: bounds. First of all, from |[(Cs)| and (4.1) we see that

—oo < infz (T) < u. < supz. (T) < 0. (4.4)
e>0 e>0

1. By &. M, &o we mean that {&.}.~0 Mosco-converges to &, see Appendix [B| for more details.
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Hence

sup |[ue | ojo,rr2(0y) < - (4.5)
e>0

Fix any ¢ > 0. From and (P.) we deduce that for Z'-a.e. t € [0,T],

2
’ <V% (ue du& > < (b (), 2 (t)> ,
£2(0) dt

and so, by integrating over [0, 77,

L o dt+f <V% e ( ,du& >dt—f< (t, ue (t ,dlj;()>dt.

But £&. (u. (t)) = (V& (u. (1)), &

hence

du,
t
o ()

du,

(t)
dt

(t)) for L*-a.a. t e [0,T] and w. (0) = ug. by (£.),

7dt

JDT <V%€ (ue (1)), % (t)> dt = LT %%5 (ue (1)) dt = &. (uz (T)) — . (uoyz),

and consequently

du, 2 T du,
‘ v - | <F (tu (1)), S (t)> dt + & (o) — & (u. (T)
L2([0,7];L2(0)) YO
du,
<ICleqoreon |G| B0 ~E. (D) (40
([0.T1:L2(0))
du,
<1 Codlpomo |G|+ ().
([0,7];L2(0))
Noticing that by |(C;)|and |(C3)| we have:
c1:=sup&. (up.) < o0;
e>0
Cz 7= SUp |72 (- ue) | 2o,y r200y) < 5 (4.7)

it follows that for every ¢ > 0,
du, 2

S
dt || 2101722 (0))

with C' := max (¢1, ¢2), which implies that

du,
dt

+1
*([0,7;L2(0))

du,
dt

sup < . (4.8)

e>0

L2([0,T];L2(0))
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Step 2: compactness. By (4.5), {uc}.~0 is bounded in C ([0, T]; L? (O)). Moreover, For
every (s1,82) € [0,T] x [0,T] with s; < so,

52

du,

e (s1) = e (s2) ooy = || GE o)
s1 L2(0)
d
< (52—51)%sup Ue ,
>0 || dt |2 o/ry;020))

which, by (4.8), implies the equi-continuity of {u.}.~o. On the other hand, from |(C;)| and
it is clear {u. (0)}e=0 = {uoc}e=0 is relatively compact in L? (O). Morever, if s €]0, T
then, by replacing T" by s in (4.6)), we have

du,
dt

du,
dt

. (1. (5)) <

(|F£ () UE)HL2([O,T];L2(O)) B ‘ ) + & (UO,E) :

L2([0,77;22(0))

From|(C,), (4.8)) and (4.7)), it follows that sup.., &- (u. (s)) < 0. Hence, by [(Cy)} {ue (s)}e=0

is relatively compact in L? (O). Consequently, by Arzela-Ascoli’s compactness theorem there
exists u € C ([0,T]; L* (O)) such that, up to a subsequence,

L2([0,T];L*(0))

u. — win C ([0,77; L* (0)) . (4.9)
From we deduce that
du. du, -
o g m L*([0,T]; L* (0)) (4.10)

and from and (4.9)) it follows that inf.. 2. (T) < u(t) < sup..(z. (T') for all £ € [0, T].
Step 3: convergence to the solution of (%;). We are going to prove that u is a solution
of (g}o)

Step 3-1: Legendre-Fenchel transform of (&.). Fix any ¢ > 0 and denote the Legendre-
Fenchel conjugates of &. and &, by & and & respectively. From Fenchel’s extremality
relation (see Proposition [A.4|(b)) we see that (%) is equivalent to

B du,

€ (u. (1) + € ( G- (1) @)+ e G ) () ) =0 for Flaa te0,T]
dt dt

u (0) = upe € L? (0;|a.,a.])

with G. := F_ (-,u.). Using Legendre-Fenchel’s inequality (see Theorem [A.2(b)) it follows
that

Jy [#e 3 (0= e ) + (G- 6et0 et e =

(P) =10

ue (0) = Uo,e € L? (O;a.,a.]) .
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On the other hand, we have

f < o (t)>dt

Hence, for every € > 0,

alu6 d

J [

1

|

du,
dt

(f[%<<»+%*0¥@—

S RCAUREOY

Lue (0) = ug € L* (O [a., a:]) .

(P.) =+ 0

Step 3-2: passing to the limit. First of all, by (4.9) we have

ue (0) — u (0) in L* (O).

From |(Cy)H(Cs)| and |(Cy)| we see that

u. (0) = up. — ug in L*(0).

Hence:

u (0) = up;

. 2
lim s 3

Since ug. € L*(O;]a,

(G

uy € dom (&) and consequently

,a.]) for all € > 0, uy € L*(O;a
)b (4.12) and |(Ce)| we have & (ug) < lim, ,&: (upe) < sup..&- (o) < 0, hence

29
<a%2>@—«%@ﬂ%@ﬂﬁ
= (Jue ()2 = o) j<a (1)) dt.
)] e+ 3 (e (011
(4.11)
(4.12)
(4.13)
0y = luolZz(0) (4.14)

,a]) by (4.12). Moreover, from

up € dom (&) N L? (O; [a,a)) . (4.15)

Since u. (T) = u. (0) + Sg d;; t)dt and u (T) = g‘gg t)dt, from (4.10), (4.12) and
(4.13) we deduce that

lim u (T) [720y = |u(T) [72(0) (4.16)

E—>

Let Ey, Ef : L2 ([0,T]; L*(0)) —
Ey (u) := f

0

Bw= [

[0, 0] be defined by

€ (u(t)) dt

&5 (u(t))dt
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and, for each € > 0, let Let E. : L?([0,T]; L? (O)) — [0, ] be defined by

B (u) = J " (u (1)) dt.

0

From |(Cg)| and Theorem |B.4| we have &* 2, &;. Hence E. M, Ey and E* M, E; by
Theorem [B.5| From (4.9)), [(C5)[and (4.10) it follows that:

h_mEs (ue) = EO <u> ) Le.

e—0
T T
li [ e (0)at > [ 8 (u(e) e (4.17)
e—0Jo 0
. N du, . du _
i_rr(l)EE (GE 7 ) > Fj <G0 - E) , le.
T T
lim | & (G5 (t) — de (t)) dt > J & <G0 (t) — d_u (t)) dt (4.18)

with Gy := G (-,u). Taking (4.12), (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18)) into
account, letting e — 0 in (4.11f) we obtain

f T l%o (w(t) + 5 (Go 0 - “))] it 5 (10D = Juol?)

0

4 —JT<G0 (1), u(t)>dt <0

u (0) = ug € dom (%) N L* (0; [a,@))

\

1.e.

J; [#o o185 (ot~ ) + (G 0= Got0 00| <o

0

u (0) = ug € dom (&) N L? (O; [a,a))
But, by using again Legendre-Fenchel’s inequality (see Theorem [A.2(b)), we have

o (w®)+ & (Go )= )) + () = o), u®)) = 0 for Loaa. tel0,T].
it it

hence

0

| ' [g (u(t) + & (Go 0 - <t>) ¥ <% (1) — Go (), u <t>>] "0

u (0) = up € dom (&) N L? (O; [a,a]) .
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Using again Fenchel’s extremality relation (see Proposition [A.4b)) we see that (£.19) is
equivalent to

du

yn (t) + 08y (u (t)) 3 Gy (t) for Ll-a.a. t€[0,T]

u (0) = ug € dom (%) N L2 (O; [, @),

which shows that w is a solution of (%), and the proof is complete because of the uniqueness
of the solution of (%;). B

4.2. Auxiliary lemmas. To prove almost sure Mosco-convergence of the energies (see §4.3)),
we will need the following lemmas. We begin with two compactness results.

Lemma 4.2. Let A : R? — [0, [ be such that
A#£0
for every (£.C) € R x BY, if €] < |¢| then A(€) = A (O
supp () is compact

and, for each e > 0, let X, : R — [0, 00| be defined by

r©:= (),

Let U = R® be a bounded open domain with Lipschitz boundary and let {u.}.~o = L? (U) be
such that

sup—j f g — @) [ue (&) — ue (o) didy < .

e>0 €2
Then, there exists u € H* (U) such that, up to a subsequence, u. — u in L?* (U).

For a proof of Lemma[d.2) we refer to [AVMRTMI0, Theorem 6.11, pp. 128] (see also [BBMO1],
Theorem 4 and Remark 4]). For each e > 0, let % : @ x LE_(RY) x & (R?) x B (R?) be

loc

given by
7 (w,u, A, B) J J w Yt _y) uz) —uly) dedy. (4.20)
T el Tele’ e £
Let g € H' (O7\O) with O := O+supp (J) = O+ Bg, (0). For each v € L*(O) we consider

v9 € L* (O7) defined by
gy ._ Jv(@) ifzeO
v () : { g(z) if z € ON\O.
As a consequence of Lemma we obtain the second compactness lemma.

Lemma 4.3. Let w € Q and let {u.}.~o = L? (O) be such that
sup 7 (w,u?,0”7,07) < .
e>0
Then, there exists u € H; (O) such that u9 € H! (OJ) and, up to a subsequence,
u. — u in L* (O)
ud — uf in L* (07).
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The following two lemmas are Poincaré type inequalities.

Lemma 4.4. Let R > 0 and let Q be a cube of R? of size n > 0. Then, there exists C' > 0

such that
Joluo < gzl [ [ e+ - o) Paaas

for all ue L (RY) such that uw =0 in 0r (Q) and u = 0 in R\Q, where O (Q) is defined
in (3.7).

For a proof of Lemma[4.4] we refer to [BP21), Lemma 4.3] (see also [AVMRTMI0, Proposition
6.25, pp. 144]).

Lemma 4.5. Let w e Q and let A < O7 be an open subset with Lipschitz boundary and let
ue H' (A).

(a) There exists C' > 0, which only depends on A, such that for every u e H' (A),

sup 7. (0,1, 4,010) < Cluling [ 167 (6)de

e>0

(b) Assume furthermore that A @ O’ and let § > 0 be such that A+ Bs (0) = O7. Then,
for every e > 0 with eR; < § and every u e H' (A + Bs (0)),

— 1 _
sup 7. (w,u, 4,0\0) < -J V() |2dxf €T (€) d. (4.21)
e>0 4 A+Bs(0) R
Proof of Lemma [4.5. (a) Let P: H' (A) — H' (R%) be a continuous extension operator.
Then, there exists C'y > 0 such that |Pul i ga) < Calullgia) for all uw e H' (A). Hence, if
we establish

— 1 —
sup - (w,u, A,07\0) < Z”PUH?{l(Rd) J}Rd €12 T (€) dé (4.22)

e>0

for all w e H' (A) then (a) will follow with C' = $C4. Let u € H'(A) and let ¢ > 0. By

changing of scale (§ = “=¥ with x fixed) and by using |(PNL;)| and Fubini’s theorem, we see
that

Pu (z) — Pu(x + ££) ‘2 da:) de. (4.23)

e>0 €

— 1 —
sup 7. (w.u.4.0M0) <5 [ T
4 JBg, 0) Rd
On the other hand, for every ¢ € R? and Z%a.e. € R, we have

B el¢l
Pu (x) PU(IL‘+5€):|§| gvpu<x+t§>£dt
g 0 i) 7

hence, by using Jensen’s inequality,

Pu (z) — Pu(z + €€) 5 Eg" ( i)
- ‘<]§| J[o V Pu x+t|§|

2

dt,
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and consequently, by using Fubini’s theorem and by changing of variable (y = = + t5 with

§
t fixed),
).

From (4.23) and (4.24]) we deduce that

— 1
sup 7. (10, 4,010) < {1 Pulfy s |

e>0 BR]. (0

Pu(x) — Pu(x + €€)

‘dw < |5|2f IV Pu(y) [2dy
]Rd

< |5|2HPUH§P(]Rd)‘ (4.24)

) €77 (&) de,

2
dx) de,

and ([£.22) follows because supp (J) = Bp, (0) by [(PNLs)
(b) In the same way, for every u € H' (A + Bs (0)), we have

u(x) —u(x+ef)

o) < L J
supfa (u),u,A,O \O) < 4 JBRJ-(O) J(f) (JA

e>0

where, for every ¢ € R and Z%a.e. x € A,

ulr) —ulxr+e
[ o= < [ ) Py
A

€ A+Bs(0)
which implies (4.22)). B

For each o € O and each u € H' (O), we consider the affine function u,, : O — R given by

Uz, () = u (xg) + Vu (x0) (x — x0) .
By [Zie89, Theorem 3.4.2, pp. 129] there exists N; = O with Z¢(N;) = 0 such that for
every xo € O\ Ny,
J[ |u () — Uy, (2)]*dz = 0 (p?) as p— 0. (4.25)
Qp(z0)
By using (4.25)) we can establish the following lemma.

Lemma 4.6. Let ue H' (O) and let {u.}.~o = L*(O) be such that u. — u in L*(O) and,
for each xy € O\Ny, each p > 0 with Q,(z9) < O, each € > 0 and each § €]0,1], let
ul® € L?(Q, (x0)) be defined by

£,20

0 (@) { Us if € [Qp (20)]y,5
£,20 : Uz (T) ifz € Q, (o) \ [Qp ($0)]2p6

with [Q, (0)],,5 = {z € Q, () : dist (z,0Q, (w0)) > 2p0} = Qaps (o) (see (3.8)). Then:
u? — win L (Q, (z0)) as e — 0;

jﬁ (wa ug:gw QP (33‘0> ) QP (xo)) - jﬁ (w’ Ue, QP (:L‘O) ) QP (l‘o))
Z4(Qp (20))

(4.26)

lim lim [

<o(l) asd — 0.
p—0e—0
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Proof of Lemma [4.6. Arguing as in the proof of [BP22, Proposition 2.2] we can assert

that
m Z—: (w7u§,7207@p ('rO)?QP (.To)) _jf‘f<w7u57QP (x(])’QP (ZL’())) < CN2 |U—U |2dl'
20 Z4(Q, (x0)) 00" g
+R2O + ¢

N
where C' > 0, N is the number of slides of @, (20) \ [@, (20)],,5 and

d
(p{-j) Qp(mo)\[Qp(mO)]zpa p(IO)\[Qp(xO)]zpa

But, by changing of scale ({ = *=¥ with z fixed) and by using |(PNLy)}
R < C (1 (- 25)d) IV (0) |2f €[2T (€)dE = 0(1) as § — 0
Rd

and, by using ({:25),

0 . _
RO =

Ty -y z‘x—yr
J (. 2852 Vu (o) |~ dady.

2 2
ON2J[ U — Uy, |*dr = N_20(1> as p — 0,
(00)"J Qu(o) 0
hence
T js (wa U?’g 7@/) (:CO) 7Qp (':CO)) - j's (wa Ue, Qp ($0> 7Qp (Z'o)) C
lim 1 0 <o(l)+ —asd — 0,
ﬁﬁﬂ' Z7(Q, (w0)) o)+ et

and the conclusion follows by letting N — co. B
Finally, the proof of the following lemma can be found in [BP22, Proposition 2.2].

Lemma 4.7. Let w € Q, let U < R? be a bounded open set with Lipschitz boundary, let
uwe H' (U) and let {u.}.~o = L*(U) be such that u. — u in L? (U). Then, for every § > 0
there exists {u’}.~o = L*(U) such that:

{ u® = u in U\Us
[ ] Ky .

o ul —uin L?(U);

. E%(jg (w,u2, U,U) = 7 (w,u,U,U)) <o0(1) as § — 0.

4.3. Almost sure Mosco-convergence of the energies. Here, we establish the almost
sure Mosco-convergence of { £}, and {£9 := £ + D:}.o0, where f. : Q x L? (0) — [0, 0]
and 95 : ) x L?(0O) — [0, [ are defined by ([3.2) and (3.5]) respectively.

Theorem 4.8. Let ' € F be such that P () = 1 given by Proposition [3.17. Then, for

every w € ', { (W, )}e=0 (resp. {Ff (w,)}e=0) Mosco-convergence to Fom (w,-) (resp.
jhgom <w7 ))
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Proof of Theorem [4.8. Let w € €. According to Lemma (resp. Lemma and
Proposition[B.3] it is equivalent to prove that {_% (w, -)}-0 (resp. {79 (w,-)}e=0) [-convergen-
ce with respect to the strong convergence in L? (O) to fiom (w,-) (vesp. %2 (w,-)). To do
this, the proof is divided into three steps.

Step 1: I'-limit inf. We have to prove that:

Som (w,+) < T-lim £ (w, ) ; (4.27)
e—0

jh%)m (w7 ) < F'li_m,jgg (w7 ) . (428)
e—0

Proof of (4.27)). According to Definition it is equivalent to prove that for every
we L?(0) and every {u.}.~o = L? (0), if u. — w in L* (O) then

Hhom (w, 1) < lim 7 (w, uc) (4.29)
e—0
Let we L? (O) and let {u.}.~o = L?(O) be such that
u. — u in L*(0). (4.30)

Without loss of generality we can assume that lim__, % (w,u.) = lim._ % (w,u:) < o0,
and so

sup £ (w,u) < 0. (4.31)

e>0

Taking into account, from (4.31)) and Lemma {4.2| there exists @ € H! (O) such that,
up to a subsequence, u. — @ in L*(0). By (4.30) it follows that v € H' (O). Hence, to

prove (4.29) it is sufficient to establish that

L foom (w, Vu (z)) dr < lim 7 (w, u.) . (4.32)

e—0

For each € > 0, we define the (positive) Radon measure p. on O by

pe (4) 1= é JA JAJ (w, g’ g’ — y) (ua o (y))zdxdy = Je v 4, 4)

9 €

for all A e % (0). From (4.31)) we see that sup,., s (O) < 00 and so there exists a (positive)
Radon measure g on O such that, up to a subsequence, p. — p weakly in the sense of
measures. By Lebesgue’s decomposition theorem, we have u = p® + p® where p® and p® are
(positive) Radon measures on O such that u* « Z¢ and p® 1 #? Thus, to prove it
suffices to show that

Srom (w, Vu (-)) Z% < p. (4.33)

From Radon-Nikodym’s theorem and Alexandrov’s theorem, there exists Ny < O with
Z4(Ny) = 0 such that

pt = g4 with g e L' (0; [0, 0])

9 (x) = lim lim % for all 2 € O\Np.
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Let Ny < O (with £4(N;) = 0) be given by (4.25) (and used in Lemma . From the
above we see that to prove (4.33) it is sufficient to establish that for every xy € O\ (Ny U Ny),

fhom (w, V'LL (xﬂ)) < g (330) )

i.e., by using ,
js (W Ue, Qp (xO) Qp (*7:0))

fhom (w7 Vu ($0)) < IIDIE)% }:I_I% gd (Qp (370)) (434)
Let z9 € O\ (Ny U Np). From Lemma [4.6| we deduce as § — 0,
o Je (wyue, @y (o) , @y (T0)) o S ( , uf ;Bo’ Q, (70),Q, (:1:0))
T 2w e 2@y W U

with u2? € L?(Q, (0)) given by (4.26])). As L ( v +e¢)=J (v, ) forallve LT (R?)
and all c € R, in (4.35) we can replace uf? o DY U given by

0 (z) = { Us ifze [Qp (Ig)]2p6
o ' (vt () i 2 € Q,(20) \[Q) (xo)]zp(s
with £gy(z) R¢ — R the linear map defined by Uu(wy) (2) = Vu (x0) z, i.e.

e (w,uf?, Qp (0) , Qp (0)) _ I (w 7U§§07 1Q, (20) , 2Q, (0))
Z4(Q, (20)) (ng (xo)) .
On the other hand, by change of scale and function, i.e. (2/,y) = (%,%) and @29 (2') =

g,T0
1020 (ea’), we have:

A A W AT A DR AL
pd (Qp (xo)) N (%Qp (330)) ; (4.37)

~ 1
“5,’20 = lyu(z) 1N ng (o) \ [ Q, (350)} )

p5

For each p > 0 there exists €, > 0 such that 2"5 > R for all € €]0,¢,] (with R; > 0 given

by [(PNL,) m Hence

.1 1
u?io l5u(ay) In ng (x0)\ [EQp (xo)]R for all p > 0 and all € €]0, ¢,],
J

and so, by extending 19 by (g, outside 2Q,, (1),

&,Z0

020 = lgu(ey) in Or, (—Qp (x0)> for all p > 0 and all € €]0,¢,].
€

Thus @23, € Ly, o B 1) (R?) for all p > 0 and all € €]0,&,], where LY, 5 4 (RY) is
Vu(wxg) e @pP z

defined by (3.6 - with 0 = lyy(z,), B = Rj and A = 1Qp xg). From - - and -

it follows that

@1 €T w? g u\ T
lim lim jg (w,ug,de <x0) ’Qp ({L‘O)) > 11_1'1111_111 Qp( 0) ( Vu( 0))
Pt ZQe(m)) o0 Z(EQ, (1))

+0(1) asd — 0.
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Hence, by Proposition (and Remark [3.15]),
lim ©10, @) (w, t7u(ao) )
=0 24(2Q, ()

= fhom (w) Vu (l’o)) ’

and consequently
lim lim Xi (wv Ue Qp ($0) ) Qp (wO))
p—0e=0 Z4(Qp (x0))
which gives by letting § — 0.
Proof of . As in the proof of it is equivalent to prove that for every u € L* (O)
and every {u.}.-0 = L?(0), if u. — u in L? (O) then

i (W, w) < lim 79 (w, ue) . (4.38)

e—0

= fhom ((U, Vu (‘TO)) + 0(1) as 6 — 0,

Let u € L?(O) and let {u.}.~o = L?(O) be such that u. — u in L?(O). Without loss of
generality we can assume that lim__; 79 (w,u.) = lim._ 7 (w, u.) < o0, hence

sup f7 (w, u.) < o0,

e>0
and consequently
sup 7 (w, u.) < 00; (4.39)
e>0
sup Z; (w, ue) < 0, (4.40)
e>0

where 7 (w,-) and D; (w,-) are defined in (3.2)) and (3.5)) respectively. Fix any ¢ > 0 and
consider u? € L* (O7) defined by

g . Jou(x) ifzeO
UE(@'_{g(x) if v € O7\O.

By using ((PNL;)| and Fubini’s theorem, it is easy to see that
I (w,uf,07,07) = f(0,u:,0,0) + f (,9,0"0,0"\0)

+LJJ J<w§gx—y> u@) =g\,
4ed )o Jono ‘ele’ € 5 Y
1 B B 2
01\G e’e € £

= 7 (w ue) + ja (w g,0"\0, O‘]\O)

g, g7 (252 (M

= L (w, ue) + J (w,9,01\0,0M\0) + D (w, ue)
and so, by using Lemma (a) (with A = O\O),

Iz (w,u, 07,07) < J (w,ue) + Clgl s (0010) fRd €127 (§) dé + 5 (w, ue)
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where C' > 0, which only depends on O”\O, is given by Lemma (a). Recalling that
ge H' (07\O) and using [(PNL,)| (4.39) and (4.40) we deduce that

sup 7. (w u? O‘],O‘]) < o,

)y Weo
e>0

hence, by using Lemma , there exists u € H, 91 (O) such that, up to a subsequence, u. — u
in L? (0), and consequently 4 = u because u. — u in L?(0O). Thus

ue H, (0). (4.41)
On the other hand, from (4.27) we have
Shom (w, 1) < lim £ (w, u,) . (4.42)
e—0
Moreover, it is clear that
lim 7 (w,u.) < lim 79 (w, u.), (4.43)
e—0 e—0

and, since H! (0O) ¢ H' (0), from (4.41)) and the definitions of Fom (w,-) and £ (w,-) in
(3.21)) and (3.22)) respectively, we see that

Fom (W, u) = T (w,u) = J Jhom (w, Vu (2)) dz. (4.44)
o
Consequently, (4.38) follows from (4.42), (4.43) and (4.42)).

Step 2: I'-limit sup. We have to prove that:
jhorn ((U, ) = F'@)j;: (w7 ) ; (445)
Fitom (w,+) = T-1im 79 (w, ) . (4.46)

Proof of (4.45)). According to Definition it is equivalent to prove that for every
u € L?(0) there exists {u.}.~o = L? (O) such that

u. — u in L? (O)
- (4.47)
jhom (Wa u) = hmsﬂ(] js (w; uz—:) .
Let u € L? (O). By definition of #om (w, -) in (3.21]), without loss of generality we can assume
that u € H' (O), and to prove (4.47) it suffices to show that there exists {u.}.~q = L*(O)
such that
u. — u in L? (O)
- (4.48)
J Jhom (w, Vu (z)) dx > lirrtl)je (w,u.).
o e

As Aff (O) is dense in H' (O) and, since fpom (w, -) is quadratic, u — §, fuoom (W, Vu (z)) dz
is continuous with respect to the norm of H' (O), it is sufficient to prove (4.48) for u affine,
i.e. for u = fy with 6 € R? there exists {u.}.~o = L?(O) such that

u. — by in L?(0)

- (4.49)
from (w,0) Z%(0) = lim 7 (w,u.) .

e—0
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As O is regular, for every 7 > 0 there exist two finite sets I, and J, with I, < J, and a
family {Q;}ic 7, of cubes of size n with disjoint interiors such that:

e UQR;cOCc B QZ, (4.50)
i€l

o« 1 (0\% Qi> =0; (4.51)
: d

(g, @) <o 452

Fix any n > 0, any € > 0 and any 7 € J,. Let u" e L2 (Rd) be such that

loc,0,R7,2Q;
f( s Ui s Qz,—Qi> = &1, (w,0). (4.53)

By change of scale and function, ie. (2/,3/) = (%,%) and @}, (2/) = Lu], (e2’), we have

"7 GLIQOCHERJQ (Rd) and, by 7 o

I (w0, 00, Qi, Qi) = 2 (Q,)w (4.54)
3 ? e (3 () 7 gd (%Qz) . .
Let u? € L} (R?) be defined by
u} (x) ifze@; withieJ
n A 1,€ n
ug (2) = { lo otherwise.
From (4.54)) we see that
S: w, 6
(w,ul) Z Z4(Q £ + R., (4.55)
i€dy ( Qz)

with

A~ A~ 2
R J J o B Y x—y> <U" (x) —uj, (:v)) dvdy
en ) .
JyziFjedy i 8 < < €

On the other hand, by using |(PNL,)| we have

RE,’? <

— al —a" 2
Ty (LB,

Jn3ifjedy LQiXQj)m[Iw—yKeRJ] ! ( € €
and noticing that if ¢ + j and |z — y| < eR; then:
*T,Y€ 95Rj (Qi);
Y e B, (0);
LWL - @) 0y

€ 9

)
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we deduce that

R., < ZQZJ dv ). J €127 (

iedy 6R (Q:) iFjedy
< % (0ur, (10,[%)) (Bcard (J,))? f T (6 e (456)
R
Since £ (0-x, (]0,n[*)) = 0(1) as ¢ — 0, from (4.54) it follows that
liH(l) R., =0 for all n > 0. (4.57)

From ({4.55)), (4.57), Remark and Proposition we deduce that for every n > 0,

EZS w, u77 ng Ql fhom(w 6)) fhom(wue)gd(U Q)

i€,
n
1€y

hence, by using (4.50) and (4.51)),

7 () < |20 @)+ 2 (5, @0y @) | om0

- _gd (I > + 2 ( U an) + 27 (ie;j\[n 6)] from (w, 0)

— _gd (ie >+5fd ZE\ )]fhom(w,e)

= 3d(0)+$d( U Qz)]fhom(w,ﬁ)-

i€Jn\Iy

Consequently, letting  — 0 and using (4 , we obtain
lim hmj6 (w,u”) < L% (0) from (w,0). (4.58)

n—0e—0

We are going to establish that

mmj [ul — £p*dx = 0. (4.59)

n—0e—0 1)

Applying Lemma with R = eR;, @ = Q; (whose size is n > 0) and v = (u — {y) 1,
(verifying u € L} (R?), u = 0 in d:g, (Q;) and u = 0 in R\Q;), there exists C' > 0 such
that for each n > 0, each € > 0 and each 7 € I,,,

n_ (T — 2
J lul — lolPdr < f J (uf — o) (z) — (u? — o) (v) dxdy
; Rd+25d \z Y| in €

_ 20y ff <2<x>—u’g(y>>2d$dy
x Rbd;r?gd . x y|< ﬁQz e

2 6? —y\?2
Cn f f I y) dxdy. (4.60)
\x yls—

Rd+2€d ERJ le e
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Taking Remark W (PNLs)|and (4.54]) into account, we see that

oo (Yo [ (222220

< Ljs ’ zsanQz
Z(gy 7 e Q)
4 S1q, (w,0)
= w2 Q) Ay 4.61
17 W) (461
Moreover, we have
r—Yy 9 J de+2

dudy = d§ < Z°(Qi 4.62
JQi J[|$y<€§]]in< € ) ey = f f§|<RJ mQ |€| 6 (Q) ( )

From (4.60)), (4.61) and (4.62)) we deduce that for every n > 0, every € > 0 and every i € I,

& w, 6
fyun lp2dz < c’ngd(Q)<%+1>

i

with C" := C'max {L, %} From (4.51)) it follows that

Rya(5)
s ©1q, (w,0)

zEI

for all n > 0 and € > 0. Letting ¢ — 0 and using Proposition (and again (4.51])) we see
that

Tty | 2~ o < C' 35 £(Q) Uom (4,0) + 1) = CnZL* () (fum («.0) + 1)

iely

for all n > 0, and (4.59)) follows. According to (4.58) and (4.59), by diagonalization there
exists a mapping € — 7 (), with 7 (¢) — 0 as ¢ — 0, such that

i 7. (w0, 1) < Z%(0) fuom (w,0)

w!® — g in L? (0),
which gives (4.49) with u, := uZ(E).

Proof of (4.46]). As in the proof of (4.45) it is equivalent to prove that for every u € L* (O)
there exists {u.}.~o = L?(O) such that

u. — u in L? (O)

jhgom (w7 U) > me—»O fsg (w, ua) .
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Let u € L? (O). By definition of Zom (w, -) in (3.22)), without loss of generality we can assume
that u € H, (O), and so we have to prove that there exists {u.}.~o  L? (O) such that

u. — uin L* (O)

(4.63)
f fhom (w, Vu (z)) dx = hr%]g (w,ue) .
o) e~
By (4.45)) there exists {u.}.~o = L?*(O) such that
u. — u in L? (O)
(4.64)

J fhom (w7 Vu (37)) dx = @jg (w,ua) .
@] e—

Fix any § > 0. From Lemma [4.7) (that we apply with U = O) there exists {ul}..o = L? (O)
such that:

ud = u in O\Os
* { ud = u, in Oy (4.65)

e u! = uin L? (0); (4.66)
. FI(I) (7 (w, 1) — 7 (w,ue)) < o(1) as d — 0. (4.67)

By (4.67) and the inequality in (4.64)) we see that
@ja (w,ul) < J Jhom (w, Vu (z))dx +0(1) as 6 — 0. (4.68)

E— o)
Fix any € € ] Ri[ Then, taking (4.65)) into account, u® = u in O\Ocg, and, noticing that
(w,g 45 ) =0 if |z —y| > eR;, we see that

D (w, u %) =27 (w,u?, O\O.p,,0"\0), (4.69)

where u9 € H! (O‘] \525) is defined by

gin . fu(x) ifzeO\O,
u (z) = { o) ifre0)\0.

(Note that u? € H' (O7\Oss) because u € H} (0).) On the other hand, as § > ¢R; we have
O\O.r, = O\Os, hence

I (w,u?,0\O.r,,01\0) < 7 (w,u?,0\0s,0”"\0) .

Moreover, it is easy to see that O\O; + Bs (0) = O/\Oys so that v € H* (0\65 + B;s (O))

Consequently, taking into account, by Lemma (b) (that we apply with A = O\Oy)

it follows that for every ¢ €0, R%[a

7. (0,109,010, 0"\0) < Vur (2) Pz | 67T (€)dE = (1) as 5 0.
R4

JO\O(; +B;5(0)
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Hence, by using (4.69),

EQZ; (w,ul) <o(l) as 6 — 0. (4.70)
From and together with (4.70) we deduce that
lim Tim uf — | 2(0) = 0
(4.71)
T Fa——

From (4.71), by diagonalization, there a mapping € — § (¢), with § (¢) — 0 as ¢ — 0, such
that...
w2 = win L2 (0)

I 7 (1, %) < f from (@, Vu (2)) do,
E—> O

which gives (4.63]) with u. = ul®.

Step 3: end of the proof. From (4.27) and (4.45) (resp. (4.28)) and (4.46])) we deduce
that the I'-convergence of {_Z (w, ) }e=0 (resp. {77 (w,)}e=0) t0 Fhom (w,-) (resp. F7 (w,"))
with respect to the strong convergence in L? (O), which finishes the proof. B

4.4. Proof of Theorem (3.19 E Let 2" € & be such that P(Q") = 1 and [(HY)H(HY)| (in
Theorem hold. Set Q = € A Q” where V € F , with P (€2) = 1, is given by Proposition
3.17 and Theorem . Then 2 € F and P (Q) — 1. Fix we Q. We are going to apply
Theorem [4.11

Firstly, it is easy to see that hold with uoe = ug,, uo = ug, ue = uf, z. = y2,
252@;”,@5:ﬁ’andgzgw,agzﬁganda—ﬁw,lf—F( ), G = G¥ and
& = J(w,) (resp. & = f9(w,-)). Note that is verified with &. = % (w,-) (resp.
&. = 79 (w,-)) by using Lemma (resp. Lemma [4.3)). Secondly, by Theorem - m is

satisfied with &. = £ (w,-) and & = fom (w, *) (resp. & =79 (w,-)and & = 77 (w,")),
and the conclusion of Theorem follows by applying Theorem and noticing that

OFhom (W, ) = {V Jhom (w, )} (resp. 07, (w, ) = {V I (@,-)}). W

5. APPLICATION TO SPATIAL POPULATION DYNAMICS

Here we apply Theorem to a model coming from spatial population dynamics.

5.1. Heuristic derivation of the model. Let T' > 0 and let O = R¢ (withd = 1,2 or 3) be
a bounded open domain with Lipschitz boundary. The state of the population is represented
by its density u (¢, z) at time ¢ € [0, T'] and located at € O. Although, for each x € O, u (-, x)
is intrinsically discrete, as the population is assumed to be very large u (-, x) is considered
as a real function, i.e.
w:[0,T] x O — R.

To precise the model we need to specify what the population flux is and how the population
growth is regulated.
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We assume that the environment in which the population evolves is randomly heterogeneous
and we denote the density of population by u¥ where £ > 0 represents the (small) size of
the heterogeneities of the environment and w € 2 its randomness with (2, #,P) a suitable
complete probability space.

The population flux at (¢, z) is given by

B (0 () = o | T (0 5 L) )~ () dy

- J J ( ‘
Y)Y W, —,
2€d+2 0\O £

where J : Q x R x R? x R — [0, o0[ satisfies [(PNL;)H{(PNL,)[ and O/ := O + supp (J)
with .J given by . Roughly, the first (resp. second) term in accounts for the
numbers of individuals at time ¢ in O (resp. outside O, i.e. in O7\O) which jump from y to
x. Note that the scaling ﬁ together with the scaling é with respect to third variable of J
is introduced to provide a local limit model of divergence form as ¢ — 0.

UNS

M| M

) )~ (e dy, (5)

The regulation of the population growth at (¢, x) is governed by
R (tu? (t.x) = f (.t 20 (1,2))

where f: Qx[0,7] x R? x R — R is the density of a CP-structured reaction functional (see
Definition [2.9).

Let D < O be an arbitrary domain. The time rate of change of the number of individuals in
D is equal to the rate that the population is grown in D plus the rate that the population
flows in D, i.e. the balance law for u¥ is given by

d w . w w w ([, w
RO L R (¢, (t,q;))derJD & (uf (t,2)) do.

Hence, assuming that v is sufficiently regular,

Ous f%w (t,7)) dx—f?iw W (t,2)) d.
i

Then, the arbitrariness of D implies the differential form of the balance law:

ﬁ(f (t,z) — 2 (U (t,2)) = RY (t,u® (t,2)) for L' @ P%haa. (t,2)€[0,T] x O. (5.2)

3

Noticing that V 79 (w,ug (t)) (z) = =G (u¢ (t,r)) with 7 := £ + D7, where 7 : Q x
L?(0) — [0,0[ and D] : Q@ x L?(O) — [0, 0| are defined by and respectively,
and setting F. (w,t,u¥ (t))( ) =RY (t,u® (t,z)) with F. : Q x [0,T] x L? (O) — L*(0), we
see that can be rewritten as follows

du?

d; (t) + V.79 (w,u (t)) = F. (w,t,u? (t)) for £ -a.a. te[0,T],

which gives (g’?’w) in by adding a suitable initial condition.
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5.2. Mathematical description of the model. In what follows we consider the logistic
model with a growth rate whose environmental carrying capacity depending on time and
in which a percentage of the population density is subtracted (reflecting a reduction of
the population due to hunting or capturing individuals). More precisely, for each ¢ > 0,
F.:Qx[0,T] x L? (O) — L*(0) is given by

Fo(w,t,u) (z) := f (w,t, gu (:r:)) , (5.3)

where f:Q x [0,7] x R¢ x R — R is defined by

§
t = t l————— ] —h 5.4
Pt &)= rtotin) (1- g ) =16 (5.0
with 4 >0 and r, K € L* (Q x [0,T] x R?) such that r > 0 and K >~ > 0, where r is the
growth rate, K is the carrying capacity and h the percentage of harversting. (In practice, the
challenge is to evaluate reasonable values, or at least to have a good statistical knowledge,
for the growth rate r and the carrying capacity K in heterogeneous environments.)

Remark 5.1. Tt is easy to see that f : Q x [0,T] x R x R — R defined in (5.4) can be
rewritten as follows:

f (w7 t,x, 5) = <a (wv i ZL’) b (§)>7
where (-, -) denotes the scalar product, with a :  x [0,7] x R — R3 and b : R — R3 given
by

a(w,t,x) = (r (w,t,z), r(w,t,z) ~h>

T K(wt,x)?

(5.5)
b (5) = (57 527 5) :
Thus, for every w € 2 and every € > 0, F. (w,-,-) satisfies the special structure of CP-
structured reaction functionals as introduced in [AHMM22 Definition 2.1, pp. 27|. This
special structureﬂ allows to pass to the weak limit in the reaction term (see Lemma .
In what follows, we consider r,7, K, K € [0, o[ given by:

1=

= essinfr (w,t,x);
(w,t,z)

°
=3I

= esssupr (w, t, z);
(w,t,z)

o K :=essinf K (w,t,1);

_ (w,t,x)

o K :=esssup K (w,t,7),

(w,t,xz)

2. By the class of special CP-structured reaction functionals we mean the subclass of Fcp (see Definition
for which f: [0,7] x R x R — R given by is of the form: f (t,z,£) = {a(t,z),b(&)) + c(t,x)
with a € L® ([0, T] x R R™), ce L? ([0,T]; L}, (R?)) and b : R — R™ locally Lipschitz continuous, where
m € IN*,
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and we assume that

(g=0
.o Yono L@—y)g(y)dy
e ooty Y
4 fos 5 T @—)gw)dy (5.6)
GS@ SoJ\ﬁl(x_y)dy
CIZEO\ORJ
L 7> h.

Lemma 5.2. Every F. (w,-,-) satisfies with f (w, Y5 -), where f: Qx[0,T] x
R? x R — R is given by (5.4)), and so F. (w,-,-) € Fcp for allw € Q and all ¢ > 0. More

precisely, (&’,ﬁ’,gj) = (0,0,0) and <ﬁ;’,?§,§‘;> = (p,?,y) does not depend on (w,¢).

Moreover, (Bj,ﬁ;’ = (0, p) verifies (3.4) and, since <g§’,§2") = (0,7) does not depend on ¢,
it 1s clear that (3.3]) holds.

Proof of Lemma 5.2 Fix w € Q and € > 0. It is clear that we can take <£g,ﬁ,g‘:> =
(0,0,0). Moreover, from ([5.6) we see that (3.4) is satisfied. To find a suitable triple

(p&f?, yg) we need to consider u € R given by

[l i= UV — esssup
2€0\OF,, SoJ\bi (55 - ?/) dy

with v := (T — h) g If 1 < 0 then we can take

—w

SOJ\57 (z—y)g(y)dy
Pe = €sssup
2€0\Op, SoJ\bi (37 - y) dy
7: =0 and 3¥ = p¥. Indeed, p¥ satisfies (3.4)) by (5.6 and, since g > v,
xX —w xr —w r —w _ —w —w —w
Pt 25 ) = (w0t 272) < —= ()P + 7= W72 <0= T2 (17 (1)
If 1 > 0 then we consider p¢ such that

Sornod (x—y)g(y)dy
ess sup
2€0\Or, SOJ\5"—7 (z —y)dy

and we set 7? (t,&) = —%62 + (T — h) &. Then, p¥ satisfies (3.4)) by (5.6)), and by a standard
calculation we see that

—w

S pP. SV

1
L %) et —h) 4 1
solves (ODE) in Definition With p=7pand f = f.. Moreover, 7 (t) = 0 for all t € [0, T]

because p¢ < v, and f (w,t, 2,7 (1)) < 72 (t, 72 (1) for all t € [0,T] and all z € R?, which
completes the proof. B




STOCHASTIC HOMOGENIZATION OF NONLOCAL REACTION-DIFFUSION PROBLEMS 47

Given {uf }.~0 < L? (O) we consider the Dirichlet-Cauchy nonlocal reaction-diffusion prob-
lem of gradient flow type:

du?
(g,DL) dt
u# (0) = ug, < L* (0:[0.7]).

(t) + VEI (w,u? (1)) = F. (w, t,u? (t)) for Lla.a. te|0,T]

£

This problem, which corresponds to the problem (g’?,w) in With F.: Qx[0,T]xL?(0) —
L% (0) defined by (5.3)—(5.4)), is called “Dirichlet-Cauchy nonlocal reaction-diffusion Logistic

growth problem” and can be rewritten as follows:
([ ouY 1 Ty T—Y\, "
ot (x7t)_mfoj(w7gag7 c ) (ue (t7y)_u€ (tax))dy

1 Ty r—y w
_Wfof\oj (wa o ) (9 (y) —uZ (t,2))dy

=r <w,t, g) u (t, x) (1 - Kua(w—’ti)> — hul (t,z) in O x [0,T]

Taking ([5.6)) into account, as a consequence of Lemma and corollary we obtain the
following result.

Corollary 5.3. For every w € ) and every € > 0, (953%) admits a unique solution u? €
AC ([0, T]; L* (O)) such that

0<ul(t) <y(t)

£

y(T) forallte[0,T].

<
Moreover, if F. (w,-,u) € AC ([0,T]; L? (O)) then u¥ admits a right derivative dt;t‘? (t) at

every t € [0, T[ which satisfies d;;‘? (t) + VII (w,u? (t)) = Fo (w,t,u? (t)).

Remark 5.4. When r (w, -) and ]7;((“;""'.)) are sufficiently regular, i.e, H' is replaced by Wh! in

below, we automatically have F. (w,-,u®) € AC ([0,T]; L? (O)).

€

Remark 5.5. From (5.3)—(5.4) it is easy to see that sup..q [ £ (w, - u2)| 120 11.02(0)) < ©
i.e. the hypothesis |(HY )| of Theorem is verified.

5.3. The homogenized model. Here, by using Theorem [3.19] we study the almost sure
limit of (#P%) as e — 0 (see Corollary . To do this we need the following additional

assumptions:
(A) r(wt,z+2) = r(Tw,t,r) and K (w,t,7+2) = K (T.w,t,z) for all z € Z2, all
t e [0,00, all z € R? and all w € §;

(Ag) r(w,-,-) e H ([0, T]; L. (R?)) and % e H' ([0,T]; L}, (RY)) for all w € ©;
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(A3) for every B € By, (R?) and every t € [0,T], the functions w — |7 (w,t,-) 75,

r(w,t, d( %
K((w,t,-)) (d[;) (w,s,-)

ds
L%(B)

w

T T
12(5)’ W So ’% (w, s, -)HL2(B) ds and w — So

belong to L} (9).

The following Lemma, allows to establish the assumption of Theorem and gives a
formula for the homogenized reaction functional.

Lemma 5.6. If[(A))H(A3)| hold then there exists Q' € F with P (V) = 1 such that for each
we Q,|(HY)| is satisfied with G* = Fyom (w, -, ) : [0,T] x L* (0O) — L*(O) defined by

From (w,t,u) (z) := from (w,t,u(z)), (5.7)
where from (w, -, ) : [0,T] x R — R is given by

(ot i= (B7 ([ attady) @09
Jo,1[*
with a : Q x [0,T] x R — R? and b : R — R? given by . More precisely, we have

Jhom (W, 1,£) = Thom (w, 1) € <1 - m) — hé, (5.8)

where Thom (w,+) : [0, T] — [0, 0] and Kpom (w,-) : [0,T] — [0, 00[ are defined by

( Thom (W, t) = E (5]0,1[d r(ty) dy) (w)

5.9
| B (§ 07 (- 1:9) dy ) (@) (59)
| o (S]o,l[d RCto) dy) ()
Moreover Fuom (w,-,-) € F(ry)-(ry) for all we V.

Proof of Lemma [5.6. By [AHMM?22] Lemma 7.2, pp. 208] there exists Q' € & with
P (') = 1 such that for every w € ¥,

a (w,t, g> —E7 (J a(-t,y) dy) (w) in L? (O; R3) for all t € [0, T,
Jo,1[*
hence, arguing as in the proof of [AHMM?22, Theorem 7.1, pp. 209-210],
a (w, . g) —~E7 (J a(--y) dy) (w) in L ([O,T]; L? (O; ]R3)) .
Jo,a[4

Let v e C ([0,T]; L? (O)) be such that u¥ — v. By using similar arguments as in the proof
of [AHMM?22, Lemma 7.2, pp. 60] from the above we deduce that

o) b2y = (87 ([ aton)dy) @) b0)) in 22 (.75 27(0)),

and the proof is complete. B
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Remark 5.7. In the formula of the homogenized reaction functional, the homogenized carry-
ing capacity Ky is given by a mixture between carrying capacity and growth rate.

Taking Corollary[5.3] Remark[5.5/and Lemmal5.6]into account, from Theorem [3.19 we deduce
the following stochastic homogenization result.

Corollary 5.8. Let assumptions hold and for P-a.e. w € (), assume that:
o sup J4 (w,uf.) < oo;
e>0
o there exists uf € L? (O) such that ug, — ug in L* (O).
Then, for P-a.e. w € Q, there exists u* € AC ([0, T]; L? (O)) such that:
o v — ¥ in C([0,T]; L*(0));

du?  du® ., i ‘

e 0<u’(t) <y (T) for allt €[0,T7;

e u” is the unique solution of the following Dirichlet-Cauchy local reaction-diffusion
problem of gradient flow type:

( du”

- (t) + VEL (w,u” (1) = Fuom (w,t,u” (t)) for L'-a.a. t€[0,T]

4 u¥ (O) = u%’ € dom (jhgi)m (wv )) :

[ i < 11 (0) 12 (03 [0.7).
with Fhom (w, -, ) given by (5.7)—(5.9).
APPENDIX A. ELEMENTS OF LEGENDRE-FENCHEL CALCULUS

Let X be a normed space and let X™* be its topological dual. In what follows, for any u € X
and any u* € X*, we write u* (u) = (u*, uy. We begin with the following definition.

Definition A.1. Let & : X —] — o0, 0] be a properﬂ function. The Legendre-Fenchel
conjugate (or the conjugate) of ® is the function ®* : X* —] — 0, 0] defined by

* (u*) 1= sup {(u*,uy — @ (u) 1 ue X}.

(As @ is proper and ® > —oo we have &* > —o0.) The Legendre-Fenchel biconjugate (or
the biconjugate) of ® is the function ®** : X — [—00, 0] defined by

O** (u) := sup {(u*,uy — ®* (u*) : u* € X*}.
(Since ®* > —oo, u* € dom (®*) if and only if there exists o € R such that ®* (u*) < «, i.e.
® (u) = (u*,u) — « for all u e X. Hence, if ® admits a continuous affine minorant functionf]
then ®* is proper and ®** > —o0.) The following theorem gives the main properties of the
Legendre-Fenchel conjugate and biconjugate (see [ABM14, §9.3, pp. 343] for more details).
3. We say that ® : X —] — o0, 00] is proper if (its effective domain) dom (®) := {ue X : ® (u) < 0} + .

4. This is true if ® : X —] — 00, 0] is a proper, convex and lower semicontinuous function, because ® is
then equal to the supremum of all its continuous affine minorant functions.
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Theorem A.2. Let ® : X —] — o0, 0] be a proper function.

(a) If ® is convex and lower semicontinuous then ®* is proper, conver and lower semi-
continuous.

(b) (Legendre-Fenchel’s inequality.) For every u e X and every u* € X*,
O (u) + O* (u*) — (u*,uy = 0.

(c) (Fenchel-Moreau-Rockafellar’s theorem.) If ® is conver and lower semicontinuous

then
O = @,
(d) If ® is convex and admits a continuous affine minorant function then
Pr* — 6’

where ® denotes the lower semicontinuous envelope of ®.
Here is the definition of the subdifferential of a function.

Definition A.3. Let ® : X —]| — o0, 0] be a proper function. The subdifferential of ® is
the multivalued operator 0® : X—=X* defined by

0P (u) = {u* € X*: @ (v) = ®(u) + (u*,v—u) for all v e X}.
(Note that dom (@) > dom (0®) := {u e X : 0® (u) + &}.)

For the subdifferentials of convex functions we have the following result (see [ABMI14] §9.5,
pp. 355 and Lemma 17.4.1, pp. 737] for more details).

Proposition A.4. Let  : X —] — o0, o] be a proper and convez function.
(a) If @ is Fréchet-differentiable at uw e X then
0P (u) = {V® (u) }.
(b) (Fenchel’s extremality relation.) If ® is lower semicontinuous then
u* € 0P (u) «— ®(u)+ ¢* (u*) — (u*,uy =0.
(c) (Bronsted-Rockafellar’s lemma) If ® is lower semicontinuous then

dom (0®) = dom (D).

APPENDIX B. M0OSCO-CONVERGENCE

[43 b

Let X be a Banach space and let X* be its topological dual. In what follows, “—” (resp.
“—7) denotes the strong (resp. the weak) convergence. We begin with the definition of De
Giorgi I'-convergence (see [DM93], [BD9S, [Bra0O6] for more details).

Definition B.1. Let ® : X —] — o0, 00| and, for each ¢ > 0, let &, : X —] — o0, 0]. We say
that {®.}.~¢ strongly [-converges (resp. weakly I'-converges) to ®, and we write

@ = I lim @ or . 15 @ <resp. @ =Ty lim ®, or @, 1 q;) |

if the following two assertions hold:
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o for every ue X, I'v-lim &, (u) = ¢ (u) (resp. Cy-lim &, (u) = @ (u)) with

e—0 e—0

[s-lim @, (u) := inf {h_m D, (ue) : ue — u}

e—0 e—0
(resp. [y-lim &, (u) := inf {h_m D, (ug) : ue — u})
e—0 e—0

or equivalently, for every u € X and every {u.}.~o < X, if u. — u (resp. u. — wu) then
lim @, (u.) = ® (u);

e—0

e for every ue X, FS_E)(I)E (u) < P (u) <resp. FW—@CI% (u) <P (u)> with
FS—F%QE (u) := inf {F% O, (ue) : u. — u}

(resp. FW—@QDE (u) := inf {@ O, (ue) : ue — u})

or equivalently, for every u € X there exists {u.}.~o < X such that u. — wu (resp.
u. — u) and o
lim @, (u:) < @ (u).

e—0
From I'-convergence we can define Mosco-convergence (which was introduced by Mosco, see
[MosT1]).

Definition B.2. Let ® : X —] — o0, 0] and, for each ¢ > 0, let . : X —] — o0, 0]. We say
that {®.}.~o Mosco-converges to ®, and we write

= M-lim . or o M, 9,
e—
if & = I'y-lim ®, = I'y- lim ®, or equivalently Ts- lim &, < & < T'y- lim ®..
e—0 e—0 e—0 e—0

From Definition [B.2] it is easy to see that under a suitable compactness condition strong
I'-convergence is equivalent to Mosco-convergence.
Proposition B.3. Let & : X —] — o0, o] and, for each ¢ > 0, let &. : X —] — o0, 0].
Assume that the following compactness condition hold:

o for every {u.}.~0 € X, if sup @, (u.) < o0 then {u.}.~o is strongly relatively compact

e>0
m X.

Then, ®. — & if and only if B, - ®.
As stated in the following theorem due to Mosco (see [Mos71, Theorem 1]), in the reflex-

ive case and for lower semicontinuous, convex and proper functions, the Legendre-Fenchel
transform is continuous with respect to Mosco-convergence.

Theorem B.4. Let & : X —]|—o0, 0] be a proper, convex and lower semicontinuous function
and, for each ¢ > 0, let . : X —| — 00, 0] be a proper, conver and lower semicontinuous

function. If X is reflexive then ®, Mg if and only iof F M, @,
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The following result allows to pass from Mosco-convergence in X to Mosco-convergence in
L2 ([0,T]; X) (see [AHMM22, Lemma 2.6, pp. 50| for a proof).

Theorem B.5. Fiz T' > 0 and assume that X is a Hilbert space. Let ® : X — [0, 0] be a
proper, convex and lower semicontinuous function, let © : L? ([0, T]; X) — [0, 0] be defined

by

O (u) J B (u (1)) dt

0
and, for each ¢ > 0, let ®. : X — [0,0] be a lower semicontinuous, proper and convex

function and let O, : L* ([0,T]; X) — [0,00] be defined by

1o, 2L & then 0. 2L 0.

APPENDIX C. GRONWALL’S LEMMA

In the paper we use the following version of the so-called Gronwall’s lemma (for a proof we
refer to [AHMM22, Lemma A.1, pp. 277]).

Lemma C.1. Let T > 0, let a € [0, [, let m € L* ([0,T]) be such that m (s) = 0 for £'-a.a.
s €[0,T] and let ¢ € C([0,T];R) be such that ¢ (s) < a+ §;¢ (t)m(t)dt for all s € [0,T].
Then ¢ (s) < aelo™Dd for all s € [0,T).
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