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Abstract

In order to investigate the behavior of elastoplastic composites exhibiting both

isotropic and nonlinear kinematic hardening, we extend the Double Incremental

Variational (DIV) formulation of Lucchetta et al. [1], based on both the incremen-

tal variational principles introduced by Lahellec and Suquet [2] and the formu-

lation proposed by Agoras et al. [3]. However, the Armstrong-Frederick model

[4], which is very often used to describe nonlinear kinematic hardening and refers

to the framework of non-associated plasticity [5], cannot be handled within the

framework of generalized standard materials as required by the incremental vari-

ational principles on which the DIV formulation relies. That is why we work with

an approximation of this model, namely the modified Chaboche model [6]. As

the dissipation potential associated with this model depends on internal variables,
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we have to extend the incremental variational principles of Lahellec and Suquet

to such a situation. Then, we apply twice the variational procedure of Ponte Cas-

tañeda [7], first to linearize the local behavior and then to deal with the intraphase

heterogeneity of the thermoelastic Linear Comparison Composite (LCC) induced

by the linearisation step. The resulting thermoelastic LCC with per-phase ho-

mogeneous properties is homogenized by classical linear schemes. We develop

and implement this new incremental variational procedure for two-phase matrix-

inclusions composites with an isotropic elastoplastic matrix exhibiting combined

isotropic and nonlinear kinematic hardening. For various cyclic loadings, the pre-

dictions of the proposed DIV formulation compare favorably with Finite Element

simulations based on the Armstrong-Frederick model.

Keywords: Elastoplastic composites, Nonlinear kinematic hardening, Isotropic

hardening, Homogenization, Variational methods, cyclic loadings

1. Introduction

The aim of this paper is to extend to nonlinear kinematic hardening the mean

field homogenization formulation recently proposed by Lucchetta et al. [1] to

predict the behavior of composite materials made of elastoplastic phases which

exhibit linear kinematic and isotropic hardening. This formulation relies on incre-

mental variational principles initially proposed by Lahellec and Suquet [2] to pre-

dict the effective behavior of composites made of Generalized Standard Materials

(GSM, Halphen and Nguyen [8]), when dissipative and conservative effects are

strongly coupled. It was restricted to linear kinematic hardening. However, it is

well known that such a constitutive relation is not sufficient to describe the experi-

mentally observed behavior of many elastoplastic materials, especially when they
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are submitted to cyclic loading conditions (Lemaitre and Chaboche [9]). For such

materials, more elaborated constitutive relations have been proposed, such as the

Armstrong and Frederick (AF) model [4] which introduced nonlinear kinematic

hardening. As recalled later in this paper, this model however is non-associated,

and therefore cannot be handled in the framework of GSM. As such, it cannot

be directly implemented in the above mentioned incremental variational princi-

ples. In order to homogenize elastoplastic composites made of phases exhibiting

this kind of nonlinear kinematic hardening within the framework of the above

mentioned incremental variational principles, a slightly modified formulation, the

modified Chaboche model [6], is considered here. This model, the expressions

of which are briefly recalled in Section 3, derives from two potentials, namely

the free energy w(ε,α) and the dissipation potential ϕ(α̇,α) where ε is the in-

finitesimal local strain and α is a set of internal variables. It should be noted

that the dissipation potential of the modified Chaboche model not only depends

on the rate of internal variables but also evolves with the internal variables (i.e.

ϕ ≡ ϕ(α̇,α)), which play the role of a state parameter in agreement with Nguyen

[10] and Germain et al. [11]. Due to this additional dependance of ϕ, the earlier

variational formulation has to be slightly modified as described in Section 2. A

main purpose of this paper is to provide (Section 4) the details of the derivation

of the DIV approach in the case of composites which phases exhibit Armstrong-

Frederick nonlinear kinematic hardening. Note that the here derived DIV model

is related to the particular form of the chosen nonlinear kinematic hardening law,

that is the Armstrong-Frederick rule. New specific derivations would be required

for another nonlinear kinematic rule but could be based on a similar methodol-

ogy. Namely, to derive the presented DIV approach, we make use of the key idea
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proposed by Agoras et al. [3], which consists in addressing sequentially, first the

linearization of the local behavior and then the uniformization of the resulting

LCC which exhibits a heterogeneous polarization inside the phases. This is how-

ever done within a total form of the incremental variational procedure in the line

of Lahellec and Suquet [2] and not an incremental one as adopted by Agoras et

al. [3]. The DIV procedure is then applied to reinforced isotropic elastoplastic

composites with both isotropic and nonlinear kinematic hardening, submitted to

cyclic loading conditions (Section 5).

The homogenization of materials made of elastoplastic constituents has been the

subject of many publications in recent years among which several are in the line

of the pioneering work of Lahellec and Suquet [2]. An alternative incremental

variational procedure has been proposed by Ortiz and Stainier [12] and applied

to composites with isotropic hardening by Brassart et al. [13]. Linear kinematic

hardening has explicitly been considered in the papers of Lahellec and Suquet

[14], Boudet et al. [15] and Lucchetta et al. [1], and was in some cases com-

bined with isotropic hardening. For more details regarding the homogenization of

elastoplastic composites, the interested reader may refer to the bibliography in the

above papers, and in particular to the work of Agoras et al. [3] who proposed a

specific extension but who did not consider hardening. It is also worth noting the

recent work of Idiart and Lahellec [16] who introduced comparison solids with

pointwise heterogeneous properties which lead to a better prediction of the effec-

tive stress for elastoviscoplastic composites submitted to a rotating deformation

loading history. More recently, Mercier et al. [17] have applied the so-called tan-

gent formulation (Molinari et al. [18]), extended to elasto-viscoplastic composites

(Mercier and Molinari [19]), to the particular case of combined linear kinematic
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and isotropic hardening.

Very few works however address the situation under consideration here, namely

of nonlinear kinematic hardening. One of these (Doghri and Ouaar [20]) relies

on the classical incremental formulation of Hill [21], not based on a variational

formulation and not accounting for intraphase field fluctuations. On another hand,

Michel and Suquet [22] address this situation with the so-called NTFA methodol-

ogy which makes use of a set of complex local fields, called plastic modes, which

need to be computed numerically for a specific virtual microstructure.

2. Incremental variational principle for the effective behavior of inelastic

composites

We present here a slightly modified version of the local and effective varia-

tional principles, initially introduced by Lahellec and Suquet [2], on which the

nonlinear homogenization DIV procedure described in Section 4 relies.

2.1. Generalized standard materials

The composite materials considered in this study are comprised of phases for

which the constitutive laws derive from two thermodynamic potentials. The free-

energy w(ε,α) depends on both the infinitesimal strain ε and a finite set of inter-

nal variables α. The Cauchy stress σ and the irreversible driving forces Aα are

derived from this potential through the state laws as

σ =
∂w

∂ε
(ε,α) , Aα = −∂w

∂α
(ε,α). (1)
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The evolution of the internal variables α is derived from the dissipation potential

ϕ(α̇,α) through

Aα =
∂ϕ

∂α̇
(α̇,α) , or equivalently α̇ =

∂ϕ∗

∂Aα

(Aα,α). (2)

The dual potential ϕ∗ is the Legendre-Fenchel transform of ϕ with respect to

(w.r.t.) α̇ defined by1 ϕ∗(Aα,α) = sup
α̇

[Aαα̇− ϕ(α̇,α)] while α plays the

role of a parameter representing the thermodynamical state for both dissipation

potentials ϕ and ϕ∗. If w and ϕ are convex functions of their arguments α̇ and

Aα, and minimal at α̇ = 0 and Aα = 0, Eqs. (1) and (2) define the constitutive

laws of a generalized standard material (GSM) in the sense of Germain et al. [11]

and Nguyen [10]. They can be rewritten as the following system of two coupled

equations

σ =
∂w

∂ε
(ε,α) ,

∂w

∂α
(ε,α) +

∂ϕ

∂α̇
(α̇,α) = 0. (3)

Again, it should be noted that unlike the GSM introduced by Nguyen and Halphen

[8], the dissipation potential ϕ considered in the present work depends on both the

rates of the state variables α̇ and on the state variables α themselves as suggested

in Germain et al.[11] and in Nguyen [10] (see also [23]). For this reason, a rewrit-

ing of the incremental variational principles introduced by Lahellec and Suquet

[2], which relies on "classical" GSM for which the dissipation potential only de-

pends on α̇, is required and presented in the following section.

1For non differentiable dissipation potentials, the constitutive relations (2) should be replaced
by Aα ∈ ∂α̇ϕ(α̇,α) or α̇ ∈ ∂Aα

ϕ∗(Aα,α), where ∂α̇ϕ(α̇,α) and ∂Aα
ϕ∗(Aα,α) denote the

subdifferentials of the dissipative functions ϕ(α̇,α) and ϕ∗(Aα,α) w.r.t. α̇ and Aα, respectively.
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2.2. Incremental potential

Following Lahellec and Suquet [2], we make use of a "total" formulation, i.e.,

depending on ε and α, instead of a rate one, that would depend on ε̇ and α̇ as in

Lahellec and Suquet [14].

The time interval [0, T ] of the loading history applied to the composite material

under consideration is discretized into M time steps, not necessarily of identical

duration and characterized by the set {t0 = 0, t1, ..., tn, tn+1, ..., tM = T}. For

convenience, the value f(tn) of a function f at time tn and the time step tn+1− tn
are denoted fn and ∆t, respectively. Furthermore, for ease of notation, we will

omit in the sequel the index n + 1 for the variables computed at time tn+1 (i.e.

ε ≡ εn+1). The time discretization of Eq. (3) according to an Euler implicit

scheme results in the following equations

σ =
∂ w

∂ ε
(ε,α),

∂ w

∂α
(ε,α) +

∂ ϕ

∂ α̇

(
α−αn

∆t
,α

)
= 0. (4)

where the internal variables αn are assumed to be known from the former step.

Inspired by Lahellec and Suquet [2], we introduce the following variational prob-

lem

w∆(ε,αn) = inf
α
J(ε,α,αn), (5)

with

J(ε,α,αn) = w(ε,α) + ∆t ϕ

(
α−αn

∆t
,αn

)
. (6)

Its Euler-Lagrange equations are given by

∂ w

∂α
(ε,α) +

∂ ϕ

∂ α̇

(
α−αn

∆t
,αn

)
= 0. (7)
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In the sequel, we consider a regular dissipation function ϕ (see expressions (23)

and (24)) such that ∂ϕ
∂α̇

(α̇,α) is C1 with respect toα, thus implying that ∂ϕ
∂α̇

(α̇,α) '
∂ϕ
∂α̇

(α̇,αn) for α close enough to αn. Accordingly, given slow variations in time

of internal variables, Eq. (4)2 is equivalent to Eq. (7) and thus corresponds to the

Euler Lagrange equations of the variational problem (5).

Due to the stationarity of J w.r.t. α, the stress tensor defined by Eq. (4)1 reads

σ =
∂ w∆

∂ ε
(ε,αn). (8)

As in Lahellec and Suquet [2], J and w∆ are referred in the sequel as the incre-

mental potential and the condensed incremental potential.

Note that alternative more sophisticated implicit discretizations could have been

proposed in the definition of the incremental variational principle given by Eqs.

(5) and (6). For instance, similarly to the work of Brassart and Stainier [24], the

variational principle (5) might be modified by making use in Eq. (6) of a mid-

point rule, i.e. θα + (1 − θ)αn, to approximate the internal variable α in the

dissipation potential instead of the explicit discretisationαn considered in our ap-

proach. This implicit discretization might be interesting since it would potentially

lead to a more robust algorithm able to use larger time steps ∆t than the ones used

here. However, such a modified version of the incremental variational principle

induces a supplementary term ∆tθ ∂ϕ
∂α

in its Euler-Lagrange equations. This new

term is not easy to evaluate in a mean-field framework and its derivation would

significantly complexify the DIV model.
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2.3. Inelastic composites: effective incremental potential

We consider composite materials made of N different homogeneous con-

stituents occupying domains Ω(r) with characteristic functions χ(r) and volume

fractions c(r). The phases are assumed to be randomly distributed in a representa-

tive volume element (RVE) occupying a volume Ω = ∪Nr=1Ω(r). The constitutive

behavior of each phase r is governed by two potentials w(r) and ϕ(r) in the frame-

work of the GSM such that the local fields σ(x, t), ε(x, t) and α(x, t) at each

position x satisfy Eq. (3) for the free-energy function w and the dissipation po-

tential ϕ defined by

w(x, ε,α) =
N∑
r=1

w(r)(ε,α)χ(r)(x) and ϕ(x, α̇,α) =
N∑
r=1

ϕ(r)(α̇,α)χ(r)(x).

(9)

In the following, we will consider the first and second-order moments as well as

the fluctuations of the local fields. The notation < . > represents the volume

average over the composite Ω. The compact notation ā(r) =< a >(r), where

< . >(r) stands for the volume average over the phase Ω(r), will also be used to

denote the first-order moment of any field a(x) over the phase r. The notation

a
(r)

=
√
ι〈ad : ad〉(r) represents the second-order moment of a second-order ten-

sor field a with ι = 2
3

for a strain field and ι = 3
2

for a stress field and ad denotes

the deviatoric part of the tensor a. Finally, the fluctuations of a second-order

tensor field a will be quantified by its fourth-order covariance tensor:

C(r)(a) =
〈(
a− a(r)

)
⊗
(
a− a(r)

)〉(r)
= 〈a⊗ a〉(r) − a(r) ⊗ a(r). (10)
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The trace along the fourth order tensor K, where the tensor K = I − J stands for

the deviatoric fourth-order isotropic projector, I being the symmetric fourth-order

identity tensor and J the spherical fourth-order isotropic projector whose compo-

nents are respectively Iijkl = 1
2
(δikδjl + δilδjk) and Jijkl = 1

3
δijδkl, quantifies in

particular the fluctuations of the deviatoric part of the field a:

ι C(r)(a) :: K =
(
a

(r)
)2

−
(
a(r)
eq

)2
, (11)

where aeq =
√
ιad : ad is the von Mises (stress or strain) equivalent of a.

The RVE is submitted to a macroscopic strain loading history E(t). Therefore,

the local problem to be solved reads

σ =
∂ w

∂ ε
(ε,α)

∂ w

∂α
(ε,α) +

∂ ϕ

∂ α̇
(α̇,α) = 0

ε kinematically admissible (K.A.)

div(σ) = 0


∀(x, t) ∈ Ω× [0, T ]

〈ε(t)〉 = E(t) ∀t ∈ [0, T ] + B.C. on ∂Ω

(12)

In the sequel, it is implicitly assumed that affine displacement boundary conditions

(B.C.), i.e. u = E(t).x, are applied on ∂Ω where u is the local displacement field

from which the K.A. strain field is derived. In fact, all B.C. satisfying the macro-

homogeneity relation, i.e. the validity of Hill’s relation 〈σ : ε〉 = 〈σ〉 : 〈ε〉,

would also be suitable for the problem addressed in this paper.

Approximating Eq. (12)2 by Eq. (7) and making use of Eq. (8) induced by the

variational problem (5), the time discretization procedure applied to Eq. (12) leads
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to the following discretized version of the local problem, at time tn+1, assuming

the solution at time tn to be known, and in particular the field of internal variables

αn: 

σ =
∂ w∆

∂ ε
(ε,αn)

ε K.A.

div(σ) = 0

∀x ∈ Ω

〈ε〉 = E + B.C. on ∂Ω,

(13)

where the local condensed incremental potential w∆ and incremental potential J

are defined ∀x ∈ Ω by



w∆ (x, ε,αn) = inf
α
J(x, ε,α,αn) with

J(x, ε,α,αn) =
N∑
r=1

J (r)(ε,α,αn)χr(x) and

J (r)(ε,α,αn) = w(r)(ε,α) + ∆t ϕ(r)

(
α−αn

∆t
,αn

)
.

(14)

Accordingly, the solution εn+1 of the local discretized problem (13) is also solu-

tion of the following minimum potential energy principle

inf
ε K.A./〈ε〉=E

〈w∆(ε,αn)〉 = inf
ε K.A./〈ε〉=E

〈inf
α
J(ε,α,αn)〉. (15)

Defining the effective condensed incremental potential by

w̃∆(E,αn) = inf
ε K.A./〈ε〉=E

〈w∆(ε,αn)〉, (16)
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and following Lahellec and Suquet [2], it is easily shown, thanks to relation (13)1

and Hill’s lemma, that the effective stress Σ = 〈σ〉 is given by2

Σ =
∂ w̃∆

∂E
(E,αn). (17)

This provides the macroscopic stress Σ at time tn+1 due to the prescribed strain

E. The variational definition (16) also provides the associated local strain field ε

in Ω. The local variational definition of the condensed incremental potential (14)

finally provides the field of internal variablesα, i.e. αn+1. This allows to proceed

to the next time step of the loading history.

3. Elastoplasticity with nonlinear kinematic hardening: the modified Chaboche

model

The aim of this section is to present the constitutive law that will be adopted for

the mechanical behavior of the phases exhibiting nonlinear kinematic hardening

and implemented in the incremental variational principles developed in Section 2,

on which the DIV formulation described in Section 4 relies.

The Armstrong-Frederick (AF) model [4] (see also [25]) is acknowledged for

its capability to satisfactorily describe the nonlinear kinematic hardening of met-

als and the Bauschinger effect observed during cyclic loadings. This model has

been formalized and popularised by Chaboche [5, 26] in the framework of non-

associated plasticity. Accordingly, it does not belong to the framework of GSM

and therefore cannot be implemented in the incremental variational principles de-

2In this relation, in agreement with the simplification previously adopted and concerning index
(n+ 1), Σ ≡ Σn+1 and E ≡ En+1.
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scribed in Section 2. For this reason, and in order to make use of the incremental

variational principles with the objective to extend the DIV to nonlinear kinematic

hardening, we consider the modified Chaboche model [6] which is an approxima-

tion of the Armstrong Frederick model within the framework of materials whose

behavior derives from two thermodynamic potentials.

To built this modified model, Chaboche [6] made use of the following free energy

function

w(r) (ε, εp,β, p) =
1

2
(ε− εp) : L(r) : (ε− εp) +

1

2
a(r)β : β + ŵ(r)(p), (18)

in which ε and εp are the strain and plastic strain tensors, β the second-order di-

mensionless tensor, considered as a strain, standing for the kinematic hardening

variable and p the cumulative plastic deformation describing the isotropic hard-

ening. Tensors εp and β are assumed both traceless. L(r) is the tensor of elastic

moduli, a(r) the kinematic hardening parameter and ŵ(r) a scalar function which

represents the stored energy associated with the isotropic hardening. As a sec-

ond component of the modified Chaboche model, the classical Von Mises yield

function is modified by adding the last term in the following expression

F (r)(σ,X, R,β) = (σ−X)eq−σ(r)
y −R(r)(p)+

1

2

γ(r)

a(r)

(
X : X −

(
a(r)
)2
β : β

)
,

(19)

whereX is the so-called back-stress. Accordingly, the classical evolution laws of

the Armstrong-Frederick model can be retrieved by the normality rule. In partic-

ular, its nonlinear kinematic hardening law reads

β̇ = ε̇p − γ(r)

a(r)
X ε̇peq. (20)
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The definition (19) indicates that the yield function of this model depends not

only on the thermodynamical "forces" σ, X and R but also on the state variable

β. It should be noted that the incorporation of the state law X = a(r)β into (19)

allows to cancel the last term of this expression and thus to retrieve the Von Mises

plastic yield function of the Armstrong-Frederick model.

The modified Chaboche model is thus defined by two potentials, its free energy

w(r) given by (18) and its dual dissipation potential ϕ∗ (r) derived from the yield

function (19) as

ϕ∗ (r) (σ,X, R,β) = ΦCFβ (σ,X, R,β) , (21)

where ΦCFβ denotes the indicator function of the convex set CFβ defined by

CFβ = {(σ,X, R,β) /F (σ,X, R,β) ≤ 0} . (22)

As requested by our variational formulation, we now seek to determine the primal

dissipation potential ϕ(r) which is the Legendre-Fenchel transform of the dual po-

tential ϕ∗ (r) of the modified Chaboche model. In fact, such a dissipation potential

has already been calculated by Bouby et al. [27] for the case where the last term
1
2
γ(r)a(r)β : β in (19) is missing. The same expression associated now with the

modified Chaboche model for which the last term 1
2
a(r) γ(r)β : β in Eq. (19)

is accounted for, can be easily derived from the result of Bouby et al. [27] by

replacing the initial plasticity threshold σ(r)
y by an equivalent plasticity threshold

σ̃
(r)
y = σ

(r)
y + 3

4
a(r)γ(r)β2

eq. Accordingly, one gets

ϕ(r)
(
ε̇p, β̇, ṗ,β

)
= φ(r)

(
ε̇p, β̇,β

)
+ ΦC (ε̇p, ṗ) , (23)
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with

φ(r)
(
ε̇p, β̇,β

)
=

 φ
(r)
1

(
ε̇p, β̇,β

)
if
(
ε̇p − β̇

)
eq
≤ ε̇peq

√
4
3
γ(r)

a(r)

(
σ

(r)
y + 3

4
a(r)γ(r) β2

eq

)
φ

(r)
2

(
ε̇p, β̇,β

)
otherwise,

(24)

where

φ
(r)
1

(
ε̇p, β̇,β

)
=

(
σ(r)
y +

3

4
a(r)γ(r) β2

eq

)
ε̇peq +

3

4

a(r)

γ(r)

(
ε̇p − β̇

)2

eq

ε̇peq

φ
(r)
2

(
ε̇p, β̇,β

)
=
(
ε̇p − β̇

)
eq

√
3
a(r)

γ(r)

(
σ

(r)
y +

3

4
a(r)γ(r) β2

eq

)
,

(25)

and

ΦC(ε̇
p, ṗ) =

 0 if (ε̇p, ṗ) ∈ C

+∞ otherwise,
(26)

the indicator function of the convex set C defined by

C = {(ε̇p, ṗ) /g(ε̇p, ṗ) = ε̇peq − ṗ ≤ 0}. (27)

Eventually, following Bouby et al. [27], it is easily checked that applying the

evolution law (2)1 to the first branch φ
(r)
1 of the dissipation potential for α̇ 6=

0 leads to the evolution laws of the Armstrong-Frederick model together with

the fact that the thermodynamical forces belong to the plastic loading regime,

i.e. F (r)(σ,X, R,β) = 0 with F (r) defined by Eq. (19). For α̇ = 0, Aα ∈

∂α̇φ1(α̇ = 0). Bouby et al. [27] showed that this subdifferential corresponds to

the elastic domain F (r)(σ,X, R,β) < 0. Lastly, the evolution law (2)1 applied
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to the second branch φ(r)
2 leads to the following equation

σd = X =
2

3

√
3
a(r)

γ(r)

(
σ

(r)
y +

3

4
a(r)γ(r)β2

eq

)
ε̇p − β̇(
ε̇p − β̇

)
eq

for ε̇p 6= β̇, (28)

where, as shown by Bouby et al. [27], the points σd = X belong to the surface of

plasticity F (r)(σ,X, R,β) = 0.

4. Extension of the DIV formulation to elastoplastic composites with both

isotropic and nonlinear kinematic hardening

We now aim to extend the DIV formulation [1], initially developed for elasto-

plastic composites with isotropic and linear kinematic hardening, to the case of

nonlinear kinematic hardening. The DIV procedure relies on a key idea proposed

by Agoras et al. [3], which consists in addressing sequentially, first the lineariza-

tion of the local behavior and then the uniformization of the resulting LCC which

exhibits a heterogeneous polarization inside the phases. For that, the variational

procedure of Ponte Castañeda [7] is applied twice: once to linearize the local be-

havior and a second time to approximate the resulting heterogeneous LCC by a

different one with now homogeneous intraphase properties. Since a lot of the cal-

culations used in this extension are shared with those already presented in [1] for

the case of isotropic and linear kinematic hardening, we only present in details the

new calculations and sketch, for the sake of conciseness, the calculations already

detailed in [1].
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4.1. Local behavior

The behavior of the phases is governed by the Modified Chaboche model (pre-

sented in Section 3) whose constitutive relations are defined by means of two

potentials: the free-energy potential given by (18) and the dissipation potential

defined by (23), (24), (25). In view of applying the incremental variational prin-

ciples presented in Section (2), for the sake of simplicity we make the following

choice.

Assumption 1. In the sequel, we only consider the first branch φ(r)
1 of the dissipa-

tion potential to describe the dissipative part of the local behavior of the phases.

This choice, which consists to drop the branch φ(r)
2 , amounts to exclude the

possibility to reach the particular stress states (σd = X) of the surface of plastic-

ity.

In order to simplify the calculations, let us introduce the following change of vari-

able

ν = β − εp, (29)

such that the internal variables now readα = (εp,ν, p). With these new notations,

one has

• the free-energy

w(r)(ε, εp,ν, p) =
1

2
(ε− εp) : L(r) : (ε− εp)+1

2
a(r) (ν + εp) : (ν + εp)+ŵ(r)(p),

(30)

• the dissipation potential

ϕ(r) (ε̇p, ν̇, ṗ, εp,ν) = φ(r)
(
ε̇peq, ν̇eq, ε

p,ν
)

+ ΦC (ε̇p, ṗ) , (31)
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with
φ(r)

(
ε̇peq, ν̇eq, ε

p,ν
)

= φ
(r)
1

(
ε̇peq, ν̇eq, ε

p,ν
)

if ν̇eq ≤ ε̇eq

√
4

3

γ(r)

a(r)

(
σ

(r)
y +

3

4
a(r)γ(r) (εp + ν)2

eq

)
,

(32)

and

φ
(r)
1

(
ε̇peq, ν̇eq, ε

p,ν
)

=

(
σ(r)
y +

3

4
a(r)γ(r) (ν + εp)2

eq

)
ε̇peq +

3

4

a(r)

γ(r)

ν̇2
eq

ε̇peq
, (33)

The stress tensor and the irreversible thermodynamic forces read

σ =
∂w(r)

∂ε
(ε, εp,ν, p) = L(r) : (ε− εp)

Aν = −∂w
(r)

∂ν
(ε, εp,ν, p) = −a(r)(ν + εp) = −X

Aεp = −∂w
(r)

∂εp
(ε, εp,ν, p) = K : L(r) : (ε− εp)− a(r)(ν + εp) = σd −X

Ap = −∂w
(r)

∂ p
(ε, εp,ν, p) = −R(r)(p).

(34)

The evolution laws are obtained by Aα = ∂ϕ(r)

∂α̇
(α̇,α). The yield function can be

also rewritten as

F (r) (σ,X, R, εp,ν) =(σ −X)eq − σ(r)
y −R(r)(p) +

1

2

γ(r)

a(r)
X : X

− 1

2
a(r)γ(r) (ν + εp) : (ν + εp) ,

(35)

4.2. Linearization of the local behavior

To linearize the local behavior now described by the incremental potential J

defined by (14)2,3 associated with (30) and (31), we introduce a linearized in-
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cremental potential JL in which the dissipation potential ϕ(r) is approached by a

quadratic function of ε̇p and ν̇ which depends on viscosities η(r)
εp and η(r)

ν chosen

to be uniform over phase r

JL (x, ε, εp,ν, {η}) =
N∑
r=1

J
(r)
L

(
x, ε, εp,ν, η(r)

)
χ(r)(x) with

J
(r)
L

(
x, ε, εp,ν, η(r)

)
= w(r)(ε, εp,ν, p)− ŵ(r)(p) +

η
(r)
εp

∆t
(εp − εpn) : (εp − εpn)

+
η

(r)
ν

∆t
(ν − νn) : (ν − νn),

(36)

with {η} = {ηεp} ∪ {ην} where the notations {ηεp} and {ην} stand for the sets

{η(1)
εp , ..., η

(N)
εp } and {η(1)

ν , ..., η
(N)
ν }, respectively. Furthermore, let us denote η(r) =(

η
(r)
εp , η

(r)
ν

)
. In Eq. (36), the dependence w.r.t. x of J (r)

L refers to the dependence

of this potential w.r.t. the fields of internal variables εpn(x) and νn(x). This new

notation is adopted for ease of reading and will also apply in the sequel to other

quantities that depend on the fields of internal variables a time tn.

4.2.1. General form of the proposed estimate of the effective incremental con-

densed potential

To proceed with the linearization stage, we make use of the key idea of the

variational procedure of Ponte Castañeda [7] which consists in rewriting the in-

cremental potential as the sum of two terms J = JL + ∆J such that the first term

can be easily homogenized due to its quadratic form and the second one can still

be evaluated. Accordingly, making use of the definition (14)2,3 of J and (31) of

ϕ(r), we obtain

J (r)
(
x, ε, εp,ν, p, η(r)

)
= J

(r)
L

(
x, ε, εp,ν, η(r)

)
+∆J (r)

(
x, εp,ν, p, η(r)

)
, (37)
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with

∆J (x, εp,ν, p, {η}) =
N∑
r=1

∆J (r)
(
x, εp,ν, p, η(r)

)
χ(r)(x), (38)

and

∆J (r)
(
x, εp,ν, p, η(r)

)
=∆t ϕ(r)

(
εp − εpn

∆t
,
ν − νn

∆t
,
p− pn

∆t
, (εpn + νn)eq

)
+ ŵ(r)(p)

− η
(r)
εp

∆t
(εp − εpn) : (εp − εpn)− η

(r)
ν

∆t
(ν − νn) : (ν − νn).

(39)

The term (εpn + νn)eq which appears in Eq. (39) results from the particular form

(32) of the considered dissipation potential, as well as from the definition (14)3 of

J (r) in which the function ϕ(r) is evaluated at (α̇,αn) and not at (α̇,α), as seen

above in Section 2.2. Regarding the latter, it is worth noting that the dependance

of the dissipation potential with the internal variables εp and ν is solely related

to the term σ
(r)
y + 3

4
a(r)γ(r)(ν + εp)2

eq which exhibits the regularity announced in

Section 2.2.

In what follows, in order to obtain a closed-form homogenization model making

use of overall per-phase quantities instead of details of local fields, we make use

of the following mean-field type approximation

Assumption 2.

ϕ(r) (ε̇p, ν̇, ṗ, (εpn + νn)eq) ≈ ϕ(r)

(
ε̇p, ν̇, ṗ, εpn + νn

(r)
)
. (40)

In this expression, we replace the pointwise fluctuating variable (εpn+νn)eq by

a constant reference value chosen to be its second-order moment over the phase.

Although other choices would have been possible, the considered choice is in-

spired by the modified secant type approaches which have shown their efficiency
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in the framework of nonlinear elasticity. Since εpn + νn
(r)

is known from the for-

mer step, for ease of notation, the quantity ϕ(r)

(
ε̇p, ν̇, ṗ, εpn + νn

(r)
)

will be de-

noted ϕ(r) (ε̇p, ν̇, ṗ) in the sequel.

Reporting the decomposition (37) of J (r) in the variational formulation (15), (16),

one gets

w̃∆(E) = inf
〈ε〉=E

{
inf

(εp,ν,p)
〈JL (., ε, εp,ν, {η}) + ∆J (., εp,ν, p, {η})〉

}
, (41)

where JL and ∆J are given by Eq. (36) and Eqs. (38), (39), (40), respectively.

By making use of stationarity conditions under inequality constraints induced by

the indicator function ΦC defined by (26) and after some cumbersome calcula-

tions detailed in AppendixA, an estimate of the effective condensed incremental

potential is derived and given by the following expression3

w̃∆(E) ≈ w̃V AR∆ (E, {η})

= inf
〈ε〉=E



inf
(εp,ν,p)

/
h

(r)
1 (εp,ν)≤0
g1(εp,p)≤0

〈JL(., ε, εp,ν, {η})〉

+

〈
stat

(ε̇p,ν̇,ṗ)

/
h(r)(ε̇p,ν̇)≤0
g(ε̇p,ṗ)≤0

∆Jbis(., ε̇
p, ν̇, ṗ, {η})

〉


(42)

with

∆Jbis(x, ε̇
p, ν̇, ṗ, η(r)) = ∆J(x, ε̇p, ν̇, ṗ, η(r))− ΦC (ε̇p, ṗ) . (43)

The constraints g and h(r) which appear in Eq. (42) are respectively defined by

3The dot in expressions like 〈JL (., ε, εp,ν, {η})〉 refers to a dummy variable over which the
integration is performed.
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Eq. (27) and by

h(r) (ε̇p, ν̇) = ν̇eq − ε̇eq

√√√√4

3

γ(r)

a(r)

(
σ

(r)
y +

3

4
a(r)γ(r)

(
εpn + νn

(r)
)2
)
, (44)

while the two last constraints g1 and h(r)
1 , which are simply a rewriting of g and

h(r) in a total formulation, are given by

h
(r)
1 (εp,ν) = (ν − νn) : (ν − νn)−

(εp − εpn) : (εp − εpn)

(
4

3

γ(r)

a(r)

(
σ(r)
y +

3

4
a(r)γ(r)

(
εpn + νn

(r)
)2
))

g1(εp, p) = (εp − εpn) : (εp − εpn)− 3

2
(p− pn)2.

(45)

It should be noted that the constraints h(r)
1 (εp,ν) and g1(εp, p) defined by Eq. (45)

need to be satisfied ∀x ∈ Ω(r). Since εpn, νn and pn are possibly heterogeneous

fields over the RVE Ω, the infimum problem in Eq. (42) is difficult to be solved in

a mean-field homogenization framework. To overcome this difficulty, these con-

straints are relaxed by making use of the following mean-field type assumption.

Assumption 3. The pointwise constraints h(r)
1 (εp,ν) ≤ 0 and g1(εp, p) ≤ 0 are

relaxed in Eq. (42) by the following 2N per-phase average conditions: 〈h(r)
1 〉(r) ≤

0 and 〈g1〉(r) ≤ 0 ∀r ∈ {1, ..., N}.

Such a simplification is not required for the ∆Jbis term, for which the opti-

mization can be performed separately and uniformly at all positions x in the RVE,

and turns out to lead to per-phase uniform optimal quantities f (r), as detailed in

Subsection 4.2.2. The variational estimate of the effective condensed potential
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reads then

w̃∆(E) ≈ w̃V AR∆ (E, {η})

= inf
〈ε〉=E

 inf

(εp,ν,p)

/
〈h(r)

1 (εp,ν)〉(r)≤0

〈g1(εp,p)〉(r)≤0

〈JL(., ε, εp,ν, {η})〉

+ ∆t
N∑
r=1

c(r)f (r)
(
η(r)
)
,

(46)

with

∆t
N∑
r=1

c(r) f (r)
(
η(r)
)

=

〈
stat

(ε̇p,ν̇,ṗ)

/
h(r)(ε̇p,ν̇)≤0
g(ε̇p,ṗ)≤0

∆Jbis(., ε̇
p, ν̇, ṗ, {η})

〉
. (47)

Eventually, a last optimization w.r.t. the set {η} is performed, thus leading to the

final DIV estimate of w̃∆:

w̃∆(E) ≈ w̃DIV∆ (E) = stat
{η}

w̃V AR∆ (E, {η}) . (48)

4.2.2. Stationarity conditions

The development of the various stationarity conditions of Eqs. (46), (47) and

(48) leads to cumbersome calculations which, for reason of conciseness, are not

reported in this paper. In essence, it consists in derivations similar to those re-

ported in the former version of this model dealing with linear kinematic hardening

[1] with the difference that now an additional internal variable, namely ν, is in-

troduced and the optimization is performed under two sets of constraints instead

of one. The reader interested by this issue is referred to the work of Lucchetta

[28] where the whole details of the calculations are reported. The results are as

follows. It is shown that the stationarity conditions of ∆Jbis w.r.t. the local rate of
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the internal variables and of w̃V AR∆ w.r.t. η(r) provide the following expressions of

the viscosities η(r)
εp and η(r)

ν , which depend on the second order moments ε̇p
(r)

and

ν̇
(r)

, and the one of the cumulated plastic strain p(r) which is uniform per phase

and also depends on ε̇p
(r)

η
(r)
εp =

σ
(r)
y +R(r)

(
p(r)
)
− 3 a(r)

4 γ(r)

(
ν̇

(r)

ε̇p
(r)

)2

+ 3
4
a(r)γ(r)

(
νn + εpn

(r)
)2

3 ε̇p
(r)

η(r)
ν =

a(r)

2 γ(r) ε̇p
(r)
, with p(r) = p(r)

n + ∆t ε̇p
(r)
.

(49)

Moreover, the stationarity conditions also provide the expression of the function

f (r) defined by Eq. (47) as follows

f (r)
(
η

(r)
εp , η

(r)
ν

)
=

(
σ(r)
y +

3

4
a(r)γ(r)

(
νn + εpn

(r)
)2
)
ε̇p
(
η(r)
ν

)
+

3

4

a(r)

γ(r)

(
ν̇
(
η(r)
))2

̂̇εp (η(r)
ν

)
+
ŵ(r)

∆t

(
p(r)
n + ∆t ε̇p

(r) (
η(r)
ν

))
− 3

2
η

(r)
εp

(
ε̇p

(r) (
η(r)
ν

))2

− 3

2
η(r)
ν

(
ν̇

(r) (
η(r)
))2

,

(50)

where the second-order moments ε̇p
(r)

= ε̇p
(r) (

η
(r)
ν

)
and ν̇

(r)
= ν̇

(r) (
η(r)
)

are

two scalar functions which depend on η(r)
ν and η(r) =

(
η

(r)
εp , η

(r)
ν

)
, respectively.

Their closed-form expressions can be straightforwardly obtained by inverting Eq.

(49).

From the stationarity of JL w.r.t. the internal variables, we get the expressions of

εp and ν which linearly depend on the local strain field ε as well as on their value
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computed at the previous time step tn

εp =

[
K : L(r) +

(
2
η

(r)
εp

∆t
+ a

(r)
NL

)
K

]−1

:

[
K : L(r) : ε+ 2

η
(r)
εp

∆t
εpn − a

(r)
NLνn

]
,

(51)

ν = −a
(r)
NL∆t

2 η
(r)
ν

[
K : L(r) +

(
2
η

(r)
εp

∆t
+ a

(r)
NL

)
K

]−1

:[
K : L(r) : ε+ 2

η
(r)
εp

∆t
εpn − 2

η
(r)
ν

∆t a(r)

((
2
η

(r)
εp

∆t
+ a(r)

)
K + K : L(r)

)
: νn

]
,

(52)

with

a
(r)
NL =

2 η
(r)
ν

∆t
a(r)

2 η
(r)
ν

∆t
+ a(r)

. (53)

We note that this linear dependence of the optimal internal variables with the

current strain field ε ensures that the optimization problem w.r.t. the strain field ε

is a thermoelastic problem, which can be solved with a linear mean field scheme

adapted to the microstructure of the composite. In addition to these equations, the

stationarity of JL also provides the following local linear constitutive laws

σd −X = 2 η
(r)
εp ε̇

p

−X = 2 η(r)
ν ν̇.

(54)

The optimal viscosities η(r)
εp and η(r)

ν , which are defined by Eq. (49), can be in-

terpreted as the modified secant viscous moduli associated with the elastoplastic

behavior with nonlinear kinematic and isotropic hardening and evaluated at the
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second-order moments ε̇p
(r)

and ν̇
(r)

. From (49) and (54), we deduce that


σ −X

(r)
= σ(r)

y +R(r)
(
p(r)
)
− 3

4

a(r)

γ(r)

 ν̇
(r)

ε̇p
(r)

2

+
3

4
a(r)γ(r)

(
νn + εpn

(r)
)2

X
(r)

=
3 a(r) ν̇

(r)

2 γ(r) ε̇p
(r)
,

(55)

Making use of Eqs. (34)2 and (55)2, the following equality is straightforwardly

obtained
3

2
a(r) εp + ν

(r)
=

3

2

a(r)

γ(r)

ν̇
(r)

ε̇p
(r)
. (56)

Reporting Eq. (56) in the definition (49)1 of η(r)
εp , we have

η
(r)
εp =

σ
(r)
y +R(r)

(
p

(r)
n + ∆t ε̇p

(r)
)

+ 3
4
γ(r) a(r)

[(
νn + εpn

(r)
)2

−
(
ν + εp

(r)
)2
]

3 ε̇p
(r)

.

(57)

When ∆t is small enough, the term 3
4
γ(r) a(r)

[(
νn + εpn

(r)
)2

−
(
ν + εp

(r)
)2
]

become negligible w.r.t. σ(r)
y +R(r)

(
p

(r)
n + ∆t ε̇p

(r)
)

such that

η
(r)
εp =

σ
(r)
y +R(r)

(
p

(r)
n + ∆t ε̇p

(r)
)

3 ε̇p
(r)

. (58)
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Starting from Eq. (55)1, the same procedure leads to the following equality for

the plastic criterion of the DIV formulation

σd −X
(r)

= σ(r)
y +R(r)

(
p(r)
)
. (59)

Eq. (59) can be interpreted as the plastic yield function of the DIV formulation.

It coincides with the local plastic yield function (35), for X given by Eq. (34)2,

evaluated at the second-order moments of the local fields. Indeed, the local stress

(σ −X)eq is approximated by σ −X
(r)

and the cumulated plastic deformation p

by p(r) whose evolution is given by the second-order moment of the plastic strain

rate ε̇p
(r)

(see Eq. (49)3).

4.2.3. Determination of the LCC with heterogeneous intraphase polarization

By reporting expressions (51), (52) of εp and ν in the definition (36) of JL, we

obtain a thermoelastic LCC with per-phase free-energy w(r)
L defined as follows

w
(r)
L

(
x, ε, η(r)

)
= inf

(εp,ν,p)

/
<h

(r)
1 (εp,ν)>(r)≤0

<g1(εp,p)>(r)≤0

J
(r)
L

(
x, ε, εp,ν, η(r)

)

=
1

2
ε : L(r)

L : ε+ τ
(r)
L (x) : ε+

1

2
f

(r)
L (x),

(60)
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with

L(r)
L = L(r) −

[
K : L(r)

]
:

[
K : L(r) +

(
2
η

(r)
εp

∆t
+ a

(r)
NL

)
K

]−1

:
[
K : L(r)

]
τ

(r)
L (x) = −

[
K : L(r)

]
:

[
K : L(r) +

(
2
η

(r)
εp

∆t
+ a

(r)
NL

)
K

]−1

:

[
2
η

(r)
εp

∆t
εpn(x)− a(r)

NLνn(x)

]

f
(r)
L (x) =



2
η

(r)
εp

∆t
εpn(x) : D(r) :

(
K : L(r) + a

(r)
NLK

)
: εpn(x)

+ a
(r)
NLνn(x) : D(r) :

(
K : L(r) + 2

η
(r)
εp

∆t
K

)
: νn(x)

+ 4
η

(r)
εp

∆t
a

(r)
NLε

p
n(x) : D(r) : νn(x)


,

(61)

and

D(r) =

[
K : L(r) +

(
2
η

(r)
εp

∆t
+ a

(r)
NL

)
K

]−1

(62)

It should be noted that the free-energy w(r)
L (Eq. (60)) corresponds to a LCC with

heterogeneous intraphase properties. Though the local stiffness tensor L(r)
L of this

LCC is uniform in phase r, the polarization τ (r)
L and the scalar field f (r)

L depend

on x through the heterogenous fields εpn(x) and νn(x). The effective energy of

this LCC is defined by

w̃L(E, {η}) = inf
〈ε〉=E

〈wL(., ε, {η})〉. (63)
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From Eqs. (42), (48) and (50), we get4

w̃∆(E) ≈ w̃DIV∆ (E) = stat
{η}

w̃V AR∆ (E, {η}) = w̃L(E, {η})+∆t
N∑
r=1

c(r)f (r)
(
η(r)
)
,

(64)

where f (r) is defined by Eq. (50). Finally, making use of the stationarity condition

w.r.t. the viscosities η(r), we have

Σ =
∂w̃∆

∂E
(E) ≈ ∂w̃DIV∆

∂E
(E) =

∂w̃L
∂E

(E), (65)

where w̃L(E) stands for the value of w̃L (E, {η}) calculated for the optimal set

{η}.

4.3. Uniformization of the local behavior

4.3.1. General procedure

As mentioned in previous Section, the LCC of energy wL resulting from the

linearization stage corresponds to a thermoelastic composite with heterogeneous

intraphase polarization. Accordingly, its effective behavior cannot be obtained by

classical linear mean-field homogenization schemes - even if it could be derived

by costly full-field computations. In order to deal with the heterogeneity of the

polarization, Lahellec et al. [29] presented an efficient method which relies on

the variational procedure of Ponte Castañeda [7]. This method approximates the

free-energy wL by an energy w0 associated with a classical LCC with per-phase

homogeneous polarization tensors τ (r)
0 and tensors of moduli L(r)

0 6= L(r)
L such

that the effective behavior as well as the statistics of the fields in the composite

4Note that for the sake of simplicity the set {η} in Eq. (64) represents both dummy variables
in the third expression and the optimal values of the viscosities in the last one.
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can now be evaluated by classical linear homogenization schemes. This idea has

been implemented first by Agoras et al. [3] for viscoplastic composites without

hardening and then by Lucchetta et al. [1] for elastoplastic composites with lin-

ear kinematic and isotropic hardening. In what follows, it is implemented for

elastoplastic composites with nonlinear kinematic and isotropic hardening. Since

its application to this behavior is similar to the case of elastoplastic composites

with linear kinematic hardening, we only recall very briefly the main stages of the

method and the reader is referred to [1] for the details of the calculations.

Making use of the key idea of the variational procedure of Ponte Castañeda [30],

the energy w(r)
L can be rewritten as

w
(r)
L (x, ε) = w

(r)
0 (ε) +

[
w

(r)
L (x, ε)− w(r)

0 (ε)
]

= w
(r)
0 (ε) + ∆w(r)(x, ε). (66)

where w0 corresponds to the energy of a classical thermoelastic LCC with homo-

geneous intraphase polarizations defined by

w0(x, ε) =
N∑
r=1

w
(r)
0 (ε)χ(r)(x), with w

(r)
0 (ε) =

1

2
ε : L(r)

0 : ε+τ
(r)
0 : ε+

1

2
f

(r)
0 .

(67)

Applying the procedure of Lahellec et al. [29] (see [1]), an estimate of the effec-

tive energy w̃L(E) can be derived and is given by the following expression

w̃L(E) = stat
L(r)

0 ,τ
(r)
0 ,f

(r)
0

{
w̃0(E)− 1

2

N∑
r=1

c(r)

[〈
∆τ (r)(.) :

(
∆L(r)

)−1
: ∆τ (r)(.)−∆f (r)(.)

〉(r)
]}

,

(68)

with

w̃0(E) = inf
〈ε〉=E

〈w0(ε)〉 . (69)
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In Eq. (68), use has been made of the notation ∆a(r)(.) = a
(r)
L (.) − a

(r)
0 , e.g.

∆τ (r)(.) = τ
(r)
L (.) − τ (r)

0 . The development of the stationarity conditions of w̃L

w.r.t. L(r)
0 , τ

(r)
0 , f

(r)
0 leads to the following system of equations



(
L(r)
L − L(r)

0

)
: C(r) (ε0) :

(
L(r)
L − L(r)

0

)
= C(r)

(
τ

(r)
L

)
τ

(r)
0 = τL

(r) +
(
L(r)
L − L(r)

0

)
: ε0

(r)

f
(r)
0 = 0,

(70)

where the notation C(r)(a) for any second-order tensor a is defined by Eq. (10)

and where ε0 corresponds to the strain field within the LCC defined by w(r)
0 .

It should be noted that both Eqs. (70)1 and (70)2 allow to compute L(r)
0 and τ (r)

0

once the first and second-order moments of ε0 are known. As recalled in the

Appendix D of [1] focused on the case of a N -phase thermoelastic composite

whose per-phase free-energy w
(r)
0 is defined by Eq. (67), both these moments

are classically obtained by Eq. (D.3) of this Appendix, with explicit analytic

expressions in the case of composites with isotropic local stiffness tensors, as for

the applications considered hereafter.

We can now derive the effective behavior of the nonlinear composite by making

use of Eq. (65) together with (68) such that we have

Σ =
∂w̃∆

∂E
(E) ≈ ∂w̃L

∂E
(E) =

∂w̃0

∂E
(E) = L̃0 : E + τ̃0, (71)

where the third equality in (71) comes from the stationarity of w̃L w.r.t. L(r)
0 ,

τ
(r)
0 , f (r)

0 and the last equality from the expression (D.2) of the effective energy

w̃0 provided in Appendix D of [1]. The tensors L̃0 and τ̃0 stand for the effective

tensor of moduli and the effective polarization of the LCC with local energy w0,
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respectively.

Finally, the first and second-order moments of the local strain field of the nonlinear

composite are approximated by the ones of the LCC with energy wL which are

themselves (see Lahellec et al. [29]) approximated by the ones of the LCC of

energy w0 such that

ε(r) ≈ εL(r) ≈ ε0
(r), 〈ε⊗ ε〉(r) ≈ 〈εL ⊗ εL〉(r) ≈ 〈ε0 ⊗ ε0〉(r) , (72)

where ε, εL stand for the strain fields of the nonlinear composite and of the LCC

of energy wL, respectively. The same approximations are used to evaluate the first

and second-order moments of the stress fields.

4.3.2. Elastoplastic composites with isotropic phases

In this work, the behavior of the phases described in Section 4.1 is assumed

to be isotropic. For simplicity, the elastic tensors of the LCC with energy w(r)
0 are

also chosen isotropic such that

L(r) = 3 k(r)J + 2µ(r)K, L(r)
0 = 3 k

(r)
0 J + 2µ

(r)
0 K. (73)

As shown by Eq. (61)2, the tensor τ (r)
L is purely deviatoric since εpn and νn are

deviatoric so that C(r)(τL) :: J = 0. Accordingly, from Eq. (70)1 we get

(
k

(r)
0 − k

(r)
L

)2

C(r)(ε0) :: J = 0. (74)

Since ε0 has a non constant spherical part in phase r (as it is the case for a Hashin-

Shtrikman heterogeneous material), it comes k(r)
0 = k

(r)
L . Moreover, Eq. (61)1
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implies that k(r)
L = k(r) so that

k(r) = k
(r)
L = k

(r)
0 . (75)

Finally, Eq. (75) combined with Eq. (70)2 lead to a purely deviatoric tensor τ0.

Accordingly, the system (61) takes the form

L(r)
L = 3k

(r)
L J + 2µ

(r)
L K = 3k(r)J + 2µ(r)

(
B(r) − C(r)

)
K

τ
(r)
L (x) = −2µ(r)

(
B(r)εpn(x) + C(r)νn(x)

)
f

(r)
L (x) = 2

η
(r)
εp

∆t

(
A(r) − C(r)

)
εpn : εpn + a

(r)
NL

(
A(r) +B(r)

)
νn : νn + 2 a

(r)
NLB

(r)εpn : νn,

(76)

with

A(r) =
2µ(r)

2µ(r) + 2
η

(r)
εp

∆t
+ a

(r)
NL

, B(r) =
2 η

(r)
εp /∆t

2µ(r) + 2
η

(r)
εp

∆t
+ a

(r)
NL

, C(r) = A(r) +B(r) − 1.

(77)

Likewise, Eqs. (51) and (52) can be recast as

εp = A(r)εd +B(r)εpn + C(r)νn, (78)

ν = P (r)εd +Q(r)εpn +R(r)νn, (79)

with

P (r) = −a
(r)
NL∆t

2 η
(r)
ν

A(r), Q(r) = −a
(r)
NL∆t

2 η
(r)
ν

B(r), R(r) =
a

(r)
NL

a(r)

(
A(r) +B(r)

)
−C(r),

(80)

where εd denotes the deviatoric part of ε. In order to evaluate L(r)
L and τ (r)

L (in

fact only τ (r)
L is required), expressions (76)1,2 show that we have to determine the
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viscosities η(r)
εp and η(r)

ν characterized by Eqs. (49)2 and (58). For that, we need

to compute ε̇p
(r)

and ν̇
(r)

(cf. Eqs. (49)2 and (58)) since all the other quantities

are known. The calculation of both these second-order moments is reported in

AppendixB since it leads to cumbersome expressions. However, it should be noted

that the determination of ε̇p
(r)

and ν̇
(r)

in AppendixB is obtained by making use

of the essential following assumption

Assumption 4.

C(r) (ν̇) :: K = 0⇔ ν̇
(r)

eq = ν̇
(r)

with ν̇
(r)

eq =

√
2

3
ν̇

(r)
: ν̇

(r)
, (81)

postulated in order to close the nonlinear system to be solved.

Remark 1. Assumption (4) amounts to say that the field ν̇ is homogeneous per

phase, or equivalently, by means of Eq. (54)2, that the back stress X is also ho-

mogeneous per phase. Furthermore, recalling that X is defined by (34)2, it comes

that the kinematic hardening variable β = εp +ν is homogeneous per phase too.

This fact would be consistent with the mean-field type approximation (40) which

would then be an exact consequence of assumption (4) and no longer an approxi-

mation.

Of course, assumption (4) which amounts to the homogeneity of the back stress

within the phases, thus neglecting its intraphase fluctuations, is an ad-hoc as-

sumption and not an optimal choice, for instance which would have been derived

by means of some stationarity conditions to be defined. However, it leads to a DIV

model which provides accurate estimates of both the effective behavior as well as

the statistics of the local fields, even for multi-cyclic loadings, as it will be shown

in Section 5. Such an accurate description of the real behavior of elasto-plastic
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composites, even for multi-cyclic loadings, shows that the ad-hoc assumption (4),

even not optimal, is therefore relevant.

4.4. Application to an elasto-plastic matrix reinforced by linear elastic particles

The DIV formulation is now applied to the case of two-phase composites made

of an elasto-plastic matrix with both nonlinear kinematic and isotropic hardening

reinforced by linear elastic particles randomly and isotropically distributed inside

the matrix. In this case, there is only one nonlinear phase for such two-phase

isotropic materials. The effective behavior of the LCC with free energy w0 as

well as the statistics of its local fields can be evaluated by the Hashin-Shtrikman

lower bound which is known to be appropriate for such type of microstructure

for moderate volume fractions. In the sequel, subscripts (1) and (2) stand for the

inclusion and matrix phase, respectively.

The average of ε0 over each phase reads as

ε0
(1) = A(1)

0 : E + a
(1)
0 , ε0

(2) =
1

c(2)

(
E − c(1)ε0

(1)
)
, (82)

with

A(1)
0 =

[
I + c(2)P(2)

0 :
(
L(1)

0 − L(2)
0

)]−1

and a
(1)
0 = c(2)A(1)

0 : P(2)
0 :

(
τ

(2)
0 − τ (1)

0

)
.

Tensor P(2)
0 corresponds to the classical Hill’s tensor associated with the matrix

phase of the homogeneous LCC for an isotropic distribution of inclusions. Sub-

stituting in these relations the uniform polarisations τ (r)
0 by their expressions given
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in (70)2, one obtains the following relation for the average strain in the inclusions

ε0
(1) =

{
I + P(2)

0 :
[(

L(1)
L − L(2)

0

)
− c(1)

(
L(1)
L − L(2)

L

)]}−1

:{[
I + P(2)

0 :
(
L(2)
L − L(2)

0

)]
: E − c(2)P(2)

0 :
(
τL

(1) − τL(2)
)}

.
(83)

The use of the Hashin-Shtrikman bound to evaluate the strain field in the LCC

implies that the latter is uniform inside the inclusions, i.e. C(1)(ε0) = 0. Eq.

(70)1 requires then that C(1)(τ
(1)
L ) = 0, which is actually true from Eq. (61)2: the

fields εpn and νn are naturally null in the elastic inclusion phase. In such a case

(70)1 does not provide any prescription to determine L(1)
0 and it is natural to chose,

as in Lahellec et al. [29]

L(1)
0 = L(1)

L , (84)

Finally Eq. (70)2 implies

τ
(1)
0 = τL

(1) = 0. (85)

4.4.1. Summary of the nonlinear system of equations

In this Section, we summarize the equations that the DIV formulation should

satisfy. First, we have to recall Eq. (75) which is satisfied for both phases.

Within the elastic inclusions, we have ε̇p
(1)

= 0 and ν̇
(1)

= 0 such that η(1)
εp and

η
(1)
ν tend to infinity because of Eqs. (49) and (55)2. Then, reporting Eq. (53) into

Eq. (76)1 leads to equality µ(1) = µ
(1)
L . Making use of Eqs. (84) and (85), we

finally obtain the behavior within the inclusion phase of the LCCs defined by wL

and w0 which reads as follows

k(1) = k
(1)
L = k

(1)
0 , µ(1) = µ

(1)
L = µ

(1)
0 , τ

(1)
0 = τL

(1) = 0. (86)
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For the matrix phase, the LCCs w0 and wL are characterized by the properties

µ
(2)
0 , τ (2)

0 , µ(2)
L , τ (2)

L which are obtained as follows. The shear modulus µ(2)
L and

polarization τ (2)
L are given by Eqs. (76)1 and (76)2, respectively. The expression

of the polarization τ (2)
0 is obtained by applying Eq. (70)2 to isotropic phases,

which then reads

τ
(2)
0 = τL

(2) + 2
(
µ

(2)
L − µ

(2)
0

)
ε0,d

(2). (87)

Similarly, applying (70)1 to isotropic LCCs leads to

µ
(2)
0 = µ

(2)
L ±

1

2

√√√√ 〈τL : τL〉(2) − τL(2) : τL
(2)

〈ε0,d : ε0,d〉(2) − ε0,d
(2) : ε0,d

(2)
. (88)

It should be noted that once the viscosities η(2)
εp and η(2)

ν - or equivalently ε̇p
(2)

and

ν̇
(2)

(cf. (49)2 and (58)) - are known, the numerator in the square root of Eq. (88) is

also known since τL depends linearly on εpn and νn (see Eq. (76)2) whose first and

second-order moments are determined from the former step. For the denomina-

tor, the first-order moment ε0,d
(2) and the second-order moment 〈ε0,d : ε0,d〉(2) are

obtained from Eqs. (82), (83) and (B.5). For isotropic composites, these moments

depend on the properties µ(2)
0 and τ (2)

0 which characterize the matrix behavior of

the LCC of energy w0. Therefore, the nonlinear problem to be solved is made of

the four Eqs. (49)1, (49)2, (87) and (88) with four unknowns η(2)
εp , η(2)

ν , τ (2)
0 and

µ
(2)
0 .

In addition, as shown by Eqs. (49)2 and (58), the determination of η(2)
εp and η(2)

ν

amounts to compute ε̇p
(2)

and ν̇
(2)

. To this end, we make use of Eqs. (B.1) and

(B.2) which themselves require to evaluate the second-order moments 〈εd : εpn〉(2)
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and 〈εd : νn〉(2). These moments can be derived from Eqs. (B.4), (B.9) and (B.7)

and from the computation of ε0,d
(2) and 〈ε0,d : ε0,d〉(2) which are given by Eqs.

(82), (83) and (B.5).

Lastly, by making use of the expression of P(2)
0 for an isotropic composite together

with Eqs. (82) and (83), it is observed that ε0,d
(2) does no more depend on τ (2)

0

but only on the three independent parameters µ(2)
0 , η(2)

εp and η(2)
ν . Keeping in mind

this dependence together with associating Eq. (87) with the definitions (76) of

µ
(2)
L and τ (2)

L , it is shown that the polarization τ (2)
0 also depends only on the three

parameters µ(2)
0 , η(2)

εp and η(2)
ν .

As a consequence, the initial nonlinear problem to be solved and defined by Eqs.

(49)2, (58), (87) and (88) now reduces to a nonlinear system of three scalar equa-

tions (49)2, (58) and (88) with three unknowns η(2)
εp , η(2)

ν and µ(2)
0 which can be

rewritten as follows

F1

(
µ
(2)
0 , η(2)

)
≡
(
µ
(2)
0 − µ

(2)
L

)2
− 1

4

〈τL : τL〉(2) − τL(2) : τL
(2)

〈ε0,d : ε0,d〉(2) − ε0,d(2) : ε0,d
(2)

= 0

F2

(
µ
(2)
0 , η(2)

)
≡ η(2)εp −

σ
(2)
y +R(2)

(
p
(2)
n + ∆t ε̇p

(2)
)

3 ε̇p
(2)

= 0

F3

(
µ
(2)
0 , η(2)

)
≡ η(2)ν −

a(2)

2 γ(2) ε̇p
(2)

= 0.

(89)

This system needs to be solved at each elastoplastic loading step with an appro-

priate solver. Details are provided in Section 4.5. Once the solution is reached,

all quantities under consideration can be computed at the end of this loading step

and one can proceed to the next time increment.

At this stage it is worth noting that many of the above introduced quantities de-

pend on the full fields of internal variables, which might all be heterogeneous,

with the exception of β = εp + ν which is homogeneous as discussed in remark
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1. The computation of these quantities requires however only a limited number

of tensorial or scalar variables that describe these fields. More precisely, it turns

out that the following 5 variables are sufficient: the first order moments εpn
(2)

and

νn
(2), the second order moments εpn

(2)

and νn
(2) and the scalar p(2)

n .

4.4.2. Elastic regime

The elastic regime is dealt with in a way similar to that used in [1]. We focus

here on the specific developments associated with the nonlinear kinematic hard-

ening. As seen in Section 4.2, the surface of plasticity is reached when Eq. (59)

is satisfied in the matrix phase. Accordingly, to test if the matrix is in the elastic

domain, one needs to check that the second-order moment σd −X
(2)

satisfies the

following inequality

σd −X
(2)
< σ(2)

y +R(2)(p(2)), (90)

which can be interpreted as an effective yield criterion of the matrix. For that,

σd −X
(2)

should be computed for each time increment to specify whether it is an

elastic or a plastic one. Starting from the definition of σd −X
(2)

, we have

σd −X
(2)

=

√(
σd

(2)
)2

+

(
X

(2)
)2

− 3 〈σd : X〉(2), (91)

where σd
(2) is determined by (B.7). In the case of an elastic increment, Eq. (34)2

together with εp = εpn and ν = νn leads to X
(2)

= 3
2
a(2)

(
εpn + νn

(2)
)

.

In order to determine the average product 〈σd : X〉(2), it is useful to recall remark

1 which indicates that one of the consequences of assumption (81) is that the

field X is homogeneous in the matrix phase during a plastic increment, and will

remain so in an elastic one, so that 〈σd : X〉(2) = σd
(2) : X

(2)
where X

(2)
=
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a(2)
(
εpn

(2)
+ νn

(2)
)

is known for the former step andσd(2) is evaluated byσd(2) ≈

σ0,d
(2) = 2µ

(2)
0 ε0,d

(2) + τ
(2)
0 . Accordingly, all the quantities on which relies the

inequality (90) are determined, thus allowing to check if the composite is in the

elastic or plastic regime.

4.5. Numerical implementation of the model and computational issues

In the present study, we make use of the same algorithm as the one presented

by Lucchetta et al. in [1] for two-phase elastoplastic composites with linear kine-

matic and isotropic hardening. Indeed, the problem to be solved here, which

corresponds to the nonlinear system (89), has exactly the same structure than the

one handled by Lucchetta et al. (see Eq. (82) in [1]). The only difference is that

there is now one additional unknown η(2)
ν and nonlinear equation F3 = 0, with

F3 defined by (89)3, both induced by the introduction of the kinematic harden-

ing variable β. The reader interested by the algorithm of the DIV formulation is

therefore referred to [1] where a detailed description is provided.

Let us however stress that the nonlinear system (89) has at least two roots since

Eq. (89)1 can be rewritten as

F±1

(
µ

(2)
0 , η

(2)
εp

)
≡ µ

(2)
0 − µ

(2)
L ±

1

2

√√√√〈τL : τL〉(2) − τL(2) : τL
(2)〈

εd0 : εd0
〉(2) − εd0

(2)
: εd0

(2)
= 0, (92)

where F+
1 and F−1 respectively denote the function F±1 associated with the signs

+ and − before the square root. In practice, it is numerically observed that the

function F1 defined by (89)1 has several roots w.r.t the variable µ(2)
0 at fixed η(2)

εp

and η
(2)
ν : two as expected for composites with incompressible phases but even

four for compressible composites. A numerical method to select the appropriate
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solution of system (89) has been proposed by Lucchetta et al. in [1]. For the

sake of conciseness, this method is not presented here and the reader interested

by this non uniqueness issue is referred to [1]. Mention can also be made of the

very recent works of Cotelo et al. [31] and Idiart et al. [32], [33] addressing

this difficult issue. The main results obtained by using the method proposed by

Lucchetta et al. [1] are the followings: when applied to elastoplastic two-phase

composites with linear kinematic hardening, it is observed that this method works

well for incompressible composites. However, for compressible composites, due

to the occurrence of four roots and the presence of singularities, this method fails

to determine the appropriate root at some scarce points. In the case of elastoplas-

tic two-phase composites with nonlinear kinematic hardening, the same numerical

observations can be made even if sometimes the convergence towards the appro-

priate root is less efficient for the nonlinear kinematic hardening case than for the

linear one. Accordingly, in order to avoid the above-mentioned numerical dif-

ficulties encountered for compressible phases, we only consider incompressible

composites in all the simulations which will be carried out in the sequel by means

of the DIV formulation.

5. Assessment of the DIV model

This section aims to compare the results obtained by the DIV formulation as-

sociated with the modified Chaboche model to Finite Element (FE) simulations

that we carried out through the software Cast3M. These simulations have been

performed on two-phase periodic composites made of spherical elastic particles

embedded in a perfect cubic lattice in an elastoplastic matrix described by the

Armstrong-Frederick model. The DIV approach is applied to elastoplastic incom-
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pressible composites made of isotropic elastic inclusions, randomly and isotrop-

ically distributed in an elastoplastic matrix. Use is made of the lower Hashin-

Shtrikman bound to homogenize the LCC with energy w0. Corresponding re-

lations can for instance be found in Appendix D of [1]. The matrix exhibits ei-

ther nonlinear kinematic hardening or combined isotropic and nonlinear kinematic

hardening.

It should be noted that the comparisons performed between the DIV formulation

and the FE solution present a bias since they do not address the same microstruc-

ture, e.g. see [34]. Indeed, the DIV formulation addresses reinforced composites

made of inclusions, randomly and isotropically distributed in a matrix while the

FE simulations address composites with a periodic cubic spatial distribution of

spherical particles. Due to its cubic symmetry, such a composite is anisotropic

and its response depends on the direction of loading unlike the isotropic DIV for-

mulation. As shown by Majewski et al. [35] for elastoplastic reinforced compos-

ites with isotropic hardening and such cubic microstructures, the dependence of

the macroscopic response on the direction of loading is significant for a volume

fraction of 20% and above but is negligible for a low volume fraction of 10%.

The comparisons presented in this section are performed for a volume fraction

of 17% for which this bias might be present but is expected to be limited. Such

a bias should be kept in mind when interpreting the results of the comparisons.

For improved comparisons, additional FE simulations based on multi-inclusions

unit cells and elasto-plastic phases with nonlinear kinematic hardening would be

required. Such simulations, not available yet in the literature to our best knowl-

edge, would be very time consuming, especially for cycling loading conditions as

considered later in this section, and are left to a future work.
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The applied loading consists of a macroscopic strain E(t) which is an isochoric

extension E33(t) along the axial direction:

E(t) = E33(t)

(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
. (93)

In association with (93), two types of loading histories, presented in Fig.1, are

considered. The first one corresponds to a cyclic radial extension and the second

one to a positive cyclic radial extension.
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Figure 1: Loading histories: E33(t) macroscopic axial strain, (a) program 1: cyclic radial exten-
sion, (b) program 2: positive cyclic radial extension.

In order to quantify the influence of the time step discretization on the DIV

predictions, simulations have been carried out for different values of the time step

∆t on the same composite material, with a matrix exhibiting a purely nonlinear

kinematic hardening. The material parameters are given in (94). It has been found

that, for ∆t ≤ 0.1s, all the simulations leads to identical results such that the time

step is fixed to ∆t = 0.1s for all the simulations carried out in the sequel.
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5.1. Application of the DIV approach to reinforced composites exhibiting nonlin-

ear kinematic hardening

5.1.1. Matrix with nonlinear kinematic hardening

In this section we consider incompressible elastically reinforced two-phase

materials having an elastoplastic matrix with nonlinear kinematic hardening. The

material parameters are

Inclusion : c(1) = 0.17, µ(1) = 6 GPa, k(1) = 3× 107 GPa

Matrice : µ(2) = 3 GPa, k(2) = 1.5× 107 GPa, σ(2)
y = 100 MPa

a(2) = 100 MPa, γ(2) = 70.

(94)

The results are reported in Fig. 2. First, it is observed that the DIV model pro-

vides accurate predictions of both the macroscopic stress and the average stress in

the matrix even though both these stresses are slightly over- or under-estimated,

respectively. Moreover, the model reproduces the Bauschinger effect observed on

the macroscopic response. However, although the trends of the FE simulations for

the average axial stress in the inclusion and the stress fluctuations within the ma-

trix are reproduced, the model significantly overestimates their amplitudes. One

notices a small non physical jump for the stress fluctuations within the matrix.

This jump comes from the convergence of the algorithm towards an unappropri-

ate solution since, as shown in Section 4.5, the solution of the nonlinear system

of equations is not unique. Unlike the linear kinematic hardening case where we

solve the convergence problem thanks to numerical constraints (see [1]), in the

case of nonlinear kinematic hardening, we did not succeed in fully solving this

problem. Black dots in Figure 2 refers to loading times associated with singular

points of the stress fluctuations. More particularly, the second, fourth and sev-
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Figure 2: Elastically reinforced composite under cyclic loading (program 1, Fig.1a). Elastoplastic
matrix with nonlinear kinematic hardening. c(1) = 0.17. Comparison between the DIV formula-
tion and the FE simulations. (a) Macroscopic axial stress, (b) Average axial stress in the matrix,
(c) Average axial stress in the inclusion, (d) Stress fluctuations in the matrix, (e) Matrix average of
the axial back-stress.
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Figure 3: Elastically reinforced composite under cyclic loading (program 1, Fig.1a). Elastoplastic
matrix with nonlinear kinematic hardening. c(1) = 0.17. Comparison between the DIV formula-
tion and the FE simulations. (a) Average axial plastic strain, (b) Plastic strain fluctuations in the
matrix.

enth points represent the time for which we observe a break in the slope of the

stress fluctuations. It is seen in Figures 2a and 2b that these points correspond to

the times for which the composite, and also the matrix, go from the elastic to the

plastic regime. The fifth and eighth points represent the times for which the stress

fluctuations are zero. According to Figure 2a, the discontinuity of the slope of the

curve giving the stress fluctuations in Figure 2d at the fourth and seventh points

occurs at the transition from the elastic to the plastic regimes. In particular, it is

observed in Figure 2b that the times associated with a zero value of the stress fluc-

tuations (points fifth and eighth) correspond to the local extremum of the average

stress in the matrix. Moreover, when the stress fluctuations go to zero it is also

observed that the average stress in the matrix and in the inclusions and the macro-

scopic axial stress are almost equal. Indeed before that point, the DIV predicts a

stress in the matrix larger than in the inclusions, likely because of the predomi-

nance of the back-stress, while after that point the inclusions carry a larger stress
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than the matrix, as during the first plastic regime after loading from the natural

state, between points 2 to 3. Indeed, it seems that points 5 and 8 are associated

with perfectly uniform stress states in the composite material, at least according

to the mean-field DIV formulation. In the more refined FE model, the local stress

field is never fully uniform, but its fluctuations go anyway to a minimum at a

loading stage very close to the one where the fluctuations are zero according to

the DIV estimate.

Eventually, it is observed in Fig. 2e that the evolution of the mean value over

the matrix of the axial back-stress is well captured by the model even though it

slightly overestimates the FE simulations. It is also noted that the evolution of the

matrix average of the axial back-stress is nonlinear when plastic flow occurs, thus

showing that the proposed DIV model is able to capture the nonlinearity induced

by the kinematic hardening. Lastly, note that the evolution of the mean value over

the matrix of the kinematic hardening variable β = εp+ν is also provided by Fig-

ure 2e since X = a(2)β. As mentioned in remark 1, its fluctuations in the matrix

phase are zero as a consequence of assumption (81).

For the same composite, we also report in Figures 3a and 3b the evolutions of the

matrix average of the plastic strain and of its fluctuations, respectively. Regarding

the matrix average of the axial plastic strain, a very good agreement is observed

between the DIV model and the FE simulations while for the plastic strain fluc-

tuations in the matrix, the DIV model qualitatively captures the trends of the FE

predictions but fails to reproduce its evolution quantitatively since it significantly

underestimates the heterogeneity of the plastic strain field predicted by the FE

simulations. This is not that surprising, as a mean-field approach based on limited

ways to describe a heterogeneous local field may naturally be less efficient than
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a full-field simulation making use of a very large number of degrees of freedom.

At least Figure 3b shows that the DIV formulation considers local heterogeneous

plastic strain field, unlike many more classical mean-field theories which simply

manipulate their per-phase average values, and often assume, implicitly or explic-

itly, that they are homogeneous in the phases. Note also that the prediction of the

average plastic strain in the matrix, is actually not a big challenge in the present

case of a single nonlinear phase and elastic strains small w.r.t. plastic ones. In

such a case, the elastic strains in both the inclusions and the matrix are very small

w.r.t. the plastic strains in the matrix, so that the average condition 〈ε〉 = E, reads

〈ε〉 = c(1)〈ε〉(1) +c(2)〈εe+εp〉(2) ≈ c(2)〈εp〉(2) so that, except when plastic strains

are small, one has 〈εp〉(2) = 1
c(2)E. This explains the rather perfect agreement be-

tween FE simulations and DIV models in Figure 3a. But Figure 3b clearly shows

that the DIV formulation is able to go much further than such simple considera-

tions.

5.1.2. Matrix with combined isotropic and nonlinear kinematic hardening

We now consider an elastoplastic matrix with combined isotropic and nonlin-

ear kinematic hardening. The isotropic hardening rule is expressed by

R(2)(p) =
(
Rmax − σ(2)

y

) (
1− e−β p

)
. (95)

The material parameters are given by Eq. (94) for the elastic properties of the

phases and by the following parameters for the nonlinear kinematic hardening

a(2) = 5 GPa and γ(2) = 40, (96)
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Figure 4: Elastically reinforced composite under cyclic loading (program 2, Fig.1b). Case of an
elastoplastic matrix with combined isotropic and nonlinear kinematic hardening. c(1) = 0.17.
Comparison between the DIV formulation and the FE simulations. (a) Macroscopic axial stress,
(b) Average axial stress in the matrix, (c) Average axial stress in the inclusion, (d) Stress fluctua-
tions in the matrix

and the isotropic hardening

Rmax = 1 GPA and β = 0.26. (97)

The composite is now submitted to a macroscopic cyclic extension corresponding

to program 2 (see Fig. 1b). Fig. 4 depicts the evolutions of the axial macroscopic
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stress, the average axial stress in the phases as well as the stress fluctuations in

the matrix given by the DIV formulation and the FE simulations. It is observed

for the macroscopic response and the local responses in the matrix and inclusions

a good agreement between the DIV predictions and the FE simulations even if

the amplitudes in these latter are slightly underestimated by the model. We also

note that the Bauschinger effect is well captured. However, although the DIV

model reproduces qualitatively the FE simulations for the average stress in the

inclusions, its agreement with the FE computations is less accurate than the one

observed for the matrix and macroscopic responses. Lastly, we observe that the

DIV formulation reproduces qualitatively and quantitatively the stress fluctuations

in the matrix except for the fact that it predicts zero stress fluctuations at the be-

ginning of the plastic regime unlike the FE simulations. This has already been

observed and commented in Section 5.1.1. But it is now observed in the case of

combined isotropic and nonlinear hardening, that the agreement between the DIV

formulation and the FE simulations is good, except for the full vanishing of the

stress fluctuations at some stage on a new plastification after an elastic unloading.

The loading stage at which this is observed coincides however very nicely with

the minimum of the stress fluctuations in full-field simulations.

5.2. Multiple cycles loadings

We now investigate the predictions of the DIV formulation when the compos-

ite is submitted to 15 radial loading cycles (program 2, Fig.1b). When applying

such a loading to an elastically reinforced composite for which the elastoplastic

matrix only exhibits nonlinear kinematic hardening without isotropic hardening, it

is numerically observed that the macroscopic and local responses are stabilized as

soon as the first cyclic loading occurs. This is not the case for an elastoplastic ma-
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trix exhibiting combined isotropic and nonlinear kinematic hardening. For such a

composite, we make use of the same material parameters as the ones used for the

composite studied in the previous section except for the values of the nonlinear

kinematic parameters which are now set as follows

a(2) = 500 MPa and γ(2) = 40. (98)

When applying multiple cycles loadings to the above-described elastically rein-

forced composites with combined isotropic and nonlinear kinematic hardening,

we obtain the results depicted in Fig.5 Note that, for readability reasons, we only

report in Fig.5c the 5 first cycles (red dotted line) and the 15th cycle (black dotted

line) of the FE simulations. First, it is observed a good agreement between the pre-

dictions of the DIV model and the numerical simulations for the effective stress

and the average stress in the matrix. As observed on the macroscopic axial stress,

the asymmetry characterising the Bauschinger effect decreases continuously with

the number of cycles, going from 31.4 MPa for the first cycle to 5.9 MPa for the

fifteenth cycle. This evolution of the asymmetry is accurately captured by the

DIV formulation. It is also observed that, except for the first cycle, the predictions

of the DIV model overestimates the FE simulations for the average stress in the

inclusion. Similarly, the DIV formulation slightly overestimates the stress fluctu-

ations in the matrix during the 7 first cycles (i.e. until t = 150 s) and predicts zero

fluctuations, unlike the FE simulations, at the beginning of the plastic reloadings.

It is observed for the following cycles (from the 8th to the 15th cycle) that the FE

simulations and the DIV predictions are very close and lead both to zero stress

fluctuations at some identical stages in the loading cycle. This confirms the trend

already discussed in previous sections for a single loading cycle. In addition, it is
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Figure 5: Elastically reinforced composite submitted to 15 loading cycles (program 2, Fig.1b).
Case of an elastoplastic matrix with combined isotropic and nonlinear kinematic hardening. c(1) =
0.17. Comparison between the DIV formulation and the FE simulations. (a) Macroscopic axial
stress, (b) Average axial stress in the matrix, (c) Average axial stress in the inclusion, (d) Stress
fluctuations in the matrix, (e) Matrix average of the axial back-stress, (f) DIV predictions of the
macroscopic axial stress for 50 loading cycles.
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now observed that the agreement between the DIV formulation and the FE sim-

ulations increases with the accumulation of cycles. Similarly a nice agreement,

which in addition is even better for the last cycles, is observed for the evolution

of the matrix average of the axial back-stress depicted in Fig.5e. Indeed, the DIV

formulation only slightly overestimates the amplitude of the temporal evolution of

this quantity w.r.t. the FE simulations for the 7 first cycles and is nearly identical

to the numerical results for the 8 last ones.

In order to derive the asymptotic response of the composite, we submitted it to

50 loading cycles. The results of the DIV simulations are depicted in Fig.5f. To

analyse the asymptotic state, we did not compare the predictions of the DIV for-

mulation to FE simulations. Indeed, as the DIV model reproduces very accurately

the numerical simulations for 15 cycles loading (e.g. Fig.5a), we considered that

the predictions of the DIV model are also accurate for 50 cycles. For reasons

of readability, we only represent the first, 10th, 20th, 30th and 50th cycles. It is

observed that the model predicts an elastic asymptotic response, i.e. an elastic

shakedown.

6. Conclusion

In this study, we presented an extension of the DIV formulation proposed by

Lucchetta et al. [1] to the context of composites made of elastoplastic phases with

combined isotropic and nonlinear kinematic hardening. To this end, we consid-

ered the Armstrong-Frederick model which is based on the nonlinear kinematic

hardening rule defined by Eq. (20). This model has been developed by Chaboche

[5, 26] in the context of non-associated plasticity. In order to work in the frame-

work of the incremental variational principles proposed by Lahellec and Suquet
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[2], we made use of the modified Chaboche model [6] which is an approximation

of the Armstrong-Frederick model and has the benefit to rely on the framework of

materials whose behavior is governed by two potentials, as required by the use of

the DIV formulation. Thanks to the work of Bouby et al. [27], we derived an ex-

pression of the dissipation potential ϕ(r) associated with the modified Chaboche

model. It has been noted that the dissipation potential depends not only on the

rate of the internal variables α̇ but also on the internal state variables α. Because

of this dependence, we have slightly modified in Section 2 the incremental vari-

ational principles introduced by Lahellec and Suquet [2]. Then, we introduced

a linearized incremental potential JL and applied twice the variational procedure

thus leading to a LCC with homogeneous polarization within the phases. The lat-

ter can be homogenized by classical linear mean-field homogenization schemes,

here the Hashin-Shtrikman estimate. We also introduced some per-phase relax-

ations of the local constraints that apply on the internal variables in the variational

optimization, which globally lead us to a system of nonlinear equations, with a

limited number of unknowns. In order to close this system of nonlinear equations,

we assumed that the fluctuations of the rate of the kinematic hardening variable ν̇

are zero in phase r.

The DIV formulation has been applied to the case of composites made of two

isotropic phases: an elastoplastic matrix with both isotropic and nonlinear kine-

matic hardening reinforced with linear elastic spherical particles. Then, it has

been tested on two different composites submitted to a cyclic extension. The first

one is made of an elastoplastic matrix with nonlinear kinematic hardening while

in the second one the matrix exhibits both isotropic and nonlinear kinematic hard-

ening. The predictions of the model have been compared to FE simulations that
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we carried out. In both cases, an overall good agreement is observed for both the

macroscopic response and the statistics of the local fields. Finally, we compared

the predictions of the DIV formulation to FE simulations carried out for a loading

of 50 cycles. It is observed that the DIV model accurately reproduces the numer-

ical simulations at both the local and macroscopic scales and tends to an elastic

asymptotic state corresponding to an elastic shakedown.

AppendixA. Derivation of Eq. (42)

We start from Eq. (41) and notice by means of Eq. (39) that the dissipation

potential ϕ(r) is present in the term ∆J of Eq. (41). Making use of the definition

(31) of the dissipation potential ϕ(r), it is observed that ΦC(ε̇
p, ṗ) = +∞ when

g(ε̇p, ṗ) > 0 (see Eqs. (26) and (27)). Furthermore, as mentioned previously, only

the first branch φ(r)
1 of the dissipation potential ϕ(r) (Eqs. (31) and (32)) is consid-

ered. The branch φ(r)
1 is associated with an inequality condition h(r) (ε̇p, ν̇) ≤ 0,

where the function h(r) is defined, ∀r ∈ J1, NK, by

h(r) (ε̇p, ν̇) = ν̇eq − ε̇eq

√√√√4

3

γ(r)

a(r)

(
σ

(r)
y +

3

4
a(r)γ(r)

(
εpn + νn

(r)
)2
)
. (A.1)

Accordingly, the infimum in Eq. (41) has to be sought for under the conditions

g
(
εp−εpn

∆t
, p−pn

∆t

)
≤ 0 and h(r)

(
εp−εpn

∆t
, ν−νn

∆t

)
≤ 0 where g and h(r) are defined by

Eqs. (27) and (A.1), respectively. Note that at this stage these conditions need to

be satisfied at all point x ∈ Ω. It is convenient to introduce the potential offset
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∆Jbis defined by

∆Jbis (x, εp,ν, p, {η}) =
N∑
r=1

∆J
(r)
bis

(
x, εp,ν, p, η(r)

)
χ(r)(x) with

∆J
(r)
bis

(
x, εp,ν, p, η(r)

)
=∆t φ

(r)
1

((
εp − εpn

∆t

)
eq

,

(
ν − νn

∆t

)
eq

)
+ ŵ(r)

(
pn +

p− pn
∆t

∆t

)

− η
(r)
εp

∆t
(εp − εpn) : (εp − εpn)− η

(r)
ν

∆t
(ν − νn) : (ν − νn),

(A.2)

and

φ
(r)
1

(
ε̇peq, ν̇eq

)
=

(
σ(r)
y +

3

4
a(r)γ(r)

(
νn + εpn

)2
)
ε̇peq +

3

4

a(r)

γ(r)

ν̇2
eq

ε̇peq
, (A.3)

such that

w̃∆(E) = inf
〈ε〉=E


inf

(εp,ν,p)

/
h(r)

(
εp−εpn

∆t
,ν−νn

∆t

)
≤0

g

(
εp−εpn

∆t
, p−pn

∆t

)
≤0

〈JL(., ε, εp,ν, {η}) + ∆Jbis(., ε
p,ν, p, {η})〉


.

(A.4)

Note that the term
(
νn + εpn

)2

in Eq. (A.3) results from the mean-field type ap-

proximation (40).

As in Lahellec and Suquet [2], an estimate of w̃∆ can be derived by taking the

supremum of ∆Jbis over (εp, ν, p), separately over all positions x ∈ Ω, under the

constraints h(r) ≤ 0 and g ≤ 0. Furthermore, from (A.2), ∆Jbis can also be seen
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as a function of (ε̇p, ν̇, ṗ). Accordingly, the potential w̃∆ can be rewritten as

w̃∆(E) ≈ w̃V AR∆ (E, {η})

= inf
〈ε〉=E



inf
(εp,ν,p)

/
h

(r)
1 (εp,ν)≤0
g1(εp,p)≤0

〈JL(., ε, εp,ν, {η})〉

+

〈
sup

(ε̇p,ν̇,ṗ)

/
h(r)(ε̇p,ν̇)≤0
g(ε̇p,ṗ)≤0

∆Jbis(., ε̇
p, ν̇, ṗ, {η})

〉

,

(A.5)

where h(r)
1 and g1 - which are simply a rewriting of h(r) and g in a total formula-

tion, i.e. depending on εp, ν, p instead of ε̇p, ν̇, ṗ - read:

h
(r)
1 (εp,ν) = (ν − νn) : (ν − νn)−

(εp − εpn) : (εp − εpn)

(
4

3

γ(r)

a(r)

(
σ(r)
y +

3

4
a(r)γ(r)

(
εpn + νn

(r)
)2
))

g1(εp, p) = (εp − εpn) : (εp − εpn)− 3

2
(p− pn)2.

(A.6)

Note that, due to approximation (40), w̃V AR∆ in Eq. (A.5) is only an estimate and

not a rigorous upper bound of w̃∆. However, as shown by Lahellec and Suquet [36,

2], such type of estimates can be too stiff in certain cases and can advantageously,

be replaced by a sharper estimate through relaxing the supremum condition by a

stationarity condition thus leading to Eq. (42).
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AppendixB. Expression of the second-order moments ε̇p
(r)

and ν̇
(r)

Recalling that ε̇p = εp−εpn
∆t

and ν̇ = ν−νn
∆t

, and making use of Eqs. (78) and

(79), we obtain the following equations

(∆t)2

(
ε̇p

(r)
)2

=
(
A(r)

)2
(
εd

(r)
)2

+
(
B(r) − 1

)2
(
εpn

(r)
)2

+(
C(r)

)2
(
νn

(r)
)2

+
4

3
A(r)

(
B(r) − 1

)
〈εd : εpn〉(r)+

4

3
A(r)C(r)〈εd : νn〉(r) +

4

3
C(r)

(
B(r) − 1

)
〈εpn : νn〉(r),

(B.1)

and

(∆t)2

(
ν̇

(r)
)2

=
(
P (r)

)2
(
εd

(r)
)2

+
(
Q(r)

)2
(
εpn

(r)
)2

+(
R(r) − 1

)2
(
νn

(r)
)2

+
4

3
P (r)Q(r)〈εd : εpn〉(r)+

4

3
P (r)

(
R(r) − 1

)
〈εd : νn〉(r) +

4

3
Q(r)

(
R(r) − 1

)
〈εpn : νn〉(r).

(B.2)

In Eqs. (B.1) and (B.2), the quantities εpn
(r)

, νn
(r) and 〈εpn : νn〉(r) are known from

the previous step and εd
(r) is derived from the thermoelastic LCC w0 (see Eqs.

(72) and (B.5)). In order to fully determine ε̇p
(r)

and ν̇
(r)

, we need to compute

〈εd : εpn〉(r) and 〈εd : νn〉(r). First, we focus on the determination of 〈εd : εpn〉(r).

To this end, we start from

σd = K :
∂ w

(r)
L

∂ ε
(ε) = 2µ

(r)
L εd + τ

(r)
L = 2µ

(r)
L εd − δ(r)

L εpn + ζ
(r)
L νn,

with δ
(r)
L = 2µ(r)B(r) and ζ

(r)
L = −2µ(r)C(r),

(B.3)
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By multiplying Eq. (B.3) by it-self and averaging over phase r, we obtain

〈εd : εpn〉
(r) =

1

6µ
(r)
L δ

(r)
L


(

3µ
(r)
L

)2 (
εd

(r)
)2

+

(
3

2
δ

(r)
L

)2(
εpn

(r)
)2

+

(
3

2
ζ

(r)
L

)2 (
νn

(r)
)2

+ 6µ
(r)
L ζ

(r)
L 〈εd : νn〉(r) − 3δ

(r)
L ζ

(r)
L 〈ε

p
n : νn〉(r) −

(
σd

(r)
)2

 .

(B.4)

As mentioned in Section 4.3.1, the first and second-order moments εd(r), εd
(r),

σd
(r) in expression (B.4) are approximated by ε0,d

(r), ε0,d
(r), σ0,d

(r), respectively.

The first-order moment ε0,d
(r) is obtained by Eq. (82). Furthermore, ε0,d

(r) is

given by

ε0,d
(r)

=

√
2

3
〈ε0,d : ε0,d〉(r) =

√
2

3

1

c(r)

∂ w̃0

∂ µ
(r)
0

(E), (B.5)

while σ0,d
(r) is determined from

σ0,d =
∂ w

(r)
0

∂ ε0,d

(ε0) = 2µ
(r)
0 ε0,d + τ

(r)
0 , (B.6)

and reads

σ0,d
(r)

=

√
3

2

[
6
(
µ

(r)
0

)2 (
ε0,d

(r)
)2

+ τ
(r)
0 : τ

(r)
0 + 4µ

(r)
0 τ

(r)
0 : ε0,d

(r)

]
. (B.7)

We now get back to the evaluation of 〈εd : νn〉(r) which is required to close the

nonlinear system to be solved. For this, we make use of the following assumption:

the fluctuations of ν̇ are assumed to be zero in phase r, i.e.

C(r) (ν̇) :: K = 0⇔ ν̇
(r)

eq = ν̇
(r)
, (B.8)
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with ν̇(r)

eq =

√
2
3
ν̇

(r)
: ν̇

(r)
.

Reporting (79), (B.2), (B.4) in (B.8) and isolating the term 〈εd : νn〉(r), it comes

〈εd : νn〉(r) =
1

4
3P

(r)

(
R(r) − 1 +Q(r) ζ

(r)
L

δ
(r)
L

)×


(
P (r)

)2
((

εd
(r)
,eq

)2
−
(
εd

(r)
)2
)

+
(
Q(r)

)2
((

εpn
(r)

,eq

)2

−
(
εpn

(r)
)2
)

+
(
R(r) − 1

)2
((

νn
(r)
,eq

)2
−
(
νn

(r)
)2
)

+
4

3
Q(r)

(
R(r) − 1

)(
εpn

(r)
: νn

(r) − 〈εpn : νn〉(r)
)

+
4

3
P (r)

(
R(r) − 1

)
εd

(r) : νn
(r) +

4

3
P (r)Q(r) εd

(r) : εpn
(r)

− 2

9

P (r)Q(r)

µ
(r)
L δ

(r)
L


(

3µ
(r)
L

)2 (
εd

(r)
)2

+

(
3

2
δ

(r)
L

)2(
εpn

(r)
)2

+

(
3

2
ζ

(r)
L

)2 (
νn

(r)
)2

− 3δ
(r)
L ζ

(r)
L 〈ε

p
n : νn〉(r) −

(
σd

(r)
)2





,

(B.9)

where the second-order moments εd
(r) and σd

(r) are still approximated by ε0,d
(r)

and σ0,d
(r) which are evaluated by Eqs. (B.5) and (B.7). Note that all the other

terms of expression (B.9) are known from the former time step.
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