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Abstract

We propose a new neural field model for migraine-related cortical spreading depression (CSD). The model follows
the Wilson-Cowan-Amari [1,2] formalism. It is based on an excitatory-inhibitory neuron population pair which
is coupled to a potassium concentration variable. This model is spatially extended to a cortical layer. Therefore,
it can model both the ignition and propagation of CSD. It controls the propagation speed via connection weights
and contribution weight of each population activity to the potassium accumulation in the extracellular matrix.
The simulation results regarding the propagation speed are in coherence with the experiment results given in [3].

1 Introduction

Cortical spreading depression (CSD) is a wave of neuronal depolarization that slowly spreads across the cortex.
It is accompanied by a disturbance in ion concentration homeostasis, followed by a prolonged neuronal silence
that may last for several minutes. This prolonged neuronal silence gives to the phenomenon its name, depression.

Similarities between the CSD propagation and the spread of migraine with visual aura lead to the hypothesis
that CSD is the mechanism that evokes migraine aura [4]. In a recent report, electrophysiological recordings
clearly demonstrated that spreading depolarization-induced spreading depression of spontaneous cortical activity
was associated with symptomatic migraine aura in a patient [5]. Moreover, clinical studies have shown that CSD
is closely associated with ischemic stroke and traumatic brain injury [6–8]. Therefore, it is important to better
understand this phenomenon to develop preventive methods.

Nav1.1 is a voltage-gated sodium channel that plays a crucial role in the excitation of GABAergic type
inhibitory neurons. SCN1A is the gene encoding for the Nav1.1 channel. It is the target of many mutations
associated with either sporadic/familial hemiplegic migraine (FHM) [9–11], with severe consequences such as
weakness of one side of the body, or epileptic disorders [12,13].

Of the three responsible gene mutations that cause FHM, SCN1A mutations are known to be the ones that
cause FHM type 3 (FHM3). Recently, SCN1A mutations leading to gain of function of the Nav1.1 channel were
shown to be closely related to the occurrence of FHM3 [11,13–16]. The gain of function implies hyperexcitability
of interneurons. Counter-intuitively, it has been hypothesized that very high firing rate of interneurons can
trigger CSD [6, 17, 18]. Recently, this has been shown to be one of the pathological mechanisms involved in
migraine with aura [5], the category of FHM3, as well as in several other brain pathologies such as ischemic
stroke and traumatic brain injury [6,17,18]. More specifically, it was shown, both in vitro and in a mouse model,
that SCN1A mutations leading to Nav1.1 gain of function favor CSD initiation [11–16, 19–23]. Nevertheless,
it is still not clear how the SNC1A mutation leading to the gain of function of Nav1.1 elicits the activity of
GABAergic neurons and how this consequently induces the network hyperexcitability that generates CSD.

Despite its dramatic consequences, CSD has only recently been detected in humans [24, 25], and it remains
difficult to detect it noninvasively in humans [26]. Its increasing clinical importance in brain disorders creates
an urgent need for mathematical models that can account for the biological mechanisms at different levels.
Following this line of research, we propose a mathematical model to contribute to a better understanding of this
phenomenon, especially in the context of migraine at the neuronal population level. The novelty of the model
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is that it takes into account the ionic modulation of the neuronal transfer functions. Moreover, unlike previous
models, it reproduces not only ignition dynamics but also the propagation dynamics of CSD. The code package
of the model implementation and simulations can be found in GitHub [27].

In Section 2 we present the hypothesis that motivates our model, as well as previous frameworks that have
inspired the model. In Section 3 we present our model framework. In Section 5, we present our simulation results
of CSD ignition and propagation. Finally, in Section 6, we conclude by summarizing the novelties and future
perspectives.

2 Background

Three mechanisms have been hypothesized for the CSD ignition that follows hyperexcitability of inhibitory
neurons in the case of FHM3 [14, 19, 20, 22, 28]: (i) the extracellular accumulation of potassium resulting from
the potassium currents due to spiking of the inhibitory neurons. This can be observed during the time when
the inhibitory neurons are firing at a high frequency. (ii) The KCC2 co-transporter increases extracellular
potassium following intense inhibitory activity of interneurons. This situation may occur when intense GABA-
ergic transmission occurs. In such cases, KCC2 attempts to transport potassium and chloride together to keep the
intracellular chloride concentration in the excitatory cells low. This leads to potassium efflux, and consequently
extracellular potassium accumulation increases [29–31]. (iii) The excitatory effects resulting from GABA-ergic
transmission. Such effects could occur when KCC2 and possibly other homeostatic mechanisms reach their
limits. At this point, the chloride gradient begins to weaken, and this situation could lead to depolarizing
excitatory actions that follow the GABA-A receptor increasing its activity [32]. All of these mechanisms may
induce, possibly in parallel, pyramidal cell excitability and trigger CSD.

Our hypothesis is that intense firing of interneurons may trigger the depolarization block which evokes CSD
and leads to FHM3-type migraine. This hypothesis was investigated in [28], where a conductance-based model
based on a pair of excitatory and inhibitory Hodgkin-Huxley cells was used. The coupling was based on a GABA-
ergic synapse from the inhibitory to the excitatory cell and on a glutamatergic synapse from the excitatory to
the inhibitory cell. An excitatory self-coupling was used to account for the effects of glutamatergic input on
the excitatory cell. In addition, ion concentrations of the excitatory cell were dynamic, resulting in reversal
potentials that varied slowly. The assumption of constant reversal potentials does not hold, as this assumption
is rather for the cases where homeostatic equilibrium is maintained. In CSD, however, homeostatic equilibrium
is violated, justifying the presence of slowly varying reversal potentials. This model was extended from [33], in
which a Hodgkin-Huxley type neuron model was used to study the dynamics associated with epileptic activity,
CSD, and spike generation, but without considering the role played by the hyperexcitation of interneurons. A
similar model was used in [34] to investigate the effects of cell volume on dynamics related to epileptic activity
and spreading depression. In a recent work [35], the model presented in [28] was extended to a framework in
which, in addition to the relationship between SCN1A mutations leading to Nav1.1 gain of function and CSD
initiation, the relationship between SCN1A mutations leading to Nav1.1 loss of function and epileptic activity
was considered. Previous models for FHM3 or spreading depression did not consider Nav1.1 mutations on
GABAergic neurons, and this is one of the contributions of our model framework as well as the models presented
in [28,35].

We use a Wilson-Cowan-Amari [1, 2] type neural field model. Neural populations are coupled to potassium
concentration such that neural activity modulation via potassium accumulation in the extracellular matrix is
considered. We model potassium concentration in a generic manner that accounts for all three aforementioned
mechanisms (i), (ii) and (iii) associated with CSD ignition, which is identified as a depolarization block. The
model is spatially extended to a cortical layer, therefore it can model both ignition and propagation of CSD.

3 Model framework

We interpret the spreading depression as propagating waves described by a rapidly evolving firing rate v and a
slowly evolving extracellular potassium concentration k, and model it in terms of a neural field. A connectivity
kernel captures the neural connectivity in the neural field. The field is coupled with a reaction-diffusion equation
describing potassium diffusion.

Our neural field model is written as follows:

∂v

∂t
=− v +

∫
Q

w(x− y)sp(v(y, t), k(y, t)) dy + gv(v, k)

∂k

∂t
=δ

∂2k

∂x2
+ gk(s, sp(v, k), a, b) + I.

(1)

Here v and k denote the firing rate and potassium concentration, respectively. They are inputs to the firing rate
transfer function sp, whose parameters are denoted by the vector p. We denote by Q ∈ R2 the cortical layer
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where the CSD starts and propagates. We express the connectivity kernel as w(x, y) = 1
2

e−(x−y)2 . Here, gv is
a generic function representing the effect of potassium on the firing rate, and it denotes any potassium-related
activity that affects the firing rate. Similarly, the effect of firing rate on potassium concentration is introduced
by the function gk, with parameters a, b ≥ 0 and with s representing a specific sample of sp, as will be explained
in Section 3.2. We denote the external input by I, which is a localized potassium puff. The constant δ > 0
ensures the unit coherency between the diffusion and the drift in the potassium concentration equation.

We assume that the CSD ignition and propagation are radially symmetric. Consequently, the propagation is
radial and its velocity is constant; see Figure 4.

3.1 Firing rate transfer function

Recall that in a classical neural field, low inhibitory activity gives rise to high excitatory activity and high
inhibitory activity gives rise to low excitatory activity. In our framework, the transfer function sp takes into
account the generalized excitatory activity that distinguishes very high inhibitory activity from high inhibitory
activity. It is defined as

sp(v, k) :=


1

2(1+e−β(v−h))
, k < k∗1

1

1+e−β(v−h)
, k∗1 ≤ k ≤ k∗2

0, k∗2 < k,

(2)

where p = (β, v∗, k∗1 , k
∗
2) ∈ R4 denote the parameters. Here k∗1 , k∗2 > 0 denote the potassium thresholds, β

represents the sharpness of the nonlinearity of sp, and h ∈ R expresses the value of the half response voltage.
The corresponding output of the transfer function to a very high inhibitory activity is a low excitatory activity or
a silent phase. This property of the transfer function is due to a threshold effect. Unlike the classical neural field
setup, where the transfer function depends only on the neural activity, in our framework the transfer function
also depends on the time-dependent potassium concentration k; see Figure 1. Consequently, the same neural
activity can produce different transfer function outputs depending on the potassium concentration. In other
words, we observe a threshold effect when the potassium concentration is very high, i.e., when k > k∗2 . The
transfer function has the typical nonlinear sigmoidal behavior for k < k∗1 and k∗1 < k < k∗2 , where the maximum
value of the transfer function is higher for the latter. The former corresponds to a low potassium concentration
and thus a low inhibitory activity regime with 1/2 as the maximum firing rate. The latter corresponds to a
high potassium concentration and thus a high inhibitory activity with 1 as the maximum firing rate. A neural
regime above the threshold with k ≥ k∗2 corresponds to a very high inhibitory activity, in which the potassium
concentration is too high. This results in a low excitatory firing rate for all voltage activity v values and generates
the depolarization block that marks the onset of CSD and triggers it; see Figure 2.

The system given by (1) models only the activity of the excitatory population. The inhibitory population
activity is not explicitly included. The potassium related inhibitory activity is represented in terms of the
potassium concentration variable k. In accordance with our hypothesis, the increase and decrease in potassium
concentration reflects the increase and decrease in inhibitory population activity, respectively.

Figure 1: Left: Transfer function sp with respect to the firing activity v and potassium concentration k. Right:
Top view of the maximum and minimum values of the transfer function. The nonlinear regions are ignored.
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Figure 2: Some example CSD results of the Hodgkin-Huxley model framework presented in [28]. Time course
of the excitatory cell membrane potential on the top and the corresponding extracellular ion concentration
on the bottom. Top left: Tonic spiking excitatory cell without any coupling to the inhibitory cell. Bottom
left: Corresponding extracellular potassium and chloride concentrations. Top right: Depolarization block of the
excitatory cell with CSD following the block. Bottom right: Corresponding ion concentrations.
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3.2 Potassium to firing rate transfer function

We consider all potassium-related effects on the firing rate of the excitatory population via gv, a nonlinear
function given by

gv(v, k; βv, k
∗
v) :=

1

1 + e−βv(k−k
∗
v)
. (3)

Here βv > 0 and k∗v denote the sharpness and k threshold, respectively. This is a generic function that models
all potassium-related excitatory activity, with the exception of excitatory potassium build up due to potassium
currents resulting from interneuron spikes. This latter type of activity is explicitly supplied to the system via
the firing rate transfer function sp. See Figure 3 for a simplified plot of gv.

Figure 3: Potassium to rate transfer function gv with respect to the excitatory firing rate v and potassium
concentration k. Regions of the maximum and minimum values are represented by the yellow and blue colors,
respectively.

3.3 Firing rate to potassium transfer function

We represent the effects of the interactions between the excitatory activity (or the inhibitory activity) and the
potassium concentration on the potassium concentration with the nonlinear function gk. We define gk as follows:

gk(s, sp, a, b) := cosh(a(s− b sp)), (4)

with parameters a, b ≥ 0, s = sp(v
∗, k∗1) and sp = sp(v, k).

4 Extended model framework

We extend the model framework by explicitly representing the excitatory and inhibitory population firing rates,
ve and vi, respectively. We define

Se(ve, k, p) :=

∫
Q

we(x− y)ξp(ve(y, t), k(y, t)) dy,

Si(vi, k, q) :=

∫
Q

wi(x− y)ηq(vi(y, t), k(y, t)) dy,

(5)

and then write the extended model equations as follows:

τ
∂ve
∂t

=− ve + ceeSe(ve, k, p) + ceiSi(vi, k, q) + gv(ve, k; βe, k
∗
νe = k∗v)

τ
∂vi
∂t

=− vi + cieSe(ve, k, p) + ciiSi(vi, k, q) + gv(vi, k; βi, k
∗
νi = k∗v)

τ
∂k

∂t
=δ

∂2k

∂x2
+ c1 gk(ξ, ξp(ve, k), a, b) + c2 gk(η, ηp(vi, k), a, b) + I.

(6)

Here we and wi denote the connectivity kernels corresponding to the excitatory and inhibitory populations,
respectively. Similar to the previous model, but now separated for each population, gv functions, possibly with
different parameter sets, denote all potassium related activities interacting with the excitatory and inhibitory
populations. Coefficients 0 < c2 ≤ c1 < ∞ weight the contributions of excitatory and inhibitory populations
to extracellular potassium accumulation. Moreover, we choose 0 < βi < βe < ∞ due to our hypothesis of that
the excitatory activity associated with CSD results from the extracellular potassium accumulation. In other
words, potassium concentration triggers firing of excitatory populations more readily than that of inhibitory
populations with respect to the CSD ignition. Time scale τ > 0 introduces a physical dimension to time. This
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will be important in calculating the wave propagation velocity of a depolarization block. Finally, the transfer
functions are denoted by ξp and ηq, where p and q are the parameters of the transfer functions. Here ξ and η
are specific samples of ξp and ηq similarly to s appearing in (4). We define the transfer functions as

ξp(ve, vi, k) := sp(ve, k), ηq(vi, k) := sq(vi, k), (7)

where −1 ≤ cei, cii ≤ 0 and 0 ≤ cee, cie ≤ 1 denote the cross and recurrent connectivity weights. The rest of the
parameters is as in the previous model framework (1).

Our extended framework differs from previous framework given in (1) in three respects. First, the interaction
of the inhibitory population with both the excitatory population and the potassium concentration is now explicit.
Second, both excitatory and inhibitory connections are considered. Third, the cross population connections
weights cie, cei are weaker in comparison to the recurrent connection weights cee and cii because we account for
the connectivity differences related to the spatial distances between neurons.

5 CSD ignition and propagation

CSD ignition is a local phenomenon that begins in a small area of the cortical surface and then spreads over
the entire cortical surface. In previous modeling frameworks, CSD initiation was studied [3,28,35], however, the
propagation across the cortical surface was ignored. We show that our model framework successfully reproduces
both the initiation and propagation of the phenomenon.

We assume that the cortical surface is a disk and that the propagation of the CSD is radial, as in the
previous framework given by (1). In other words, we restrict neuronal connectivity to radiality. We measure the
propagation velocity along the radial axes by assuming that the angular component of the propagation velocity
is zero. Therefore, we can define the cortical disk as a set of partitions Qk of lines running from the center of
the disk, where the CSD source is located, toward the cortical edge such that

Q =
⋃

k=1,2,...,∞

Qk. (8)

This simplifies the problem and allows the study of CSD ignition and propagation on a single partition Qk.
We denote the horizontal partition as Q1 and assume that the neuronal population pairs lying along Q1 have

equidistant spacing hx = 2Lx
N−1

, where the length of Q1 is 2Lx = 400 mm and N is the total number of population
pairs in each partition Qk.

Figure 4: Illustration of the propagation of a radial depolarization block on cortical disk Q. Ignition occurs at
the source point marked in red. The boundary of the disk is shown by the bold outermost circle with radius
Lx = Ly. The arrows represent the directions of propagation. Dashed circles illustrate the sets of two different
propagating ve values. Neurons represented by green dots lie on the horizontal partition Q1.

Figure 5 shows the space-time diagram of an example of depolarization block wave which emerges from the
population pair located at the center of the cortical disk. This wave propagates radially and symmetrically
with a constant velocity towards the cortical disk boundary. An external input in the form of a potassium puff
evokes the propagation of the depolarization block wave. The increasing potassium concentration gives rise to
increasing excitatory activity, thus to depolarization block propagating towards the peripheral populations. See
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Figure 5: Diagrams of the propagation of excitatory population potential, the expansion of potassium concen-
tration and the propagation of the excitatory population firing rate in time and space.

Figure 6: Plots of excitatory population potential and firing rate propagating towards the edge of the cortical
disk in the top and bottom rows, respectively; and the plots of the expanding potassium concentration towards
the cortical disk boundary in the middle row. The columns correspond to t = 2, 20 and 50 mn from left to right.
Red horizontal lines show v∗e and k∗v in ve adn k plots, respectively.
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Figure 6, in which we provide the plots of a propagating excitatory population potential and firing rate, as well
as the expanding potassium concentration over the populations.

In Figure 7, we see the propagation of the excitatory and inhibitory population activities at t = 200 mn on
the left and right panels, respectively. We consider the peak and the highest point of the plateau edges as the
position of the propagating waves at the given instant. We observe that the excitatory activity wave is followed
by an inhibitory wave. This models the suppression of the brain activity, i.e., the depression, which follows the
slowly propagating wave of depolarization as observed in the migraine cases with CSD [36].

Figure 7: Plots of the average membrane potentials of both excitatory and inhibitory populations (top) together
with the transfer functions outputs (bottom) and the extracellular potassium (middle). The plots are obtained
at t = 200 mn. Red horizontal lines show v∗e (or v∗i ) and k∗v in ve (or vi) and k plots, respectively.

5.1 Emergence of propagating depolarization waves

In accordance with our hypothesis, the model generates propagating depolarization waves due to the high
potassium density in the extracellular matrix, caused by the high inhibitory activity. The depolarization waves
emerge once we turn on the potassium variable k, as well as the interactions between the excitatory and inhibitory
population average membrane potentials ve and vi as shown in Figure 8. We observe that the depolarization
block propagation, therefore the CSD ignition, starts as soon as we turn on c = c1 = c2. The propagation
velocity and life span of the propagating wave depends on both c and k∗v as seen in Figures 9 and 10.

(a) (b)

Figure 8: Bifurcation diagrams with respect to the bifurcation parameters c and k∗v in (a) and (b), respectively.
Here supHopf and subHopf denote sub- and sup-critical Hopf bifurcations, respectively. SN represents a saddle
node bifurcation. The connectivity weights are fixed in both diagrams as cie = −cei = 0.25, cee = 1 and cii = −1.

In Figure 9a, we observe that for the c values around 0, there is an ignition of a wave but it converges to a
stationary solution, which corresponds to a locally fixed non-zero voltage (ve) value and to 0 elsewhere. As we
increase c, a propagating wave emerges. This corresponds to the region between the supHopf and SN, therefore
stable limit cycles, as shown in Figure 8a. As we increase c further, we observe in Figure 9b that stable limit
cycles transform into unstable limit cycles as the system undergoes the SN. This results in that the propagating
wave disappears, and a transient propagating wave occurs. Finally, as the system goes through the subHopf
with increasing c beyond 1.9, the transient wave disappears and the system converges to a fixed point, resulting
in no wave activity.
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(a)

(b)

Figure 9: Space-time diagrams of neural activity with increasing c = c1 = c2 values around the supHopf and
subHopf shown in Figure 8a. Here k∗v = 1.2. Axes and legend values are given in the top left plots of each panel,
and they are the same for the rest of the plots in their corresponding panels. (a) There is no propagating wave
when there is no potassium contribution (c = 0) from the populations. System (6) is in a steady-state and no
propagation occurs. As we turn on c, a propagating depolarization block emerges and it propagates faster as
we increase c. (b) The propagating depolarization waves become transient after the SN (1.9 > c > 1.4). They
vanish completely after the subHopf (c > 1.9).
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(a)

(b)

Figure 10: Space-time diagrams of the neural activity with increasing k∗v values around the subHopf and
supHopf shown in Figure 8b. Here c = 1. Axes and legend values are given in the top left plots of each panel,
and they are the same for the rest of the plots in their corresponding panels. (a) We observe short transient
waves before the subHopf (k∗v ≤ 1.15), or no wave as in the case with k∗v = 1.0. As the system goes through
the subHopf bifurcation (k∗v > 1.15), stable limit cycles, i.e., propagating depolarization blocks, appear.(b) The
propagating depolarization blocks disappear as the system goes through the supHopf and silent activity patterns
appear, indicating no neural activity beyond supHopf (k∗v > 1.8).
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We observe in Figure 8b a symmetric diagram with respect to Figure 8a. In Figure 8b, stationary solutions
vanish and unstable limit cycles emerge while the system goes through the supHopf as we increase k∗v . There is
no activity before the subHopf, see Figure 13a. As system goes through the subHopf, transient waves appear.
As we increase k∗v more, the system goes through the SN, after which the unstable limit cycles vanish and stable
limit cycles appear as shown in Figure 13a. Those stable limit cycles correspond to propagating deplorization
blocks spreading across the whole brain. Finally, the system goes through the supHopf as we increase k∗v further
and the limit cycles vanish. The system converges to a fixed point for each k∗v > 1.8 beyond the supHopf,
resulting in a short transient period and no activity afterward; see Figure 10.

Figure 11: Left: Propagating excitatory population membrane potential for two different k∗v values. Horizontal
red line shows the threshold value to detecting the wave front. Right top: Plot of the propagation velocity of
depolarization block with respect to increasing k∗v values, with c1 = c2 = c = 1. Right bottom: The same but
with respect to increasing c values, where k∗v = 1.2.

5.2 Potassium production and propagation velocity

Propagation velocity of the depolarization block can be controlled via the potassium concentration threshold
parameters k∗νe and k∗νi . We provide the plots of propagating excitatory potentials across the cortical disk with
different k∗νe = k∗νi = k∗ν parameters and at time instant t = 50 mn on the left panel of Figure 11, where we
see that the propagation velocity decreases with increasing k∗ν . We choose kνe = kνi , however, it is possible to
choose them differently in the generic case. We provide the decreasing trend of the propagation velocity ν with
respect to increasing k∗νe = k∗νi = k∗ν on the right panel of Figure 11 for both excitatory (blue) and inhibitory
(red) populations. We observe that the populations are synchronized, propagation velocity is the same for both
population types. In accordance with the experimental observations [37, 38], the propagating depolarization
wave leaves a period of hyperpolarization, a suppressed activity behind.

We show the effects of changing c1 = c2 = c values on the propagation velocity for both excitatory (blue) and
inhibitory (red) populations in the right bottom panel of Figure 11. Increasing c provides stronger contribution
to the extracellular potassium accumulation. This results in increasing propagation velocity as expected.

The propagation velocity ν is measured based on

ν =
hx(nth −N/2)

tF
. (9)

Here nth and tF denote the index of the population pair having equal potential to preset threshold and the time
instant at which the measurement is made, that is the final time, respectively. Those results show that our
model framework has full control over the propagation velocity of the depolarization block via the parameters
k∗νe = k∗νi = k∗v = 1.1, c1 and c2.

In certain cases, the contribution of the excitatory populations to potassium accumulation in the extracellular
matrix can be stronger than the contribution of the inhibitory populations, i.e., c1 > c2. This is due to the
fact that there are more excitatory cells than inhibitory cells in the cortex; and the excitatory cells are usually
bigger in size. Therefore, their total activity is higher compared to the inhibitory cells. They can produce more
potassium accumulation. Such behavior with c1 > c2 can be reproduced by our model; see Figure 12.
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Figure 12: Propagation speed with respect to c1 and c2.

5.3 Connectivity and propagation velocity

We provide the results related to connectivity weights and their effects on propagation velocity of depolarization
block. We model block of Glutamatergic receptors (suppression of excitation) by fixing cee, cie = 0 and block of
GABA-A receptors (suppression of inhibition) by fixing cii, cei = 0. We observe in Figure 13 that, as we remove
the block of Glutamatergic receptors by increasing cee, cie, the depolarization block propagates faster; and as we
remove the block of GABA-A receptor by increasing cii, cei, the depolarization block propagates rather slowly.
Those results overlap with the experiment results presented in [3, Figure 7F]. Moreover, the range of ν for the
simulated c1 and c2 values span the experimentally observed propagation velocity of CSD, which is 2-4 mm/mn
approximately [39], and it can be adjusted by changing the time scale parameter τ in (6).

(a) (b)

Figure 13: Propagation velocity with respect to connection weights. Small cee, cie model the blocking of
Glutamatergic receptors and small cii, cei model the blocking of GABA-A receptors. (a) Propagation velocity
increases with stronger excitatory connections. Here cii, cei = −1. (b) It decreases with stronger inhibitory
connections. Here cee, cie = 1.

6 Discussion

We presented a novel neural field model for CSD. The model is based on a Wilson-Cowan-Amari type framework
in which an excitatory-inhibitory neuron population pair is coupled to potassium concentration. The potassium
concentration is described in terms of a reaction-diffusion equation.

The model has several novelties. First, in the firing rate transfer function, we include not only the firing activ-
ity as in the classical Wilson-Cowan model, but also the extracellular potassium concentration. The potassium
concentration is dynamic and it depends on the firing activity. In addition, a transfer function from potassium to
firing rate is introduced as an input to firing activity. This interaction between the firing activity and potassium
concentration characterizes the interneuron activity that unexpectedly leads to the triggering of CSD in the
same line as our hypothesis. Second, in contrast to the models presented in [28, 35], our model can represent
not only the CSD ignition but also the CSD propagation, which starts locally with ignition and spreads globally
across the cortical layer. Third, the propagation velocity can be easily adjusted. In this way, we can study
the layer-specific features of CSD, especially its propagation velocity, which is higher in the upper layers of the
neocortex than in the lower layers [40–42]. Fourth, time scale τ appearing in (6) can be tuned according to the
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participant the experiments such that the system captures the overlap between the simulated and experimentally
observed propagation velocities. This provides a strong flexibility to our model in the sense that it can be tuned
to each participant in the experiment by varying τ so that a full overlap in propagation velocity can be provided
for the subject. Finally, this model can provide the effects of changes in connection and potassium contribution
weights of different populations. These parameters cannot be controlled in the experiment setups.

The first perspective regarding our model is its extension to epileptic CSD. Mutations of SCN1A may result
in also loss of function of Nav1.1 [12,13,16,43,44] and this might lead to the reduced excitability of the inhibitory
neurons [45]. Such mutations are closely related to epileptic disorders, in particular to Dravet syndrome [46,47],
which is a severe type of epileptic pathologies that are resistant to antiepileptic medications. The case of Dravet
syndrome is less counter-intuitive compared to what is observed in FHM3 case considered here, because reduced
inhibition naturally results in hyperexcitability of excitatory neurons and this evokes CSD. Our model can be
adapted in a straightforward way to such epileptic cases of CSD.

The second perspective is that our model can be extended also to astrocytes, which constitute an active
research area in migraine and epilepsy [48–50]. These are the brain cells which modulate neural interactions.
They can be inserted in our model equations (6) as a third cell population coupled to the excitatory and inhibitory
populations. It will correspond to a slow time scale since astrocyte activity is measured in terms of ionic activity,
which changes more slowly in time compared to the electrical activity measured from neurons.

Appendix

Parameters used in Figures 8-13 are as follows:

δ = 1, h = he = hi = 0.3, βe = βve = 100, βi = βvi = 10, v∗e = v∗i = 0.5,

k∗v = 1.2, c1 = c2 = c = 1, cei = −0.25, cie = 0.25, cee = 1, cii = −1.
(10)

We choose k∗1 = 1.4, k∗2 = 1.8 for excitatory populations and k∗1 = 1.0, k∗2 = 1.4 for inhibitory populations.
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