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Introduction

Cortical spreading depression (CSD) is a wave of neuronal depolarization that slowly spreads across the cortex. It is accompanied by a disturbance in ion concentration homeostasis, followed by a prolonged neuronal silence that may last for several minutes. This prolonged neuronal silence gives to the phenomenon its name, depression.

Similarities between the CSD propagation and the spread of migraine with visual aura lead to the hypothesis that CSD is the mechanism that evokes migraine aura [START_REF] Leo | Propagation of spreading cortical depression[END_REF]. In a recent report, electrophysiological recordings clearly demonstrated that spreading depolarization-induced spreading depression of spontaneous cortical activity was associated with symptomatic migraine aura in a patient [START_REF] Major | Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury[END_REF]. Moreover, clinical studies have shown that CSD is closely associated with ischemic stroke and traumatic brain injury [START_REF] Pietrobon | Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations[END_REF][START_REF] Jens | The stroke-migraine depolarization continuum[END_REF][START_REF] Hartings | The continuum of spreading depolarizations in acute cortical lesion development: examining leao's legacy[END_REF]. Therefore, it is important to better understand this phenomenon to develop preventive methods.

Nav1.1 is a voltage-gated sodium channel that plays a crucial role in the excitation of GABAergic type inhibitory neurons. SCN1A is the gene encoding for the Nav1.1 channel. It is the target of many mutations associated with either sporadic/familial hemiplegic migraine (FHM) [START_REF] Dichgans | Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine[END_REF][START_REF] Shao | Familial hemiplegic migraine type 3 (FHM3) with an SCN1A mutation in a Chinese family: A case report[END_REF][START_REF] Dhifallah | Gain of function for the SCN1A/hNav1.1-L1670W mutation responsible for familial hemiplegic migraine[END_REF], with severe consequences such as weakness of one side of the body, or epileptic disorders [START_REF] Frank | Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[END_REF][START_REF] Mantegazza | SCN1A/NaV1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models[END_REF].

Of the three responsible gene mutations that cause FHM, SCN1A mutations are known to be the ones that cause FHM type 3 (FHM3). Recently, SCN1A mutations leading to gain of function of the Nav1.1 channel were shown to be closely related to the occurrence of FHM3 [START_REF] Dhifallah | Gain of function for the SCN1A/hNav1.1-L1670W mutation responsible for familial hemiplegic migraine[END_REF][START_REF] Mantegazza | SCN1A/NaV1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models[END_REF][START_REF] Cestèle | Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects[END_REF][START_REF] Bertelli | Gain of function of sporadic/familial hemiplegic migraine-causing SCN1A mutations: Use of an optimized cDNA[END_REF][START_REF] Mantegazza | Sodium channelopathies of skeletal muscle and brain[END_REF]. The gain of function implies hyperexcitability of interneurons. Counter-intuitively, it has been hypothesized that very high firing rate of interneurons can trigger CSD [START_REF] Pietrobon | Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations[END_REF][START_REF] Lauritzen | Pathophysiology of the migraine aura: the spreading depression theory[END_REF][START_REF] Michel D Ferrari | Migraine pathophysiology: lessons from mouse models and human genetics[END_REF]. Recently, this has been shown to be one of the pathological mechanisms involved in migraine with aura [START_REF] Major | Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury[END_REF], the category of FHM3, as well as in several other brain pathologies such as ischemic stroke and traumatic brain injury [START_REF] Pietrobon | Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations[END_REF][START_REF] Lauritzen | Pathophysiology of the migraine aura: the spreading depression theory[END_REF][START_REF] Michel D Ferrari | Migraine pathophysiology: lessons from mouse models and human genetics[END_REF]. More specifically, it was shown, both in vitro and in a mouse model, that SCN1A mutations leading to Nav1.1 gain of function favor CSD initiation [START_REF] Dhifallah | Gain of function for the SCN1A/hNav1.1-L1670W mutation responsible for familial hemiplegic migraine[END_REF][START_REF] Frank | Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[END_REF][START_REF] Mantegazza | SCN1A/NaV1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models[END_REF][START_REF] Cestèle | Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects[END_REF][START_REF] Bertelli | Gain of function of sporadic/familial hemiplegic migraine-causing SCN1A mutations: Use of an optimized cDNA[END_REF][START_REF] Mantegazza | Sodium channelopathies of skeletal muscle and brain[END_REF][START_REF] Cestèle | Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1. 1 (SCN1A) Na+ channel[END_REF][START_REF] Cestèle | Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine[END_REF][START_REF] Fan | Early-onset familial hemiplegic migraine due to a novel SCN1A mutation[END_REF][START_REF] Mantegazza | Pathophysiological mechanisms of migraine and epilepsy: similarities and differences[END_REF][START_REF] Barbieri | Late sodium current blocker GS967 inhibits persistent currents induced by familial hemiplegic migraine type 3 mutations of the SCN1A gene[END_REF]. Nevertheless, it is still not clear how the SNC1A mutation leading to the gain of function of Nav1.1 elicits the activity of GABAergic neurons and how this consequently induces the network hyperexcitability that generates CSD.

Despite its dramatic consequences, CSD has only recently been detected in humans [START_REF] Mayevsky | Cortical spreading depression recorded from the human brain using a multiparametric monitoring system[END_REF][START_REF] Fabricius | Cortical spreading depression and peri-infarct depolarization in acutely injured human cerebral cortex[END_REF], and it remains difficult to detect it noninvasively in humans [START_REF] Zandt | How does spreading depression spread? physiology and modeling[END_REF]. Its increasing clinical importance in brain disorders creates an urgent need for mathematical models that can account for the biological mechanisms at different levels. Following this line of research, we propose a mathematical model to contribute to a better understanding of this phenomenon, especially in the context of migraine at the neuronal population level. The novelty of the model is that it takes into account the ionic modulation of the neuronal transfer functions. Moreover, unlike previous models, it reproduces not only ignition dynamics but also the propagation dynamics of CSD. The code package of the model implementation and simulations can be found in GitHub [START_REF] Baspinar | A neural field model for cortical spreading depression[END_REF].

In Section 2 we present the hypothesis that motivates our model, as well as previous frameworks that have inspired the model. In Section 3 we present our model framework. In Section 5, we present our simulation results of CSD ignition and propagation. Finally, in Section 6, we conclude by summarizing the novelties and future perspectives.

Background

Three mechanisms have been hypothesized for the CSD ignition that follows hyperexcitability of inhibitory neurons in the case of FHM3 [START_REF] Cestèle | Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects[END_REF][START_REF] Cestèle | Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1. 1 (SCN1A) Na+ channel[END_REF][START_REF] Cestèle | Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine[END_REF][START_REF] Mantegazza | Pathophysiological mechanisms of migraine and epilepsy: similarities and differences[END_REF][START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF]: (i) the extracellular accumulation of potassium resulting from the potassium currents due to spiking of the inhibitory neurons. This can be observed during the time when the inhibitory neurons are firing at a high frequency. (ii) The KCC2 co-transporter increases extracellular potassium following intense inhibitory activity of interneurons. This situation may occur when intense GABAergic transmission occurs. In such cases, KCC2 attempts to transport potassium and chloride together to keep the intracellular chloride concentration in the excitatory cells low. This leads to potassium efflux, and consequently extracellular potassium accumulation increases [START_REF] Viitanen | The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus[END_REF][START_REF] Doyon | Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis[END_REF][START_REF] Kaila | Cation-chloride cotransporters in neuronal development, plasticity and disease[END_REF]. (iii) The excitatory effects resulting from GABA-ergic transmission. Such effects could occur when KCC2 and possibly other homeostatic mechanisms reach their limits. At this point, the chloride gradient begins to weaken, and this situation could lead to depolarizing excitatory actions that follow the GABA-A receptor increasing its activity [START_REF] Lillis | Pyramidal cells accumulate chloride at seizure onset[END_REF]. All of these mechanisms may induce, possibly in parallel, pyramidal cell excitability and trigger CSD.

Our hypothesis is that intense firing of interneurons may trigger the depolarization block which evokes CSD and leads to FHM3-type migraine. This hypothesis was investigated in [START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF], where a conductance-based model based on a pair of excitatory and inhibitory Hodgkin-Huxley cells was used. The coupling was based on a GABAergic synapse from the inhibitory to the excitatory cell and on a glutamatergic synapse from the excitatory to the inhibitory cell. An excitatory self-coupling was used to account for the effects of glutamatergic input on the excitatory cell. In addition, ion concentrations of the excitatory cell were dynamic, resulting in reversal potentials that varied slowly. The assumption of constant reversal potentials does not hold, as this assumption is rather for the cases where homeostatic equilibrium is maintained. In CSD, however, homeostatic equilibrium is violated, justifying the presence of slowly varying reversal potentials. This model was extended from [START_REF] Wei | Unification of neuronal spikes, seizures, and spreading depression[END_REF], in which a Hodgkin-Huxley type neuron model was used to study the dynamics associated with epileptic activity, CSD, and spike generation, but without considering the role played by the hyperexcitation of interneurons. A similar model was used in [START_REF] Ullah | The role of cell volume in the dynamics of seizure, spreading depression, and anoxic depolarization[END_REF] to investigate the effects of cell volume on dynamics related to epileptic activity and spreading depression. In a recent work [START_REF] Lemaire | Modeling nav1. 1/scn1a sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential gabaergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine[END_REF], the model presented in [START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF] was extended to a framework in which, in addition to the relationship between SCN1A mutations leading to Nav1.1 gain of function and CSD initiation, the relationship between SCN1A mutations leading to Nav1.1 loss of function and epileptic activity was considered. Previous models for FHM3 or spreading depression did not consider Nav1.1 mutations on GABAergic neurons, and this is one of the contributions of our model framework as well as the models presented in [START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF][START_REF] Lemaire | Modeling nav1. 1/scn1a sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential gabaergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine[END_REF].

We use a Wilson-Cowan-Amari [START_REF] Hugh | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF][START_REF] Amari | Dynamics of pattern formation in lateral-inhibition type neural fields[END_REF] type neural field model. Neural populations are coupled to potassium concentration such that neural activity modulation via potassium accumulation in the extracellular matrix is considered. We model potassium concentration in a generic manner that accounts for all three aforementioned mechanisms (i), (ii) and (iii) associated with CSD ignition, which is identified as a depolarization block. The model is spatially extended to a cortical layer, therefore it can model both ignition and propagation of CSD.

Model framework

We interpret the spreading depression as propagating waves described by a rapidly evolving firing rate v and a slowly evolving extracellular potassium concentration k, and model it in terms of a neural field. A connectivity kernel captures the neural connectivity in the neural field. The field is coupled with a reaction-diffusion equation describing potassium diffusion.

Our neural field model is written as follows:

∂v ∂t = -v + Q w(x -y)sp(v(y, t), k(y, t)) dy + gv(v, k) ∂k ∂t =δ ∂ 2 k ∂x 2 + g k (s, sp(v, k), a, b) + I. (1) 
Here v and k denote the firing rate and potassium concentration, respectively. They are inputs to the firing rate transfer function sp, whose parameters are denoted by the vector p. We denote by Q ∈ R 2 the cortical layer where the CSD starts and propagates. We express the connectivity kernel as w(x, y) = 1 2 e -(x-y) 2 . Here, gv is a generic function representing the effect of potassium on the firing rate, and it denotes any potassium-related activity that affects the firing rate. Similarly, the effect of firing rate on potassium concentration is introduced by the function g k , with parameters a, b ≥ 0 and with s representing a specific sample of sp, as will be explained in Section 3.2. We denote the external input by I, which is a localized potassium puff. The constant δ > 0 ensures the unit coherency between the diffusion and the drift in the potassium concentration equation.

We assume that the CSD ignition and propagation are radially symmetric. Consequently, the propagation is radial and its velocity is constant; see Figure 4.

Firing rate transfer function

Recall that in a classical neural field, low inhibitory activity gives rise to high excitatory activity and high inhibitory activity gives rise to low excitatory activity. In our framework, the transfer function sp takes into account the generalized excitatory activity that distinguishes very high inhibitory activity from high inhibitory activity. It is defined as

sp(v, k) :=      1 2(1+e -β(v-h) ) , k < k * 1 1 1+e -β(v-h) , k * 1 ≤ k ≤ k * 2 0, k * 2 < k, (2) 
where 

p = (β, v * , k * 1 , k * 2 ) ∈ R
* 1 < k < k * 2 ,
where the maximum value of the transfer function is higher for the latter. The former corresponds to a low potassium concentration and thus a low inhibitory activity regime with 1/2 as the maximum firing rate. The latter corresponds to a high potassium concentration and thus a high inhibitory activity with 1 as the maximum firing rate. A neural regime above the threshold with k ≥ k * 2 corresponds to a very high inhibitory activity, in which the potassium concentration is too high. This results in a low excitatory firing rate for all voltage activity v values and generates the depolarization block that marks the onset of CSD and triggers it; see Figure 2.

The system given by (1) models only the activity of the excitatory population. The inhibitory population activity is not explicitly included. The potassium related inhibitory activity is represented in terms of the potassium concentration variable k. In accordance with our hypothesis, the increase and decrease in potassium concentration reflects the increase and decrease in inhibitory population activity, respectively. 

Potassium to firing rate transfer function

We consider all potassium-related effects on the firing rate of the excitatory population via gv, a nonlinear function given by

gv(v, k; βv, k * v ) := 1 1 + e -βv (k-k * v ) . (3) 
Here βv > 0 and k * v denote the sharpness and k threshold, respectively. This is a generic function that models all potassium-related excitatory activity, with the exception of excitatory potassium build up due to potassium currents resulting from interneuron spikes. This latter type of activity is explicitly supplied to the system via the firing rate transfer function sp. See Figure 3 for a simplified plot of gv. 

Firing rate to potassium transfer function

We represent the effects of the interactions between the excitatory activity (or the inhibitory activity) and the potassium concentration on the potassium concentration with the nonlinear function g k . We define g k as follows:

g k (s, sp, a, b) := cosh(a(s -b sp)), (4) 
with parameters a, b ≥ 0, s = sp(v * , k * 1 ) and sp = sp(v, k).

Extended model framework

We extend the model framework by explicitly representing the excitatory and inhibitory population firing rates, ve and vi, respectively. We define

Se(ve, k, p) := Q we(x -y)ξp(ve(y, t), k(y, t)) dy, Si(vi, k, q) := Q wi(x -y)ηq(vi(y, t), k(y, t)) dy, (5) 
and then write the extended model equations as follows:

τ ∂ve ∂t = -ve + ceeSe(ve, k, p) + ceiSi(vi, k, q) + gv(ve, k; βe, k * νe = k * v ) τ ∂vi ∂t = -vi + cieSe(ve, k, p) + ciiSi(vi, k, q) + gv(vi, k; βi, k * ν i = k * v ) τ ∂k ∂t =δ ∂ 2 k ∂x 2 + c1 g k (ξ, ξp(ve, k), a, b) + c2 g k (η, ηp(vi, k), a, b) + I. (6) 
Here we and wi denote the connectivity kernels corresponding to the excitatory and inhibitory populations, respectively. Similar to the previous model, but now separated for each population, gv functions, possibly with different parameter sets, denote all potassium related activities interacting with the excitatory and inhibitory populations. Coefficients 0 < c2 ≤ c1 < ∞ weight the contributions of excitatory and inhibitory populations to extracellular potassium accumulation. Moreover, we choose 0 < βi < βe < ∞ due to our hypothesis of that the excitatory activity associated with CSD results from the extracellular potassium accumulation. In other words, potassium concentration triggers firing of excitatory populations more readily than that of inhibitory populations with respect to the CSD ignition. Time scale τ > 0 introduces a physical dimension to time. This will be important in calculating the wave propagation velocity of a depolarization block. Finally, the transfer functions are denoted by ξp and ηq, where p and q are the parameters of the transfer functions. Here ξ and η are specific samples of ξp and ηq similarly to s appearing in [START_REF] Leo | Propagation of spreading cortical depression[END_REF]. We define the transfer functions as ξp(ve, vi, k) := sp(ve, k), ηq(vi, k) := sq(vi, k),

where -1 ≤ cei, cii ≤ 0 and 0 ≤ cee, cie ≤ 1 denote the cross and recurrent connectivity weights. The rest of the parameters is as in the previous model framework [START_REF] Hugh | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF].

Our extended framework differs from previous framework given in [START_REF] Hugh | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF] in three respects. First, the interaction of the inhibitory population with both the excitatory population and the potassium concentration is now explicit. Second, both excitatory and inhibitory connections are considered. Third, the cross population connections weights cie, cei are weaker in comparison to the recurrent connection weights cee and cii because we account for the connectivity differences related to the spatial distances between neurons.

CSD ignition and propagation

CSD ignition is a local phenomenon that begins in a small area of the cortical surface and then spreads over the entire cortical surface. In previous modeling frameworks, CSD initiation was studied [START_REF] Chever | Initiation of migraine-related cortical spreading depolarization by hyperactivity of GABAergic neurons and NaV 1.1 channels[END_REF][START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF][START_REF] Lemaire | Modeling nav1. 1/scn1a sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential gabaergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine[END_REF], however, the propagation across the cortical surface was ignored. We show that our model framework successfully reproduces both the initiation and propagation of the phenomenon.

We assume that the cortical surface is a disk and that the propagation of the CSD is radial, as in the previous framework given by [START_REF] Hugh | Excitatory and inhibitory interactions in localized populations of model neurons[END_REF]. In other words, we restrict neuronal connectivity to radiality. We measure the propagation velocity along the radial axes by assuming that the angular component of the propagation velocity is zero. Therefore, we can define the cortical disk as a set of partitions Q k of lines running from the center of the disk, where the CSD source is located, toward the cortical edge such that

Q = k=1,2,...,∞ Q k . (8) 
This simplifies the problem and allows the study of CSD ignition and propagation on a single partition Q k . We denote the horizontal partition as Q1 and assume that the neuronal population pairs lying along Q1 have equidistant spacing hx = 2Lx N -1 , where the length of Q1 is 2Lx = 400 mm and N is the total number of population pairs in each partition Q k . Figure 5 shows the space-time diagram of an example of depolarization block wave which emerges from the population pair located at the center of the cortical disk. This wave propagates radially and symmetrically with a constant velocity towards the cortical disk boundary. An external input in the form of a potassium puff evokes the propagation of the depolarization block wave. The increasing potassium concentration gives rise to increasing excitatory activity, thus to depolarization block propagating towards the peripheral populations. See Figure 6, in which we provide the plots of a propagating excitatory population potential and firing rate, as well as the expanding potassium concentration over the populations. In Figure 7, we see the propagation of the excitatory and inhibitory population activities at t = 200 mn on the left and right panels, respectively. We consider the peak and the highest point of the plateau edges as the position of the propagating waves at the given instant. We observe that the excitatory activity wave is followed by an inhibitory wave. This models the suppression of the brain activity, i.e., the depression, which follows the slowly propagating wave of depolarization as observed in the migraine cases with CSD [START_REF] Andrew | Cortical spreading depression and migraine[END_REF]. 

Emergence of propagating depolarization waves

In accordance with our hypothesis, the model generates propagating depolarization waves due to the high potassium density in the extracellular matrix, caused by the high inhibitory activity. The depolarization waves emerge once we turn on the potassium variable k, as well as the interactions between the excitatory and inhibitory population average membrane potentials ve and vi as shown in Figure 8. We observe that the depolarization block propagation, therefore the CSD ignition, starts as soon as we turn on c = c1 = c2. The propagation velocity and life span of the propagating wave depends on both c and k * v as seen in Figures 9 and10. In Figure 9a, we observe that for the c values around 0, there is an ignition of a wave but it converges to a stationary solution, which corresponds to a locally fixed non-zero voltage (ve) value and to 0 elsewhere. As we increase c, a propagating wave emerges. This corresponds to the region between the supHopf and SN, therefore stable limit cycles, as shown in Figure 8a. As we increase c further, we observe in Figure 9b that stable limit cycles transform into unstable limit cycles as the system undergoes the SN. This results in that the propagating wave disappears, and a transient propagating wave occurs. Finally, as the system goes through the subHopf with increasing c beyond 1.9, the transient wave disappears and the system converges to a fixed point, resulting in no wave activity. We observe in Figure 8b a symmetric diagram with respect to Figure 8a. In Figure 8b, stationary solutions vanish and unstable limit cycles emerge while the system goes through the supHopf as we increase k * v . There is no activity before the subHopf, see Figure 13a. As system goes through the subHopf, transient waves appear. As we increase k * v more, the system goes through the SN, after which the unstable limit cycles vanish and stable limit cycles appear as shown in Figure 13a. Those stable limit cycles correspond to propagating deplorization blocks spreading across the whole brain. Finally, the system goes through the supHopf as we increase k * v further and the limit cycles vanish. The system converges to a fixed point for each k * v > 1.8 beyond the supHopf, resulting in a short transient period and no activity afterward; see Figure 10. 

Potassium production and propagation velocity

Propagation velocity of the depolarization block can be controlled via the potassium concentration threshold parameters k * νe and k * ν i . We provide the plots of propagating excitatory potentials across the cortical disk with different k * νe = k * ν i = k * ν parameters and at time instant t = 50 mn on the left panel of Figure 11, where we see that the propagation velocity decreases with increasing k * ν . We choose kν e = kν i , however, it is possible to choose them differently in the generic case. We provide the decreasing trend of the propagation velocity ν with respect to increasing k * νe = k * ν i = k * ν on the right panel of Figure 11 for both excitatory (blue) and inhibitory (red) populations. We observe that the populations are synchronized, propagation velocity is the same for both population types. In accordance with the experimental observations [START_REF] Garza | Headache and other craniofacial pain. Bradley's Neurology in Clinical Practice[END_REF][START_REF] Borsook | Chapter 42 -migraine[END_REF], the propagating depolarization wave leaves a period of hyperpolarization, a suppressed activity behind.

We show the effects of changing c1 = c2 = c values on the propagation velocity for both excitatory (blue) and inhibitory (red) populations in the right bottom panel of Figure 11. Increasing c provides stronger contribution to the extracellular potassium accumulation. This results in increasing propagation velocity as expected.

The propagation velocity ν is measured based on

ν = hx(n th -N/2) tF . (9) 
Here n th and tF denote the index of the population pair having equal potential to preset threshold and the time instant at which the measurement is made, that is the final time, respectively. Those results show that our model framework has full control over the propagation velocity of the depolarization block via the parameters

k * νe = k * ν i = k * v = 1.1, c1 and 
c2. In certain cases, the contribution of the excitatory populations to potassium accumulation in the extracellular matrix can be stronger than the contribution of the inhibitory populations, i.e., c1 > c2. This is due to the fact that there are more excitatory cells than inhibitory cells in the cortex; and the excitatory cells are usually bigger in size. Therefore, their total activity is higher compared to the inhibitory cells. They can produce more potassium accumulation. Such behavior with c1 > c2 can be reproduced by our model; see Figure 12. 

Connectivity and propagation velocity

We provide the results related to connectivity weights and their effects on propagation velocity of depolarization block. We model block of Glutamatergic receptors (suppression of excitation) by fixing cee, cie = 0 and block of GABA-A receptors (suppression of inhibition) by fixing cii, cei = 0. We observe in Figure 13 that, as we remove the block of Glutamatergic receptors by increasing cee, cie, the depolarization block propagates faster; and as we remove the block of GABA-A receptor by increasing cii, cei, the depolarization block propagates rather slowly. Those results overlap with the experiment results presented in [3, Figure 7F]. Moreover, the range of ν for the simulated c1 and c2 values span the experimentally observed propagation velocity of CSD, which is 2-4 mm/mn approximately [START_REF] Aristides | Spreading depression of activity in the cerebral cortex[END_REF], and it can be adjusted by changing the time scale parameter τ in ( 6). 

Discussion

We presented a novel neural field model for CSD. The model is based on a Wilson-Cowan-Amari type framework in which an excitatory-inhibitory neuron population pair is coupled to potassium concentration. The potassium concentration is described in terms of a reaction-diffusion equation. The model has several novelties. First, in the firing rate transfer function, we include not only the firing activity as in the classical Wilson-Cowan model, but also the extracellular potassium concentration. The potassium concentration is dynamic and it depends on the firing activity. In addition, a transfer function from potassium to firing rate is introduced as an input to firing activity. This interaction between the firing activity and potassium concentration characterizes the interneuron activity that unexpectedly leads to the triggering of CSD in the same line as our hypothesis. Second, in contrast to the models presented in [START_REF] Desroches | Modeling cortical spreading depression induced by the hyperactivity of interneurons[END_REF][START_REF] Lemaire | Modeling nav1. 1/scn1a sodium channel mutations in a microcircuit with realistic ion concentration dynamics suggests differential gabaergic mechanisms leading to hyperexcitability in epilepsy and hemiplegic migraine[END_REF], our model can represent not only the CSD ignition but also the CSD propagation, which starts locally with ignition and spreads globally across the cortical layer. Third, the propagation velocity can be easily adjusted. In this way, we can study the layer-specific features of CSD, especially its propagation velocity, which is higher in the upper layers of the neocortex than in the lower layers [START_REF] Aristides | Further observations on the spreading depression of activity in the cerebral cortex[END_REF][START_REF] Trent A Basarsky | Imaging spreading depression and associated intracellular calcium waves in brain slices[END_REF][START_REF] Zerimech | Cholinergic modulation inhibits cortical spreading depression in mouse neocortex through activation of muscarinic receptors and decreased excitatory/inhibitory drive[END_REF]. Fourth, time scale τ appearing in (6) can be tuned according to the participant the experiments such that the system captures the overlap between the simulated and experimentally observed propagation velocities. This provides a strong flexibility to our model in the sense that it can be tuned to each participant in the experiment by varying τ so that a full overlap in propagation velocity can be provided for the subject. Finally, this model can provide the effects of changes in connection and potassium contribution weights of different populations. These parameters cannot be controlled in the experiment setups.

The first perspective regarding our model is its extension to epileptic CSD. Mutations of SCN1A may result in also loss of function of Nav1.1 [START_REF] Frank | Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy[END_REF][START_REF] Mantegazza | SCN1A/NaV1.1 channelopathies: Mechanisms in expression systems, animal models, and human iPSC models[END_REF][START_REF] Mantegazza | Sodium channelopathies of skeletal muscle and brain[END_REF][START_REF] Ogiwara | Nav1. 1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an scn1a gene mutation[END_REF][START_REF] Hedrich | Impaired action potential initiation in gabaergic interneurons causes hyperexcitable networks in an epileptic mouse model carrying a human nav1. 1 mutation[END_REF] and this might lead to the reduced excitability of the inhibitory neurons [START_REF] Claes | De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy[END_REF]. Such mutations are closely related to epileptic disorders, in particular to Dravet syndrome [START_REF] Miller | SCN1A Seizure Disorders[END_REF][START_REF] Sugawara | A missense mutation of the Na+ channel αII subunit gene Nav1.2 in a patient with febrile and afebrile seizures causes channel dysfunction[END_REF], which is a severe type of epileptic pathologies that are resistant to antiepileptic medications. The case of Dravet syndrome is less counter-intuitive compared to what is observed in FHM3 case considered here, because reduced inhibition naturally results in hyperexcitability of excitatory neurons and this evokes CSD. Our model can be adapted in a straightforward way to such epileptic cases of CSD.

The second perspective is that our model can be extended also to astrocytes, which constitute an active research area in migraine and epilepsy [START_REF] Michael | Common pathophysiologic mechanisms in migraine and epilepsy[END_REF][START_REF] Capuani | Defective glutamate and k+ clearance by cortical astrocytes in familial hemiplegic migraine type 2[END_REF][START_REF] Zhao | Astrocytes mediate migraine-related intracranial meningeal mechanical hypersensitivity[END_REF]. These are the brain cells which modulate neural interactions. They can be inserted in our model equations ( 6) as a third cell population coupled to the excitatory and inhibitory populations. It will correspond to a slow time scale since astrocyte activity is measured in terms of ionic activity, which changes more slowly in time compared to the electrical activity measured from neurons.

  4 denote the parameters. Here k * 1 , k * 2 > 0 denote the potassium thresholds, β represents the sharpness of the nonlinearity of sp, and h ∈ R expresses the value of the half response voltage. The corresponding output of the transfer function to a very high inhibitory activity is a low excitatory activity or a silent phase. This property of the transfer function is due to a threshold effect. Unlike the classical neural field setup, where the transfer function depends only on the neural activity, in our framework the transfer function also depends on the time-dependent potassium concentration k; see Figure1. Consequently, the same neural activity can produce different transfer function outputs depending on the potassium concentration. In other words, we observe a threshold effect when the potassium concentration is very high, i.e., when k > k * 2 . The transfer function has the typical nonlinear sigmoidal behavior for k < k * 1 and k

Figure 1 :

 1 Figure 1: Left: Transfer function sp with respect to the firing activity v and potassium concentration k. Right: Top view of the maximum and minimum values of the transfer function. The nonlinear regions are ignored.

Figure 2 :

 2 Figure 2: Some example CSD results of the Hodgkin-Huxley model framework presented in [28]. Time course of the excitatory cell membrane potential on the top and the corresponding extracellular ion concentration on the bottom. Top left: Tonic spiking excitatory cell without any coupling to the inhibitory cell. Bottom left: Corresponding extracellular potassium and chloride concentrations. Top right: Depolarization block of the excitatory cell with CSD following the block. Bottom right: Corresponding ion concentrations.

Figure 3 :

 3 Figure 3: Potassium to rate transfer function gv with respect to the excitatory firing rate v and potassium concentration k. Regions of the maximum and minimum values are represented by the yellow and blue colors, respectively.

Figure 4 :

 4 Figure 4: Illustration of the propagation of a radial depolarization block on cortical disk Q. Ignition occurs at the source point marked in red. The boundary of the disk is shown by the bold outermost circle with radius Lx = Ly. The arrows represent the directions of propagation. Dashed circles illustrate the sets of two different propagating ve values. Neurons represented by green dots lie on the horizontal partition Q1.

Figure 5 :

 5 Figure 5: Diagrams of the propagation of excitatory population potential, the expansion of potassium concentration and the propagation of the excitatory population firing rate in time and space.

Figure 6 :

 6 Figure 6: Plots of excitatory population potential and firing rate propagating towards the edge of the cortical disk in the top and bottom rows, respectively; and the plots of the expanding potassium concentration towards the cortical disk boundary in the middle row. The columns correspond to t = 2, 20 and 50 mn from left to right. Red horizontal lines show v * e and k * v in ve adn k plots, respectively.

Figure 7 :

 7 Figure 7: Plots of the average membrane potentials of both excitatory and inhibitory populations (top) together with the transfer functions outputs (bottom) and the extracellular potassium (middle). The plots are obtained at t = 200 mn. Red horizontal lines show v * e (or v * i ) and k * v in ve (or vi) and k plots, respectively.

Figure 8 :

 8 Figure 8: Bifurcation diagrams with respect to the bifurcation parameters c and k * v in (a) and (b), respectively. Here supHopf and subHopf denote sub-and sup-critical Hopf bifurcations, respectively. SN represents a saddle node bifurcation. The connectivity weights are fixed in both diagrams as cie = -cei = 0.25, cee = 1 and cii = -1.

Figure 9 :

 9 Figure 9: Space-time diagrams of neural activity with increasing c = c1 = c2 values around the supHopf and subHopf shown in Figure 8a. Here k * v = 1.2. Axes and legend values are given in the top left plots of each panel, and they are the same for the rest of the plots in their corresponding panels. (a) There is no propagating wave when there is no potassium contribution (c = 0) from the populations. System (6) is in a steady-state and no propagation occurs. As we turn on c, a propagating depolarization block emerges and it propagates faster as we increase c. (b) The propagating depolarization waves become transient after the SN (1.9 > c > 1.4). They vanish completely after the subHopf (c > 1.9).

Figure 10 :

 10 Figure 10: Space-time diagrams of the neural activity with increasing k * v values around the subHopf and supHopf shown in Figure 8b. Here c = 1. Axes and legend values are given in the top left plots of each panel, and they are the same for the rest of the plots in their corresponding panels. (a) We observe short transient waves before the subHopf (k * v ≤ 1.15), or no wave as in the case with k * v = 1.0. As the system goes through the subHopf bifurcation (k * v > 1.15), stable limit cycles, i.e., propagating depolarization blocks, appear.(b) The propagating depolarization blocks disappear as the system goes through the supHopf and silent activity patterns appear, indicating no neural activity beyond supHopf (k * v > 1.8).

Figure 11 :

 11 Figure 11: Left: Propagating excitatory population membrane potential for two different k * v values. Horizontal red line shows the threshold value to detecting the wave front. Right top: Plot of the propagation velocity of depolarization block with respect to increasing k * v values, with c1 = c2 = c = 1. Right bottom: The same but with respect to increasing c values, where k * v = 1.2.

Figure 12 :

 12 Figure 12: Propagation speed with respect to c1 and c2.

Figure 13 :

 13 Figure 13: Propagation velocity with respect to connection weights. Small cee, cie model the blocking of Glutamatergic receptors and small cii, cei model the blocking of GABA-A receptors. (a) Propagation velocity increases with stronger excitatory connections. Here cii, cei = -1. (b) It decreases with stronger inhibitory connections. Here cee, cie = 1.

Appendix

Parameters used in Figures 8-13 are as follows:

We choose k * 1 = 1.4, k * 2 = 1.8 for excitatory populations and k * 1 = 1.0, k * 2 = 1.4 for inhibitory populations.