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Introduction

The study of nonlinear observers has been an active research area for several decades [START_REF] Besançon | Nonlinear observers and applications[END_REF]. Indeed, they are powerful tools with a large number of possible applications since they allow to reconstruct all the states of a system from the model and the measured outputs only. This can be useful when all the states cannot be measured, for example when sensors do not exist which is the case in robotics to reconstruct stiness [START_REF] Ménard | A stiness estimator for agonisticantagonistic variable-stiness-actuator devices[END_REF] or in process control for some specic variables [START_REF] Gehan | Dissolved oxygen level output feedback control based on discrete-time measurements during a pseudomonas putida mt-2 fermentation[END_REF]. Another reason can be that the sensors are too expensive in some cases such as an industry production for example. Another use can be to check that the available sensors are working correctly by using such observers for fault detection and isolation [START_REF] Zhang | Adaptive observerbased fast fault estimation[END_REF].

Many approaches have then been developed to design such observers. One of the rst ideas has been to transform nonlinear systems into a linear ones so that observers can be constructed [START_REF] Krener | Nonlinear observers with linearizable error dynamics[END_REF]. Transformations Email addresses: e-mail: tomas.menard@unicaen.fr (Tomas Ménard), e-mail: emmanuel.bernuau@agroparistech.fr (Emmanuel Bernuau), emmanuel.moulay@univ-poitiers.fr (Emmanuel Moulay), patrick.coirault@univ-poitiers.fr (Patrick Coirault).

into more general forms have also been considered such as in [START_REF] Plestan | Linearization by generalized inputoutput injection[END_REF] for example. General classes of systems such that observers can be designed have also been considered. For Single-Input Single-Output (SISO) uniformly observable systems, a high gain observer can always be constructed [START_REF] Gauthier | A simple observer for nonlinear systems applications to bioreactors[END_REF], though the change of coordinates can be dicult to nd. General classes of Multi-Input Multi-Output (MIMO) uniformly observable systems have also been considered in [START_REF] Farza | Observer design for a class of MIMO nonlinear systems[END_REF]. Some other approaches rely on the specic structure of the system, such as backstepping [START_REF] Fossen | Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping[END_REF] or adaptive observers [START_REF] Cho | A systematic approach to adaptive observer synthesis for nonlinear systems[END_REF].

Homogeneity has been considered more recently for observer design [1113], though it has been introduced early in [START_REF] Zubov | Systems of ordinary dierential equations with generalized-homogeneous right-hand sides[END_REF] and [START_REF] Rothschild | Hypoelliptic dierential operators and nilpotent groups[END_REF]. Homogeneity is an interesting property since it is well suited to approximation or domination design [START_REF] Qian | Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems[END_REF][START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF]. Other properties can also be obtained from homogeneity of systems, such as nite-time or xed-time stability for example [START_REF] Polyakov | Nonlinear feedback design for xed-time stabilization of linear control systems[END_REF][START_REF] Polyakov | Finite-time and xed-time stabilization: Implicit Lyapunov function approach[END_REF]. Several structures of observers have been developed. One way is to use an inductive approach such as backstepping [START_REF] Li | A dual-observer design for global output feedback stabilization of nonlinear systems with loworder and high-order nonlinearities[END_REF]. One can also rely on the fact that the considered homogeneous observer is close to an observer whose convergence is already established [START_REF] Ménard | Fixed-time observer with simple gains for uncertain systems[END_REF]. Another possible approach is to consider an Implicit Lyapunov Function (ILF) [START_REF] Lopez-Ramirez | Finite-time and xed-time observer design: Implicit Lyapunov function approach[END_REF].

In the aforementioned works, the outputs are supposed to be available continuously, but this is rarely the case Preprint submitted to Automatica in practice. Indeed, most observers are implemented digitally on computers or micro controllers, the output is then usually sampled and the sampling times may be aperiodic [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. This may be the case when there are packet dropouts in Networked Control Systems (NCS) [START_REF] Wang | Networked control systems[END_REF] or in order to lower the load of a network when it is used by many agents at the same time [START_REF] Menard | Leader-following consensus for multi-agent systems with nonlinear dynamics subject to additive bounded disturbances and asynchronously sampled outputs[END_REF]. One way is to use a fully discrete-time approach [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF], but one loses the physical meaning of the states and only semiglobal stability might result. Another way is to use the emulation method [START_REF] Nesic | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], which means that a continuous observer is rst synthesized and discretized afterward. A third way is to adapt the continuous observer to obtain a so called continuous-discrete time observer which uses the discrete-time measurements and provide a continuous estimation of the states. Several designs have been proposed following this way. A rst idea is to use observers whose state is reset whenever a new measurement is received. A high gain approach has been used in [START_REF] Nadri | Design of a continuous-discrete observer for state ane systems[END_REF] for a class of linear systems up to input injections and for a class of uniformly observer systems whose nonlinear part is input dependant in [START_REF] Andrieu | Continuous discrete observer with updated sampling period[END_REF]. LMIs have been used to guarantee the stability in [START_REF] Dinh | Continuousdiscrete time observer design for Lipschitz systems with sampled measurements[END_REF] for a class of nonlinear systems using reachability analysis, in [START_REF] Mazenc | Continuous-discrete observers for time-varying nonlinear systems: A tutorial on recent results[END_REF] using an hybrid approach, for a class of systems whose dynamics is assumed to belong to a polytopic set of matrices in [START_REF] Etienne | Observer synthesis under time-varying sampling for Lipschitz nonlinear systems[END_REF], for a class of linear systems with noise analysis in [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF] and for the same class of linear systems but with a less conservative approach in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF]. Another idea is to use continuous observers based on an output error predictor which is reset when a new measurement is received. This approach has been rst used in [START_REF] Karafyllis | From continuous-time design to sampled-data design of observers[END_REF] and then in [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] using a high-gain approach and in [START_REF] Ferrante | L 2state estimation with guaranteed convergence speed in the presence of sporadic measurements[END_REF] by using LMIs. Both continuous and discontinuous observers have been combined in [START_REF] Ferrante | Observer design for linear aperiodic sampled-data systems: A hybrid systems approach[END_REF].

It has been shown recently that sampled homogeneous systems enjoy good properties. Indeed, depending on the degree of homogeneity either global practical stability or semi-global asymptotic stability can be obtained [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF]. Furthermore, it has been shown in [START_REF] Josse | Robustness of sampled-data homogeneous systems[END_REF] that robustness with respect to exogenous disturbance in the dynamics is also obtained. Such results have also been obtained for time-delay systems which can be seen as a more general framework than sampled systems, such as in [START_REF] Emov | Weighted homogeneity for time-delay systems: Finite-time and independent of delay stability[END_REF][START_REF] Zimenko | A note on delay robustness for homogeneous systems with negative degree[END_REF].

In this paper, we are particularly interested in the adaptation of homogeneous observers of negative degree (the precise meaning of homogeneous observer will be detailed in the following) in order to cope with the sampling of the output. Several features of the proposed design are worth being emphasized: i) the proposed observer error is globally uniformly ultimately bounded. ii) a Lyapunov function is explicitly constructed for the continuous-discrete time observer.

iii) the vector eld representing the original system may be non-homogeneous, which is not the case of [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF]. iv) simulations show that the performances of the proposed scheme are better than the one proposed in [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF].

The paper is organized as follows. The class of systems and the dierent assumptions are stated in section 2. Section 3 is devoted to the presentation of the proposed continuous-discrete time observer. Some simulations are provided in section 4 in order to show the performances of the proposed scheme. Finally, section 5 ends the paper.

2 Class of considered systems

Let us consider the following system

ẋ(t) = f (x(t), u(t)) y(t) = h(x(t)) (1) 
with x ∈ R n , u ∈ R, y ∈ R. The function f : R n × R → R n is assumed to be continuous and h : R n → R is assumed to be C 1 and homogeneous of degree d h > 0 with respect to some weights (α 1 , . . . , α n ) ∈ R n + . One assumes that a continuous observer, meaning that it has access to the output continuously for all t ≥ 0, exists for system [START_REF] Besançon | Nonlinear observers and applications[END_REF], which is in the following form

ẋ(t) = f (x(t), u(t)) -G(ŷ(t) -y(t)) ŷ(t) = h(x(t)) (2) 
where the function G : R → R n is assumed to be homogeneous of degree α < 0 with respect to the weight d h .

One assumes that the states of observer (2) converge to the states of system [START_REF] Besançon | Nonlinear observers and applications[END_REF]. More precisely, one assumes the following.

Assumption 1 There exists a class C 1 homogeneous Lyapunov function U : R n → R of degree d U > max{-α, d h , α 1 , . . . , α n } with respect to the weights (α 1 , . . . , α n ), whose derivative along the trajectories of the following error system

ė(t) = f (x(t), u(t)) -f (x(t), u(t)) -G(ŷ(t) -y(t)) (3) 
is negative denite, where e = x -x, i.e. there exists ε > 0 such that

U | (3) (e(t)) ≤ -ε (U (e(t))) d U +α d U . ( 4 
)
Remark 1 Since the function U is homogeneous of degree d U with respect to the weights (α 1 , . . . , α n ), several useful properties can be derived using Lemma 4.2 in [START_REF] Bhat | Geometric homogeneity with applications to nite-time stability[END_REF]. Firstly, the function ∂U/∂e j is homogeneous of degree d U -α j and continuous, hence there exists

κ j ≥ 0 such that ∂U ∂e j (e) ≤ κ j n l=1 |e l | d U -α j α l . (5) 
Secondly, using the fact that U is positive denite gives the existence of a constant > 0 such that

n l=1 |e l | d U +α α l ≤ (U (e)) d U +α d U . (6) 
Remark 2 It can be noted that the vector eld f is not assumed to be homogeneous. Nevertheless, in general, some homogeneous properties will be required to obtain a homogeneous Lyapunov function U for the error system.

For example, such Lyapunov functions can be found for systems where f is composed of an homogeneous drift term f 1 (x), which is homogeneous of degree α < 0 with respect to the weights (α 1 , . . . , α n ), and a term f 2 (x, u) which will be dominated in the stability analysis, such as in [START_REF] Li | A dual-observer design for global output feedback stabilization of nonlinear systems with loworder and high-order nonlinearities[END_REF] for example.

Remark 3 While the form of observer (2) seems restrictive, it should be noted that it is typically obtained in other coordinates than those of the system and an estimate of the state can be obtained by inversing the change of coordinates.

Main results

The aim of this work is to construct a continuous-discrete time observer for system [START_REF] Besançon | Nonlinear observers and applications[END_REF], that is an observer that provides a continuous estimate of the state of system (1) when the output y is only available at some sampling times (t k ) k∈N . The sampling times are assumed to verify:

0 = t 0 < t 1 < . . . < t k < . . . (7) 0 < T min < t k+1 -t k < T max , ∀k ∈ N (8)
The proposed observer is given by

ż(t) = -∂h ∂x (x(t))G(ẑ(t)) ẋ(t) = f (x(t), u(t)) -G(ẑ(t)) (9) 
when t ∈ [t k , t k+1 ), and

ẑ(t k ) = ŷ(t k ) -y(t k ) x(t k ) = x(t - k ) (10) 
Let us now write the error dynamics for observer [START_REF] Fossen | Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping[END_REF].

One denotes e 0 (t) = ẑ(t) -(ŷ(t) -y(t)), e = x -x = (e 1 , . . . , e n ), then, for t ∈ [t k , t k+1 ), one has

ė0 (t) = ∂h ∂x (x(t))f (x(t), u(t))) - ∂h ∂x (x(t))f (x(t), u(t)) ė(t) = (f (x(t), u(t)) -f (x(t), u(t)) -G(ŷ(t) -y(t))) -(G(ẑ(t)) -G(ŷ(t) -y(t))) (11) 
The whole error state is denoted E = (e 0 , . . . , e n ) ∈ R n+1 and the considered candidate Lyapunov function V (E, t) is dene for a given set of sampling instant verifying (7)(8) as follows. Let E ∈ R n+1 and t ≥ 0, then there exists a unique k ∈ N such that t ∈ [t k , t k+1 ) and V (E, t) is dened as

V (E, t) = U (e) + exp(δ(t k+1 -t))|e 0 | d U d h , (12) 
with δ > 0. Note that the function V is a valid candidate Lyapunov function, indeed, it is positive denite since exp(δ(t k+1 -t)) ∈ [1, exp(δT max )] for all t ∈ [t k , t k+1 ).

Before stating the main result, some additional assumptions have to be made in order to obtain the stability of the continuous-discrete time observer. In particular, it is required that some Hölder properties hold:

Assumption 2 (i) For all x 1 = (x 1 1 , . . . , x 1 n ), x 2 = (x 2 1 , . . . , x 2 n ) ∈ R n and u ∈ R, there exists ν 1 ≥ 0 such that ∂h ∂x (x 1 )f (x 1 , u) - ∂h ∂x (x 2 )f (x 2 , u) ≤ ν 1 n i=1 |x 1 i -x 2 i | d h +α α i . (13) 
(ii) For all z 1 , z 2 ∈ R, i = 1, . . . , n, there exists ν i 2 such that

|G i (z 1 ) -G i (z 2 )| ≤ ν i 2 |z 1 -z 2 | α i +α d h . ( 14 
)
Theorem 1 (Ultimate Boundedness) Consider system [START_REF] Besançon | Nonlinear observers and applications[END_REF] and observer (9) [START_REF] Cho | A systematic approach to adaptive observer synthesis for nonlinear systems[END_REF] subject to Assumption 2, then for any T max ≥ T min > 0 the error system [START_REF] Qian | Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm[END_REF] is globally stable and there exist K ≥ 0, independent of T max , such that the set

             E =        e 0 e 1 . . . e n        ∈ R n+1 : U (e) + |e 0 | d U d h ≤ K(T max ) d U -α              (15)
is globally attractive.

Remark 4 Theorem 1 states that the proposed observer cannot explode in nite-time even if the upper bound on the sampling periods period increases. This is not the case for most of the existing observers since if the sampling periods increases too much, the observer usually becomes unstable. This of course does not mean that the observation error stay small since it increases as T max increases. Nevertheless, this is a very interesting feature since it allows to keep satisfactory performances even when approaching the limit where other observers become unstable as it can be seen in the example section. This can also be useful to allow a very fast recovery of the estimation for example when the sampling instants are irregular and the sampling periods become large at some moments.

Proof. The proof is divided into three steps. In Step 1, one shows that the Lyapunov function candidate V is decreasing when new measurements are available, that is for t = t k with k ∈ N. In Step 2, one is interested in the behavior of the error dynamics when the dynamics is continuous, that is when t ∈ [t k , t k+1 ) with k ∈ N. An over-valuation of the derivative of V is then obtained. In Step 3, the results of Steps 1 and 2 are combined to show that the observer error is globally uniformly ultimately bounded.

Step 1.

Step 1 is rather direct, indeed, since the dynamics of e are continuous (e(t - k ) = e(t k )) and since e 0 (t k ) = 0, one has

V (E(t - k ), t - k ) = U (e(t - k )) + exp(δ(t k -t k ))|e 0 (t - k )| d U d h = U (e(t k )) + |e 0 (t - k )| d U d h ≥0 ≥ U (e(t k )) + exp(δ(t k+1 -t k )) |e 0 (t k )| d U d h =0 ≥ V (E(t k ), t k ) (16) 
Step 2. The derivative of the function V along the trajectories of system [START_REF] Qian | Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm[END_REF], for t ∈ [t k , t k+1 ), is given by

V (E(t), t) |(11) = (17) 
U (e(t)

) |(3) -δ exp(δ(t k+1 -t))|e 0 (t)| d U d h + n j=1 ∂U ∂e j (e(t)) (G j (ẑ(t)) -G j (ŷ(t) -y(t))) + d U d h exp(δ(t k+1 -t)) e 0 (t) d U -d h d h × ∂h ∂x (x(t))f (x(t), u(t)) - ∂h ∂x (x(t))f (x(t), u(t))
One now states two facts whose proof can be found in the appendix.

Fact 1. For any γ 1 > 0, there exists

Γ 1 ≥ 0 such that n j=1 ∂U ∂e j (e) (G j (ẑ) -G j (ŷ -y)) (18) 
≤ γ 1 (U (e))

d U +α d U + Γ 1 |e 0 | d U +α d h
holds for all E ∈ R n+1 .

Fact 2. For any γ 2 > 0, there exists Γ 2 ≥ 0 such that

d U d h exp(δ(t k+1 -t)) e 0 d U -d h d h (19) 
× ∂h ∂x (x)f (x, u) - ∂h ∂x (x)f (x, u) ≤ γ 2 (U (e)) d U +α d U + Γ 2 (exp(δ(t k+1 -t))) d U +α d U -d h |e 0 | d U +α d h holds for all t ∈ [t k , t k+1 ) and E ∈ R n+1 .
Using inequality (4), with Facts 1 and 2 in [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF] gives

V (E(t), t) ≤ -ε (U (e(t))) d U +α d U (20) 
-δ exp(δ(t k+1 -t))|e 0 | d U d h + γ 1 (U (e(t))) d U +α d U + Γ 1 |e 0 (t)| d U +α d h + γ 2 (U (e)) d U +α d U + Γ 2 (exp(δ(t k+1 -t))) d U +α d U -d h |e 0 (t)| d U +α d h ≤ -(ε -γ 1 -γ 2 ) (U (e(t))) d U +α d U (21) 
-δ exp(δ(t k+1 -t))|e 0 (t)| d U d h + (Γ 1 + Γ 2 ) (exp(δ(t k+1 -t))) d U +α d U -d h × |e 0 (t)| d U +α d h
One now states another fact whose proof can be found in the appendix.

Fact 3 For δ = 1/T max , there exists K 1 ≥ 0 independent of T max such that the following inequality holds true

-δ exp(δ(t k+1 -t))|e 0 (t)| d U d h (22) 
+ (Γ 1 + Γ 2 ) (exp(δ(t k+1 -t))) d U +α d U -d h |e 0 (t)| d U +α d h ≤ - ε 2 (exp(δ(t k+1 -t))) d U +α d U |e 0 (t)| d U +α d h + K 1 T d U +α -α max for all t ∈ [t k , t k+1 ).
Using Fact 3 in equation ( 21) and taking γ 1 , γ 2 such that

ε -γ 1 -γ 2 = ε/2 gives V (E(t), t) ≤ - ε 2 (U (e(t))) d U +α d U - ε 2 exp(δ(t k+1 -t)) d U +α d U |e 0 (t)| d U +α d h + K 1 T d U +α -α max ≤ - ε 2 (U (e(t))) d U +α d U - ε 2 exp(δ(t k+1 -t))|e 0 (t)| d U d h d U +α d U + K 1 T d U +α -α max ≤ - ε 2 U (e(t)) + exp(δ(t k+1 -t))|e 0 (t)| d U d h d U +α d U + K 1 T d U +α -α max ≤ -ν (V (E(t), t)) d U +α d U + Γ (23) 
by applying Lemma 1-(iii) with p = d U +α d U and where

Γ = K 1 T d U +α -α max and ν = ε 2 .
Step 3. From the results of Steps 1 and 2, it is clear that V (E(t), t) is decreasing outside of the interval 

0, Γ ν d U d U +α , then either V (E(t), t) enters the interval 0, Γ ν d U d U +α

Noting in addition that

Γ ν d U d U +α = K(T max ) d U -α and U (e) + |e 0 | d U d h ≤ V (E, t), ∀E ∈ R n+1 , ∀t ≥ 0 (24)
ends Step 3.

Example

One considers here the following system

             ẋ1 (t) = x 2 (t) -0.1 x 1 (t) 0.8 ẋ2 (t) = x 3 (t) + 0.1 x 1 (t) 0.6 + 0.1 x 2 (t) 0.75 ẋ3 (t) = -0.5 x 1 (t) 0.4 -0.5 x 2 (t) 0.5 -x 3 (t) 2/3 + u(t) y(t) = x 1 (t) (25 
) with u(t) = 5 cos(t) + sin(2t) and where z α = sign(z)|z| α for all z ∈ R and α ≥ 0. The system is initialized as x(0) = [-10, -5, 2] T . The sampling times belong to the interval [T min , T max ] which will be dened It can be seen that system ( 25) is homogeneous of degree -0.2 with respect to the weights (1, 0.8, 0.6) and an homogeneous observer is given by

             ẋ1 (t) = x2 (t) -0.1 x1 (t) 0.8 -k 1 x 1 (t) -x1 (t) 0.8 ẋ2 (t) = x3 (t) + 0.1 x1 (t) 0.6 + 0.1 x2 (t) 0.75 -k 2 x 1 (t) -x1 (t) 0.6 ẋ3 (t) = -0.5 x1 (t) 0.4 -0.5 x2 (t) 0.5 -x3 (t) 2/3 + u(t) -k 3 x 1 (t) -x1 (t) 0.4
(26) with the gains chosen as k 1 = 3, k 2 = 3 and k 3 = 1. The adapted continuous-discrete time observer as proposed in this paper is then given by

                     ż(t) = -k 1 ẑ(t) 0.8 ẋ1 (t) = x2 (t) -0.1 x1 (t) 0.8 -k 1 ẑ(t) 0.8 ẋ2 (t) = x3 (t) + 0.1 x1 (t) 0.6 + 0.1 x2 (t) 0.75 -k 2 ẑ(t) 0.6 ẋ3 (t) = -0.5 x1 (t) 0.4 -0.5 x2 (t) 0.5 -x3 (t) 2/3 + u(t) -k 3 ẑ(t) 0.4 ẑ(t k ) = x 1 (t k ) -x1 (t k ) (27)
The stability of the continuous observer and a homogeneous Lyapunov function can be obtained by following the approaches developed in [START_REF] Li | A dual-observer design for global output feedback stabilization of nonlinear systems with loworder and high-order nonlinearities[END_REF] or [START_REF] Bernuau | Homogeneous continuous nite-time observer for the triple integrator[END_REF] but are rather involved and then not reported here. Assumption 2-(i) is veried, indeed one has

∂h ∂x (x)f (x, u) = x 2 -0.1 x 1 0.8 (28) 
then

∂h ∂x (x 1 )f (x 1 , u) - ∂h ∂x (x 2 )f (x 2 , u) ≤ |x 1 2 -x 2 2 | + 0.1| x 1 1 0.8 -x 2 1 0.8 | ≤ |x 1
Assumption 2-(ii) is also veried, indeed one has

|G i (z 1 ) -G i (z 2 )| = k i | z 1 iα+1 -z 2 iα+1 | ≤ k i 2 -iα |z 1 -z 2 | iα+1
by applying Lemma 1-(i) since (iα + 1) ∈ (0, 1) for i = 1, 2, 3.

For the considered example, there is a convenient way to explain the ultimate boundedness of the proposed observer. Indeed, the predictor ẑ for the output error is nite-time stable and so it becomes zero after a nite time and the observer dynamics is then a copy of the system dynamics. This explains why the observer does not become unstable with a large T max contrarily to most existing approaches.

The observer proposed in this paper is compared with the ones proposed in [39, Proposition 15] and [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] with the same gains k 1 , k 2 , k 3 . All the observers are initialized as x1 (0) = x2 (0) = x3 (0) = 0. The rst simulation is done with relatively small sampling times, that is T min = 0.05s and T max = 0.1s. As it can be seen on Figure 2 the three observers perform well. The quadratic errors are respectively equal to 0.77 for the proposed observer, 0.88 for the observer from [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF] and 0.93 for the observer from [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF]. The second simulation is done with T min = T max = 1s.

In that case, it can be seen on Figure 3 that the proposed observer and the one from [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] perform well while the one from [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF] is not very accurate. The quadratic errors are respectively equal to 2.28 for the proposed observer, 661.25 for the observer from [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF] and 2.88 for the observer from [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF].

The last simulation is done with T min = T max = 2.65s which corresponds to the maximum allowable sampling time for which the observer from [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] is stable. It can be seen that the proposed observer is the only one that performs well. The quadratic errors are respectively equal to 128.9 for the proposed observer, 2.5 × 10 5 for the observer from [START_REF] Bernuau | Stability of homogeneous nonlinear systems with sampled-data inputs[END_REF] and 3.9 × 10 3 for the observer from [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF]. 

Conclusion

In this paper, we have proposed a new observer for homogeneous systems of negative degree whose output is available only at some discrete instants. It has been proved that the proposed observer error is globally uniformly ultimately bounded for any maximum sampling time. The proposed observer has been compared with a classical continuous-discrete time observer which has a maximum allowable sampling period and it has been shown in simulation that the proposed observer still performs well while the classical continuous-discrete time observer is at its limit. While the proposed observer perform well for small sampling times, it is only ultimately bounded, so future works will be concerned with the extension of the proposed observer so that it is exponentially stable for small maximum sampling periods and still practically stable for larger sampling periods.

A Technical lemmas

Lemma 1 [START_REF] Hardy | Inequalities[END_REF][START_REF] Li | A dual-observer design for global output feedback stabilization of nonlinear systems with loworder and high-order nonlinearities[END_REF] (i) Let p ∈ (0, 1) and x, y ∈ R, then the following inequality holds

| x p -y p | ≤ 2 1-p |x -y| p (A.1)
(ii) Let c, d, γ ≥ 0, then for all x, y ∈ R, one has

|x| c |y| d ≤ γ|x| c+d + d c + d c γ(c + d) c d |y| c+d (A.
2) (iii) Let p ∈ (0, 1) and x, y ∈ R, then the following inequality holds

(|x| + |y|) p ≤ |x| p + |y| p (A .3) 
Lemma 2 Let α 1 , α 2 > 0 be such that α 1 > α 2 and let γ > 0 be any constant parameter, then for all x ≥ 0 the following inequality holds

x α1 + Γ ≥ γx α2 (A.4) with Γ = γ(x * ) α2 -(x * ) α1 ≥ 0 and x * = α2γ α1 1 α 1 -α 2 .
Furthermore, the inequality is optimal in the sense that the left hand-side and right hand-side of Inequality A.4 are equal for x = x * .

Proof. One can directly show that the function f (x) = γx α2 -x α1 has only one maximum point which is global. This maximum is reached at x * and is equal to Γ. 

≤ n j=1 κ j n l=1 |e l | d U -α j α l |G j (ẑ) -G j (ŷ -y)| (B.2) ≤ n j=1 κ j n l=1 |e l | d U -α j α l ν j 2 |e 0 | α j +α d h (B.3) ≤ n j=1 n l=1 κ j ν j 2 |e l | 1 α l d U -αj |e 0 | 1 d h αj +α (B.4) ≤ n j=1 n l=1 κ j ν j 2 (B.5) × γ1 |e l | 1 α l d U +α + ρ j 1 (γ 1 ) |e 0 | 1 d h d U +α ≤ γ1   n j=1 κ j ν j 2   |e l | d U +α α l (B.6) +   n j=1 nκ j ν j 2 ρ j 1 (γ 1 )   |e 0 | d U +α d h
where γ1 can be chosen arbitrarily small, and

ρ i 1 (γ 1 ) = αj +α d U +α d U -αj γ1(dU +α) d U -α j α j +α . Using (6), one obtains n j=1 ∂U ∂e j (e) (G j (ẑ) -G j (ŷ -y)) (B.7) ≤ γ1   n j=1 κ j ν j 2   (U (e)) d U +α d U +   n j=1 nκ j ν j 2 ρ j 1 (γ 1 )   |e 0 | d U +α d h Fact 1 is then proved by γ 1 = γ1 n j=1 κ j ν j 2 and Γ 1 = n j=1 nκ j ν j 2 ρ j 1 (γ 1 ) . C Proof of Fact 2
Similarly to the proof of Fact 1, using Assumption 2-(i) and Lemma 1-(ii), one gets

d U d h exp(δ(t k+1 -t)) e 0 d U -d h d h × ∂h ∂x (x(t))f (x(t), u(t)) - ∂h ∂x (x(t))f (x(t), u(t)) ≤ d U d h exp(δ(t k+1 -t)) 1 d U -d h |e 0 | 1 d h d U -d h (C.1) × ν 1 n l=1 |e l | d h +α α l ≤ d U d h ν 1 n l=1 |e l | 1 α l d h +α (C.2)
× exp(δ(t k+1 -t)) with

Γ 3 = γ α 1 α 1 -α 2 3 α2 α1 α 2 α 1 -α 2 -α2 α1 α 1 α 1 -α 2
, that is

Γ3 Tmax = T α 1 α 1 -α 2 -1 max K α 1 α 1 -α 2 2 α 2 α 1 α 2 α 1 -α 2 - α 2 α 1 α 1 α 1 -α 2 (D.8) = T d U +α -α max K α 1 α 1 -α 2 2 α 2 α 1 α 2 α 1 -α 2 - α 2 α 1 α 1 α 1 -α 2

=K1

(D.9) Then Inequality [START_REF] Lopez-Ramirez | Finite-time and xed-time observer design: Implicit Lyapunov function approach[END_REF] is valid.

  and stay in there or it converges to a nite value a > Γ ν d U d U +α . It is direct to see that the second option is not possible because of inequality[START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] and the results of Step 1.
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 1 Fig. 1. Measured output later depending on the simulations. The output is assumed to be measured with a Gaussian white noise with a standard deviation equal to 2, it is illustrated on Figure 1. It can be seen that system (25) is homogeneous of degree -0.2 with respect to the weights (1, 0.8, 0.6) and an homogeneous observer is given by

Fig. 2 .

 2 Fig. 2. States and estimations for Tmin = 0.05s and Tmax = 0.1s

Fig. 3 .

 3 Fig. 3. States and estimations for Tmin = Tmax = 1s

Fig. 4 .

 4 Fig. 4. States and estimations for Tmin = Tmax = 2.65s.

B Proof of Fact 1 Using Assumption 2 -

 12 (ii), Inequality[START_REF] Krener | Nonlinear observers with linearizable error dynamics[END_REF] and Lemma 1-(ii) with c = d U -α j and d = α j + α, x = |e l | 1 (G j (ẑ) -G j (ŷ -y)) (B.1)

  where γ2 ≥ 0 can be chosen as small as desired andρ 2 (γ 2 ) = d U -d h -d h . Fact 2 is then proved by taking γ 2 = γ2 d U d h ν 1 and Γ 2 = d U d h ν 1 ≤ exp(δ(t k+1 -t)) ≤ exp(δT max ) for all t ∈ [t k , t k+1). This is equivalent to -δ|e 0 (t)| = 1/T max . In order to prove Inequality (D.3) and nd K 1 , let us apply Lemma 2 withx = |e 0 (t)|, α 1 = d U d h , α 2 = d U +α d hand γ 3 = T max K 2 , which gives usx α1 + Γ 3 ≥ γ 3 x α2 (D.4) + Γ 3 ≥ T max K 2 |e 0 (t)|
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	≤ γ2	d U d h	ν 1	l=1 n	|e l |	d U +α α l	(C.4)
		+			d U d h	ν 1	l=1 n	ρ l 2 (γ d U +α d h
	≤ γ2	d U d h	ν 1 (U (e))	d U +α d	(C.5)
		+			d U d h	ν 1	l=1 n	ρ l 2 (γ 2 ) exp(δ(t k+1 -t))	d U +α d U -d h |e 0 |	d U +α d h
									d h +α
							d U +α	d h +α γ2(dU +α)	d U n l=1 ρ l 2 (γ 2 ) .
	D Proof of Fact 3
	One can notice that Equation (22) is valid if the following
	inequality is valid
	-δ|e 0 (t)|	d U d h + (Γ 1 + Γ 2 ) (exp(δT max ))	d U +α d U -d h |e 0 (t)|	d U +α d h
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1 d U -d h |e 0 | 2 ) exp(δ(t k+1 -t)) 1 d U -d h |e 0 | 2 ) exp(δ(t k+1 -t)) d U +α d U -d h |e 0 |

-x 2 2 | + 0.1 × 2 -0.2 |x 1 1 -x 2 1 | 0.8by applying Lemma 1-(i) and the assumption holds since d h = 1, α = -0.2, α 1 = 1 and α 2 = 0.8.