
HAL Id: hal-04008125
https://hal.science/hal-04008125v1

Submitted on 28 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous–discrete time observers for homogeneous
nonlinear systems with sampled-data outputs

Tomas Ménard, Emmanuel Bernuau, Emmanuel Moulay, Patrick Coirault

To cite this version:
Tomas Ménard, Emmanuel Bernuau, Emmanuel Moulay, Patrick Coirault. Continuous–discrete time
observers for homogeneous nonlinear systems with sampled-data outputs. Automatica, 2023, 151,
pp.110905. �10.1016/j.automatica.2023.110905�. �hal-04008125�

https://hal.science/hal-04008125v1
https://hal.archives-ouvertes.fr


Continuous-discrete time observers for homogeneous nonlinear

systemswith sampled-data outputs

Tomas Ménard a, Emmanuel Bernuau b, Emmanuel Moulay c, Patrick Coirault d

aLAC (EA 7478), Normandie Université, UNICAEN, 6 bd du Maréchal Juin, 14032 Caen Cedex, France

bINRAE, AgroParisTech, UMR 1145 Joint Research Unit for Food Process Engineering, 91300, Massy, France

cXLIM (UMR CNRS 7252), Université de Poitiers, 11 bd Marie et Pierre Curie, 86073 Poitiers Cedex 9, France

dLIAS (UR 20299), Université de Poitiers, 2 rue Pierre Brousse, 86073 Poitiers Cedex 9, France

Abstract

In this article, we propose a new observer design for systems whose output is sampled in an aperiodic and asynchronous way and
for which a continuous-time homogeneous observer of negative degree is available. The proposed method consists in adapting
the existing continuous-time observer in order to cope with the fact that only sampled measurements are available instead
of continuous ones. The obtained observer error is shown to be globally uniformly ultimately bounded for any upper bound
on the sampling periods. Furthermore, the ultimate bound decreases as the upper bound on the sampling periods decreases.
The stability analysis is based on a Lyapunov approach and the performances of the proposed observer are illustrated with
simulations.

1 Introduction

The study of nonlinear observers has been an active re-
search area for several decades [1]. Indeed, they are pow-
erful tools with a large number of possible applications
since they allow to reconstruct all the states of a system
from the model and the measured outputs only. This can
be useful when all the states cannot be measured, for
example when sensors do not exist which is the case in
robotics to reconstruct sti�ness [2] or in process control
for some speci�c variables [3]. Another reason can be
that the sensors are too expensive in some cases such as
an industry production for example. Another use can be
to check that the available sensors are working correctly
by using such observers for fault detection and isolation
[4].

Many approaches have then been developed to de-
sign such observers. One of the �rst ideas has been
to transform nonlinear systems into a linear ones so
that observers can be constructed [5]. Transformations
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into more general forms have also been considered such
as in [6] for example. General classes of systems such
that observers can be designed have also been consid-
ered. For Single-Input Single-Output (SISO) uniformly
observable systems, a high gain observer can always
be constructed [7], though the change of coordinates
can be di�cult to �nd. General classes of Multi-Input
Multi-Output (MIMO) uniformly observable systems
have also been considered in [8]. Some other approaches
rely on the speci�c structure of the system, such as
backstepping [9] or adaptive observers [10].

Homogeneity has been considered more recently for ob-
server design [11�13], though it has been introduced
early in [14] and [15]. Homogeneity is an interesting prop-
erty since it is well suited to approximation or domi-
nation design [16,17]. Other properties can also be ob-
tained from homogeneity of systems, such as �nite-time
or �xed-time stability for example [18,19]. Several struc-
tures of observers have been developed. One way is to use
an inductive approach such as backstepping [20]. One
can also rely on the fact that the considered homoge-
neous observer is close to an observer whose convergence
is already established [21]. Another possible approach is
to consider an Implicit Lyapunov Function (ILF) [22].

In the aforementioned works, the outputs are supposed
to be available continuously, but this is rarely the case
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in practice. Indeed, most observers are implemented
digitally on computers or micro controllers, the output
is then usually sampled and the sampling times may
be aperiodic [23]. This may be the case when there are
packet dropouts in Networked Control Systems (NCS)
[24] or in order to lower the load of a network when it
is used by many agents at the same time [25]. One way
is to use a fully discrete-time approach [26], but one
loses the physical meaning of the states and only semi-
global stability might result. Another way is to use the
emulation method [27], which means that a continuous
observer is �rst synthesized and discretized afterward.
A third way is to adapt the continuous observer to ob-
tain a so called continuous-discrete time observer which
uses the discrete-time measurements and provide a con-
tinuous estimation of the states. Several designs have
been proposed following this way. A �rst idea is to use
observers whose state is reset whenever a new measure-
ment is received. A high gain approach has been used in
[28] for a class of linear systems up to input injections
and for a class of uniformly observer systems whose
nonlinear part is input dependant in [29]. LMIs have
been used to guarantee the stability in [30] for a class
of nonlinear systems using reachability analysis, in [31]
using an hybrid approach, for a class of systems whose
dynamics is assumed to belong to a polytopic set of
matrices in [32], for a class of linear systems with noise
analysis in [33] and for the same class of linear systems
but with a less conservative approach in [34]. Another
idea is to use continuous observers based on an output
error predictor which is reset when a new measurement
is received. This approach has been �rst used in [35]
and then in [36] using a high-gain approach and in [37]
by using LMIs. Both continuous and discontinuous ob-
servers have been combined in [38].

It has been shown recently that sampled homogeneous
systems enjoy good properties. Indeed, depending on the
degree of homogeneity either global practical stability
or semi-global asymptotic stability can be obtained [39].
Furthermore, it has been shown in [40] that robustness
with respect to exogenous disturbance in the dynamics
is also obtained. Such results have also been obtained for
time-delay systems which can be seen as a more general
framework than sampled systems, such as in [41,42].

In this paper, we are particularly interested in the adap-
tation of homogeneous observers of negative degree (the
precise meaning of homogeneous observer will be de-
tailed in the following) in order to cope with the sam-
pling of the output. Several features of the proposed de-
sign are worth being emphasized:

i) the proposed observer error is globally uniformly
ultimately bounded.

ii) a Lyapunov function is explicitly constructed for
the continuous-discrete time observer.

iii) the vector �eld representing the original systemmay
be non-homogeneous, which is not the case of [39].

iv) simulations show that the performances of the pro-
posed scheme are better than the one proposed in
[39].

The paper is organized as follows. The class of systems
and the di�erent assumptions are stated in section 2.
Section 3 is devoted to the presentation of the proposed
continuous-discrete time observer. Some simulations are
provided in section 4 in order to show the performances
of the proposed scheme. Finally, section 5 ends the paper.

2 Class of considered systems

Let us consider the following system{
ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))
(1)

with x ∈ Rn, u ∈ R, y ∈ R. The function f : Rn × R→
Rn is assumed to be continuous and h : Rn → R is
assumed to be C1 and homogeneous of degree dh > 0
with respect to some weights (α1, . . . , αn) ∈ Rn+.
One assumes that a continuous observer, meaning that
it has access to the output continuously for all t ≥ 0,
exists for system (1), which is in the following form

{
˙̂x(t) = f(x̂(t), u(t))−G(ŷ(t)− y(t))

ŷ(t) = h(x̂(t))
(2)

where the function G : R→ Rn is assumed to be homo-
geneous of degree α < 0 with respect to the weight dh.
One assumes that the states of observer (2) converge to
the states of system (1). More precisely, one assumes the
following.

Assumption 1 There exists a class C1 homoge-
neous Lyapunov function U : Rn → R of degree
dU > max{−α, dh, α1, . . . , αn} with respect to the
weights (α1, . . . , αn), whose derivative along the trajec-
tories of the following error system

ė(t) = f(x̂(t), u(t))− f(x(t), u(t))−G(ŷ(t)− y(t)) (3)

is negative de�nite, where e = x̂ − x, i.e. there exists
ε > 0 such that

U̇ |(3)(e(t)) ≤ −ε (U(e(t)))
dU+α

dU . (4)

Remark 1 Since the function U is homogeneous of de-
gree dU with respect to the weights (α1, . . . , αn), several
useful properties can be derived using Lemma 4.2 in [43].
Firstly, the function ∂U/∂ej is homogeneous of degree
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dU − αj and continuous, hence there exists κj ≥ 0 such
that ∣∣∣∣ ∂U∂ej (e)

∣∣∣∣ ≤ κj n∑
l=1

|el|
dU−αj
αl . (5)

Secondly, using the fact that U is positive de�nite gives
the existence of a constant % > 0 such that(

n∑
l=1

|el|
dU+α

αl

)
≤ %(U(e))

dU+α

dU . (6)

Remark 2 It can be noted that the vector �eld f is not
assumed to be homogeneous. Nevertheless, in general,
some homogeneous properties will be required to obtain a
homogeneous Lyapunov function U for the error system.
For example, such Lyapunov functions can be found for
systems where f is composed of an homogeneous drift
term f1(x), which is homogeneous of degree α < 0 with
respect to the weights (α1, . . . , αn), and a term f2(x, u)
which will be dominated in the stability analysis, such as
in [20] for example.

Remark 3 While the form of observer (2) seems re-
strictive, it should be noted that it is typically obtained in
other coordinates than those of the system and an esti-
mate of the state can be obtained by inversing the change
of coordinates.

3 Main results

The aim of this work is to construct a continuous-discrete
time observer for system (1), that is an observer that
provides a continuous estimate of the state of system (1)
when the output y is only available at some sampling
times (tk)k∈N. The sampling times are assumed to verify:

0 = t0 < t1 < . . . < tk < . . . (7)

0 < Tmin < tk+1 − tk < Tmax, ∀k ∈ N (8)

The proposed observer is given by{
˙̂z(t) = −∂h∂x (x̂(t))G(ẑ(t))
˙̂x(t) = f(x̂(t), u(t))−G(ẑ(t))

(9)

when t ∈ [tk, tk+1), and{
ẑ(tk) = ŷ(tk)− y(tk)

x̂(tk) = x̂(t−k )
(10)

Let us now write the error dynamics for observer (9).
One denotes e0(t) = ẑ(t) − (ŷ(t) − y(t)), e = x̂ − x =
(e1, . . . , en), then, for t ∈ [tk, tk+1), one has

ė0(t) =
∂h

∂x
(x(t))f(x(t), u(t)))− ∂h

∂x
(x̂(t))f(x̂(t), u(t))

ė(t) = (f(x̂(t), u(t))− f(x(t), u(t))−G(ŷ(t)− y(t)))

− (G(ẑ(t))−G(ŷ(t)− y(t))) (11)

The whole error state is denoted E = (e0, . . . , en) ∈
Rn+1 and the considered candidate Lyapunov function
V (E, t) is de�ne for a given set of sampling instant ver-
ifying (7)�(8) as follows. Let E ∈ Rn+1 and t ≥ 0, then
there exists a unique k ∈ N such that t ∈ [tk, tk+1) and
V (E, t) is de�ned as

V (E, t) = U(e) + exp(δ(tk+1 − t))|e0|
dU
dh , (12)

with δ > 0. Note that the function V is a valid candidate
Lyapunov function, indeed, it is positive de�nite since
exp(δ(tk+1 − t)) ∈ [1, exp(δTmax)] for all t ∈ [tk, tk+1).

Before stating the main result, some additional assump-
tions have to be made in order to obtain the stability of
the continuous-discrete time observer. In particular, it
is required that some Hölder properties hold:

Assumption 2 (i) For all x1 = (x1
1, . . . , x

1
n), x2 =

(x2
1, . . . , x

2
n) ∈ Rn and u ∈ R, there exists ν1 ≥ 0

such that∣∣∣∣∂h∂x (x1)f(x1, u)− ∂h

∂x
(x2)f(x2, u)

∣∣∣∣
≤ ν1

n∑
i=1

|x1
i − x2

i |
dh+α

αi . (13)

(ii) For all z1, z2 ∈ R, i = 1, . . . , n, there exists νi2 such
that

|Gi(z1)−Gi(z2)| ≤ νi2|z1 − z2|
αi+α

dh . (14)

Theorem 1 (Ultimate Boundedness) Consider
system (1) and observer (9)�(10) subject to Assump-
tion 2, then for any Tmax ≥ Tmin > 0 the error sys-
tem (11) is globally stable and there exist K ≥ 0, inde-
pendent of Tmax, such that the set
E =


e0

e1

...

en

 ∈ Rn+1 : U(e) + |e0|
dU
dh ≤ K(Tmax)

dU
−α


(15)

is globally attractive.

Remark 4 Theorem 1 states that the proposed observer
cannot explode in �nite-time even if the upper bound on
the sampling periods period increases. This is not the case
for most of the existing observers since if the sampling
periods increases too much, the observer usually becomes
unstable.
This of course does not mean that the observation error
stay small since it increases as Tmax increases. Never-
theless, this is a very interesting feature since it allows
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to keep satisfactory performances even when approach-
ing the limit where other observers become unstable as it
can be seen in the example section. This can also be use-
ful to allow a very fast recovery of the estimation for ex-
ample when the sampling instants are irregular and the
sampling periods become large at some moments.

Proof. The proof is divided into three steps. In Step 1,
one shows that the Lyapunov function candidate V is
decreasing when new measurements are available, that
is for t = tk with k ∈ N. In Step 2, one is interested in
the behavior of the error dynamics when the dynamics
is continuous, that is when t ∈ [tk, tk+1) with k ∈ N. An
over-valuation of the derivative of V is then obtained. In
Step 3, the results of Steps 1 and 2 are combined to show
that the observer error is globally uniformly ultimately
bounded.

Step 1. Step 1 is rather direct, indeed, since the dynamics

of e are continuous (e(t−k ) = e(tk)) and since e0(tk) = 0,
one has

V (E(t−k ), t−k ) = U(e(t−k )) + exp(δ(tk − tk))|e0(t−k )|
dU
dh

= U(e(tk)) + |e0(t−k )|
dU
dh︸ ︷︷ ︸

≥0

≥ U(e(tk)) + exp(δ(tk+1 − tk)) |e0(tk)|
dU
dh︸ ︷︷ ︸

=0

≥ V (E(tk), tk) (16)

Step 2. The derivative of the function V along the tra-
jectories of system (11), for t ∈ [tk, tk+1), is given by

V̇ (E(t), t)|(11) = (17)

U̇(e(t))|(3) − δ exp(δ(tk+1 − t))|e0(t)|
dU
dh

+

n∑
j=1

∂U

∂ej
(e(t)) (Gj(ẑ(t))−Gj(ŷ(t)− y(t)))

+
dU
dh

exp(δ(tk+1 − t))be0(t)e
dU−dh
dh

×
(
∂h

∂x
(x(t))f(x(t), u(t))− ∂h

∂x
(x̂(t))f(x̂(t), u(t))

)
One now states two facts whose proof can be found in
the appendix.

Fact 1. For any γ1 > 0, there exists Γ1 ≥ 0 such that

n∑
j=1

∂U

∂ej
(e) (Gj(ẑ)−Gj(ŷ − y)) (18)

≤ γ1(U(e))
dU+α

dU + Γ1|e0|
dU+α

dh

holds for all E ∈ Rn+1.

Fact 2. For any γ2 > 0, there exists Γ2 ≥ 0 such that

dU
dh

exp(δ(tk+1 − t))be0e
dU−dh
dh (19)

×
(
∂h

∂x
(x)f(x, u)− ∂h

∂x
(x̂)f(x̂, u)

)
≤ γ2(U(e))

dU+α

dU + Γ2 (exp(δ(tk+1 − t)))
dU+α

dU−dh |e0|
dU+α

dh

holds for all t ∈ [tk, tk+1) and E ∈ Rn+1.

Using inequality (4), with Facts 1 and 2 in (17) gives

V̇ (E(t), t) ≤ −ε (U(e(t)))
dU+α

dU (20)

− δ exp(δ(tk+1 − t))|e0|
dU
dh

+ γ1(U(e(t)))
dU+α

dU + Γ1|e0(t)|
dU+α

dh

+ γ2(U(e))
dU+α

dU

+ Γ2 (exp(δ(tk+1 − t)))
dU+α

dU−dh |e0(t)|
dU+α

dh

≤ − (ε− γ1 − γ2) (U(e(t)))
dU+α

dU (21)

− δ exp(δ(tk+1 − t))|e0(t)|
dU
dh

+ (Γ1 + Γ2) (exp(δ(tk+1 − t)))
dU+α

dU−dh

× |e0(t)|
dU+α

dh

One now states another fact whose proof can be found
in the appendix.

Fact 3 For δ = 1/Tmax, there existsK1 ≥ 0 independent
of Tmax such that the following inequality holds true

− δ exp(δ(tk+1 − t))|e0(t)|
dU
dh (22)

+ (Γ1 + Γ2) (exp(δ(tk+1 − t)))
dU+α

dU−dh |e0(t)|
dU+α

dh

≤ −ε
2

(exp(δ(tk+1 − t)))
dU+α

dU |e0(t)|
dU+α

dh +K1T
dU+α

−α
max

for all t ∈ [tk, tk+1).

Using Fact 3 in equation (21) and taking γ1, γ2 such that
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ε− γ1 − γ2 = ε/2 gives

V̇ (E(t), t)

≤ −ε
2

(U(e(t)))
dU+α

dU

− ε

2
exp(δ(tk+1 − t))

dU+α

dU |e0(t)|
dU+α

dh +K1T
dU+α

−α
max

≤ −ε
2

(U(e(t)))
dU+α

dU

− ε

2

(
exp(δ(tk+1 − t))|e0(t)|

dU
dh

) dU+α

dU

+K1T
dU+α

−α
max

≤ −ε
2

(
U(e(t)) + exp(δ(tk+1 − t))|e0(t)|

dU
dh

) dU+α

dU

+K1T
dU+α

−α
max

≤ −ν (V (E(t), t))
dU+α

dU + Γ (23)

by applying Lemma 1-(iii) with p = dU+α
dU

and where

Γ = K1T
dU+α

−α
max and ν = ε

2 .

Step 3. From the results of Steps 1 and 2, it is clear
that V (E(t), t) is decreasing outside of the interval[
0,
(

Γ
ν

) dU
dU+α

]
, then either V (E(t), t) enters the interval[

0,
(

Γ
ν

) dU
dU+α

]
and stay in there or it converges to a �nite

value a >
(

Γ
ν

) dU
dU+α . It is direct to see that the second

option is not possible because of inequality (23) and the
results of Step 1.

Noting in addition that
(

Γ
ν

) dU
dU+α = K(Tmax)

dU
−α and

U(e) + |e0|
dU
dh ≤ V (E, t), ∀E ∈ Rn+1, ∀t ≥ 0 (24)

ends Step 3.

4 Example

One considers here the following system

ẋ1(t) = x2(t)− 0.1dx1(t)c0.8
ẋ2(t) = x3(t) + 0.1dx1(t)c0.6 + 0.1dx2(t)c0.75

ẋ3(t) = −0.5dx1(t)c0.4 − 0.5dx2(t)c0.5
− dx3(t)c2/3 + u(t)

y(t) = x1(t)
(25)

with u(t) = 5 cos(t) + sin(2t) and where dzcα =
sign(z)|z|α for all z ∈ R and α ≥ 0. The system is ini-
tialized as x(0) = [−10, −5, 2]T . The sampling times
belong to the interval [Tmin, Tmax] which will be de�ned

0 10 20 30 40 50 60 70 80 90 100

-40

-30

-20

-10

0

10

20

30
Output

Fig. 1. Measured output

later depending on the simulations. The output is as-
sumed to be measured with a Gaussian white noise with
a standard deviation equal to 2, it is illustrated on Fig-
ure 1. It can be seen that system (25) is homogeneous
of degree −0.2 with respect to the weights (1, 0.8, 0.6)
and an homogeneous observer is given by

˙̂x1(t) = x̂2(t)− 0.1dx̂1(t)c0.8 − k1dx1(t)− x̂1(t)c0.8
˙̂x2(t) = x̂3(t) + 0.1dx̂1(t)c0.6 + 0.1dx̂2(t)c0.75

− k2dx1(t)− x̂1(t)c0.6
˙̂x3(t) = −0.5dx̂1(t)c0.4 − 0.5dx̂2(t)c0.5

− dx̂3(t)c2/3 + u(t)− k3dx1(t)− x̂1(t)c0.4
(26)

with the gains chosen as k1 = 3, k2 = 3 and k3 = 1. The
adapted continuous-discrete time observer as proposed
in this paper is then given by

˙̂z(t) = −k1dẑ(t)c0.8
˙̂x1(t) = x̂2(t)− 0.1dx̂1(t)c0.8 − k1dẑ(t)c0.8
˙̂x2(t) = x̂3(t) + 0.1dx̂1(t)c0.6 + 0.1dx̂2(t)c0.75

− k2dẑ(t)c0.6
˙̂x3(t) = −0.5dx̂1(t)c0.4 − 0.5dx̂2(t)c0.5

− dx̂3(t)c2/3 + u(t)− k3dẑ(t)c0.4
ẑ(tk) = x1(tk)− x̂1(tk)

(27)
The stability of the continuous observer and a homoge-
neous Lyapunov function can be obtained by following
the approaches developed in [20] or [44] but are rather
involved and then not reported here.
Assumption 2-(i) is veri�ed, indeed one has

∂h

∂x
(x)f(x, u) = x2 − 0.1dx1c0.8 (28)

then

∂h

∂x
(x1)f(x1, u)− ∂h

∂x
(x2)f(x2, u)

≤ |x1
2 − x2

2|+ 0.1|dx1
1c0.8 − dx2

1c0.8|
≤ |x1

2 − x2
2|+ 0.1× 2−0.2|x1

1 − x2
1|0.8

by applying Lemma 1-(i) and the assumption holds since
dh = 1, α = −0.2, α1 = 1 and α2 = 0.8.
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Assumption 2-(ii) is also veri�ed, indeed one has

|Gi(z1)−Gi(z2)| = ki|dz1ciα+1 − dz2ciα+1|
≤ ki2−iα|z1 − z2|iα+1

by applying Lemma 1-(i) since (iα + 1) ∈ (0, 1) for i =
1, 2, 3.
For the considered example, there is a convenient way
to explain the ultimate boundedness of the proposed
observer. Indeed, the predictor ẑ for the output error is
�nite-time stable and so it becomes zero after a �nite
time and the observer dynamics is then a copy of the
system dynamics. This explains why the observer does
not become unstable with a large Tmax contrarily to most
existing approaches.
The observer proposed in this paper is compared with
the ones proposed in [39, Proposition 15] and [45] with
the same gains k1, k2, k3. All the observers are initialized
as x̂1(0) = x̂2(0) = x̂3(0) = 0. The �rst simulation is
done with relatively small sampling times, that is Tmin =
0.05s and Tmax = 0.1s. As it can be seen on Figure 2
the three observers perform well. The quadratic errors
are respectively equal to 0.77 for the proposed observer,
0.88 for the observer from [39] and 0.93 for the observer
from [45].
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Fig. 2. States and estimations for Tmin = 0.05s and
Tmax = 0.1s

The second simulation is done with Tmin = Tmax = 1s.
In that case, it can be seen on Figure 3 that the proposed
observer and the one from [45] perform well while the
one from [39] is not very accurate. The quadratic errors
are respectively equal to 2.28 for the proposed observer,
661.25 for the observer from [39] and 2.88 for the observer
from [45].

The last simulation is done with Tmin = Tmax = 2.65s
which corresponds to the maximum allowable sampling
time for which the observer from [45] is stable. It can be
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Fig. 3. States and estimations for Tmin = Tmax = 1s

seen that the proposed observer is the only one that per-
forms well. The quadratic errors are respectively equal
to 128.9 for the proposed observer, 2.5× 105 for the ob-
server from [39] and 3.9×103 for the observer from [45].
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Fig. 4. States and estimations for Tmin = Tmax = 2.65s.

5 Conclusion

In this paper, we have proposed a new observer for ho-
mogeneous systems of negative degree whose output is
available only at some discrete instants. It has been
proved that the proposed observer error is globally uni-
formly ultimately bounded for any maximum sampling
time. The proposed observer has been compared with
a classical continuous-discrete time observer which has
a maximum allowable sampling period and it has been
shown in simulation that the proposed observer still per-
forms well while the classical continuous-discrete time
observer is at its limit. While the proposed observer per-
form well for small sampling times, it is only ultimately

6



bounded, so future works will be concerned with the ex-
tension of the proposed observer so that it is exponen-
tially stable for small maximum sampling periods and
still practically stable for larger sampling periods.

A Technical lemmas

Lemma 1 [46,20]

(i) Let p ∈ (0, 1) and x, y ∈ R, then the following
inequality holds

|dxcp − dycp| ≤ 21−p|x− y|p (A.1)

(ii) Let c, d, γ ≥ 0, then for all x, y ∈ R, one has

|x|c|y|d ≤ γ|x|c+d +
d

c+ d

(
c

γ(c+ d)

) c
d

|y|c+d

(A.2)
(iii) Let p ∈ (0, 1) and x, y ∈ R, then the following

inequality holds

(|x|+ |y|)p ≤ |x|p + |y|p (A.3)

Lemma 2 Let α1, α2 > 0 be such that α1 > α2 and let
γ > 0 be any constant parameter, then for all x ≥ 0 the
following inequality holds

xα1 + Γ ≥ γxα2 (A.4)

with Γ = γ(x∗)
α2 − (x∗)

α1 ≥ 0 and x∗ =
(
α2γ
α1

) 1
α1−α2

.

Furthermore, the inequality is optimal in the sense that
the left hand-side and right hand-side of Inequality A.4
are equal for x = x∗.

Proof. One can directly show that the function f(x) =
γxα2−xα1 has only one maximum point which is global.
This maximum is reached at x∗ and is equal to Γ.

B Proof of Fact 1

Using Assumption 2-(ii), Inequality (5) and Lemma 1-

(ii) with c = dU − αj and d = αj + α, x = |el|
1
αl and

y = |e0|
1
dh gives

n∑
j=1

∂U

∂ej
(e) (Gj(ẑ)−Gj(ŷ − y)) (B.1)

≤
n∑
j=1

κj

(
n∑
l=1

|el|
dU−αj
αl

)
|Gj(ẑ)−Gj(ŷ − y)| (B.2)

≤
n∑
j=1

κj

(
n∑
l=1

|el|
dU−αj
αl

)
νj2 |e0|

αj+α

dh (B.3)

≤
n∑
j=1

n∑
l=1

κjν
j
2

(
|el|

1
αl

)dU−αj (
|e0|

1
dh

)αj+α
(B.4)

≤
n∑
j=1

n∑
l=1

κjν
j
2 (B.5)

×
[
γ̄1

(
|el|

1
αl

)dU+α

+ ρj1(γ̄1)
(
|e0|

1
dh

)dU+α
]

≤ γ̄1

 n∑
j=1

κjν
j
2

 |el| dU+α

αl (B.6)

+

 n∑
j=1

nκjν
j
2ρ
j
1(γ̄1)

 |e0|
dU+α

dh

where γ̄1 can be chosen arbitrarily small, and ρi1(γ̄1) =

αj+α
dU+α

(
dU−αj
γ̄1(dU+α)

) dU−αj
αj+α

. Using (6), one obtains

n∑
j=1

∂U

∂ej
(e) (Gj(ẑ)−Gj(ŷ − y)) (B.7)

≤ γ̄1

 n∑
j=1

κjν
j
2

 %(U(e))
dU+α

dU

+

 n∑
j=1

nκjν
j
2ρ
j
1(γ̄1)

 |e0|
dU+α

dh

Fact 1 is then proved by taking γ1 = γ̄1

(∑n
j=1 κjν

j
2

)
%

and Γ1 =
(∑n

j=1 nκjν
j
2ρ
j
1(γ̄1)

)
.
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C Proof of Fact 2

Similarly to the proof of Fact 1, using Assumption 2-(i)
and Lemma 1-(ii), one gets

dU
dh

exp(δ(tk+1 − t))be0e
dU−dh
dh

×
(
∂h

∂x
(x(t))f(x(t), u(t))− ∂h

∂x
(x̂(t))f(x̂(t), u(t))

)
≤ dU
dh

(
exp(δ(tk+1 − t))

1
dU−dh |e0|

1
dh

)dU−dh
(C.1)

×

(
ν1

n∑
l=1

|el|
dh+α

αl

)

≤ dU
dh
ν1

n∑
l=1

(
|el|

1
αl

)dh+α

(C.2)

×
(

exp(δ(tk+1 − t))
1

dU−dh |e0|
1
dh

)dU−dh
≤ dU
dh
ν1

n∑
l=1

[
γ̄2

(
|el|

1
αl

)dU+α

(C.3)

+ ρl2(γ̄2)
(

exp(δ(tk+1 − t))
1

dU−dh |e0|
1
dh

)dU+α ]
≤ γ̄2

dU
dh
ν1

n∑
l=1

|el|
dU+α

αl (C.4)

+

(
dU
dh
ν1

n∑
l=1

ρl2(γ̄2)

)
exp(δ(tk+1 − t))

dU+α

dU−dh |e0|
dU+α

dh

≤ γ̄2
dU
dh
ν1%(U(e))

dU+α

dU (C.5)

+

(
dU
dh
ν1

n∑
l=1

ρl2(γ̄2)

)
exp(δ(tk+1 − t))

dU+α

dU−dh |e0|
dU+α

dh

where γ̄2 ≥ 0 can be chosen as small as desired and

ρ2(γ̄2) = dU−dh
dU+α

(
dh+α

γ̄2(dU+α)

) dh+α

dU−dh . Fact 2 is then proved

by taking γ2 = γ̄2
dU
dh
ν1% and Γ2 =

(
dU
dh
ν1

∑n
l=1 ρ

l
2(γ̄2)

)
.

D Proof of Fact 3

One can notice that Equation (22) is valid if the following
inequality is valid

− δ|e0(t)|
dU
dh + (Γ1 + Γ2) (exp(δTmax))

dU+α

dU−dh |e0(t)|
dU+α

dh

≤ −ε
2

(exp(δTmax))
dU+α

dU |e0(t)|
dU+α

dh +K1T
dU+α

−α
max

(D.1)

since 1 ≤ exp(δ(tk+1 − t)) ≤ exp(δTmax) for all t ∈
[tk, tk+1). This is equivalent to

− δ|e0(t)|
dU
dh + (Γ1 + Γ2)e

dU+α

dU−dh |e0(t)|
dU+α

dh

≤ −ε
2
e
dU+α

dU |e0(t)|
dU+α

dh +K1T
dU+α

−α
max (D.2)

⇔
(

(Γ1 + Γ2)e
dU+α

dU−dh +
ε

2
e
dU+α

dU

)
︸ ︷︷ ︸

4
=K2

|e0(t)|
dU+α

dh

≤ δ|e0(t)|
dU
dh +K1T

dU+α

−α
max (D.3)

since δ = 1/Tmax. In order to prove Inequality (D.3) and
�ndK1, let us apply Lemma 2 with x = |e0(t)|, α1 = dU

dh
,

α2 = dU+α
dh

and γ3 = TmaxK2, which gives us

xα1 + Γ3 ≥ γ3x
α2 (D.4)

⇔ |e0(t)|
dU
dh + Γ3 ≥ TmaxK2|e0(t)|

dU+α

dh (D.5)

⇔ 1

Tmax
|e0(t)|

dU
dh +

Γ3

Tmax
≥ K2|e0(t)|

dU+α

dh (D.6)

⇔ δ|e0(t)|
dU
dh +

Γ3

Tmax
≥ K2|e0(t)|

dU+α

dh (D.7)

with Γ3 = γ
α1

α1−α2
3

((
α2

α1

) α2
α1−α2 −

(
α2

α1

) α1
α1−α2

)
, that is

Γ3

Tmax
= T

α1
α1−α2

−1
max K

α1
α1−α2
2

((
α2

α1

) α2
α1−α2

−
(
α2

α1

) α1
α1−α2

)

(D.8)

= T
dU+α

−α
max K

α1
α1−α2
2

((
α2

α1

) α2
α1−α2

−
(
α2

α1

) α1
α1−α2

)
︸ ︷︷ ︸

4
=K1

(D.9)

Then Inequality (22) is valid.
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