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Abstract

We investigate the nonlinear behavior of elasto-plastic composites with isotropic
and linear kinematic hardening. We first rely on the incremental variational prin-
ciples introduced by Lahellec and Suquet [13]. We also take advantage of an al-
ternative formulation, recently proposed by Agoras et al [1] for visco-plastic com-
posites without hardening, which consists in a double application of the variational
procedure of Ponte-Castañeda. We extend in this paper this approach to elasto-
plastic composites with combined linear kinematic and isotropic work-hardening.
The first application of the variational procedure linearizes the local behavior, in-
cluding hardening, and leads to a thermo-elastic Linear Comparison Composite
(LCC) with a heterogeneous polarization field inside the phases. The second one
deals with the heterogeneity of the polarization and results in a new thermo-elastic
LCC with a per-phase homogeneous polarization field, which effective behavior
can then be estimated by classical linear homogenization schemes. We develop
and implement this new incremental variational procedure for composites com-
prised of linear elastic spherical particles isotropically distributed in an elasto-
plastic matrix. The predictions of the model are compared with results available in
the literature for cyclic proportional and non-proportional loadings. New results
for elasto-plastic composites with combined isotropic and kinematic hardening
are also provided. They are in good agreement with the numerical computations
we carried out, at both local and macroscopic scales.
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1. Introduction

The aim of this paper is to design a new incremental variational method able
to simulate the behavior of composites made of elasto-plastic phases with both
isotropic and linear kinematic hardening. Such composites exhibit reversible and
irreversible effects when they are deformed. The presence of both these effects
in the phases and their coupling generate some specific phenomena at the macro-
scopic level, such as the Bauschinger effect, which are still difficult to capture.
Establishing the macroscopic behavior of such heterogeneous materials from prop-
erties and constitutive laws of the different phases is a classical but still open gen-
eral problem in the mechanics of materials. Many methodologies and results have
been proposed for linear-elastic composites, a revue of which can be found in
Milton [19]. Many predictions for nonlinear composites have also been proposed
and some renewal of these approches has been introduced in the late 80s with the
introduction of variational formulations, e.g. Ponte Castañeda and Suquet [23].
Apart from the last ten years, most of the work published on this subject dealt with
composites whose phases are governed by a single potential: the free-energy den-
sity in the case of nonlinear elastic materials or the dissipation potential in the case
of purely viscoplastic materials. For such type of heterogeneous materials, the
nonlinear homogenization theories rely on two steps: a linearization step followed
by a homogenization one. The first step allows to approximate the nonlinear com-
posite by a fictitious linear comparison composite LCC (Talbot and Willis [29],
Willis [31], Ponte Castañeda [21, 22], Suquet [27]) which is homogenized dur-
ing the second step, by means of classical linear homogenization scheme. Earlier
models made use of the first-order moments of the local fields only, i.e. their per-
phase averages, in the linearization schemes. Thanks to variational formulations
and physical arguments, other authors highlighted the importance to incorporate
also the fluctuations of the fields, e.g. by means of their second-order moments
over the phases (Ponte Castañeda [21], Suquet [28], Ponte Castañeda and Suquet
[23], Moulinec and Suquet [18]), or the discretization into subphases (Bilger et al.
[2], Michel and Suquet [18]). These approaches significantly enhance the accu-
racy of the models. So far, the most sophisticated models consider both the first
and second-order moments per phase to define the LCC (Ponte Castañeda [25]).
The efficiency of such approaches has been supported by several theoretical and
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numerical studies (e.g. Idiart et al. [9], Idiart and Ponte Castañeda [10]).
Some 10 years ago, a new direction of research has been opened by Lahellec
and Suquet [13, 14] who developed new incremental variational principles both
at the local and global scales for composites with nonlinear hereditary behaviors.
Similar variational principles had been previously developed by Mialon [17] for
elastoplastic composites made of Generalized Standard Material (GSM) phases
(Halphen and Nguyen [8]), and by Ortiz and Stainier [20] for elasto-viscoplastic
materials in large deformations, but only at the local scale. The local variational
principle of Lahellec and Suquet relies on the introduction of an unique potential,
the condensed incremental potential, which accounts for both the conservative
and dissipative effects of the composite behavior. This potential is built as the
sum of the two potentials which define the local behavior in the framework of
GSM, i.e. the free-energy density and the dissipation potential. From their local
variational principle, Lahellec and Suquet derive an effective incremental vari-
ational principle for heterogeneous materials with hereditary behavior thanks to
which it becomes possible to extend to composites with hereditary behavior most
of the ideas developed in the variational framework of nonlinear homogenization
for composites governed by a single potential. Following this way, Lahellec and
Suquet [13] applied the key idea of the variational procedure introduced by Ponte
Castañeda [21] to their new incremental variational principles to estimate the be-
havior of nonlinear composites made of elasto-viscoplastic phases. For that, they
made use of two approximations. The phase behavior is linearized by introducing
a uniform secant viscosity per phase through the variational procedure. Further-
more, the heterogeneous plastic strains at time tn are approximated by an effective
homogeneous internal variable in each individual phase. These two approxima-
tions lead to the definition of a thermo-elastic LCC (Ponte Castañeda [21]) whose
effective behavior can then be derived by any appropriate linear homogenization
scheme appropriate to the considered microstructure. This procedure, called the
Effective Internal Variables (EIV) approach, was first applied to nonlinear elasto-
viscoplastic composites with neither threshold nor hardening and leads to accurate
estimates of the macroscopic behavior.
In 2013, Lahellec and Suquet [16] introduced modified incremental variational
principles in a rate form in order to get estimates of the local and global behavior
for composites made of elasto-viscoplastic phases with both isotropic and lin-
ear kinematic hardening. Their new approach, called the Rate Variational Pro-
cedure (RVP), still relies on two approximations. The first one consists in using
the variational procedure to linearize the constitutive laws and provides again a
secant approximation of the behavior. For the second one, at the difference with
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Lahellec and Suquet [13], it is now the heterogeneous stress field - and not the
heterogeneous plastic strain field - at time tn which is approximated by effective
homogeneous internal variables in each individual phase. For that, they make
use of a similar method than the one proposed by Lahellec et al. [15], which is
also based on the variational procedure but relies on a new definition of a LCC
with uniform coefficients per phase which depend on the first and second-order
moments of the stress field. In order to assess their new model, Lahellec and Su-
quet [16] carry out Fast Fourier Transform (FFT) simulations on a heterogeneous
material made of an elasto-(visco)plastic matrix reinforced by 50 elastic isotropic
spherical particles randomly distributed. A good agreement is observed between
the model predictions and the FFT simulations for elastic ideally-plastic matrix or
elasto-plastic matrix with isotropic or linear kinematic hardening under radial and
non-radial loadings. Similarly, Boudet et al. [3], relying on the initial variational
principles developed by Lahellec and Suquet [13], extended their EIV formulation
to elasto-(visco)plastic composites with both threshold and local isotropic and lin-
ear kinematic hardening. The results given by their approach are very close to the
numerical simulations of Lahellec and Suquet [16]. It should be noted that Bras-
sart et al. [5, 6] also developed an incremental variational procedure relying on the
variational principle introduced by Ortiz and Stainier [20] and obtained accurate
predictions of the effective behavior of elasto-(visco)plastic composites with local
isotropic hardening. More recently, Wu et al. [32, 33] developed a new incremen-
tal homogenization scheme for elasto-(visco)plastic composites which, instead of
relying on variational principles, is based on incremental secant tensors, homoge-
neous by phase, and evaluated by taking into account the residual stress and strain
fields. In their original version [32], the linearization is performed by introducing
only first-order moments of the local fields while in their second version use is
made of second statistical moments.
Lastly, Agoras et al. [1] proposed an alternative formulation to the RVP model
of Lahellec and Suquet [16] for elasto-viscoplastic composites without harden-
ing. Their approach consists in a double application of the variational procedure
to the incremental condensed stress potential. The first application linearizes the
local behavior and leads to a LCC with non-uniform phase properties, namely a
heterogeneous eigenstrain within the phases. The second application, which deals
with this heterogeneity of phase properties, makes use of the method developed
by Lahellec et al. [15] to approximate a LCC with non-uniform phase properties
by a LCC with homogeneous properties by phase. Note that, roughly speaking,
the main difference between the new approach proposed by Agoras et al. [1] and
the Lahellec and Suquet’s ones [13, 16] lies in the fact that the two main difficul-
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ties of the homogenization problem to be solved, that is the linearization of the
local behavior and the accounting for the heterogeneity of the LCC introduced by
the local fields at time tn (the plastic strain field [13] or the stress field [16]), are
dealt with sequentially by Agoras et al. [1] instead of being addressed simulta-
neously as [13, 16]. Such a treatment allows to define more clearly the main two
problems to be solved and to handle them in a more efficient and systematic way.
Agoras et al. [1] apply their approach to particulate composites made of elas-
tic ideally-plastic polymer or metal matrix reinforced (or softened) by spheroidal
elastic particles. For the ideally-plastic metal matrix reinforced by spherical elas-
tic particles, Agoras et al.’s model and the Lahellec and Suquet’s FFT simulations
are in good agreement even if the stress averages over the inclusions, as well as
the stress-fluctuations within the matrix, are significantly overestimated, as it is
also the case for both the RVP formulation of Lahellec and Suquet and the model
of Boudet et al. [3].

The approach presented in this paper is based on the key idea presented by
Agoras et al. [1] to handle sequentially the linearization of the local behavior and
the accounting for the heterogeneity of the LCC. We propose to extend this idea,
initially applied to elasto-viscoplastic composites without hardening, to elasto-
plastic composites with isotropic and linear kinematic hardening. As Agoras et
al. [1], we still make use of a double application of the variational procedure to
the condensed local incremental potential. However, instead of using a stress-
based energy as in [1], our derivation is formulated in the strain-based free-energy
framework. The first application of the variational procedure aims at linearizing
the local behavior, including hardening, and leads to a thermo-elastic LCC with
heterogeneous polarization field inside the phases. The second one deals with the
heterogeneity of the polarization by making use of the method developed by La-
hellec et al. [15]. It results in a thermo-elastic LCC with homogeneous polariza-
tions inside the phases, which is estimated by classical homogenization schemes.
The resulting model which, for the sake of simplicity, will be referred to in the
sequel as the Double Incremental Variational (DIV) procedure, is then compared
with the RVP approach and FFT simulations for several composites under radial
and non-radial loadings [16]. For the purpose of such comparisons, the compos-
ites under consideration are made of either an elastic ideally-plastic matrix or an
elasto-plastic matrix with isotropic hardening or linear kinematic hardening re-
inforced with spherical elastic particles. In this context, the DIV formulation is
also compared to other results of the literature such as Brassart et al. [6] derived
for elasto-plastic composites with isotropic hardening under axial tensile loading.
Lastly, new results for elasto-plastic composites with combined isotropic and lin-
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ear kinematic hardening are also provided and show that the new formulation is
in good agreement with Finite Element (FE) simulations.

The structure of the paper is as follows. Inspired by the work of Lahellec and
Suquet [13], Section 2 briefly recalls the local and global variational principles.
It also defines the elasto-plastic behavior of the phases which is described by the
J2 theory of plasticity combined with both linear kinematic harding and nonlinear
isotropic hardening. Section 3 presents the development of the DIV procedure
based on the work of Agoras et al. [1] and is divided into four subsections. The
first one explains how to linearize the behavior by means of the variational proce-
dure and to derive a LCC with a heterogeneous polarization within phases while
the second one presents how to approximate this heterogeneous LCC by a "classi-
cal" one with a homogeneous polarization per phase. In the third subsection, the
DIV formulation is then particularized to the case of isotropic elasto-plastic com-
posites reinforced by spherical linear elastic particles randomly distributed within
the matrix. The algorithm implementation is described in the last subsection as
well as the difficulties met during the control of the convergence (numerical ac-
curacy and non-uniqueness of the solution). Finally, Section 4 deals with the
comparison between the DIV approach and the data found in the literature as well
as new FE simulations.

The tensor notation used herein is a fairly standard one. The order of the
tensors are clear when taken in the context. Products containing dots denote
summation over repeated indices. For example, L : ε = Lijkl εkl ei ⊗ ej and
E :: F = EijklFklij where ei (i = 1, 2, 3) is a time-independent orthogonal
Cartesian basis and the operation⊗ denotes the classical tensorial dyadic product.

2. Local behavior and incremental variational principles

This section is inspired by the work made by Lahellec and Suquet [13]. In
what follows, we summarize the main steps and equations describing the local
behavior and the local and global variational principles.

2.1. Local behavior
We consider a Representative Volume Element (RVE) Ω of a composite made

of N phases occupying domains Ω(r) (r = 1, . . ., N) such that Ω = ∪Nr=1Ω(r).
The volume fraction of phase r is denoted c(r) with c(r) = |Ω(r)|/|Ω|. The phase
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distribution is characterized by the characteristic functions χ(r) such as

χ(r)(x) =

{
1 if x ∈ Ω(r)

0 otherwise.
(1)

The phases are generalized standard materials (GSM) having an elasto-plastic lo-
cal behavior described by the conventional J2 theory of plasticity combined with
both linear kinematic hardening and nonlinear isotropic hardening. This corre-
sponds to a material with internal variablesα = (εp, p) describing the irreversible
phenomena, where εp is the plastic strain and p the cumulated plastic strain, and
with two convex potentials. The first one is the free-energy density wr(ε, εp, p)
where ε denotes the local strain

w(r)(ε, εp, p) =
1

2
(ε− εp) : L(r) : (ε− εp) +

1

2
εp : H(r) : εp + ŵ(r)(p), (2)

with L(r) the elasticity tensor, H(r) the kinematic hardening fourth-order tensor
and ŵr(p) a scalar function which depends on the cumulated plastic strain p ac-
cording to

ŵ(r)(p) =

∫ p

0

R(r)(q) dq, (3)

where R(p) is a scalar function characterizing the isotropic hardening.
The stress σ and the thermodynamic forces Aα = (Aεp ,Ap) associated with the
internal variables α = (εp, p) are given by the state laws:

σ =
∂ w(r)

∂ ε
(ε, εp, p) = L(r) : (ε− εp)

Aεp = −∂ w
(r)

∂ εp
(ε, εp, p) = L(r) : (ε− εp)−H(r) : εp = σ −X

Ap = −∂ w
(r)

∂ p
(ε, εp, p) = −R(r)(p),

(4)

withX the so-called back-stress.

The second potential is the dissipation potential ϕ(r)(α̇) given by (e.g. [11],
[7]):

ϕ(r) (ε̇p, ṗ) = φ(r)
(
ε̇peq
)

+ ΦC(ε̇
p, ṗ), (5)
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with
φ(r)(ε̇peq) = σ(r)

y ε̇peq, (6)

and

ΦC(ε̇
p, ṗ) =

{
0 if (ε̇p, ṗ) ∈ C

+∞ otherwise,
(7)

which is the indicator function of the convex set C defined as

C = {(ε̇p, ṗ)/g(ε̇p, ṗ) = ε̇peq − ṗ ≤ 0}. (8)

The evolution equations are then given by

Aα =
∂ ϕ(r)

∂ α̇
(α̇). (9)

Remark 1. The Legendre-Fenchel transform gives access to the dual potential
ϕ∗ (r) (Aεp ,Ap) of the dissipation potential ϕ(r) which is readily shown to read

ϕ∗ (r) (σ −X, R(p)) =

{
0 if (σ −X, R(p)) ∈ C∗

+∞ otherwise,
(10)

such that ϕ∗ (r) is the indicator function ΦC∗ of the convex set

C∗ = {(σ−X, R(p))/F r(σ−X, R(p)) = (σ−X)eq−R(p)−σ(r)
y ≤ 0}, (11)

if one chooses to define R(p) such that R(0) = 0.,

2.2. Local and global variational principles
As Lahellec and Suquet [13] we work with a "total" formulation, i.e. depend-

ing on ε, εp and p, instead of a "rate" one, that would depend on ε̇, ε̇p and ṗ as in
Lahellec and Suquet [16].

Local variational principle
From (4) and (9) we classically obtain the constitutive equations for GSM:

σ =
∂ w(r)

∂ ε
(ε, εp, p),

∂ w(r)

∂α
(ε,α) +

∂ ϕ(r)

∂ α̇
(α̇) = 0. (12)

The considered time interval [0, T ] is discretized intoN time steps, not necessarily
of identical duration and characterized by the set {t0 = 0, t1, ..., tn, tn+1, ..., tN =
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T}. For convenience, the value f(tn) of a function f at time tn is denoted fn.
At time t = tn we define the time increment ∆t = tn+1 − tn. As explained in
Lahellec and Suquet [13] the time derivative in (12) can be approximated by the
following equations using an implicit Euler-scheme

σn+1 =
∂ w(r)

∂ εn+1

(εn+1,αn+1)

∂ w(r)

∂αn+1

(εn+1,αn+1) +
∂ ϕ

∂ α̇n+1

(
αn+1 −αn

∆t

)
= 0.

(13)

In the sequel, to simplify the notations, we will omit the index n + 1 for the vari-
ables computed at time tn+1 (i.e. ε = εn+1).
As [13] we define the local condensed incremental potential w∆ and the incre-
mental potential J as

w∆ (x, ε) = inf
α=(εp,p)

J(x, ε, εp, p) with

J(x, ε, εp, p) =
N∑
r=1

J (r)(x, ε, εp, p)χr(x) and

J (r)(x, ε, εp, p) = w(r)(ε, εp, p) + ∆t ϕ(r)

(
εp − εpn

∆t
,
p− pn

∆t

)
.

(14)

Let us emphasize on the fact that the dependance on x of J (r) results from εpn and
pn which are respectively a second-order tensor and a scalar fields which result
from the previous time step.
The second equation in (13) is the Euler-Lagrange equation of the infimum condi-
tion in (14). In addition, as consequence of this condition, the stress at any points
x ∈ Ω is given by

σ =
∂ w∆

∂ ε
(ε). (15)

The local problem which determines the local stress and strain fields in the RVE
as a function of the prescribed macroscopic loading conditions reads then

divσ = 0 ∀(x, t) ∈ Ω× [0, T ]

σ =
∂ w∆

∂ ε
(ε) ∀(x, t) ∈ Ω× [0, T ]

〈ε(t)〉 = E(t) + boundary conditions on ∂Ω,

(16)
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where the fieldsσ, ε andα depend on x and t. The symbol 〈.〉 (resp. 〈.〉(r)) defines
the spatial average over Ω (resp. over Ω(r)), E the macroscopic strain and ∂Ω
denotes the boundary of Ω. Assuming macrohomogeneous boundary conditions,
the details of the later do not need to be specified.

Macroscopic variational principle
A variational representation of the local problem can be obtained by noticing

that ε is solution of the following minimum potential energy principle

inf
ε/〈ε〉=E

〈w∆(ε)〉 = inf
ε/〈ε〉=E

〈 inf
(εp,p)

J(ε, εp, p)〉. (17)

Defining the effective condensed incremental potential by

w̃∆(E) = inf
ε/〈ε〉=E

〈w∆(ε)〉, (18)

Lahellec and Suquet [13] show, thanks to the relation σ = ∂w∆/∂ε and Hill’s
lemma, that the macroscopic stress Σ = 〈σ〉 is given by

Σ =
∂w̃∆

∂E
(E). (19)

3. Double application of the variational procedure to elastoplastic compos-
ites with hardening

The incremental variational procedure, proposed by Lahellec and Suquet [13],
leads to the definition of a linear comparison composite (LCC) with homogeneous
polarization per phase, characterized by a free energy w0. The variational proce-
dure is applied once to deal with both the nonlinearity of the phases and the hetero-
geneity of the local incremental potential J within the phases - this heterogeneity
being due to the dependance of J on αn(x) = (εpn(x), pn(x)). In this method,
when defining the linearized incremental potential J0, it is not easy to exhibit the
adequate closed-form expression of J0, since two stages, namely the linearization
of the behavior and the handling of the heterogeneity of J , are melted. Agoras
et al. [1] introduced a more systematic method in which the linearization of the
behavior and the heterogeneity of the incremental potential within the phases are
addressed sequentially in two separate steps. The first step makes use of the vari-
ational procedure of Ponte Castañeda [21] to obtain a LCC with heterogeneous
eigenstrains within the phases. The second one which also relies on the varia-
tional procedure makes use of the method proposed by Lahellec et al. [15] to
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reduce the resulting problem to a different LCC with now homogeneous proper-
ties.
In the present study, we reformulate the key idea proposed by Agoras et al. [1],
which consists in addressing sequentially, first the linearization of the local be-
havior and then the heterogeneity of the resulting LCC, and which was initially
applied to ideally-plastic phases, to the context of elastoplastic composites with
hardening phases. Both isotropic and linear kinematic hardening are considered.
To clearly distinguish our approach from previous works of the literature adress-
ing the same issue, we first emphasize that our formulation relies on the initial
variational incremental principle introduced by Lahellec and Suquet [13] in a to-
tal form and not on the modified version proposed by Agoras et al. [1] in a rate
form, i.e. based on the strain rate ε̇ instead of the total strain ε 1. We also stress out
that our approach is established in a primal form, i.e. based on w(ε) and ϕ(α̇),
while a dual formulation was considered by Agoras et al. [1]. Lastly, the way to
deal with the isotropic and linear kinematic hardening is different from the one
considered in Lahellec and Suquet [16] as it will be shown below.

3.1. Linearization of local behavior
Owing to the non quadratic character of the dissipation potential ϕ(r) the in-

cremental potential J defined by (14) is difficult to homogenize. To bypass this
difficulty a linearized incremental potential J (r)

L is introduced in order to approach
the dissipation potential ϕ(r) by a quadratic function of ε̇p which depends on a vis-
cosity η(r)

εp uniform in phase r:
JL (x, ε, εp, {ηεp}) =

N∑
r=1

J
(r)
L

(
x, ε, εp, η

(r)
εp

)
χ(r)(x) with

J
(r)
L

(
x, ε, εp, η

(r)
εp

)
= w(r)(ε, εp, p)− ŵ(r)(p) +

η
(r)
εp

∆t
(εp − εpn) : (εp − εpn),

(20)
where the notation {ηεp} stands for the set {η(1)

εp , ..., η
(N)
εp }. A key idea of the

variational procedure is to add and subtract to the potential J the potential JL, i.e.
J = JL + J − JL, such that the first term JL can be homogenized by classical
methods for linear media thanks to the quadratic part, while the difference J − JL
can still be evaluated separately.

1Note that similar variational incremental principle in a rate form has also been introduced by
Lahellec and Suquet in a previous work [16]
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3.1.1. General form of the proposed estimate of the effective incremental con-
densed potential

To begin with, let us introduce

∆J (r) = J (r)−J (r)
L = ∆t ϕ(r)

(
εp − εpn

∆t
,
p− pn

∆t

)
+ŵ(r)(p)−η

(r)
εp

∆t
(εp−εpn) : (εp−εpn),

(21)
which can be rewritten, thanks to (5), as

∆J (r)
(
x, εp, p, η

(r)
εp

)
=∆t φ(r)

((
εp − εpn

∆t

)
eq

)
+ ∆tΦC

(
εp − εpn

∆t
,
p− pn

∆t

)

+ ŵ(r)(p)− η
(r)
εp

∆t
(εp − εpn) : (εp − εpn).

(22)
By injecting (21) and (22) into the variational formulation (18), using the defi-
nition (14) and noticing that the minimization over εp and p can be performed
separately so that the infimum can be taken out from the average, one gets:

w̃∆(E) = inf
〈ε〉=E

{
inf

(εp,p)
〈JL (., ε, εp, {ηεp}) + ∆J (., εp, p, {ηεp})〉

}
. (23)

In (22), ΦC(ε̇
p, ṗ) = +∞ when g(ε̇p, ṗ) > 0. As a consequence, the infimum

in (23) is obtained under the condition g
(
εp−εpn

∆t
, p−pn

∆t

)
≤ 0. It is convenient to

introduce ∆Jbis as:

∆Jbis(x, ε
p, p, {ηεp}) =

N∑
r=1

∆J
(r)
bis

(
x, εp, p, η

(r)
εp

)
χ(r)(x) with

∆J
(r)
bis (x, εp, p, η

(r)
εp ) = ∆t φ(r)

((
εp − εpn

∆t

)
eq

)
+ ŵ(r)

(
pn +

p− pn
∆t

∆t

)

− η
(r)
εp

∆t
(εp − εpn) : (εp − εpn),

(24)
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such that

w̃∆(E) = inf
〈ε〉=E

 inf
(εp,p)/g

(
εp−ε

p
n

∆t
, p−pn

∆t

)
≤0

〈JL (., ε, εp, {ηεp}) + ∆Jbis (., εp, p, {ηεp})〉

 .

(25)
As in Lahellec and Suquet [13], rigorous upper bound of w̃∆ can be obtained by
taking the supremum of ∆Jbis over (εp, p) under the constraint g ≤ 0:

w̃∆(E) ≤ w̃V AR∆ (E, {ηεp})

= inf
〈ε〉=E

{
inf

(εp,p)/g≤0
〈JL (., ε, εp, {ηεp})〉+

〈
sup

(εp,p)/g≤0

∆Jbis (., εp, p, {ηεp})

〉}
.

(26)
The constraint g(ε̇p, ṗ) ≤ 0 in (25) with the definition (8) can be readily replaced
by

h(εp, p) ≤ 0 with h(εp, p) = (εp − εpn) : (εp − εpn)− 3

2
(p− pn)2. (27)

Moreover, from (24) ∆Jbis can also be seen as a function of (ε̇p, ṗ). It follows that
Eq. (26) takes the form

w̃∆(E) ≤ w̃V AR∆ (E, {ηεp})

= inf
〈ε〉=E

{
inf

(εp,p)/h(εp,p)≤0
〈JL (., ε, εp, {ηεp})〉+

〈
sup

(ε̇p,ṗ)/g(ε̇p,ṗ)≤0

∆Jbis (., ε̇p, ṗ, {ηεp})

〉}
.

(28)
However, as pointed out by Lahellec and Suquet [12, 13], this upper bound can
be too stiff in certain cases. Ponte Castañeda and Willis [24] and Ponte Castañeda
[25] have observed for similar situations that this upper bound can be replaced by
a sharper estimate through relaxing the supremum condition by a stationarity one.
Doing so, one gets the following estimate for w̃∆:

w̃∆(E) ≈ w̃V AR∆ (E, {ηεp})

= inf
〈ε〉=E

{
inf

(εp,p)/h(εp,p)≤0
〈JL (., ε, εp, {ηεp})〉+

〈
stat

(ε̇p,ṗ)/g(ε̇p,ṗ)≤0
∆Jbis (., ε̇p, ṗ, {ηεp})

〉}
.

(29)

13



Then, a last optimization with respect to (w.r.t.) the set {ηεp} leads to the final
DIV estimate for w̃∆ defined as

w̃∆(E) ≈ w̃DIV∆ (E) = stat
{ηεp}

w̃V AR∆ (E, {ηεp}) . (30)

3.1.2. Stationary conditions
In this section, we develop all the stationary conditions which appear in ex-

pressions (29) and (30). First, we compute the stationarity of ∆Jbis w.r.t. (ε̇p, ṗ),
thus providing the definition of the viscous modulus η(r)

εp (see Eq. (33)). Then,
we make use of the stationarity of w̃∆ w.r.t. η(r)

εp to show the equality between̂̇εp(r)
and ε̇p

(r)
, the former denoting the value of ε̇p at the stationarity of ∆Jbis

and the later the second-order moment of ε̇p in phase r. Finally, stationarity of
JL w.r.t. (εp, p) yields a closed-form expression of εp as function of ε (see Eq.
(42)) and provides an interpretation of the viscous modulus η(r)

εp as the modified
secant viscous modulus (see Eqs. (37) and (43)) associated with the variational
procedure.

Stationarity of ∆Jbis.
The stationarity of ∆Jbis at point x w.r.t. ε̇p and ṗ is determined by applying

the Karush-Kuhn-Tucker optimality conditions (KKT)
∂∆Jbis + λ ∂g = 0

λ g = 0

λ ≥ 0, g ≤ 0,

(31)

where ∂ denotes the variation in ε̇p and ṗ. Making use of definitions (8) and (24)
, for each x in phase r one gets

∆t
∂φ(r)

∂ε̇peq

(
ε̇peq
)
− 3 ∆t η

(r)
εp ε̇

p
eq + λ = 0

∆t R(r) (pn + ṗ∆t)− λ = 0

λ
(
ε̇peq − ṗ

)
= 0

λ ≥ 0, ε̇peq − ṗ ≤ 0.

(32)

In this system λ, ε̇peq and ṗ are unknown fields which may depend on the position
x in phase r. However, φ(r) and R(r) take the same form in each point x in phase
r; As a consequence of our modeling options, η(r)

εp is also uniform in phase r. If

14



we assume in addition that pn is uniform in phase r, then the solution of system
(32) is uniform per phase. Finally, since p0 at the begining of our loading history
is uniformly zero, it is shown by recursion, using the relation p = pn + ∆t ṗ, that
all these fields are uniform in phase r. In particular, ε̇peq will be denoted ̂̇εp(r)

;
likewise p(r) ≡ p, p(r)

n ≡ pn and λ(r) ≡ λ.
We now consider the two following cases for the lagrange multiplier: λ(r) > 0
and λ(r) = 0.

Case 1: λ(r) > 0. Accordingly, ε̇peq−ṗ = 0 because of Eq. (32)3. Combining
with Eq. (32)1 and Eq. (32)2 leads to the following secant-like formula

η
(r)
εp =

1

3 ̂̇εp(r)

[
∂ φ(r)

∂ ε̇peq

( ̂̇εp(r)
)

+R(r)
(
p(r)
n + ∆t ̂̇εp(r)

)]
=
σ

(r)
y +R(r)

(
p

(r)
n + ∆t ̂̇εp(r)

)
3 ̂̇εp(r)

.

(33)

Case 2 : a second possibility is λ(r) = 0. According to Eq. (32)2, this would
lead to R(r)(p) = 0 which appears to be non physical when isotropic hardening
occurs. Accordingly, this case will not be considered.

Owing to Eq. (33), we are now able to calculate ∆Jbis under the stationarity
conditions. Indeed, noticing by means of Eq. (33) that η(r)

εp

( ̂̇εp(r)
)

is an inversible

function of ̂̇εp(r)
since R(r)(p) is an increasing function, and denoting ̂̇εp(r)

(
η

(r)
εp

)
its inverse, we have〈

stat
(ε̇p,ṗ)/ε̇p−ṗ≤0

∆Jbis

〉
= ∆t

N∑
r=1

c(r)f (r)
(
η

(r)
εp

)
with

f (r)
(
η

(r)
εp

)
= σ(r)

y
̂̇εp(r)

(
η

(r)
εp

)
− 3

2
η

(r)
εp

( ̂̇εp(r)
(
η

(r)
εp

))2

+
ŵ(r)

∆t

(
p(r)
n + ∆t ̂̇εp(r)

(
η

(r)
εp

))
.

(34)
This expression will be helpful in section 3.1.3.

Stationarity of w̃V AR∆ with respect to η(r)
εp .

Making use of Eqs. (20), (24) and (29), the stationarity condition of w̃V AR∆

15



w.r.t. η(r)
εp reads〈

(εp − εpn) : (εp − εpn)

∆t

〉(r)

− 3

2
∆t
( ̂̇εp(r)

)2

+

[
∂φ(r)

∂ ̂̇εp(r)

( ̂̇εp(r)
)

+R(r)
(
p(r)
n + ∆t ̂̇εp(r)

)
− 3 η

(r)
εp
̂̇εp(r)

]
∆t
∂ ̂̇εp(r)

∂η
(r)
εp

(
η

(r)
εp

)
= 0.

(35)
Due to Eq. (33) the last term of (35) vanishes. It follows

̂̇εp(r)
= ε̇p

(r)
=

(εp − εpn)

∆t

(r)

, (36)

where a(r)
=
√
ι〈ad : ad〉(r) denotes the second-order moment of a deviatoric

part second-order tensor field a with ι = 2
3

for a strain field and ι = 3
2

for a stress
field. Accordingly, the optimal viscosity η(r)

εp reads

η
(r)
εp =

σ
(r)
y +R(r)

(
p(r)
)

3 ε̇p
(r)

= η
(r)
φ,sct

(
ε̇p

(r)
)

+ η
(r)
h

(
ε̇p

(r)
)
, (37)

with

η
(r)
φ,sct

(
ε̇p

(r)
)

=
σ

(r)
y

3 ε̇p
(r)
, η

(r)
h

(
ε̇p

(r)
)

=
R(r)

(
p(r)
)

3 ε̇p
(r)

and p(r) = ∆t ε̇p
(r)

+ p(r)
n .

(38)
It is a sum of two viscosities respectively associated with perfectly plastic behavior
for η(r)

φ,sct and isotropic hardening for η(r)
h .

Stationarity of 〈JL〉 with respect to (εp, p) under the constraint h ≤ 0.
The constraint h(εp, p) ≤ 0 for h defined by Eq. (27) has to be satisfied

for all x ∈ Ω(r) since εpn and pn are heterogeneous fields. To circumvent this
difficulty, this constraint is relaxed into N per-phase average conditions only, i.e.
〈h〉(r) ≤ 0 for r ∈ {1, ..., N}. Stationarity of 〈JL〉 w.r.t. (εp, p) under these new
constraints is then looked for by expliciting again the KKT optimality conditions
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(see AppendixA)

∀r ∈ {1, ..., N}


∂J

(r)
L (x) + λ(r)∂h (x) = 0 ∀x ∈ Ω(r)

λ(r)〈h〉(r) = 0

λ(r) ≥ 0, 〈h〉(r) ≤ 0,

(39)

where λ(r) are N scalars and ∂ denotes the variation w.r.t. εp and p. Making use
of (20) and (27) together with (39), one gets

−K : L(r) : (ε− εp) + H(r) : εp +
2

∆t
η

(r)
εp (εp − εpn) + 2λ(r)(εp − εpn) = 0

− 3λ(r)(p− pn) = 0

λ(r)

〈
(εp − εpn) : (εp − εpn)− 3

2
(p− pn)2

〉(r)

= 0

λ(r) ≥ 0, 〈h〉(r) ≤ 0,
(40)

where K = I − J denotes the deviatoric fourth-order isotropic projector, I the
identity fourth-order symmetric tensor and J the spherical fourth-order isotropic
projector whose components are respectively Iijkl = 1

2
(δikδjl + δilδjk) and Jijkl =

1
3
δijδkl.

To close the set of equations of the model, we now have to find a relation between
εp and ε. To this end, two cases are considered for the Lagrange multiplier: λ(r) >
0 and λ(r) = 0.

Case 1: λ(r) > 0. Accordingly, p − pn = 0 because of Eq. (40)2 and

ε̇p
(r)

= 0 by means of Eq. (40)3. Therefore εp = εpn for each x. Such a situation
corresponds to the elastic regime. It will be fully handled later in Section 3.3.2.

Case 2: λ(r) = 0. This situation corresponds to the plastic regime since
(40)2 does not constraint p − pn to be zero, as in the later case. Eq. (40)1 with
λ(r) = 0 reads

−K : L(r) : (ε− εp) + H(r) : εp + 2 η
(r)
εp

(
εp − εpn

∆t

)
= 0, (41)
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from which one gets the expected expression for the plastic strain field, namely

εp =

[
K : L(r) + K : H(r) + 2

η
(r)
εp

∆t
K

]−1

:

[
K : L(r) : ε+ 2

η
(r)
εp

∆t
εpn

]
. (42)

Others information can be obtained from Eq. (41). Indeed, owing to Eq. (4)2, Eq.
(41) reads also

σd −X = 2 η
(r)
εp ε̇

p, (43)

where σd denotes the deviatoric part of the second-order tensor σ. As shown by
Eqs. (37), (38) and (43), η(r)

εp can be interpreted as the modified secant viscous
modulus associated with the elastoplastic behavior with isotropic hardening and

computed at the second-order moment of the plastic strain rate ε̇p
(r)

.
From Eqs. (43) and (37), it is readily seen that

σ −X
(r)

= σ(r)
y +R(r)

(
p(r)
)
. (44)

Thus, for the DIV approach the plastic yield criterion (11) associated with the
local behavior is satisfied when applied to the second-order moment of the local

fields. Indeed, the local stress (σ − X)eq is approximated by σ −X
(r)

while the
hardening stress R(r)(p) is evaluated at p(r) whose evolution is provided by the

second-order moment of the plastic strain rate ε̇p
(r)

(see Eq. (38)).

3.1.3. Determination of the LCC with heterogeneous intraphase polarization
To proceed further, εp is replaced by its expression (42) in the definition (20)

of J (r)
L , thus allowing to define a thermoelastic LCC of per-phase free-energy w(r)

L

given by

w
(r)
L (x, ε, η

(r)
εp ) = inf

εp
J

(r)
L (x, ε, εp, η

(r)
εp ) =

1

2
ε : L(r)

L : ε+ τ
(r)
L (x) : ε+

1

2
f

(r)
L (x),

(45)
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with

L(r)
L = L(r) −

[
L(r) : K

]
:

[
2
η

(r)
εp

∆t
K + H(r) + L(r) : K

]−1

:
[
K : L(r)

]
τ

(r)
L (x) = −2

η
(r)
εp

∆t

[
2
η

(r)
εp

∆t
K + H(r) + L(r) : K

]−1

:
[
K : L(r) : εpn

]
f

(r)
L (x) =

η
(r)
εp

∆t
εpn :

[
2
η

(r)
εp

∆t
K + H(r) + L(r) : K

]−1

:
[
H(r) + L(r) : K

]
: εpn.

(46)
Such an energy corresponds to a LCC with heterogeneous intraphase fields within
phase r, the polarization τ (r)

L (x) and the scalar field f
(r)
L (x), depending on x

through εpn(x). Accordingly, the effective energy of this LCC is defined by

w̃L (E, {ηεp}) = inf
〈ε〉=E

〈wL(., ε, {ηεp})〉 . (47)

From Eqs. (29), (34) and (36), it follows2

w̃∆(E) ≈ w̃DIV∆ (E) = stat
{ηεp}

w̃V AR∆ (E, {ηεp}) = w̃L(E, {ηεp})+∆t
N∑
r=1

c(r)f (r)
(
η

(r)
εp

)
,

(48)
with f (r) defined by Eq. (34)2. Eventually, taking into account the stationarity
conditions on η(r)

εp , one gets

Σ =
∂w̃∆

∂E
(E) ≈ ∂w̃DIV∆

∂E
(E) =

∂w̃L
∂E

(E), (49)

where w̃L(E) denotes the value of w̃L(E, {ηεp}) calculated for the optimal set
{ηεp}.

3.2. Homogenization of the LCC with intraphase heterogeneous polarization
3.2.1. General procedure

As seen above, the LCC of energy wL corresponds to a thermoelastic com-
posite with heterogeneous intraphase polarizations. Although its effective be-

2Note that in these equations the set {ηεp} denotes, for the sake of simplicity, both dummy
variables in the third expressions and the optimal values of the viscosities in the last one.
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haviour could be derived by costly full-field computations, it can not be obtained
by classical linear mean-field homogenization schemes since they only apply to
thermoelastic composites with homogeneous intraphase polarization. One way to
homogenize the thermoelastic LCC of energy wL is to resort to the TFA method
of Dvorak [4] which, as a first approximation, replaces the heterogenous polar-
ization τ (r)

L (x) with a per-phase constant field. However, it is well known that
the TFA method provides much too stiff estimates of the effective behavior, e.g.
[18]. In order to deal with the heterogeneity of the polarizations, Lahellec et al.
[15] proposed a new and efficient method based on the variational procedure of
Ponte Castañeda [22] which approximates the energy wL by an energy w0 asso-
ciated with a classical LCC with homogeneous intraphase polarizations τ (r)

0 and
tensors of moduli L(r)

0 6= L
(r)
L such that it becomes possible to derive the effective

behavior as well as the statistics of the local fields by means of classical linear
homogenization schemes3. This idea was first implemented by Agoras et al [1]
for viscoplastic composites without hardening. In what follows, we implement it
for elasto-plastic composites with isotropic and linear kinematic hardening.

Applying the key idea of the variational procedure of Ponte Castañeda [22],
the energy w(r)

L is rewritten as

w
(r)
L (x, ε) = w

(r)
0 (ε) +

[
w

(r)
L (x, ε)− w(r)

0 (ε)
]

= w
(r)
0 (ε) + ∆w(r)(x, ε). (50)

where w0 corresponds to the energy of a classical thermoelastic LCC with homo-
geneous intraphase polarizations defined by

w0(x, ε) =
N∑
r=1

w
(r)
0 (ε)χ(r)(x), with w

(r)
0 (ε) =

1

2
ε : L(r)

0 : ε+τ
(r)
0 : ε+

1

2
f

(r)
0 .

(51)
Following the procedure of Lahellec et al. [15] which is briefly recalled in AppendixB,
on can obtain an estimate of the effective energy w̃L(E) given by the following

3In the initial work of Lahellec et al. [15], the problem to be solved was more general since
not only τ (r)

L but also the moduli L(r)
L were depending on x.
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expression

w̃L(E) = stat
L(r)

0 ,τ
(r)
0 ,f

(r)
0

{
w̃0(E)− 1

2

N∑
r=1

c(r)

[〈
∆τ (r)(.) :

(
∆L(r)

)−1
: ∆τ (r)(.)−∆f (r)(.)

〉(r)
]}

.

(52)
with

w̃0(E) = inf
〈ε〉=E

〈w0(ε)〉 , (53)

and for which the notation ∆a(r)(.) = a
(r)
L (.)−a(r)

0 has been used, e.g. ∆τ (r)(.) =

τ
(r)
L (.)− τ (r)

0 .
A straightforward calculation shows that the stationarity condition w.r.t. f (r)

0

is always satisfied independently of f (r)
0 so that its value can be fixed to zero.

The development of the stationarity conditions w.r.t. τ (r)
0 and L(r)

0 yields to the
following equations

stat
τ

(r)
0

⇒ 〈ε0〉(r) = −
(
∆L(r)

)−1
:
〈
∆τ (r)(.)

〉(r)
,

stat
L(r)

0

⇒ 〈ε0 ⊗ ε0〉(r) =
〈
∆τ (r)(.)⊗∆τ (r)(.)

〉(r)
::
∂
(
L(r)
L − L(r)

0

)−1

∂L(r)
0

,

(54)

where ε0 corresponds to the strain field within the LCC defined by w(r)
0 . Thanks

to the relation ∂A−1

∂A = − (A−1 ⊗ A−1) (see AppendixC) and the major symmetry
of ∆L(r), Eq. (54) can be rewritten as〈

∆L(r) : ε0

〉(r)
= −

〈
∆τ (r)(.)

〉(r)〈(
∆L(r) : ε0

)
⊗
(
∆L(r) : ε0

)〉(r)
=
〈
∆τ (r)(.)⊗∆τ (r)(.)

〉(r)
.

(55)

Remark 2. As shown by Eq. (46) the tensor τ (r)
L is purely deviatoric. Moreover,

the nonlinear behavior being only sensitive to the deviatoric part, we assume a
purely deviatoric polarization τ (r)

0 . Accordingly, ∆τ (r) is also deviatoric as well
as ∆L(r) : ε0.

Eq. (55)1 amounts to

τ
(r)
0 =

〈
τ

(r)
L (.)

〉(r)

+ ∆L(r) : 〈ε0(.)〉(r) = τL
(r) +

(
L(r)
L − L(r)

0

)
: ε0

(r), (56)
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where a(r) =< a >(r) denotes the average of any field a(x) over the phase r.

Note that τL(r) can be easily obtained from εpn
(r)

since, as shown by Eq. (46), the
polarization τ (r)

L linearly depends on εpn.
Making use of (55)1, Eq. (55)2 can be rewritten as

C(r)
(
∆L(r) : ε0

)
= C(r)

(
∆τ (r)

)
, (57)

where C(r)(s) is the covariance tensor of the intraphase fluctuations of a second-
order tensor field s within phase r, defined by

C(r)(s) =
〈(
s− s(r)

)
⊗
(
s− s(r)

)〉(r)
= 〈s⊗ s〉(r) − s(r) ⊗ s(r). (58)

So Eq. (57) becomes(
L(r)
L − L(r)

0

)
: C(r) (ε0) :

(
L(r)
L − L(r)

0

)
= C(r)

(
∆τ (r)

)
= C(r)

(
τ

(r)
L

)
, (59)

where the second equality in Eq. (59) is obtained by using the propertyC(r)
(
τ

(r)
L − τ

(r)
0

)
=

C(r)
(
τ

(r)
L

)
resulting from the uniformity of τ (r)

0 .

Both equations (56) and (59) allow to determine τ (r)
0 and L(r)

0 once the first and
second-order moments of ε0 are known. The latter, as shown in AppendixD for a
N -phase thermoelastic composite whose per-phase free-energy w(r)

0 is defined by
Eq. (51), are easily obtained by Eq. (D.3).

The effective behavior of the nonlinear composite can now be computed from
the estimate (52) as

Σ =
∂w̃∆

∂E
(E) ≈ ∂w̃L

∂E
(E) =

∂w̃0

∂E
(E) = L̃0 : E + τ̃0. (60)

In Eq. (60), the approximation comes from Eq. (49), the third equality from the
stationarity of w̃L w.r.t. L(r)

0 , τ (r)
0 and f (r)

0 and the last equality from the expression
(D.2) of the effective energy w̃0 given in AppendixD. The tensors L̃0 and τ̃0

respectively denote the effective tensor of moduli and the effective polarization of
the LCC with local energy w0.

Lastly, the first and second-order moments of the local fields of the nonlinear
composite are respectively approximated by the ones of the LCC with heteroge-
nous intraphase polarization defined by the energy wL. Moreover, Lahellec et al.
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[15] shown that the first and second-order moments of the strain field within the
LCC w

(r)
L can be estimated by those of the LCC w

(r)
0 . So, one gets

ε(r) ≈ εL(r) ≈ ε0
(r), 〈ε⊗ ε〉(r) ≈ 〈εL ⊗ εL〉(r) ≈ 〈ε0 ⊗ ε0〉(r) , (61)

where ε, εL respectively denote the strain fields of the nonlinear composite and
of the LCC of energy wL. The same approximations are used for the first and
second-order moments of the stress field.

3.2.2. Elasto-plastic composites with isotropic phases
In this study, the behavior of the phases described in Section 2.1 is also as-

sumed isotropic. Accordingly, the elastic tensors of moduli and the linear kine-
matic hardening tensor H(r) read

L(r) = 3 k(r)J + 2µ(r)K, H(r) = a(r)K. (62)

Due to the isotropic behavior of the phase and for simplicity, the elastic tensors
L(r)

0 of the LCC of energy w(r)
0 are also chosen to be isotropic

L(r)
0 = 3 k

(r)
0 J + 2µ

(r)
0 K. (63)

As shown in Remark 2, ∆L(r) : ε0 is deviatoric thus implying k(r)
L = k

(r)
0 . Fur-

thermore, (46)(1) together with (62)2 implies k(r)
L = k(r), so that

k(r) = k
(r)
L = k

(r)
0 . (64)

Under these conditions, (46) rewrites as

L(r)
L = 3 k

(r)
L J + 2µ

(r)
L K = 3 k(r) J + 2µ(r) 2

η
(r)
εp

∆t
+ a(r)

2
η

(r)
εp

∆t
+ a(r) + 2µ(r)

K

τ
(r)
L (x) = −2µ(r) 2

η
(r)
εp

∆t

2
η

(r)
εp

∆t
+ a(r) + 2µ(r)

εpn(x)

f
(r)
L (x) =

η
(r)
εp

∆t

a(r) + 2µ(r)

2
η

(r)
εp

∆t
+ a(r) + 2µ(r)

εpn(x) : εpn(x).

(65)
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Similarly, Eq. (42) becomes

εp = β(r)εd + ζ(r)εpn with

β(r) =
2µ(r)

2
η

(r)
εp

∆t
+ a(r) + 2µ(r)

, ζ(r) =
2
η

(r)
εp

∆t

2
η

(r)
εp

∆t
+ a(r) + 2µ(r)

,
(66)

where εd denotes the deviatoric part of ε. To fully determine L(r)
L and τ (r)

L (in fact
only τ (r)

L is required), we need to compute the secant viscous modulus η(r)
εp since

all the other quantities are known. For that, ε̇p
(r)

should be determined (see (37)).
Recalling that ε̇p = εp−εpn

∆t
, it readily follows from (66) that

ε̇p
(r)

=
1

∆t

√
(β(r))

2
(
ε

(r)
)2

+
4

3
(ζ(r) − 1) β(r) 〈εd(x) : εpn(x)〉(r) + (ζ(r) − 1)

2

(
εpn

(r)
)2

.

(67)
Equation (67) requires to compute 〈εd : εpn〉(r). To this end, we introduce (62)2

into (43) such that :
σd = 2 η

(r)
εp ε̇

p + a(r) εp, (68)

from which the second-order moment of σd can be derived. Introducing ε̇p =
εp−εpn

∆t
together with Eq. (66) into Eq. (68) allows to isolate 〈εd : εpn〉(r). One gets

〈εd : εpn〉(r) =

2
3

(
σ

(r)
)2

− 3
2

[
β(r)

(
2η

(r)
εp

∆t
+ a(r)

)]2 (
ε

(r)
)2

− 3
2

((
2η

(r)
εp

∆t

)(
ζ(r) − 1

)
+ a(r)ζ(r)

)2(
εpn

(r)
)2

2 β(r) ζ(r)

(
2
η

(r)
εp

∆t
+ a(r)

)2

− 4
η

(r)
εp

∆t

(
2
η

(r)
εp

∆t
+ a(r)

)
β(r)

.

(69)
As seen above, the second-order moments ε(r), σ(r) are approximated by ε0

(r),
σ0

(r), the latter being derived respectively by (D.3)2 and the following expression

σ0
(r)

=

√
3

2

[
6
(
µ

(r)
0

)2 (
ε0

(r)
)2

+ τ
(r)
0 : τ

(r)
0 + 4µ

(r)
0 τ

(r)
0 : εd0

(r)
]
, (70)
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which is deduced from

σd0 =
∂ w

(r)
0

∂ εd0
(ε0) = 2µ

(r)
0 ε

d
0 + τ

(r)
0 . (71)

3.3. Application to an elasto-plastic matrix reinforced by linear elastic particles
We now specialize the DIV approach to the case of two-phase reinforced

elasto-plastic composites, made of spherical linear elastic particles randomly and
isotropically distributed inside an elasto-plastic matrix. Further, the effective
properties of the LCC as well as the field statistics are evaluated by the Hashin
and Shtrikman lower bound (see AppendixD), which is known to provide accu-
rate results for such type of microstructure in the linear case when the volume
fraction is moderate. In what follows, subscripts (1) and (2) denote the inclusion
and matrix phase, respectively.

The first-order moments of the strain ε0 over the phase read as

ε0
(1) = A(1)

0 : E + a
(1)
0 , ε0

(2) =
1

c(2)

(
E − c(1)ε0

(1)
)
. (72)

where the localization tensors A(1)
0 , a(1)

0 are given by Eqs. (D.4) and (D.6) (see
AppendixD). Making use of Eq. (D.2) together with Eqs. (D.4) and (D.6), ε0

(1)

can be computed from (72)1 as

ε0
(1) =

{
I + P(2)

0 :
[(

L(1)
L − L(2)

0

)
− c(1)

(
L(1)
L − L(2)

L

)]}−1

:{[
I + P(2)

0 :
(
L(2)
L − L(2)

0

)]
: E − c(2)P(2)

0 :
(
τL

(1) − τL(2)
)}

,
(73)

where P(2)
0 corresponds to the classical Hill’s tensor associated with the matrix

phase of the homogeneous LCC for an isotropic distribution of spherical inclu-
sions. To determine the first-order moments ε0

(r), the tensors L(r)
L , L(r)

0 and τL(r)

have to be computed first. These latter depend both on the first and second-order
moments of the plastic strain field εpn at time tn (see Eqs. (59) and (65)), which
are already known from the previous step, and also on the second-order moments

of the plastic strain rate ε̇p
(r)

which remain to be determined. Once the ε0
(r) are
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known, the effective stress Σ defined in (60) is given by

Σ =
2∑
r=1

c(r)
(
L(r)

0 : ε0
(r) + τ

(r)
0

)
. (74)

When using the Hashin Shtrikman lower bound to evaluate the strain and stress
fields of a thermoelastic linear composite, it is well known that the latter are uni-
form inside the inclusions such that C(1)(ε0) = 0. Therefore, Eq. (59) for r = 1
amounts to

C(1)(τ
(1)
L ) = 0. (75)

Nevertheless, nothing is known about L(1)
L . This tensor is therefore indeterminate.

To raise this indeterminacy we adopt the assumption used in the works of Lahellec
et al. [15] and Agoras et al. [1]

L(1)
L = L(1)

0 , (76)

so that Eq. (56) rewrites as

τ
(1)
0 = τL

(1) = τ
(1)
L . (77)

3.3.1. Summary of the nonlinear system
In this section, we summarize the equations to be satisfied by the DIV ap-

proach. Let us first recall that, as shown by Eq (64), the spherical part of the local
behavior in the LCCs defined by wL and w0 is indentical to that of the nonlinear
composite.

In the inclusion phase, since ε̇p
(1)

= 0, Eq. (37) implies that η(1)
εp tends to +∞.

Considering also Eq. (65)1, it then follows µ(1) = µ
(1)
L . Recalling Eqs. (76) and

(77), the behavior within the inclusion phase of the LCCs defined by wL and w0

is finally given by

k(1) = k
(1)
L = k

(1)
0 , µ(1) = µ

(1)
L = µ

(1)
0 , τ

(1)
0 = τL

(1) = 0. (78)

In the matrix phase, the expressions of µ(2)
0 , τ (2)

0 , µ(2)
L and τ (2)

L which char-
acterize the LCCs of free energy w0 and wL are obtained as follows. The secant
modulus µ(2)

L and polarization τ (2)
L are given by Eqs. (65)1 and (65)2, respec-

tively. The expression of τ (2)
0 is derived by applying Eq. (56) to composites with
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isotropic phases, such that

τ
(2)
0 = τL

(2) + 2
(
µ

(2)
L − µ

(2)
0

)
εd0

(2)
. (79)

Likewise, applying Eq. (59) to isotropic LCC leads to the following expression
for µ(2)

0

µ
(2)
0 = µ

(2)
L ±

1

2

√√√√〈τL : τL〉(2) − τL(2) : τL
(2)〈

εd0 : εd0
〉(2) − εd0

(2)
: εd0

(2)
. (80)

Note that once η(2)
εp is known - or equivalently ε̇p

(2)
, see Eqs. (37) - the numerator

in the square root of Eq. (80) is also known since τL depends linearly on εpn whose
first and second-order moments are provided from the previous step. On the other

hand, the first-order moment εd0
(2)

can be derived by Eqs. (72) and (73) while the
second-order moment

〈
εd0 : εd0

〉(2) is obtained from (D.3) as

〈
εd0 : εd0

〉(2)
=

1

c(2)

∂ w̃0

∂µ
(2)
0

(E). (81)

Of course, for isotropic composites both these moments depend on µ(2)
0 and τ (2)

0

which define the behavior of the LCC of energy w0 in the matrix phase. Ac-
cordingly, the nonlinear problem to be solved consists of the three equations (37),
(79) and (80) with unknowns µ(2)

0 , τ (2)
0 and η(2)

εp . Note that the dependence of the
problem w.r.t. the last variable η(2)

εp appears in expressions (65) of µ(2)
L and τ (2)

L .

As seen above, the determination of η(2)
εp by Eq. (37) amounts to compute ε̇p

(2)
.

For that, use is made of Eq. (67) which itself requires to compute the second-order
moment 〈εd : εpn〉(2). The latter is obtained from Eqs. (69) and (70) and from the

calculation of the first and second-order moments εd0
(2)

and
〈
εd0 : εd0

〉(2) which are
derived from Eqs. (72), (73) and (81).

Finally, because of Eqs. (72) and (73) together with the expression (D.5) of

P(2)
0 for isotropic composites, it is easily seen that εd0

(2)
only depends on two in-

dependent parameters µ(2)
0 and η(2)

εp . Keeping in mind that εd0
(2)

only depends on
µ

(2)
0 and η(2)

εp , Eq. (79) together with the definitions (65) of µ(2)
L and τ (2)

L shows
that τ (2)

0 also depends only on µ(2)
0 and η(2)

εp .
Therefore, the nonlinear problem to be solved and defined by Eqs. (37), (79)
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and (80) now reduces to a system of two nonlinear scalar equations with unknown
µ

(2)
0 and η(2)

εp :
F1

(
µ

(2)
0 , η

(2)
εp

)
≡
(
µ

(2)
0 − µ

(2)
L

)2

− 1

4

〈τL : τL〉(2) − τL(2) : τL
(2)〈

εd0 : εd0
〉(2) − εd0

(2)
: εd0

(2)
= 0

F2

(
µ

(2)
0 , η

(2)
εp

)
≡ η(2)

εp −
σ

(2)
y +R(2)(p(2))

3 ε̇p
(2)

= 0.

(82)

After resolution of this system, the remaining parameters µ(2)
L , τ (2)

L , τ (2)
0 and

ε̇p
(2)

are obtained from Eqs. (65)1, (65)2, (79) and (67), respectively.

3.3.2. Case of the elastic regime

In the elastic regime, εp = εpn and ε̇p
(2)

= 0. The second equation of system
(82) implies that η(2)

εp tends to +∞, so that this system reduces to a single nonlinear
scalar equation F1

(
µ

(2)
0 ,+∞

)
= 0. To find the required mechanical quantities

during such an elastic loading and unloading, their limits when η(2)
εp tends to +∞

have to be computed. Doing so, we obtain in particular µ(2)
L = µ(2) and τ (2)

L =
−2µ(2)εpn.

Furthermore, as we saw in Section 3.1.2, the plastic threshold is reached when
Eq. (44) is satisfied in the matrix phase. Accordingly, to check whether we are in

the elastic regime, the second-order moment σ −X
(2)

should satisfy the following
inequality

σ −X
(2)
≤ σ(2)

y +R(2)(p(2)), (83)

which is adopted as the yield surface for the matrix in our approach. For that, we

need to compute the second-order moment σ −X
(2)

. As seen in Section 3.2.1, the
first and second-order moments of the local fields in the nonlinear composite and
in the LCC of energy wL are evaluated by their counterparts in the homogeneous
LCC, e.g. see Eq. (61), so that

σ −X
(2)

=

√(
σ

(2)
)2

+

(
X

(2)
)2

− 3 〈σd : X〉(2), (84)

where σ(2) is given by (70) and X
(2)

= a(2) εpn
(2)

because of Eq. (62)2 and εp =
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εpn. Moreover, since σd = 2µ
(2)
L ε

d + τ
(2)
L = 2µ(2)

(
εd − εpn

)
we have〈

σd : X
〉(2)

=
〈
2µ(2)

(
εd − εpn

)
: a(2)εpn

〉(2)

=
3

2
µ(2)a(2)

[(
ε0

(2)
)2

−
(
εpn

(2)
)2
]
− a(2)

6µ(2)

(
σ0

(2)
)2

,
(85)

where the second equality comes from the expression (69) of 〈εd : εpn〉(2) when

η
(2)
εp tends to +∞. Finally, σ −X

(2)
reads as

σ −X
(2)

=

√(
1 +

a(2)

2µ(2)

)(
σ0

(2)
)2

+
9

4
a(2)

(
4

9
a(2) + 2µ(2)

)(
εpn

(2)
)2

− 9

2
µ(2)a(2)

(
ε0

(2)
)2

.

(86)

3.4. Numerical implementation of the model
We now consider the numerical implementation of the DIV model. First, we

describe the structure of the proposed algorithm and then discuss its convergence
to the appropriate solution.

3.4.1. Presentation of the algorithm
The aim of the algorithm is to determine, for a given loading history defined

in terms of prescribed macroscopic strain En at all times tn (n = {0, ..., N}), the
effective stress Σn, the first and second-order moments of the local fields σn, εn
and εpn in the phases as well as the value of pn. This problem will be solved
iteratively by determining the solution at tn+1 from the known solution at time
tn. As already noted, the index n + 1 will be obmited on the quantities defined
at time tn+1. This algorithm can be applied to an elastoplastic matrix which may
be elastic ideally-plastic, with linear kinematic hardening, isotropic hardening or
both isotropic and linear kinematic hardenings. For all these cases, the algorithm
is the same and its structure goes as follows:

1. Elastic prediction: The matrix is assumed to follow an elastic regime such
that η(2)

εp tends to +∞ according to system (82) which reduces to the non-
linear scalar equation F1

(
µ

(2)
0 ,+∞

)
= 0. In practice we solve it with the

fsolve function of the Matlab software based on the Levenberg Marquardt
algorithm. Once µ(2)

0 obtained, it becomes possible to compute τ (2)
0 by mak-

ing use of Eqs. (72), (73) and (79) and then to deduce the energy-density
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w
(r)
0 of the LCC with homogeneous intraphase polarization. Lastly, the ef-

fective free-energy as well as the statistics of the local fields - that is the first
and second-order moments of ε and σ - are computed (see AppendixD)4.
The effective stress is finally obtained by Eq. (60).

2. Check of the yield criterion: Now that all the coefficients of the LCC of
energy w0 as well as the statistics of the local fields have been determined, it

becomes possible to evaluate σ −X
(2)

by means of Eq. (86) and to check if
condition (83) is satisfied with a strict inequality. If it is the case, the matrix
is well in the elastic regime and we can go to the next time step. If not, the
matrix follows a plastic regime, discussed now.

3. Plastic regime : Unlike the elastic regime, η(2)
εp takes now finite value.

The nonlinear problem to be solved is described by system (82) whose un-
knowns are µ(2)

0 and η(2)
εp . The procedure fsolve from Matlab is used again to

find the two roots of this system. Once the solution of the nonlinear system
(82) is obtained, the heterogeneous and homogeneous LCCs, as well as the
effective free energy w̃0 are determined as explained in Section 3.3.1. It is
then possible to calculate the first and second-order moments of ε, σ and
εp, the cumulative plastic strain p(2) as well as the effective stress Σ.

3.4.2. Numerical accuracy
Let us now consider the influence of the time step discretization on the model

predictions. To this end, simulations have been carried out on the same com-
posite material as studied by Lahellec and Suquet [16] for different values of the
time step ∆t. This composite is made of an ideally-plastic matrix reinforced with
spherical elastic particles isotropically distributed. The considered material pa-
rameters are given in Section 4.1.2 (see (93)). The composite is submitted to a pro-
portional isochoric macroscopic strainE(t) = E33(t)

(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
.

Figure 1a reports the evolution of the axial macroscopic stress as a function of the
axial macroscopic strain at four different time steps. Figures 1b and Figure 1c
provide zooms on the transition zone between elastic and plastic regimes and on
the fully plastic regime. As seen on these Figures, the four curves corresponding
to the different time steps are almost identical, except for the highest time step
increment for which a slight difference is observed in the transition zone.

4Note that the statistics of the plastic field εp as well as the value of cumulative plastic strain p
do not evolve since we are in the elastic regime
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For completeness, the evolutions of the stress fluctuations within the matrix, clas-
sically quantified by

√
C(2)(σ) :: K - the stress covariance tensor C(2)(σ) being

defined by Eq. (58) - are also depicted on Figure 1d for the different time steps.
Again, the corresponding four curves are almost identical. Accordingly, the time
step for all the simulations is fixed at ∆t = 0.1s.
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Figure 1: Elastically reinforced composite with an elastic ideally-plastic matrix. Macroscopic
isochoric extension. c(1) = 0.17 (a) Macroscopic axial stress for different values of ∆t
(∆t = 0.2s, 0.1s, 0.05s, 0.01s). (b) Zoom on the elasto-plastic transition , (c) Zoom on the fully
plastic zone, (d) Fluctuations of the stress over the matrix.
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3.4.3. Computational issues
As seen in Section 3.4.1, the determination of the effective behavior associated

with the DIV approach as well as the statistics of the local fields requires to solve
the nonlinear system (82) with two unknowns. Due to the form of Eq. (82)1, it is
obvious that this system has at least two roots since Eq. (82)1 can be rewritten as
follows

F±1

(
µ

(2)
0 , η

(2)
εp

)
≡ µ

(2)
0 − µ

(2)
L ±

1

2

√√√√〈τL : τL〉(2) − τL(2) : τL
(2)〈

εd0 : εd0
〉(2) − εd0

(2)
: εd0

(2)
= 0, (87)

where F+
1 and F−1 respectively denote the function F±1 associated with the signs

+ and − before the square root. We propose and discuss in AppendixE a strategy
to choose the appropriate root.

In addition to this issue, we have to face to an unexpected problem related to
a possible non positivity of the secant modulus µ(2)

0 in some cases. As an illus-
tration, Fig. 2 depicts the variations5 of this modulus as a function of time, in the
case an elastically reinforced incompressible composite with an ideally elasto-
plastic matrix submitted to a cyclic isochoric macroscopic extension. It is ob-
served that the value of secant modulus µ(2)

0 is sometimes negative, especially for
t ∈ [14.6; 22]. Of course, the occurrence of negative values for the secant modulus
of a LCC does not comply with the classical framework underlying the homog-
enization theory of heterogeneous materials. Although a theoretical analysis on
the possibility of negative shear modulus associated with a linear thermo-elastic
fictive LCC is out of the scope of the present paper, we can however make the
following remarks.

First, the LCC of energy w0 for which µ(2)
0 is sometimes negative is a fictitious

and not a real composite which is determined by mathematical stationarity condi-
tions which do not take into account any constraints on the sign of its modulus.
Second, in such a situation, Eq. (53)2 does in principle no longer lead to the def-
inition of an effective thermoelastic composite, whose properties and local field
statistics would be evaluated for instance by the Hashin and Shtrikman equations
provided in AppendixD. We nevertheless propose to formally make use of these
relations in such cases and we observe that doing so, a solution of the nonlinear

5Note that the evolution of µ(2)
0 in Fig. 2 has been obtained by means of the algorithm which

selects the appropriate root (see AppendixE)
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system Eq. (82) can be obtained. Finally and more importantly, it is observed that
this solution is consistent not only in terms of macroscopic behavior but also local
fields statistics with numerical predictions obtained with FFT or FE simulations or
with other MFH approaches, see Section 4. This fact, especially the good agree-
ment at the local scale of the field statistics, suggests that the use of linear MFH
approaches - such as the Hashin and Shtrikman estimate employed in this work to
homogenize the LCC of energy w0 - when formally applied to isotropic thermo-
elastic LCCs with negative shear modulus is consistent in a sense that remains to
be determined. Accordingly, the notion of LCC even defined with negative secant
modulus - and therefore purely fictitious - can still remain a relevant tool in the
framework of nonlinear homogenization.
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Figure 2: Elastically reinforced incompressible composite with an elastic ideally-plastic matrix
submitted to a cyclic isochoric macroscopic extension. c(1) = 0.17. Evolution of µ(2)

0 w.r.t time
(see Fig. 3a for the correspondance between time and the axial cyclic macroscopic strain).

4. Applications and discussion

4.1. Validation by comparaison to predictions of previous models
This section aims to compare the results obtained by the DIV approach to the

ones obtained by either other MFH approaches of the literature or full-field FFT
or FE simulations. For that, the DIV approach is applied to elasto-plastic incom-
pressible composites made of isotropic elastic spherical inclusions, randomly and
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isotropically distributed in an elasto-plastic matrix. The latter can be either elas-
tic ideally-plastic, or with linear kinematic or isotropic hardening. The applied
loadings are cyclic, radial or non radial.

4.1.1. Loading histories
Two types of loading are considered. The first one has been considered by

Lahellec and Suquet [16] and consists of an applied macroscopic strain E(t)
composed of an isochoric extension E33(t) along the axial direction and of equal
shears E13(t) along the two planes parallel to the axial direction

E(t) =E33(t)

(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
+

E13(t) (e1 ⊗ e3 + e3 ⊗ e1 + e2 ⊗ e3 + e3 ⊗ e2) .

(88)

In association with (88), two types of loading histories, presented in Fig. 3, are
considered. The first one corresponds to a cyclic radial extension while the second
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Figure 3: Two different loading histories: E33(t) macroscopic axial strain, E13(t) macroscopic
shear strain, (a) program 1: radial loading and unloading , (b) program 2: non-radial path.

one is fully non-radial since it involves a rotation of the macroscopic strain and
therefore of the principal axes of the macroscopic stress because of the overall
isotropy of the composite.

34



The second loading to be considered is a tensile loading

Σ(t) = Σ11(t) e1 ⊗ e1. (89)

It should be noted that the use of a tensile loading requires to adapt the algorithm
presented in 3.4.1 since the latter is based on a macroscopic strain loading. For
that, we proceed in the following way. Due to the isotropy of the composite, the
macroscopic strain associated with the tensile stress (89) reads

E(t) = E11(t) e1 ⊗ e1 + αE11(t)(e2 ⊗ e2 + e3 ⊗ e3), (90)

where α is an unknown scalar. Its value is determined by the conditions Σ22 =
Σ33 = 0 which should be enforced to find again a tensile macroscopic stress when
applying a macroscopic strain of the form (90). Applying conditions Σ22 = Σ33 =
0 to Eq. (60)4 results in a system of two scalar equations with two unknowns α
and Σ11 Σ11 =

(
L̃0,1111 + α

(
L̃0,1122 + L̃0,1133

))
E11 + τ̃0,11

0 =
(
L̃0,1122 + α

(
L̃0,2222 + L̃0,2233

))
E11 + τ̃0,22,

(91)

where L̃0 and τ̃0 are defined by (D.2) and only depends on variables µ(2)
0 and η(2)

εp ,
see Section 3.3.1. From Eq. (91)2, the following expression is derived for α

α = − L̃0,1122E11 + τ̃0,22

E11

(
L̃0,2222 + L̃0,2233

) , (92)

and shows that parameter α only depends on µ
(2)
0 and η

(2)
εp through L̃0 and τ̃0.

Introducing Eq. (92) into Eq. (90) shows that the macroscopic strain E only
depends on the two unknowns of the nonlinear problem (82). Furthermore, the

first and second-order moments εd0
(2)

and
〈
εd0 : εd0

〉(2) now depend on E because
of Eqs. (72) and (73) and of Eq. (81), respectively. Therefore, the function
F1(µ

(2)
0 , η

(2)
εp ) defined by Eq. (82)1 also depends on the macroscopic strain. Since

the latter only depends on µ(2)
0 and η(2)

εp , finally F1 still only depends on the two
unknows µ(2)

0 and η(2)
εp of the nonlinear problem. A similar argument holds for the

function F2 defined by Eq. (82)2 such that it becomes possible to derive the root
of the nonlinear problem by the procedure fsolve and to compute the macroscopic
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tensile stress Σ11 by means of Eq. (91)1 when the macroscopic strain E11(t) is
imposed.

4.1.2. Case of ideally-plastic matrix
In this section we consider the composite material having an elastic ideally-

plastic matrix as studied by Lahellec and Suquet [16] and defined by the following
material parameters except that now the inclusion and matrix phases in our simu-
lation are incompressible

Inclusion : c(1) = 0.17, E(1) = 16.368 GPa, ν(1) = 0.4999

Matrix : E(2) = 8.1846 GPa, ν(2) = 0.4999, σ(2)
y = 100 MPa.

(93)

In what follows, predictions of the DIV approach are compared with both the
RVP formulation developed by Lahellec and Suquet [16] and Fast Fourier Trans-
form (FFT) simulations carried out in the same work on a RVE comprised of 50
spherical inclusions randomly distributed in the matrix. Fig. 4a depicts the overall
response of the composite under isochoric cyclic extension while the evolutions of
the average stresses in the matrix and inclusion phases are shown in Figs. 4b and
4c, respectively. Lastly, Fig. 4d illustrates the evolution of the stress fluctuations
in the matrix.

On a whole, a very good agreement is observed between the predictions of
the DIV and RVP formulations. When compared to full-field simulations, it is ob-
served that the DIV approach, similarly to the RVP formulation, provides accurate
predictions for the evolutions of both the macroscopic stress and the average stress
within the matrix, even if the macroscopic response is slightly overestimated while
the reverse is true for σ33

(2). Moreover, both DIV and RVP approaches capture
the slight Bauschinger effect observed on the macroscopic response. However,
although the DIV and RVP approaches qualitatively reproduce the trends of the
FFT simulations, they strongly overestimate the average stress within the inclu-
sion as well as the stress fluctuations within the matrix. For the evolution of σ33

(1),
it is noted that the DIV approach during the plastic reloading fits better to the FFT
simulations than the RVP approach. The reverse occurs if we consider the evo-
lution of the stress fluctuations since the RVP formulation manages to reproduce
the local minimum values of the FFT stress fluctuations at the beginning of the
plastic reloadings (t ∼ 14, 5s and t ∼ 34, 5s) unlike the DIV approach which
predicts almost zero fluctuations in this part of the curve. Lastly, as can be seen in
Figs. 4a and 4b, the slopes associated with the elastic regime are slightly different
for the DIV and RVP formulations. This is simply due to the difference in Pois-

36



son’s ratio used for the simulations, namely ν(1) = ν(2) = 0.4999 for DIV while
ν(1) = ν(2) = 0.3636 for RVP.

At this stage, it is worth mentioning that, except for the elastic slope, the dif-
ferences between both compressible (DIV) and incompressible (RVP and FFT)
simulations are expected to be negligible or at least small since carried out on re-
inforced composites submitted to macroscopic loadings with zero (isochoric ex-
tension) or low stress (tensile loading) triaxiality as it is the case in our study.
To ensure this point, FE simulations have been performed on two-phase periodic
composites composed of spherical elastic particles embedded on a perfect cubic
lattice in an elasto-plastic matrix, with or without hardening, submitted to a cyclic
macroscopic isochoric extension and whose material properties are defined by Eq.
(93), and by Eq. (94) or (96) in case of linear kinematic or isotropic hardening,
respectively. Both compressible ν = 0.3636 and incompressible ν = 0.499999
cases have been considered. As expected, it is found that the difference be-
tween the compressible and incompressible evolutions of macroscopic and local
responses during the plastic regime are negligible (less than 0.2%) for both the
macroscopic axial stress and average axial stress within the matrix and small (less
than 7%) for the average axial stress in the inclusion and the stress fluctuations
within the matrix - which take into account all the components of the local de-
viatoric stress. Theses numerical observations justify the comparisons made on
these macroscopic and local quantities between our DIV approach evaluated for
incompressible composites and the RVP and FFT simulations evaluated for the
same composites but with compressible phases.

As seen above, the DIV and RVP models are in a very close agreement on
significant parts of the cyclic curves. A succinct theoretical comparison between
both models can help to provide some explanations for this close agreement. In-
deed, although both models rely on distinct LCCs, it is easily seen that they share
some points in common such that the same definition of their respective secant
viscosity (see Eq. (37)), the same evolution of the cumulative plastic strain p (see
Eq. (38)3) and the fact that both models satisfy the plastic yield criterion when

applied to the second-order moment σ −X
(r)

(see Eq. (44)). These common
features are mainly due to the fact that both DIV and RVP approaches make use
of the variational procedure, two times for the DIV approach and one time for
the RVP. Furthermore, although they rely on two different incremental variational
principles, these principles are close since the one used by the RVP approach can
in a first approximation be interpreted as a rate version of the one used by the DIV
procedure and initially proposed by Lahellec and Suquet [13].
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Figure 4: Elastically reinforced composite with an ideally-plastic matrix under radial loading (pro-
gram 1, Fig 3). c(1) = 0.17. (a) Macroscopic axial stress, (b) Average axial stress in the matrix,
(c) Average axial stress in the inclusion, (d) Stress fluctuations in the matrix.

It should be noted that the comparisons reported in Fig. 4 have been carried
out for an elastic contrast which is fairly small E(1)/E(2) = 2. In order to see
the influence of this parameter on the macroscopic and local responses of the
composite, additional simulations of the DIV model with elastic contrasts of 5,
10, 50 have been performed and compared with FE computations carried out on
a periodic cubic cell made of a single spherical elastic inclusion embedded in an
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elastic ideally-plastic matrix. The numerical results reported in Figure 5 clearly
show that the more the elastic contrast increases, the less the Bauschinger effect
is captured by the DIV model. Furthermore, for high elastic contrast, it seems
that the DIV approach fails to reproduce qualitatively the evolution of the stress
fluctuations during the beginning of the plastic reloading.
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Figure 5: Elastically reinforced composite with an ideally-plastic matrix under macroscopic iso-
choric extension for several elastic contrasts, E(1)/E(2) = 2, 5, 10, 50. c(1) = 0.17. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial stress in the inclusion,
(d) Stress fluctuations in the matrix.
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For the non-radial loading associated with program 2, we report in Fig. 6
the evolution of the macroscopic axial and shear stresses w.r.t. the time. It is
observed that the DIV approach is in good agreement with the RVP approach and
FFT simulations even if it always slightly overestimates (resp. underestimates)
the FFT data for the macroscopic axial stress (resp. for the macroscopic shear
stress).
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Figure 6: Elastically reinforced composite with an ideally-plastic matrix under non radial loading
(program 2, Fig 3). c(1) = 0.17, E(1)/E(2) = 2. (a) Macroscopic axial stress, (b) Macroscopic
shear stress.

4.1.3. Matrix with linear kinematic hardening
We now consider an elasto-plastic matrix with a linear kinematic hardening

characterized by the scalar a(2) introduced in Eq. (62). The composite parameters
are the same as in Section 4.1.2 and the kinematic hardening parameter is set as
in Lahellec and Suquet [16]

a(2) = 300 MPa. (94)

Predictions of the DIV approach are again compared with the FFT simulations
carried out by Lahellec and Suquet [16] on a RVE comprised of 50 spherical in-
clusions randomly distributed in the matrix. For the case of a radial extension
(program 1), Fig. 7 depicts the evolutions of the macroscopic axial strain, the
average stresses over the phase as well as the stress fluctuations. The same trends
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as those already obtained in Fig. 4 for the reinforced composite with an ideally
elasto-plastic matrix are observed except the fact that the axial stress average in
the matrix now exhibits a linear kinematic work-hardening. All comments made
in the previous section for the reinforced composites with an ideally plastic ma-
trix still hold for the linear kinematic hardening case except that now the DIV
approach provides more accurate predictions of both the average stress in the in-
clusion and the matrix fluctuations than for an ideally-plastic matrix. The vari-
ations of the back-stress, depicted in Fig. 8, show that its average in the matrix
is in good agreement with the FFT simulations. However, its fluctuations in the
matrix are strongly overestimated - a shift of about 100% is observed - even if
they qualitatively follow the same trends as the FFT simulations.

4.1.4. Matrix with isotropic hardening
We now consider an elastoplastic matrix with an isotropic hardening charac-

terized by the power law
R(2) (p) = β(2)pγ

(2)

. (95)

As a first illustration, we consider the reinforced composite dealt with by Lahel-
lec and Suquet [16] whose material parameters are defined by Eq. (93) for the
elastic properties of the phases and by the following parameters for the isotropic
hardening

β(2) = 100 MPa, γ(2) = 0.4 . (96)

First, we apply the radial macroscopic cyclic extension associated with program
1 (see Fig. 3a). For such a loading, Fig. 9 depicts the evolutions of both the axial
effective stress and the average stresses in each phase as well as the stress fluctu-
ations in the matrix for the DIV approach and for both the RVP formulation and
FFT simulations computed [16]. We observe the same trends as those obtained in
Fig. 4 for an elastic ideally plastic matrix except that now the axial stress average
in the matrix exhibits an isotropic hardening. All comments made for the rein-
forced composites with an elastic ideally-plastic matrix still hold for the isotropic
hardening case.

Fig. 10 depicts the evolutions of the macroscopic axial and shear stresses
obtained for the non-radial loading associated with program 2 of Fig. 3b. It is
observed that the DIV approach is in good agreement with the FFT simulations.
However, the FFT data are always slightly overestimated for the macroscopic axial
stress and underestimated for the macroscopic shear stress.

We now consider the Aluminium / Silicone Carbide Metal Matrix Composite
(MMC) dealt with by Brassart et al. [6] for a cyclic tensile test and compare the
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Figure 7: Elastically reinforced composite under radial loading (program 1, Fig 3). Case of an
elasto-plastic matrix with linear kinematic hardening. c(1) = 0.17. (a) Macroscopic axial stress,
(b) Average axial stress in the matrix, (c) Average axial stress in the inclusion, (d) Stress fluctua-
tions in the matrix.

DIV approach with the FE simulations carried out by these authors on a RVE made
of 30 spherical inclusions randomly distributed in an elasto-plastic matrix with
isotropic hardening. The material parameters associated with these simulations
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Figure 8: Elastically reinforced composite under radial loading (program 1, Fig 3). Case of an
elasto-plastic matrix with linear kinematic hardening. c(1) = 0.17. (a) Average of the back-stress
in the matrix, (b) Back-stress fluctuations in the matrix.

are the following6

Inclusion : c(1) = 0.25, E(1) = 200 GPa, ν(1) = 0.2

Matrix : E(2) = 75 GPa, ν(2) = 0.3, σ
(2)
0 = 75 MPa

β(2) = 400 MPa, γ(2) = 0.4 or 0.05 .

(97)

Fig. 11 depicts the evolution of the normalized effective tensile stress Σ33/σ
(2)
y

w.r.t. the macroscopic strainE33 for the DIV approach and other MFH schemes of
the literature: the variational model of Brassart et al. [6] which is based on a sim-
ilar variational principle as the one described in section 2.2 and the RVP scheme
of Lahellec and Suquet. When compared to the FE simulations, it is observed that
the DIV approach as well as the other MFH schemes provide accurate estimates
of the effective response. However, none of them manage to capture the slight
Bauschinger effect noted for m = 0.05 unlike what is observed for the DIV and
RVP formulations when applied to the reinforced composites considered in the
previous applications.

6The results of the DIV approach are obtained for the same material parameters but associated
as before with incompressible phases, i.e. ν(1) = ν(2) = 0.4999.
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Figure 9: Elastically reinforced composite under radial loading (program 1, Fig 3a). Case of an
elasto-plastic matrix with isotropic work-hardening. c(1) = 0.17. (a) Macroscopic axial stress, (b)
Average axial stress in the matrix, (c) Average axial stress in the inclusion, (d) Stress fluctuations
in the matrix.

4.1.5. Discussion
It has been seen in the previous sections that both RVP and DIV formulations

provide close and accurate predictions of the local and macroscopic responses. It
would be interesting to try to determine the situations for which there is an ad-
vantage to use one or the other of these methods. The following remarks provide
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Figure 10: Elastically reinforced composite submitted to a non radial loading (program 2, Fig 3).
Elasto-plastic matrix with isotropic work-hardening. c(1) = 0.17. (a) Macroscopic axial stress,
(b) Macroscopic shear stress.

some insight about this issue.
For compressible matrix, as reported in AppendixE, the DIV approach is not fully
numerically stable since it encounters, at some scarce points, convergence prob-
lems due to a singularity of the function F2 (see Eq. (82)2 and Fig. E.18). This
is not the case of the RVP approach which is numerically stable. For incompress-
ible matrix, both the DIV and RVP approaches are numerically stable and both
provide accurate results for elasto-plastic composites with or without local hard-
ening. However, when the matrix exhibits kinematic hardening, it seems that the
RVP approach is a bit less efficient numerically than the DIV procedure since
the incorporation of the kinematic hardening within the RVP approach is made
at the price of two supplementary unknowns H(r)

0 and X(r)
n (see [16]) which in-

crease the numerical cost of the method, unlike the DIV approach for which no
supplementary unknown is required to handle the linear kinematic hardening.

4.1.6. Multiple cycles loadings
In this Section, we explore the predictions of the DIV model when several

loading cycles are considered: program 1 on Fig. 3a is reproduced several times
during the considered loading sequences. For that, we compute both the macro-
scopic and local responses of the reinforced composites considered in the previ-
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Figure 11: Metal Matrix Composite submitted to a cyclic tensile test. c(1) = 25%. Evolution of
the macroscopic tensile stress. (a) γ(2) = 0.4, (b) γ(2) = 0.05 .

ous sections and described by the material parameters of Eq. (93) for a elastic
ideally-plastic matrix and Eq. (94) or (96) in case of linear kinematic or isotropic
hardening, respectively. For an elastic ideally-plastic matrix or an elastoplastic
matrix with linear kinematic hardening, it is found that the macroscopic and local
responses are stabilized as soon as the first cyclic loading occurs. This is not the
case for an elastoplastic matrix with isotropic hardening as it can be seen on Fig.
12 which reports for 10 cycles the evolution of the axial stress, the averages of the
axial stress over the phase as well as the stress fluctuations in the matrix for both
the DIV approach and FE periodic simulations. As in former sections, the FE sim-
ulations are carried out on a periodic cubic cell made of a single spherical elastic
inclusion embedded in an elastic ideally-plastic matrix. On a whole, a close agree-
ment is observed between the DIV approach and the FE simulations, especially
for the macroscopic axial stress and for the average axial stress in the matrix.
As observed on the macroscopic axial stress, the asymmetry characterising the
Bauschinger effect increases continuously with the number of cycles, going from
24,64 Mpa for the first cycle to 40,6 Mpa for the tenth cycle. This evolution of the
asymmetry characterising the Baushinger effect is accurately captured by the DIV
approach. Lastly, it can be seen that the macroscopic and local responses tends to
a limit cycle, thus showing that the DIV approach, in agreement with the FE sim-
ulations, predicts a plastic shakedown when the plastic matrix exhibits isotropic
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hardening.
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Figure 12: Elastically reinforced composite submitted to 10 cycle radial loadings (program 1, Fig
3a). Case of an elasto-plastic matrix with isotropic work-hardening. c(1) = 0.17. (a) Macroscopic
axial stress, (b) Average axial stress in the matrix, (c) Average axial stress in the inclusion, (d)
Stress fluctuations in the matrix.

4.2. Combined isotropic and linear kinematic hardening
This section provides new data for composites made of spherical linear elas-

tic particles randomly distributed in an elastoplastic matrix with combined linear
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kinematic and isotropic hardening. The DIV approach is compared to FE simu-
lations that we carried out on one eight of a three dimensional periodic cubic cell
made of a centered inclusion surrounded by the matrix. Conditions of symmetry
and periodicity are applied on this cell. The FE simulations are performed with
the software Cast3M which makes use of the following isotropic hardening law

R(p) =
(
Rmax − σ(2)

y

) (
1− e−βp

)
. (98)

The material parameters of the composites are set by Eq. (93) for the elastic
properties and by the following equation for the linear kinematic and isotropic
hardening

Rmax = 2.1 GPa, β = 0.26, a(2) = 100 MPa. (99)

The reinforced composite is subjected to a cyclic macroscopic isochoric exten-
sion (see program 1 of Fig.3). The results are reported in Fig.13 which depicts the
variations of the effective axial stress, the average axial stresses over the phase as
well as the stress fluctuations in the matrix. It is observed that the DIV macro-
scopic response is in good agreement with the FE simulations and captures well
the Baushinger effect during the second plastic loading (E33 ≈ 0.085). How-
ever, the DIV model fails to accurately reproduce the slope characterizing the
work-hardening zones and for this reason underestimates the effective stress with
a maximum error of about 3%. The average stress in the matrix obtained for the
DIV approach is in very close agreement with the FE simulations except at the
beginning of the third plastic loading (E33 ≈ −0.075) where it fails to reproduce
the Baushinger effect. The variation of the average stress in the inclusion derived
by the DIV formulation qualitatively exhibits the same trends as the one observed
for the macroscopic response. However the shift between the slopes which char-
acterize the work-hardening zones becomes much more significant than for the
effective response. This result was predictable. Indeed, since the average stress
in the matrix is accurately evaluated by the DIV approach, the slight shift ob-
served for the macroscopic response between the slopes which characterize the
work-hardening zones should be strongly amplified in the inclusion for low vol-
ume fractions. This shift is probably due to the anisotropy of the problem to be
solved by FE since the geometry of the unit cell is cubic unlike the microstruc-
ture addressed by the DIV approach which is assumed isotropic by the use of
the Hashin and Shrikman isotropic estimate. If we now turn to the evolution of
the stress fluctuations, it is observed that they are in close agreement with the FE
simulations unlike it was the case for the previous composites considered in this
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study - i.e. made of either an ideally-plastic matrix or an elasto-plastic matrix
with linear kinematic or isotropic hardening - for which only the trends of the
FFT simulations were qualitatively but not quantitatively reproduced by the DIV
approach. Of course, this statement holds for the whole cyclic loading except dur-
ing the transition from the elastic regime to the plastic one (t ≈ 14s and t ≈ 37s)
for which the stress fluctuations obtained by the DIV approach are again close to
zero.

5. Conclusion

This study is based on the incremental variational procedure initially proposed
by Lahellec and Suquet [13] to predict the effective behavior of dissipative com-
posites. Recently, in order to evaluate the effective behavior of elasto-viscoplastic
composites without hardening as well as their field statistics, Agoras et al. [1]
proposed an alternative formulation to the modified incremental variational prin-
ciples introduced by Lahellec and Suquet [16]. In the present paper, we extend the
work of Agoras et al. [1] to the context of an elasto-plastic matrix with combined
isotropic and linear kinematic hardening. Furthermore, the proposed extension is
established in primal form (based on w(ε) and ϕ(α̇)) while a dual formulation
was considered in Agoras et al. [1]. To this end, similarly to the work of Agoras
et al. [1] the variational procedure of Ponte Castañeda [21] is applied two times:
first, to linearize the nonlinear phase behaviour, including hardening, and to ap-
proximate the local and effective behaviors of the nonlinear composite by those of
a LCC with intraphase heterogeneous polarization. The second application of the
variational procedure allows to determine the behavior of the LCC with intraphase
heterogenous polarization by making use of another LCC with homogeneous po-
larization whose material coefficients are derived by the stationarity conditions
induced by the second application of the variational procedure. This approach is
applied to elastically reinforced two phases isotropic composites and results in a
system of three nonlinear equations with three unknowns which is numerically
solved by using the Levenberg Marquardt algorithm.

The DIV approach has been first applied to three different composites, made
of either an ideally plastic matrix or an elastoplastic matrix with linear kinematic
or isotropic hardening submitted to two different loading histories corresponding
to a proportional cyclic macroscopic isochoric extension and a non-radial load-
ing, respectively. The predictions of the DIV approach have been compared to
the results obtained by the RVP approach and FFT simulations [16]. On a whole,
for all the composites considered a good agreement between the DIV and RVP
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Figure 13: Elastically reinforced composite made of an elasto-plastic matrix with combined linear
kinematic and isotropic work-hardening. c(1) = 0.17. Radial isochoric macroscopic extension
(program 1, Fig 3). (a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average
axial stress in the inclusion, (d) Stress fluctuations in the matrix.

formulations and the FFT simulations is obtained both at the macroscopic and
local scales. In particular, the Bauschinger effect is well reproduced when the
elastic contrast between the phases is not too large. However, the DIV approach
needs to be improved since the average stress in the inclusion is overestimated
as well as the stress fluctuations in the matrix which in addition show some sig-
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nificant deviations from the numerically simulated data at the beginning of the
plastic reloading. For that, it might be appropriate to use more accurate lineariza-
tion schemes than the variational procedure such as the recent partially or fully
stationary second-order estimates of Ponte Castañeda [25, 26].

Then, as in Brassart et al. [6] simulations for a tensile cyclic loading applied
on a elastically reinforced metal matrix composite have been carried out and show
a good agreement between the DIV approach and both their FE simulations and
incremental variational homogenization scheme.

Finally, new data on elastically reinforced composites either with combined
isotropic and linear kinematic hardening or submitted to several loading cycles
have been proposed. On a whole, a good agreement is observed between the
DIV approach and the FE simulations we carried out, even if the evolution of the
average stress in the inclusion needs probably to be improved. Since it is now
possible to assess accurately the effective behavior as well as the field statistics of
elasto-plastic composites with combined isotropic and linear kinematic hardening,
a natural continuation of this study would consist to tackle the case of nonlinear
kinematic hardening. Such a work is now in progress.

Acknowledgements
The authors gratefully thank N. Lahellec and P. Suquet for having kindly pro-

vided them their numerical data obtained with both their RVP model and full-field
FFT simulations for comparison purposes.

AppendixA. Proof of Eq. (39)

We detail here the stationarity conditions of 〈JL〉 w.r.t. α = (εp, p) under the
N constraints 〈h(α)〉(r) ≤ 0 for r ∈ {1, ..., N}. For that, we explore the following
particular variation of the field α about an arbitrary starting point α0

α̃(τ)−α0 = α̇τ, (A.1)

where α̇ is an arbitrary field and τ a scalar. The stationary of 〈JL(α)〉 w.r.t. the
field α requires then the stationary of the quantity 〈JL(α̃(τ))〉 w.r.t. the scalar τ ,
under the same N constraints, which reads

stat
τ/〈h(α̃(τ))〉(r)≤0

〈JL (α̃(τ))〉 . (A.2)
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The quantity τ being a scalar, we can use the classical KKT optimality conditions
to solve the optimization problem (A.2), such that

∀r ∈ {1, ..., N}


d

dτ
〈JL(α̃(τ))〉+

N∑
r=1

λ(r) d

dτ
〈h(α̃(τ))〉(r) = 0

λ(r)〈h(α̃(τ))〉(r) = 0

λ(r) ≥ 0, 〈h(α̃(τ))〉(r) ≤ 0,

(A.3)

Taking into account that domains Ω and Ω(r) are fixed - and therefore that the
derivative of the integral is equal to the integral of the derivative - and making use
of the chain-rule, Eq. (A.3)1 rewrites as

ΣN
r=1

〈(
c(r)∂JL(α̃) + λ(r)∂h(α̃)

)
: α̇
〉(r)

= 0, (A.4)

where ∂ denotes the variation w.r.t. α = (εp, p). Since Eq. (A.4) holds for
arbitrary α̇, one gets

∀r ∈ {1, ..., N}, c(r)∂JL(α̃(x)) + λ(r)∂h(α̃(x)) = 0, ∀x ∈ Ω(r). (A.5)

Making use of the variable change λ(r) = c(r)λ(r)′ and choosing α̃ = α, we obtain
the stationarity conditions (39).

AppendixB. Determination of expression (52) for the effective thermoelastic
energy w̃L(E)

Let us introduce the function V (r) defined as

V (r)
(
x,L(r)

0 , τ
(r)
0 , f

(r)
0

)
= stat

e

[
w

(r)
L (x, e)− w(r)

0 (e)
]
. (B.1)

The stationarity is achieved for ê(r)
0 (x) given by

ê
(r)
0 (x) = −

(
∆L(r)

)−1
: ∆τ (r)(x), (B.2)
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with ∆τ (r)(x) = τ
(r)
L (x) − τ (r)

0 . By considering the above result, function V (r)

can be rewritten as

V (r)
(
x,L(r)

0 , τ
(r)
0 , f

(r)
0

)
= −1

2
∆τ (r)(x) :

(
∆L(r)

)−1
: ∆τ (r)(x) +

1

2
∆f (r)(x),

(B.3)
with ∆f (r)(x) = f

(r)
L (x)− f (r)

0 . Then, w(r)
L given by Eq. (50) is approached by

w
(r)
L (x, ε) ≈ w

(r)
0 (ε) + V (r)

(
x,L(r)

0 , τ
(r)
0 , f

(r)
0

)
. (B.4)

Note that this approximation is a lower (resp. upper) bound for L(r)
0 satisfying

∆L(r) ≥ 0 (resp. ∆L(r) ≤ 0). The effective behaviour is therefore given by

w̃L(E) ≈ w̃0(E) +
N∑
r=1

c(r)
〈
V (r)

(
.,L(r)

0 , τ
(r)
0 , f

(r)
0

)〉(r)

, (B.5)

with w̃0(E) being defined by Eq. (53). Similarly to Agoras et al. [1], the obtained
estimate is then optimized w.r.t. L(r)

0 , τ (r)
0 and f (r)

0 such that we finally obtain Eq.
(52)

AppendixC. Derivative of A−1

Let A be a fourth-order tensor. In this appendix, we seek to demonstrate the
following identity

∂ A−1

∂ A
= −

(
A−1 ⊗ A−1

)
. (C.1)

First,
∂ (A : A−1)

∂ A
=
∂ I4

∂ A
= 0, (C.2)

where I4 denotes the symetric fourth-order identity tensor. Moreover

∂ (A : A−1)

∂ A
=
∂ A
∂ A

: A−1 + A :
∂ A−1

∂ A
= I8 : A−1 + A :

∂ A−1

∂ A
, (C.3)

where I8 is the eighth-order identity tensor defined as I8 = I4 ⊗ I4. By double
contracting on the left Eq. (C.3) with A−1 we get

(
A−1 : I4

)
⊗
(
I4 : A−1

)
+ I4 :

∂ A−1

∂ A
= 0. (C.4)
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Noting that I4 : B = B for any eighth-order tensor B, we have

∂ A−1

∂ A
= −

(
A−1 ⊗ A−1

)
. (C.5)

AppendixD. Effective behavior and field statistics for thermo-elastic linear
composites

Let us consider a N-phase thermoelastic composite whose per-phase free-
energy is given by

w
(r)
0 (ε) =

1

2
ε : C

(r)
0 : ε+ τ

(r)
0 : ε+

1

2
f

(r)
0 . (D.1)

According to Willis [30], its effective free-energy reads

w̃0(ε) =
1

2
E : L̃0 : E+τ̃0 : E+

1

2
f̃0, where



L̃0 = 〈L0〉+
N−1∑
r=1

c(r)
(
L

(r)
0 − L

(N)
0

)
:
(
A

(r)
0 − I

)
τ̃0 = 〈τ0〉+

N−1∑
r=1

c(r)
(
A

(r)
0 − I

)T
:
(
τ

(r)
0 − τ

(N)
0

)
f̃0 = 〈f0〉+

N−1∑
r=1

c(r)
(
τ

(r)
0 − τ

(N)
0

)
: a

(r)
0 .

(D.2)
In Eq. (D.2), the fourth-order A(r)

0 and second-order a(r)
0 tensors denote the clas-

sical strain localization tensors. As shown for instance [23], the first and second-
order moments of the strain over the phase can be obtained by the following rela-
tions

ε̄(r) = A
(r)
0 : ε̄+ a

(r)
0 , 〈ε⊗ ε〉(r) =

2

c(r)

∂w̃0

∂L
(r)
0

. (D.3)

For a two-phase composite (N=2), the fourth-order localization tensors associ-
ated to the Hashin and Shtrikman estimates used in the numerical applications are
given by

A
(1)
0 =

(
I + c(2)P

(2)
0 : ∆L0

)−1

, A
(2)
0 =

1

c(2)

(
I − c(1)A

(1)
0

)
, (D.4)

where subscripts (1) and (2) denote the inclusion and matrix phases, respectively,
and ∆L0 = L

(1)
0 −L

(2)
0 . In this study, the microstructural tensor P (2)

0 corresponds
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to the classical Hill’s tensor associated with the matrix phase for an isotropic dis-
tribution of spherical inclusions. For isotropic composites L(r)

0 = 3k
(r)
0 J+2µ

(r)
0 K,

it is classically given by

P(2)
0 =

α
(2)
0

3k
(2)
0

J+
β

(2)
0

2µ
(2)
0

K, with α
(2)
0 =

3k
(2)
0

3k
(2)
0 + µ

(2)
0

, β
(2)
0 =

6
(
k

(2)
0 + 2µ

(2)
0

)
5
(

3k
(2)
0 + 4µ

(2)
0

) .
(D.5)

The second-order localization tensors are then determined by the Levin’s rela-
tion

a
(1)
0 =

1

c(1)
∆L−1

0 :
(
L̃0 − 〈L0〉

)
: ∆L−1

0 :
(
τ

(1)
0 − τ

(2)
0

)
, a

(2)
0 = −c

(1)

c(2)
a

(1)
0 ,

(D.6)
since the effective elastic modulus L̃0 associated with the Hashin and Shtrikman
estimate is easily derived from Eqs. (D.2)1 and (D.4)1.

AppendixE. Multiple solutions

To well understand the consequences induced by the non uniqueness issue
raised in Section 3.4.3 (see Eq. (87)) and to define a strategy allowing to choose
the appropriate root, we consider here the simplest situation which corresponds
to the case of an elastic ideally-plastic matrix. For that, simulations are carried
out on the same elastically reinforced composite considered in Section 4.1.2 and
submitted to a cyclic isochoric macroscopic extension. As shown in Fig. E.14
which depicts the macroscopic response, a non physical jump is observed around
E33 ≈ 0. The same jump also appears for the first and second-order moments of
the stress over the phase, and for the stress fluctuations in the matrix. This jump
is due to the non uniqueness of the root of the equation F1

(
µ

(2)
0 , η

(2)
εp

)
= 0 with

F1 defined by (82)1. In fact, it is numerically observed that the function F1 has
several roots w.r.t variable µ(2)

0 at fixed η(2)
εp : two as expected for composites with

incompressible phases (see Eq. (87)) but even four for compressible composites.

Case of incompressible composites.
Let us first focus on composites with incompressible phases. For this kind of
material, it has been numerically observed that the function F1 has always two
solutions as illustrated by Fig. E.15 which displays the variations of the function
F1 w.r.t. µ(2)

0 for fixed η(2)
εp at the value E33 corresponding to the jump (see Fig.
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Figure E.14: Elastically reinforced composite with an elastic ideally-plastic matrix. Macroscopic
isochoric extension. c(1) = 0.17. Variation of the macroscopic axial stress without selection of
the appropriate root.

E.14). In order to get rid of the jump observed in Fig. E.14, we need to select the
appropriate root. For that, we add in the algorithm the following constraints

Σ33(tn+1)− Σ33(tn)

E33(tn+1)− E33(tn)
≥ 0 and

σ
(1)
33 (tn+1)− σ(1)

33 (tn)

E33(tn+1)− E33(tn)
≥ 0, (E.1)

which allow to enforce the continuity of both the macroscopic stress and the stress
average over the matrix, and therefore to check if the root provided by the pro-
cedure fsolve of matlab is the appropriate one. If constraints (E.1) are satisfied,
we can go the next time step. If not, we have to determine the other root of F1

since the root initially provided by fsolve is not the good one. For that, we simply
change the value of the starting point associated with the variable µ(2)

0 which is
required by the procedure fsolve.
As shown in Fig. E.16, this correction of the algorithm yields good results since
the evolution of the macroscopic stress is now regular with no jump occurrence as
before. Moreover, the additional numerical computing cost induced by this cor-
rection is weak: around 3s for a total computational time of 20s.

Case of compressible composites.
We now consider the case of compressible composites. For that, we applied the
DIV approach to the same composite considered in the previous paragraph - that is

56



-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

0
(2) [GPa]

-20

-15

-10

-5

0

5

10

15

F
1
(

0(2
) )[

G
P

a]

Figure E.15: Elastically reinforced incompressible composite with an elastic ideally-plastic ma-
trix. Macroscopic isochoric extension. c(1) = 0.17. Evolution of the function F1 w.r.t. µ(2)

0 at the
point corresponding to the jump observed on Fig. E.14.

the elastically reinforced composite with an elastic ideally-plastic matrix defined
by the set of material parameters (93) - except that now the Poisson’s ratios of the
phase are given by ν(1) = ν(2) = 0.3636. The loading is still a cyclic isochoric
macroscopic extension. It is numerically observed that the solution of equation
F1

(
µ

(2)
0 , η

(2)
εp

)
= 0 defined by (82)1 has now four roots at each time step. This is

illustrated by Fig. E.17 which shows the variations of this function w.r.t. µ(2)
0 for

fixed η(2)
εp at time t = 20s corresponding to E33 = 0. The determination of the

appropriate root becomes more difficult because of the occurence of four roots. To
obtain the appropriate one, the same constraints (E.1) than the ones presented for
incompressible composites are used. When these constraints are not satisfied by
the solution initially provided by the procedure fsolve, we now have to determine
the three other remaining roots and check which of them satisfies constraints (E.1).
To determine the three remaining roots, we make use of a dichotomy method
which, together with constraints (E.1), allow us in most of the cases to obtain the
appropriate root. However, for some scarce points the algorithm fails to determine
the appropriate root. This occurs because the function F2 (see also Eq. (82)2)
presents for compressible composites a singularity, as illustrated on Fig. E.18
which reports the evolution of this function w.r.t. µ(2)

0 for fixed η(2)
εp at time t = 20s

corresponding to E33 = 0. The analytical expression of F2 suggests that the
singularity is probably generated by a pole. However, for the time being, we did
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Figure E.16: Elastically reinforced incompressible composite with an elastic ideally-plastic ma-
trix. Macroscopic isochoric extension. c(1) = 0.17. Evolution of the macroscopic axial stress with
and without correction in the algorithm.

not manage to remove it.
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