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DGAS WITH POLYNOMIAL HOMOLOGY

HALDUN ÖZGÜR BAYINDIR

Abstract. In this work, we study the classification of differential graded algebras over
Z (DGAs) whose homology is Fp[x], i.e. the polynomial algebra over Fp on a single
generator. This classification problem was left open in work of Dwyer, Greenlees and
Iyengar.

For |y2p−2| = 2p− 2, we show that there is a unique non-formal DGA with homology
Fp[y2p−2] and a non-formal 2p− 2 Postnikov section. Among a classification result, this
provides the first example of a non-formal DGA with homology Fp[x]. By duality, this
also shows that there is a non-formal DGA whose homology is an exterior algebra over
Fp with a generator in degree −(2p− 1).

Considering the classification of the ring spectra corresponding to these DGAs, we
show that every E2 DGA with homology Fp[x] (with no restrictions on |x|) is topolog-
ically equivalent to the formal DGA with homology Fp[x], i.e. they are topologically
formal. This follows by a theorem of Hopkins and Mahowald.

1. Introduction

This paper concerns the classification of DGAs. An interesting classification result
is given by Dwyer, Greenlees and Iyengar in [10]. Namely, they provide a complete
classification of DGAs with homology ΛFp(x−1), i.e. the exterior algebra over Fp with a
single generator in degree −1. This classification result states that there is a bijection
between quasi-isomorphism classes of DGAs with homology ΛFp(x−1) and isomorphism
classes of complete discrete valuation rings with residue field Fp. Indeed, there is also a one
to one correspondence between topological equivalence classes of DGAs with homology
ΛFp(x−1) and isomorphism classes of complete discrete valuation rings with residue field
Fp, see Theorem 2.8.

Classifying the Postnikov extensions of Fp in DGAs, Dugger and Shipley obtain a
classification of quasi-isomorphism classes of DGAs with homology ΛFp(xn) for |xn| =
n > 0 [9]. They show that there is a unique DGA with homology ΛFp(xn) for odd n
and there are precisely two distinct DGAs with homology ΛFp(xn) for even n. Also, it is
known that there is a unique DGA with homology ΛFp(x0). This result together with the
result of Dwyer, Greenlees and Iyengar provides a complete classification of DGAs with
homology ΛFp(xn) for n ≥ −1.

Dwyer, Greenlees and Iyengar also work on the classification of DGAs with homology
ΛFp(xn) for n < −1. Using a Moore-Koszul duality argument, they show that for n < −1
there is a bijection between quasi-isomorphism classes of DGAs with homology ΛFp(xn)
and quasi-isomorphism classes of DGAs with homology Fp[x−n−1], i.e. the polynomial
algebra over Fp with a single generator in degree −n−1. The classification of DGAs with
homology Fp[x] for |x| > 0 is left as an open question in [10]. In this work, we study this
problem.

Note that when we say DGAs, we mean differential graded algebras over Z. For Fp-
DGAs, the answer to this problem is obvious. There is a unique Fp-DGA with homology
Fp[x]. This is the free DGA over Σ|x|Fp. For a proof of this fact, see Section 2A.
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Our methods heavily rely on the topological equivalences of DGAs. The idea of topo-
logical equivalences is to use ring spectra to obtain new equivalences between DGAs.
This provides us new tools for our calculations. Namely, this allows us to use our knowl-
edge of the Bökstedt spectral sequence calculating THH(HFp) to obtain the Hochschild
cohomology groups that classify the Postnikov extensions we need.

The homotopy category of DGAs is equivalent to the homotopy category of HZ-
algebras [30]. To move from DGAs to ring spectra, we use the zig-zag of Quillen equiva-
lences between DGAs and HZ-algebras [29]. For a DGA X, we denote the corresponding
HZ-algebra by HX. Furthermore, we omit the forgetful functor from HZ-algebras to
S-algebras and denote the underlying S-algebra of HX by HX. Note that we denote the
sphere spectrum by S.

Definition 1.1. Two DGAs X and Y are said to be topologically equivalent if HX
and HY are weakly equivalent as S-algebras.

The definition of topological equivalences is due to Dugger and Shipley [9]. Note that
because HZ-algebras is Quillen equivalent to DGAs, two DGAs X and Y are quasi-
isomorphic precisely when HX and HY are equivalent as HZ-algebras. Furthermore,
the forgetful functor from HZ-algebras to S-algebras preserves weak equivalences. This
shows that quasi-isomorphic DGAs are always topologically equivalent. However, the
main result of [9] shows that the opposite direction of this statement is not true. Namely,
Dugger and Shipley show that there are examples of DGAs that are topologically equiv-
alent but not quasi-isomorphic. This is explained in the following example.

A DGA is said to be formal if it is quasi-isomorphic to a DGA with trivial differentials.
Similarly, we say a DGA is topologically formal if it is topologically equivalent to a
formal DGA. Note that given a graded ring A, there is a unique formal DGA with
homology A.

Example 1.2. [9, Section 5] Up to quasi-isomorphism, there are only two DGAs with
homology ΛFp(x2p−2) where |x2p−2| = 2p− 2. One of these DGAs is the formal one. For
the rest of this work, we denote the non-formal DGA with homology ΛFp(x2p−2) by Y .
For p = 2, Y is given by

Z[e1|de1 = 2]/(e4
1)

where |e1| = 1.

The interesting point of this example is that Y and the formal DGA with homology
ΛFp(x2p−2) are topologically equivalent although they are not quasi-isomorphic. In other
words, Y is topologically formal but it is not formal.

We show that the following result is a consequence of a theorem of Hopkins and Ma-
howald. Note that when we say an S-algebra is an E2 S-algebra, we mean that the the
corresponding object in the ∞-category of S-algebras is an E2 S-algebra.

Theorem 1.3. Let X be a DGA with homology Fp[x]. If the S-algebra corresponding to
X is an E2 S-algebra, then X is topologically formal.

For homology with multiple polynomial generators, we have the following result.

Theorem 1.4. Let X be a DGA whose homology is a polynomial algebra over Fp with
three or less generators which all lie in even degrees. If the S-algebra corresponding to X
is an E2 S-algebra, then X is topologically formal.

Remark 1.5. The second hypothesis in the theorems above is satisfied if X is quasi-
isomorphic to an E2 DGA (in the model categorical setting or in the ∞-categorical
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setting). Indeed, the underlying∞-category of the model category of En DGAs is equiv-
alent to the ∞-category of En-algebras in the ∞-category of chain complexes [13, 4.1.1].
Furthermore, there is an equivalence between the ∞-categories of En DGAs and En
HZ-algebras induced by Shipley’s zig-zag of symmetric monoidal Quillen equivalences
between the model categories of chain complexes and HZ-modules [26, 4.4]. This equiv-
alence ensures that the object in the ∞-category of S-algebras corresponding to an E2

DGA is an E2 S-algebra. See the discussion at the beginning of Section 2 for more details.

We prove the following classification result for coconnective DGAs with exterior ho-
mology.

Theorem 1.6. For |x| < 0, every E2 DGA with homology ΛFp [x] is formal as a DGA.

Furthermore, we apply this theorem to the examples of non-formal DGAs with homol-
ogy ΛFp(x−1) constructed in [10].

Corollary 1.7. Let X be a DGA with homology ΛFp(x−1). If X is not formal then X is
not an E2 DGA. Equivalently, for a complete discrete valuation ring A with residue field
Fp and characteristic different than p, the derived endomorphism DGA EndA-mod(Fp) is
not an E2 DGA.

To obtain classification results without the E2 assumption, we attack this problem by
calculating the quasi-isomorphism types of Postnikov extensions which are classified by
Hochschild cohomology groups. The main ingredient for these calculations is our knowl-
edge of the topological equivalence type of Y which allows us to carry out the Hochschild
cohomology calculations. This is interesting because we obtain a purely algebraic result
on DGAs by using ring spectra and topological equivalences of DGAs. This result is
stated in the following theorem. Note that in the theorem below when we say unique, we
mean unique up to quasi-isomorphisms.

Theorem 1.8. There is a unique DGA whose homology is Fp[x2p−2] (with |x2p−2| = 2p−2)
and whose 2p−2 Postnikov section is non-formal. Furthermore for every m > 1, there is
a unique DGA whose homology is Fp[x2p−2]/(xm2p−2) and whose 2p − 2 Postnikov section
is non-formal.

Theorem 1.9. Let X be the non-formal DGA with homology Fp[x2p−2] given in Theorem
1.8. We have

HHZ
∗ (X,Fp) = Fp[µ]/(µp) with |µ| = 2.

It is interesting that we obtain these simple Hochschild homology groups. For example,
for the formal DGA Z with homology Fp[x2p−2], we have HHZ

∗ (Z,Fp) ∼= Γ(y)⊗Λ(z) where
|y| = 2 and |z| = 2p− 1, see Remark 6.6.

We use the Bökstedt spectral sequence to calculate HHZ
∗ (X,Fp) where X is as in The-

orem 1.9. Using topological equivalences, we show that the non-trivial differentials in
the Bökstedt spectral sequence calculating THH∗(Fp) carry into the spectral sequence
calculating HHZ

∗ (X,Fp) and cause the cancellations that provides this simple result. In-
deed, this is the way we carry out our Hochschild cohomology calculations to classify the
Postnikov extensions at each level of the Postnikov tower of X.

Example 1.10. Among other things, Theorem 1.8 provides a non-formal DGA with
homology Fp[x2p−2]. This DGA is not formal because its 2p − 2 Postnikov section is Y
which is not formal. Proposition 6.1 of [10] states that there is a bijection between quasi-
isomorphism classes of DGAs with homology Fp[x2p−2] and quasi-isomorphism classes of
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DGAs with homology ΛFp(z−(2p−1)) for |z| = −(2p − 1). In particular, we obtain that
there is a non-formal DGA with homology ΛFp(z−(2p−1)).

Organization In Section 2 we prove Corollary 1.7, Theorems 1.3, 1.4, 1.6 and 2.8.
The rest of this work is independent from Section 2 and it is devoted to the proof of
Theorems 1.8 and 1.9. Section 3 contains a review of k-invariants for Postnikov extensions
of ring spectra. In Section 4, we use standard results to show that the k-invariants that
we are interested in lie in certain Hochschild homology groups and discuss a few well
known calculational tools for Hochschild homology. In Section 5, we compute the relevant
differentials in the Bökstedt spectral sequences of interest. Section 6 is devoted to the
proof of Theorems 1.8 and 1.9. In Section 7, we prove technical lemmas that provide
the ring structures on the HFp-homology of the HZ-algebras of interest. These technical
lemmas are used in Sections 5 and 6.

Notation In our notation, we don not distinguish between a DGA and the correspond-
ing HZ-algebra in most situations, i.e. we omit the functor H.

In Section 3 and after, we work in the setting of EKMM spectra [11] but our final results
do not depend on the model of spectra we use. Most of the smash products we mention
represent the corresponding derived smash products due to our q-cofibrancy assumptions.
In the situations where the given smash product do not necessarily represent the derived
smash product, this will be explicitly indicated.

Acknowledgments I would like to thank Irakli Patchkoria for suggesting the nilpo-
tence theorem of Hopkins and Mahowald for our classification problem. Also, I thank
Jeremy Hahn for helpful conversations.

2. Proof of the classification results for E2-algebras

This section is devoted to the proof of our results that involve classification of DGAs
with E2-structure, i.e. we prove Theorems 1.3, 1.4 and 1.6 as well as Corollary 1.7. At
the end of this section, we prove Theorem 2.8 which improves the main result of [10] to
a classification of the topological equivalence classes of the DGAs considered in [10].

In this section, we work in the∞-categorical setting unless we state otherwise. On the
other hand, when we talk about spectra in a model categorical setting, we use the stable
model structure on symmetric spectra in simplicial sets [15]. It follows by [20, 4.1.8.4]
and [25, 3.4.2] that we do not need to distinguish between the model categorical setting
and the ∞-categorical setting when we are studying equivalence classes of S-algebras
or when we are studying equivalence classes of Hk-algebras where k denotes a discrete
commutative ring.

There are several reasons why we work in ∞-categories. For instance, there is a zig-
zag of symmetric monoidal Quillen equivalences between the model categories of chain
complexes and HZ-modules which provides a zig-zag of Quillen equivalences between the
model categories of DGAs and HZ-algebras [29]. However, we need a zig-zag of Quillen
equivalences between the model categories of En DGAs and En HZ-algebras for n = 2
but this is not available in the literature; n =∞ case is due to Richter and Shipley [27].

On the other hand, Shipley’s zig-zag of symmetric monoidal Quillen equivalences induce
an equivalence of symmetric monoidal ∞-categories between the ∞-categories of chain
complexes and HZ-modules [26, 4.4]. This induces the desired equivalence between the
∞-categories of En k-DGAs and En Hk-Algebras. This equivalence for n = 1, together
with [20, 4.1.8.4] implies that we do not need to distinguish between the ∞-categorical
setting and the model categorical setting when we classify quasi-isomorphism classes or
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topological equivalence classes of k-DGAs. The model category of chain complexes in
k-modules satisfy the hypothesis of [20, 4.1.8.4] due to [20, 7.1.4.3], [14, 2.3.11] and the
discussion after Convention 2.2 in [5].

Furthermore, Theorem 4.1.1 of [13] implies that the underlying ∞-category of the
model category of En k-DGAs is equivalent to the ∞-category of En-algebras in the ∞-
category of k-chain complexes. This allows us to obtain an E2-algebra in the∞-category
of Hk-modules from a given object in the model category of E2 DGAs.

Another reason we work in the ∞-categorical setting is the following. Given an S-
algebra F and a commutative S-algebra E in the model category of spectra, an E-algebra
structure on F is given by a central map E → F . However, center of an S-algebra in
the model categorical setting may not be homotopy invariant. On the other hand, in
the ∞-category of spectra, one may use an E2-map E → F to construct an E-algebra
structure on F . This is made precise in the following lemma.

Lemma 2.1. Let R be a commutative ring spectrum and let E → F be a map of En+1

R-algebras for some n ≥ 1. In this situation, the underlying En R-algebra of F carries
the structure of an En E-algebra.

Proof. This follows as in [1, 3.7]. Since E and F are En+1 R-algebras, the ∞-categories
of E-modules and F -modules are En-monoidal ∞-categories [20, 5.1.2.6]. Again due
to [20, 5.1.2.6], the left adjoint of the forgetful functor from F -modules to E-modules
is En-monoidal. Therefore, it follows by [20, 7.3.2.7] that this forgetful functor is lax
En-monoidal.

Furthermore, R is the initial object in En+1 R-algebras [20, 3.2.1.8]. In particular, we
have a sequence of maps

R→ E → F

of En+1 R-algebras. As before, the ∞-category of R-modules is a symmetric monoidal
and therefore an En-monoidal∞-category and the forgetful functors induced by the maps
R → E and R → F above are lax En-monoidal. Note that a lax En-monoidal functor
carries En-algebras to En-algebras.

We obtain a commuting diagram of lax En-monoidal forgetful functors:

F -modules E-modules

R-modules.

Since F is the unit of the En-monoidal ∞-category F -modules, F is an En-algebra in
F -modules. Furthermore, it forgets to the underlying En-algebra of F in R-modules (i.e.
the underlying En R-algebra of F in the hypothesis of the lemma) through the forgetful
functor induced by the map R→ F .

Carrying F in F -modules to E-modules through the top horizontal arrow, we obtain an
En-algebra in E-modules that also forgets to the underlying En-algebra of F in R-modules
because the diagram above commutes. In other words, the underlying En R-algebra of
F carries the structure of an En E-algebra as desired. �

2A. Proof of Theorems 1.3 and 1.4. We start by introducing a version of the nilpo-
tence theorem of Hopkins and Mahowald provided in [1, 5.1], this version of the nilpotence
theorem is also proved in [22, 4.16].
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Let S �E2 p denote the pushout of the diagram

S ·p←− FE2S
0−→ S

in E2 S-algebras where FE2− denotes the free functor from S-modules to E2 S-algebras.
Furthermore, the arrows denoted by ·p and 0 are the adjoints of the maps S → S given
by multiplication by p and 0 respectively. Theorem 5.1 of [1] provides the following
characterization of the nilpotence theorem which states that HFp is the free E2 S-algebra
with p = 0.

Theorem 2.2. There is an equivalence of E2 S-algebras

HFp ' S �E2 p.

Considering the pushout diagram defining S �E2 p, one obtains the following corollary
of the theorem above.

Corollary 2.3. Let E be an E2 S-algebra with p = 0 in π∗(E), then there is a map

HFp → E

of E2 S-algebras.

Combining this corollary with Lemma 2.1, we obtain the following corollary.

Corollary 2.4. Let F be an E2 S-algebra with p = 0 in π∗(F ), then the underlying
S-algebra of F carries the structure of an HFp-algebra.

To prove Theorems 1.3 and 1.4, we first prove the stronger result stated in the following
theorem.

Theorem 2.5. Let X be a DGA whose homology ring is an Fp-algebra A and assume
that the S-algebra corresponding to X is an E2 S-algebra. If every Fp-DGA with homology
ring A is formal, then X is topologically formal.

Proof of Theorem 2.5. Let U(X) denote the S-algebra corresponding to X. By hypothe-
sis, U(X) is an E2 S-algebra. Since π∗U(X) = H∗X = A is an Fp-algebra, we have p = 0
in π0U(X). It follows from Corollary 2.4 that U(X) carries an HFp-algebra structure.
Let Y denote the Fp-DGA corresponding to a chosen HFp-algebra structure on U(X).
As an Fp-DGA, the homology of Y is given by:

H∗Y = π∗U(X) = H∗X = A.

Our hypothesis states that every Fp-DGA with homology A is formal; we deduce that Y is
formal as an Fp-DGA. By construction, the underlying S-algebra of the HFp-algebra cor-
responding to Y is U(X). Therefore, X is topologically equivalent to Y by construction.
Since Y is formal, we deduce that X is topologically formal. �

To deduce Theorem 1.3 and Theorem 1.4 from Theorem 2.5 we need to show that if
A is the homology of a DGA satisfying the hypothesis of Theorem 1.3 or Theorem 1.4,
then every Fp-DGA with homology A is formal.

For Theorem 1.3, this follows by a standard observation. In this case, A = Fp[x]. Let
Z be an Fp-DGA with homology Fp[x]. One can show that there is a map x : Σ|x|Fp → Z
of Fp-chain complexes realizing x in homology. Here, Σ|x|Fp denotes the chain complex
that is trivial in all degrees except degree n where it is given by Fp. By adjunction, there
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is a map ψ : T (Σ|x|Fp) → Z of Fp-DGAs where T : Fp-chains → Fp-DGAs denotes the
free functor. We have

T (Σ|x|Fp) ∼=
⊕
i≥0

(Σ|x|Fp)⊗Fp i ∼=
⊕
i≥0

Σ|x|iFp.

Therefore, the homology of T (Σ|x|Fp) is also Fp[x] and ψ induces an isomorphism in
homology. Since T (Σ|x|Fp) carries trivial differentials, we deduce that Z is formal as it is
quasi-isomorphic to T (Σ|x|Fp). This proves Theorem 1.3.

For Theorem 1.4, we refer to Proposition 5.5 of [17]. This proposition states that
every Fp-DGA whose homology is a polynomial algebra with up to three generators in
even degrees is quasi-isomorphic to the formal Fp-DGA with the given homology. This is
precisely the statement one needs in order to obtain Theorem 1.4 from Theorem 2.5.

2B. Classification results for coconnective DGAs. Here, we prove Theorem 1.6,
Theorem 2.8 and Corollary 1.7. We start by giving a short description of the main result
of [10].

As mentioned before, the main result of [10] provides a bijection between quasi-
isomorphism classes of DGAs with homology ΛFp(x−1) and isomorphism classes of com-
plete discrete valuation rings (CDVRs) with residue field Fp. For a DGA Z with homology
ΛFp(x−1), the corresponding CDVR is given by the degree zero homology of EndZ-mod(Fp)
where EndZ-mod(−) denotes the derived endomorphism DGA in the model category of
Z-modules. Similarly for a given CDVR A with residue field Fp, the corresponding DGA
is given by the derived endomorphism DGA EndA-mod(Fp) of Fp in the model category of
differential graded A-modules.

Example 2.6. ([10, Remark 3.3]) For a CDVR A with residue field Fp and maximal ideal
(π), there is a projective resolution:

0→ A
·π−→ A→ 0,

of Fp in A-modules. This provides an explicit description of the DGA EndA-mod(Fp) given
by the chain complex:

0→ 〈L〉 ∂L=πD1+πD2−−−−−−−−→ 〈D1, D2〉
∂Di=(−1)iπU−−−−−−−−→ 〈U〉 → 0,

concentrated in degrees −1, 0 and 1. Here, 〈−〉 denotes the free A-module with the given
generators and the multiplication on this chain complex is given by the multiplication of
the following matrices.

L =

(
0 0
1 0

)
D1 =

(
1 0
0 0

)
D2 =

(
0 0
0 1

)
U =

(
0 1
0 0

)
Example 2.7. It is also interesting to consider the case A = Z although Z is not a
CDVR. We compare the DGA corresponding to Z with the DGA corresponding to the
ring of p-adic integers Zp. Note that Zp is a CDVR with residue field Fp. In this case,
an elementary Ext computation shows that the left Quillen functor Zp ⊗Z − from chain
complexes of Z-modules to chain complexes of Zp-modules results in a quasi-isomorphism

EndZ-mod(Fp) ∼→ EndZp-mod(Fp)

of DGAs. In other words, the DGAs corresponding to Z and Zp are quasi-isomorphic.
This shows that the correspondence described above is no longer a bijection if one con-
siders rings that are not CDVRs.
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For the convenience of the reader, we provide a restatement of Theorem 1.6 below.

Theorem 1.6. For |x| < 0, every E2 DGA with homology ΛFp [x] is formal as a DGA.

Proof. Let X be the HZ-algebra corresponding to an E2 DGA with homology ΛFp(x)
where |x| < 0. As mentioned before, [13, 4.1.1] and [26, 4.4] implies that X is an E2

HZ-algebra. Since π∗X = ΛFp(x) with |x| < 0, X is coconnective. Therefore, X admits
a connective cover given by a map

HFp → X

of E2 HZ-algebras [20, 7.1.3.11]. It follows by Lemma 2.1 that X is weakly equivalent
as an HZ-algebra to an HFp-algebra. Therefore, what remains is to show that every
Fp-DGA with homology ΛFp(x) is formal as a DGA.

For |x| < −1, we use Proposition 6.1 of [10]. This states that there is a bijection between
the quasi-isomorphism classes of DGAs with homology ΛFp(x) and the quasi-isomorphism
classes of DGAs with homology Fp[u] where |u| = −|x| − 1. The DGA with homology
Fp[u] corresponding to a DGA Z with homology ΛFp(x) is given by EndZ-mod(Fp) where
End denotes the derived endomorphism DGA as before. If Z is an Fp-DGA then the
corresponding DGA EndZ-mod(Fp) is also an Fp-DGA. In the discussion after the proof
of Theorem 2.5, we show that there is a unique Fp-DGA with homology Fp[u]. Therefore
up to quasi-isomorphisms of DGAs, there is a unique Fp-DGA with homology ΛFp(x). In
other words, every Fp-DGA with homology ΛFp(x) is formal as a DGA.

For the case |x| = −1, we use the bijection between CDVRs with residue field Fp and
DGAs with homology ΛFp(x) discussed above. If Z is an Fp-DGA, then the corresponding
CDVR EndZ-mod(Fp) is an Fp-algebra. It is known that there is a unique CDVR with
residue field Fp and characteristic p, this is the formal power series ring Fp[[u]] [28, Chapter
2, Theorem 2]. We conclude that up to quasi-isomorphisms of DGAs, there is a unique
Fp-DGA with homology ΛFp(x). �

Proof of Corollary 1.7. The first statement is a direct consequence of Theorem 1.6. We
prove the second statement.

As discussed at the end of the proof of Theorem 1.6, the formal DGA with homology
ΛFp(x−1) corresponds to the CDVR Fp[[u]] because this formal DGA is an Fp-DGA. For a
given CDVR A with residue field Fp and characteristic different than p, EndA-mod(Fp) is
the corresponding DGA with homology ΛFp(x−1). Since Fp[[u]] has characteristic p, A 6=
Fp[[u]]. From this, we deduce that EndA-mod(Fp) is not formal. Therefore EndA-mod(Fp)
is not an E2 DGA by Theorem 1.6. �

We also improve the main result of [10] to obtain a classification of the topological
equivalence classes of DGAs with homology ΛFp(x−1). In particular, we show that if two
DGAs with homology ΛFp(x−1) are not equivalent through quasi-isomorphisms then they
are not equivalent through topological equivalences.

Theorem 2.8. There is a bijection between topological equivalence classes of DGAs with
homology ΛFp(x−1) and isomorphism classes of CDVRs with residue field Fp.

Proof. Due to the main result of [10] described at the beginning of Section 2B, we only
need to show that topological equivalences and quasi-isomorphisms agree on DGAs with
homology ΛFp(x−1). Since quasi-isomorphic DGAs are topologically equivalent in general,
we only need to show that topologically equivalent DGAs with homology ΛFp(x−1) are
quasi-isomorphic. In particular, it is sufficient to show that CDVRs corresponding to
topologically equivalent DGAs with homology ΛFp(x−1) are isomorphic.
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Let Z be a DGA with homology ΛFp(x−1). The corresponding CDVR is the degree
zero homology

H0(EndZ-mod(Fp)).
By Propositions 1.5 and 1.7 of [8], the ring spectrum corresponding to EndZ-mod(Fp) is the
homotopy endomorphism ring spectrum in the sense of [6]. The homotopy endomorphism
ring spectrum is invariant under Quillen equivalences by [6, 1.4]. For two topologically
equivalent DGAs Z and Z ′ with homology ΛFp(x−1), Z-modules is Quillen equivalent to
Z ′-modules [9, 7.2]. Furthermore, it is clear that these Quillen equivalences preserve Fp
which is uniquely determined by its homology [10, Section 2]. This shows that the ring
spectra corresponding to EndZ-mod(Fp) and EndZ′-mod(Fp) are weakly equivalent. Since
the homology ring of a DGA is isomorphic to the homotopy ring of the corresponding
ring spectrum, this shows that

H0(EndZ-mod(Fp)) ∼= H0(EndZ′-mod(Fp)).
In other words, the CDVRs corresponding to Z and Z ′ are isomorphic. �

3. Postnikov extensions of ring spectra

The proof of the classification result in Theorem 1.8 relies on the Postnikov theory for
ring spectra. This allows us to break the classification problem into smaller pieces by
doing induction over a Postnikov tower. In this section, we describe Postnikov sections
for ring spectra and discuss the classification of Postnikov extensions of ring spectra by
André–Quillen cohomology [7].

Let R denote a connective q-cofibrant commutative S-algebra throughout this section.
By connective, we mean πiR = 0 for every i < 0. Furthermore, let X denote a connective
q-cofibrant R-algebra.

What we call an m Postnikov section of X is a map X → X[m] of R-algebras which
satisfies the following properties.

(1) The homomorphism πnX → πnX[m] is an isomorphism for every n ≤ m.
(2) We have πnX[m] = 0 for every n > m.

Indeed, there is a Postnikov tower

· · · → X[2]→ X[1]→ X[0]

with compatible Postnikov section maps X → X[m] for every m ≥ 0. Note that we
reserve this notation X[m] to denote the target of an m Postnikov section for a given R-
algebra X. Furthermore, taking Postnikov sections can be made functorial. In particular
given X → Z, we have a map X[m]→ Z[m] for every m ≥ 0.

Using this, we define Postnikov extensions. Let X satisfy X ' X[n−1] for some n ≥ 1.
Given a π0X-bimodule M , a type (M,n) Postnikov extension of X is an R-algebra
Z with a map Z → X satisfying the following properties.

(1) The induced map Z[n− 1]→ X[n− 1] ' X is a weak equivalence.
(2) The map Z → Z[n] is a weak equivalence.
(3) There is an isomorphism of π0X-bimodules πnZ ∼= M where πnZ becomes a

π0X-bimodule through the isomorphism π0Z ∼= π0X.

Note that for every connective R-algebra X, the Postnikov section map X[n]→ X[n− 1]
is a type (πnX[n], n) Postnikov extension of X[n− 1].

Let MR(X + (M,n)) denote the category whose objects are maps Z → X that are
Postnikov extensions of X of type (M,n) and whose morphisms are weak equivalences
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over X. In other words, given two type (M,n) Postnikov extensions of X denoted by
Z1 → X and Z2 → X, a morphism from Z1 → X to Z2 → X inMR(X+(M,n)) is weak
equivalence Z1

∼→ Z2 that makes the following diagram commute.

Z1 Z2

X

'

We denote the weak equivalence classes of type (M,n) Postnikov extensions of X by
π0MR(X + (M,n)).

André–Quillen cohomology is a cohomology theory for ring spectra [19]. This is a
generalization of the classical André–Quillen cohomology.

To define André–Quillen cohomology, we consider HM as an X[0]-bimodule via the
equivalence X[0] ' Hπ0X and let X[0] ∨ Σn+1HM denote the square-zero extension of
X[0] by Σn+1HM .

We use the following proposition as our definition of André-Quillen cohomology where

Dern+1
R (X,HM)

denotes the n+1’st André–Quillen cohomology of X with HM coefficients in R-algebras.

Proposition 3.1. [7, 8.6] Let X and M be as above. There is a bijection

Dern+1
R (X,HM) ∼= π0(R-alg/X[0](X,X[0] ∨ Σn+1HM))

where R-alg/X[0](X,X[0] ∨ Σn+1HM) denotes the derived mapping space of R-algebras
over X[0].

In [7], Dugger and Shipley show that the weak equivalence classes of type (M,n) Post-
nikov extensions of X are classified by the following André–Quillen cohomology groups.

Theorem 3.2. [7]There is a bijection

π0MR(X + (M,n)) ∼= Dern+1
R (X,HM)/Aut(M)

where Aut(M) denotes the π0X-bimodule automorphisms of M .

Note that in [7], this result is proved in the setting of symmetric spectra. However,
there is a Quillen equivalence between R-algebras of EKMM spectra and R-algebras of
symmetric spectra (for the corresponding R) [21]. Therefore this result is also valid for
EKMM spectra. Furthermore, we note that a similar classification result for commutative
R-algebras is given in [2] and for En R-algebras is given in [3].

Given k ∈ Dern+1
R (X,HM), k is represented by a derived map k : X → X[0]∨Σn+1HM

over X[0]. If X ' X[n− 1], one obtains a type (M,n) Postnikov extension Z → X given
by the following homotopy pullback square in R-algebras over X[0].

Z X[0]

X X[0] ∨ Σn+1HM

i

k

Note that i represents the trivial derivation given by the canonical map. Furthermore by
Theorem 3.2 above, every Postnikov extension is obtained from a derivation through a
pullback square as above. The derivation corresponding to a Postnikov extension is called
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the k-invariant of the Postnikov extension. Theorem 3.2 also shows that if two deriva-
tions differ by an automorphism of M , then they result in weakly equivalent Postnikov
extensions.

4. Postnikov extensions and Hochschild homology

In the previous section, we explained the way André–Quillen cohomology groups clas-
sify Postnikov extensions. Here, we show that the André–Quillen cohomology groups that
we are interested in can be calculated using topological Hochschild homology. Later, we
discuss the particular form of the Bökstedt spectral spectral sequence we use for our
calculations and provide standard calculational results.

Let R be a q-cofibrant connective commutative S-algebra throughout this section. We
use the notation ∧LR to denote the derived smash product. If the smash product is already
giving the derived smash product, we often omit the superscript L. As usual, if the given
smash product do not necessarily represent the derived smash product, we warn the
reader.

4A. André–Quillen cohomology to Hochschild homology. Let X denote a con-
nective q-cofibrant R-algebra and let M be a π0X-bimodule. By letting X[0] = Hπ0X,
HM becomes an X[0]-bimodule in a canonical way. Furthermore, HM becomes an X-
bimodule by forgetting through the R-algebra map X → X[0].

First, we define topological Hochschild cohomology as in [11, IX].

Definition 4.1. Let X and HM be as above, then the degree n topological Hochschild
cohomology group of X in R-algebras with coefficients in HM is given by

THHn
R(X,HM) = π−nFXe(X,HM)

where FXe(−,−) denotes the derived mapping spectrum in Xe-modules and Xe denotes
the derived smash product X ∧R Xop. Note that Xop denotes the R-algebra whose
underlying R-module is X and whose multiplication is given by switching the order of
multiplication on X.

The following result is proved in Section 8.5 of [9].

Theorem 4.2. Let X be a connective R-algebra and M be a π0X-bimodule. There is an
isomorphism

DernR(X,HM) ∼= THHn+1
R (X,HM)

that respects the action of Aut(M) for every n > 0. Here, HM is considered as an
X-bimodule as described above.

Remark 4.3. We use the theorem above in the case HM = X[0] and where we have
another R-algebra Z with a map Z → X that induces an isomorphism π0Z → π0X. We
define Z[0] to be X[0] together with the composite map Z → X → X[0]. This makes the
map Z → X a map of R-algebras over X[0].

Since we use Proposition 3.1 as our definition of André–Quillen cohomology, we obtain
a map DernR(X,X[0])→ DernR(Z,X[0]) for every n. Furthermore, we have

FXe(X,X[0])→ FZe(X,X[0])→ FZe(Z,X[0]))

where the first map comes from the forgetful functor and the second map is the map
induced by the map Z → X. This gives us a map

THHn+1
R (X,X[0])→ THHn+1

R (Z,X[0]).
11



In [12], Francis defines an En André–Quillen cohomology theory. For n = 1, this is the
André–Quillen cohomology we consider here, see [12, 2.27]. Furthermore, Francis shows
that the correspondence between André–Quillen cohomology and topological Hochschild
cohomology we give in Theorem 4.2 is natural in the setting we describe here.

The following is the definition of topological Hochschild homology.

Definition 4.4. Let X be a q-cofibrant (commutative) R-algebra and let HM be as
in Definition 4.1. Degree n topological Hochschild homology group of X with HM
coefficients in R-algebras is defined by the following:

THHR
n (X,HM) = πn(X ∧LXe HM),

where ∧LXe denotes the derived smash product. As before, Xe = X ∧R Xop and this
represents the derived smash product because X is q-cofibrant.

Let X be a q-cofibrant (commutative) R-algebra with an R-algebra map X → HFp.
Furthermore, we assume that HFp is q-cofibrant as a commutative R-algebra. An alterna-
tive definition of topological Hochschild homology is given in [11, IX.2.1] using simplicial
resolutions.

To obtain this simplicial resolution, one starts with the bar construction of X. This is
the simplicial Xe-module given by BR

n (X) = X∧Rn+2 in simplicial degree n. Note that
the X∧Xop-module structure on BR

n (X) is given by the first and the last X factors in the
canonical way. The degeneracy maps are induced by the unit map of X and the face maps
are induced by the multiplication map of X, see [11, IV.7.2]. The geometric realization
of this simplicial R-module is X. Furthermore, BR

• (X) is proper by [11, VII.6.8].

We obtain a new simplicial R-module CBR
• (X,HFp) by

(1) CBR
• (X,HFp) = BR

• (X) ∧Xe HFp
Note that we have CBR

m(X,HFp) = X∧Rm ∧R HFp. A description of the face and de-
generacy maps of CBR

• (X,HFp) is given in [11, IX.2.1]. Since HFp is q-cofibrant as a
commutative R-algebra, CBR

• (X,HFp) is also proper by [11, VII.6.8]. Since the geometric
realization commutes with smash products, we obtain

|CBR
• (X,HFp)| ' X ∧LXe HFp

where |−| denotes the geometric realization. Note that we did not need to replace HFp
by a cell Xe-module because CBR

• (X,HFp) is proper and the smash products in each
degree are derived by [11, VII.6.7]. We obtain that

π∗(|CBR
• (X,HFp)|) ∼= THHR

∗ (X,HFp).

Let f : X1 → X2 be a map of R-algebras over HFp where each Xi is q-cofibrant as a
commutative or associative R-algebra. The corresponding map

THHR
∗ (X1, HFp)→ THHR

∗ (X2, HFp)
is described as follows. We start with the map BR

• (X1)→ BR
• (X2) of Xe

1-modules given
by f∧Rn+2 in simplicial degree n. This induces the following map.

CBR
• (X1, HFp) = BR

• (X1) ∧Xe
1
HFp → BR

• (X2) ∧Xe
1
HFp

→ BR
• (X2) ∧Xe

2
HFp = CBR

• (X2, HFp)
Note that the middle term above do not necessarily contain derived smash products in
its simplicial degrees. The composite map above is given by

f∧Rm ∧R HFp : CBR
m(X1, HFp) ∼= X∧Rm1 ∧R HFp → CBR

m(X2, HFp) ∼= X∧Rm2 ∧R HFp.
12



Taking geometric realizations on this composite map and using the fact that geometric
realizations commute with smash products, we obtain another composite:

X1 ∧LXe
1
HFp → X2 ∧Xe

1
HFp → X2 ∧LXe

2
HFp,

providing the desired map on topological Hochschild homology. As before, the middle
term above may not represent the derived smash product.

Together with Theorems 3.2 and 4.2, the following proposition allows us to study
Postnikov extensions of R-algebras using topological Hochschild homology.

Proposition 4.5. Let X be a q-cofibrant R-algebra and let X → HFp be a map of R-
algebras. We consider HFp as an X-bimodule by using this map. There is an isomorphism

THHn+1
R (X,HFp) ∼= HomFp(THHR

n+1(X,HFp),Fp)

that is natural with respect to maps of R-algebras over HFp.

Proof. Since HFp is a commutative R-algebra, HFopp = HFp and its multiplication map
HFp ∧R HFp → HFp is an R-algebra map. Therefore we have the following composite
R-algebra map

Xe ∼= X ∧R Xop → HFp ∧R HFp → HFp.

This induces a Quillen adjunction between Xe-modules and HFp-modules where the
left adjoint is

− ∧Xe HFp : Xe-modules→ HFp-modules

and the right adjoint is the forgetful functor. At the level of derived function spectra, we
obtain the following derived adjunction.

(2) FXe(X,HFp) ' FHFp(X ∧LXe HFp, HFp)

We identify the homotopy groups of the right hand using the Ext spectral sequence in
[11, IV.4.1]. For an S-algebra S and S-modules K and L, this spectral sequence is given
by

(3) Es,t
2 = Exts,tS∗(K

∗, L∗) =⇒ π−(s+t)(FS(K,L))

where FS(−,−) denotes the derived function spectrum in S-modules and N∗ denotes
π−∗(N) for a given spectrum N .

Note that we are in the case S = HFp. Since Fp is a field, the homotopy groups of the
mapping spectrum in HFp-modules is given by the graded module of homomorphisms
between the homotopy groups of the given HFp-modules. Therefore, taking homotopy of
the equivalence in (2) gives the desired result.

The naturality of the equivalence in the proposition follows by the naturality of adjoint
functors considered in (2). �

4B. Calculational tools for Hochschild homology. We proceed with elementary re-
sults for topological Hochschild homology computations and a discussion on the Bökstedt
spectral sequence.

Remark 4.6. Let R be a commutative S-algebra with a map R→ HFp of commutative
S-algebras. Given a q-cofibrant (commutative) R-algebra X, HFp ∧R X is a q-cofibrant
(commutative) HFp-algebra. This follows by the fact that HFp ∧R − is a left Quillen
functor from (commutative) R-algebras to (commutative) HFp-algebras.
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Proposition 4.7. Let HFp be q-cofibrant as a commutative R-algebra and let X be a
q-cofibrant (commutative) R-algebra over HFp. There is an equivalence

THHR
n (X,HFp) ∼= THHHFp

n (HFp ∧R X,HFp).

This equivalence is natural with respect to maps of (commutative) R-algebras over HFp.
Note that under our q-cofibrancy assumptions, the smash product above is the derived
smash product.

Proof. There is a natural isomorphism

(4) (HFp ∧R X∧Rm) ∼= (HFp ∧R X)∧HFpm.

Using this, the following shows that the simplicial R-modules calculating THHR
∗ (X,HFp)

and THHHFp
∗ (HFp ∧R X,HFp) are isomorphic.

CBR
m(X,HFp) = X∧Rm∧RHFp ∼= (HFp∧RX)∧HFpm∧HFpHFp ∼= CBHFp

m (HFp∧RX,HFp)

Indeed, this isomorphism preserves the face and degeneracy maps by standard arguments.

Furthermore, note that HFp ∧R X represents the derived product by the q-cofibrancy
assumptions on HFp and X. The smash products on the right hand side are also derived
because HFp ∧R X is q-cofibrant as an (commutative) HFp-algebra, see Remark 4.6.
Properness also follows as before. By the naturality of the isomorphism in (4), this
isomorphism of simplicial R-modules is also natural with respect to maps of R-algebras
over HFp. �

For our calculations, we use the Bökstedt spectral sequence in HFp-algebras. The
second page of this spectral sequence is described using Hochschild homology for graded
Fp-algebras. These groups are defined as follows. Let A → B be a map of graded
commutative Fp-algebras. Through this map, B admits the structure of an A-bimodule.
Mimicking the construction of the simplicial object in (1), one obtains a simplicial graded

commutative Fp-algebra CB
Fp
• (A,B) = A⊗• ⊗ B where we denote ⊗Fp by ⊗ throughout

this work. The degree n homotopy, i.e. the degree n homology of the normalized chain
complex, of this simplicial ring is the Hochschild homology group

HHFp
n (A,B).

Note that this is a graded Fp-module and in certain cases, we write HHFp
∗,∗(A,B) to em-

phasize the internal grading. Since A and B are commutative, HHFp
∗ (A,B) is a bigraded

commutative ring. We have

HHFp
∗ (A,B) ∼= TorA

e

∗ (A,B)

where Ae = A⊗ Aop.
The Bökstedt spectral sequence is constructed for EKMM spectra in Theorem 2.8 in

Chapter IX of [11]. We use the version of this spectral sequence given in Theorem 8
of [16] where further properties of the Bökstedt spectral sequence are discussed. This is
summarized in the theorem below. Throughout this work, when we say Bökstedt spectral
sequence we mean the spectral sequence given in the following theorem although this is
not the standard terminology in the literature. Let E ·→·HFp

denote the arrow category in
HFp-algebras. The objects of E ·→·HFp

are morphisms in HFp-algebras and the morphisms
of E ·→·HFp

are maps of morphisms of HFp-algebras.
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Theorem 4.8 (Bökstedt spectral sequence). Let X be a q-cofibrant HFp-algebra or com-
mutative HFp-algebra and also let Z be a q-cofibrant HFp-algebra or commutative HFp-
algebra. Given X → Z in E ·→·HFp

, there is a spectral sequence

E2
s,t = HH

Fp

s,t(X∗, Z∗) =⇒ THH
HFp

s+t (X,Z)

drs,t : E
r
s,t → Er

s−r,t+r−1.

where X∗ = π∗X and Z∗ = π∗Z. We often omit the subscript in drs,t and write dr. This
spectral sequence is functorial in E ·→·HFp

.

Remark 4.9. Given a map R → HFp of commutative S-algebras and a q-cofibrant
(commutative) R-algebra X, HFp ∧RX is a q-cofibrant (commutative) HFp-algebra; see
Remark 4.6. Therefore, we can apply Theorem 4.8 above to objects of the form HFp∧RX.

For the calculation of the E2 page of this spectral sequence, we often use the following
proposition that provides a splitting of the E2 page.

Proposition 4.10. Let A be an augmented graded commutative Fp-algebra with a splitting
A = A1⊗A2⊗ · · · ⊗An over Fp where each Ai is also an augmented graded commutative
Fp-algebra. In this situation, there is an isomorphism of rings

HHFp
∗ (A,Fp) ∼= HHFp

∗ (A1,Fp)⊗ HHFp
∗ (A2,Fp)⊗ · · · ⊗ HHFp

∗ (An,Fp).
Let A′ = A′1 ⊗ A′2 ⊗ · · · ⊗ A′n be another splitting as above. The isomorphism above is
natural with respect to every map f : A→ A′ that splits as f = f1 ⊗ · · · ⊗ fn where each
fi : Ai → A′i is a map of augmented graded Fp-algebras.

Proof. Since tensor product of simplicial commutative rings is degreewise, we have

CBFp
• (A,Fp) ∼=A⊗•

∼=A⊗•1 ⊗ A⊗•2 ⊗ · · · ⊗ A⊗•n
∼=CBFp

• (A1,Fp)⊗ CBFp
• (A2,Fp)⊗ · · · ⊗ CBFp

• (An,Fp).
(5)

Because the tensor products are over Fp, we only have flat modules. Therefore, the
homotopy ring of the bottom right hand side above is the tensor product over 1 ≤ i ≤ n

of the homotopy rings of the simplicial rings CB
Fp
• (Ai,Fp). Therefore, the equivalence in

the proposition follows by noting that the homotopy of CB
Fp
• (Ai,Fp) is HHFp

∗ (Ai,Fp) for
each i. The naturality statement follows by the naturality of the isomorphisms in (5). �

The following proposition provides the E2 page of the Bökstedt spectral sequence above
when X∗ is a free graded commutative ring and Z∗ = X∗ or Z∗ = Fp. See Proposition 2.1
in [23] for an instance of this result. Note that for a homogeneous element x in a graded
ring, we let σx denote a degree (1, |x|) element. Furthermore, ΓFp(−) denotes the divided
power algebra over Fp on the given generators. For our purposes, it is sufficient to note
that ΓFp(x1, x2, ...) ∼= Fp[x1, x2, ...] as Fp-modules (similarly for finitely many generators).
The degree k|x| element in ΓFp(x) is denoted by γk(x); this is called the k’th divided
power of x.

Proposition 4.11. For p an odd prime, let A = Fp[x1, x2, ...]⊗ ΛFp(y1, y2, ...) with even
|xi| and odd |yi| for every i. For p = 2, let A = F2[x1, x2, ...] with no restrictions on |xi|.
We have the following ring isomorphisms

HHFp
∗ (A,A) ∼= A⊗ ΛFp(σx1, σx2, ...)⊗ ΓFp(σy1, σy2, ...)

HHFp
∗ (A,Fp) ∼= ΛFp(σx1, σx2, ...)⊗ ΓFp(σy1, σy2, ...)
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where ΓFp(σy1, σy2, ...) should be omitted for p = 2. Furthermore, the map HHFp
∗ (A,A)→

HHFp
∗ (A,Fp) induced by the augmentation map ε : A → Fp of the second factor is given

by ε⊗ id on the right hand side of these isomorphisms where id denotes the identity map
of ΛFp(σx1, σx2, ...)⊗ ΓFp(σy1, σy2, ...).

This result still holds when there are finitely many polynomial algebra generators and/or
finitely many exterior algebra generators of A.

Proof. We prove the result for odd primes, the p = 2 case follows similarly.

We start with the proof of the second isomorphism. Due to Proposition 4.10, it is
sufficient to prove this isomorphism for A = Fp[x1] and A = ΛFp(y1). We start with the
proof of the first case; the latter follows similarly.

Let A = Fp[x1]. There is an automorphism of Ae ∼= A⊗ A given by

x1 ⊗ 1→ x1 ⊗ 1 and 1⊗ x1 → x1 ⊗ 1− 1⊗ x1.

Note that Ae = A ⊗ A since A is graded commutative. We consider the A ⊗ A-module
structure on A after forgetting through this automorphism. Therefore, we obtain an
action where the first factor in A⊗ A acts on A in the usual way and the second factor
acts trivially.

At this point, we use what is called the Künneth formula. Given two graded commu-
tative rings A1 and A2, let B1 and C1 be commutative A1-algebras and let B2 and C2 be
commutative A2-algebras. There is an isomorphism of rings

TorA1⊗A2
∗ (B1 ⊗B2, C1 ⊗ C2) ∼= TorA1

∗ (B1, C1)⊗ TorA2
∗ (B2, C2).

To apply the Künneth formula in our case, let A1 = A2 = A, B1 = A and B2 = C1 =
C2 = Fp. We obtain

HHFp
∗ (A,Fp) ∼= TorA

e

∗ (A,Fp) ∼= TorA∗ (A,Fp)⊗ TorA∗ (Fp,Fp) ∼= ΛFp(σx1).

This gives the second isomorphism in the proposition for A = Fp[x1].

Applying the same arguments and noting TorΛFp (y1)(Fp,Fp) = ΓFp(σy1) gives the second
isomorphism in the proposition for A = ΛFp(y1).

For the first isomorphism in the proposition, note that the construction CB
Fp
• (A,A) =

A⊗• is symmetric monoidal with respect to the input ring A. Therefore, HHFp
∗ (A,A) is

also symmetric monoidal. The result follows by applying the previous arguments to the
cases A = Fp[x1] and A = ΛFp [y1]. �

We also make use of the following proposition for our Hochschild homology computa-
tions.

Proposition 4.12. Let A = Fp[z]/(zm) where |z| is even or p = 2. There is an isomor-
phism of Fp-modules

HHFp
∗ (A,Fp) ∼= ΛFp(σz)⊗ ΓFp(ϕmz)

where deg(σz) = (1, |z|) and deg(ϕmz) = (2,m|z|).

Proof. There is a free Ae resolution of A [18, (1.6.1)],

· · · v−→ Σ(m+1)|z|Ae
u−→ Σm|z|Ae

v−→ Σ|z|Ae
u−→ Ae

m−→ A

where this resolution contains Σ|z|+im|z|Ae in homological degree 2i + 1 and Σim|z|Ae in
homological degree 2i. Furthermore, m is the multiplication map of A, u multiplies by
z⊗ 1− 1⊗ z and v multiplies by Σm−1

i=0 z
i⊗ zm−i−1. Applying −⊗Ae Fp to this resolution,

all the differentials become trivial and we obtain the desired result. �
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5. On the differentials of the Bökstedt spectral sequence

For the rest of this work, let HZ be q-cofibrant as a commutative S-algebra and let HFp
be q-cofibrant as a commutative HZ-algebra. Since the category of commutative HZ-
algebras is the same as the category of commutative S-algebras under HZ, cofibrations of
commutative HZ-algebras forget to cofibrations of commutative S-algebras. This implies
that HFp is also q-cofibrant as a commutative S-algebra. Throughout this section, most
of the smash products are derived due to our q-cofibrancy assumptions. Whenever a
smash product does not necessarily represent the derived smash product, we warn the
reader.

Throughout this section, let d = |x| = 2p− 2, let p be an odd prime and let Y denote
a q-cofibrant HZ-algebra corresponding to the unique non-formal DGA with homology
ΛFp(x), see Example 1.2. The degree 0 Postnikov section map of Y represents a map
Y → HFp in the homotopy category of HZ-algebras. Since all objects are q-fibrant in
EKMM spectra, HFp is q-fibrant as an HZ-algebra. Furthermore, Y is q-cofibrant by
assumption. Therefore, the degree 0 Postnikov section map of Y provides a map

εY : Y → HFp
of HZ-algebras.

The proof of Theorem 1.8 relies on the classification of Postnikov extensions of DGAs
with truncated polynomial homology Fp[x]/(xm) and d Postnikov section equivalent to
Y . Due to our earlier discussions, this boils down to Hochschild homology computations.
In this section, we compute the relevant differentials in the Bökstedt spectral sequences
computing these Hochschild homology groups.

5A. The Bökstedt spectral sequence for Y . We start with the Bökstedt spectral
sequence computing the Hochschild homology groups that classify the relevant Postnikov
extensions of Y . Namely, we are interested in the Bökstedt spectral sequence computing
THHHFp(HFp ∧HZ Y,HFp) where HFp ∧HZ Y acts on HFp via the composite map

(6) HFp ∧HZ Y
id∧HZεY−−−−−→ HFp ∧HZ HFp

m−→ HFp.

Here, m denotes the multiplication map on HFp and id denotes the identity map. Due
to Theorem 4.8, this spectral sequence is given by:

E2
s,t = HHFp

∗,∗(π∗(HFp ∧HZ Y ),Fp) =⇒ THH
HFp

s+t (HFp ∧HZ Y,HFp).

We let E denote this spectral sequence for the rest of this section.

By Lemma 7.3, we have an isomorphism of rings

π∗(HFp ∧HZ Y ) ∼= ΛFp(τ0)⊗ ΛFp [x]

where |τ0| = 1 and |x| = 2p − 2. Recall that d = |x| = 2p − 2 is a standing assumption
in this section. We apply Proposition 4.10 for the case A1 = ΛFp(τ0), A2 = ΛFp(x) and
obtain

E2 ∼= HHFp
∗ (ΛFp(τ0),Fp)⊗ HHFp

∗ (ΛFp(x),Fp).
By Proposition 4.11, we have HHFp

∗ (ΛFp(τ0),Fp) ∼= ΓFp(στ0) where deg(στ0) = (1, 1).
Note that we cannot apply this proposition for the second factor because |x| is even. In
this case, by Proposition 4.12 we have HHFp

∗ (ΛFp(x),Fp) ∼= ΛFp(σx) ⊗ ΓFp(ϕ2x) where
deg(σx) = (1, d) and deg(ϕ2x) = (2, 2d). We obtain

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x).
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The following is a picture of the E2-page where the horizontal axis denotes the homological
degree and the vertical axis denotes the internal degree.

2d Fpϕ2x

...
...

d+ 1 Fpγ1(στ0)σx

d Fpσx
...

...

p+ 1 Fpγp+1(στ0)

p Fpγp(στ0)

...
...

2 Fpγ2(στ0)

1 Fpστ0

0 Fp
0 1 2 · · · p p+ 1 · · ·

Lemma 5.1. Let E denote the Bökstedt spectral sequence computing THHHFp(HFp ∧HZ
Y,HFp) as above. The E2 page is given by

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x).

For every z ∈ ΓFp(στ0)⊗ ΛFp(σx) ⊂ E2 and 1 < r < p− 1,

drz = 0

and if z 6= 0, then z is not in the image of dr.

Proof. The identification of the E2 page is proved before the statement of the lemma. We
only need to show the statement regarding the differentials. Indeed, this follows solely
by degree considerations. We provide the details below. Recall that

deg(στ0) = (1, 1), deg(γk(στ0)) = (k, k),

deg(σx) = (1, 2p− 2) and deg(ϕ2x) = (2, 4p− 4).

Let s denote the first coordinate, i.e. the homological degree and t denote the second
coordinate, i.e. the internal grading of E2. Note that the elements γk(στ0) lie on the line
t = s and the elements γk(στ0)σx are on the line t = s+ 2p− 3. Furthermore, ϕ2x is on
the line t = s + 4p − 6. Given an element y on the line t = s + c1 and another element
z on the line t = s + c2 we have deg(y) = (m,m + c1) and deg(z) = (n, n + c2) for some
m and n. Therefore, deg(yz) = (m + n,m + n + c1 + c2) and this shows that yz lies on
the line t = s+ c1 + c2. Note that we denote y ⊗ z by yz. This in particular shows that
every element on E2 other than the ones in ΓFp(στ0)⊗ΛFp(σx) lie on a line y = x+ c for
some c ≥ 4p − 6, rest of the elements, i.e. the ones in ΓFp(στ0) ⊗ ΛFp(σx), are either on
t = s or t = s+ 2p− 3.

Recall that
drs,t : E

r
s,t → Er

s−r,t+r−1.

Therefore a class on the line t = s+ c hits an element on the line t = s+ c+ 2r− 1 under
dr.
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Since there are no non-trivial elements on E2 who are on a line t = s + c with a
c < 0, the elements of the form γk(στ0) do not get hit by the differentials for every k.
Furthermore, drγk(στ0) lies on the line t = s + 2r − 1 and for 1 < r < p − 1, we have
1 < 2r− 1 < 2p− 3. Since there are no non-trivial classes on these lines, this shows that
drγk(στ0) = 0 for every k ≥ 0 and 1 < r < p− 1.

Now we consider elements of the form γk(στ0)σx for some k. These elements are on
the line t = s + 2p − 3. They possibly receive differentials from the lines t = s + c
with c < 2p− 3 but the only non-trivial classes on these degrees are of the form γj(στ0)
and we already showed that these classes carry trivial differentials up to the p− 2 page.
Therefore γk(στ0)σx is not in the image of dr for every 1 < r < p − 1 and every k.
Furthermore, dr(γk(στ0)σx) lies on the line t = s+ 2p− 3 + 2r− 1 and for 1 < r < p− 1,
we have 2p − 2 < 2p − 3 + 2r − 1 < 4p − 6. By the discussion above, there are no
non-trivial classes on these lines and we deduce that dr(γk(στ0)σx) = 0 for every k ≥ 0
and 1 < r < p− 1. �

The following lemma provides our first non-trivial differential in the Bökstedt spectral
sequence E.

Lemma 5.2. In the Bökstedt spectral sequence E computing THHHFp
∗ (HFp ∧HZ Y,HFp),

we have:

dp−1γp(στ0) = σx

up to a unit of Fp.

Proof. We assume to the contrary that dp−1γp(στ0) 6= cσx for every unit c ∈ Fp and
obtain a contradiction. Let ψ : Y → HFp denote the degree zero Postnikov section map
of Y . This is a Postnikov extension of type (Fp, 2p− 2) in HZ-algebras. Due to Theorem
3.2, such Postnikov extensions are classified by:

Der2p−1
HZ (HFp, HFp)/Aut(Fp) ∼= THH2p

HZ(HFp,Fp)/Aut(Fp) ∼= Fp/Aut(Fp) ∼= {[0], [1]}
where the first isomorphism follows by Theorem 4.2 and the second isomorphism is shown
in [9, 3.15]. Since Y is not formal as a DGA, the Postnikov extension Y → HFp is obtained
from the non-trivial element above [9, 3.15].

Let k2p−2 denote a representative of this non-trivial derivation. This means that we
have a pull back square

Y HFp

HFp HFp ∨ Σ2p−1HFp

ψ i

k2p−2

of HZ-algebras where i denotes the trivial derivation. This shows that the map ψ : Y →
HFp pulls back the non-trivial derivation k2p−2 to a trivial derivation. Indeed, we obtain
a contradiction by showing that k2p−2 ◦ ψ represents a non-trivial derivation.

Now we formulate this statement using Hochschild homology. By the naturality of the
isomorphism in Theorem 4.2, k2p−2 ◦ ψ is nontrivial if the map

Fp ∼= THH2p
HZ(HFp, HFp)→ THH2p

HZ(Y,HFp)

induced by ψ carries 1 ∈ Fp to a non-trivial element in THH2p
HZ(Y,HFp). Note that

the isomorphism above follows by [9, 3.15]. The natural correspondence in Proposition
4.5 shows that it is also sufficient to show that the Fp-dual of the nontrivial element in
THHHZ

2p (HFp,Fp) ∼= Fp is carried to a non-trivial element in the Fp-dual of THHHZ
2p (Y,Fp).
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This is the case precisely when 1 ∈ THHHZ
2p (HFp,Fp) ∼= Fp is in the image of the map

THHHZ
2p (Y,Fp) → THHHZ

2p (HFp,Fp). Due to Proposition 4.7, it is also sufficient to show
that the map

(7) THH
HFp

2p (HFp ∧HZ Y,HFp)→ THH
HFp

2p (HFp ∧HZ HFp, HFp) ∼= Fp
induced by HFp ∧HZ ψ is nontrivial, i.e. 1 ∈ Fp is in the image of this map.

Let E denote the Bökstedt spectral sequence in Theorem 4.8 computing

THHHFp
∗ (HFp ∧HZ HFp, HFp)

where HFp∧HZHFp acts on HFp through the multiplication map HFp∧HZHFp
m−→ HFp.

Because π∗(HFp ∧HZ HFp) ∼= ΛFp(τ0) with |τ0| = 1, we have

E2 ∼= HHFp
∗ (ΛFp(τ0),Fp) ∼= ΓFp(στ0).

By degree reasons, all the differentials are trivial on the E2 page and after.

It follows by Lemma 7.3 that the map

π∗(HFp ∧HZ ψ) : π∗(HFp ∧HZ Y ) ∼= ΛFp(τ0)⊗ ΛFp(x)→ π∗(HFp ∧HZ HFp) ∼= ΛFp(τ0)

is given by id⊗εΛFp (x) where εΛFp (x) is the augmentation map ΛFp(x)→ Fp and id denotes

the identity map of ΛFp(τ0). There is an induced map of spectral sequences ψ∗ : E
∗ → E∗;

the second page of E is given in Lemma 5.1. It follows by the naturality of the tensor
splitting in Proposition 4.10 that the map

ψ2 : E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x)→ E2 ∼= ΓFp(στ0)

is given by the identity map on ΓFp(στ0) ⊂ E2 and it is trivial on the other positive-
dimensional generators. In particular, we have

ψ2(γp(τ0)) = γp(τ0).

Since it is the only non-trivial class in total degree 2p, the element γp(στ0) ∈ E2

represents a non-trivial element on the right hand side of (7). Therefore in order to show
that the map in (7) is non-trivial, i.e. in order to obtain the contradiction we need, it
is sufficient to show that γp(στ0) ∈ E2 survives to the E∞ page because ψ2(γp(στ0)) =
γp(στ0). In other words, it is sufficient to show that drγp(στ0) = 0 for every r ≥ 2.

Due to Lemma 5.1, drγp(στ0) = 0 for 1 < r < p−1 in E. Since γp(στ0) is in homological
degree p, drγp(στ0) = 0 for r > p− 1. Therefore the only possible non-trivial differential
on γp(στ0) is dp−1. We have

deg(dp−1γp(στ0)) = (p− (p− 1), p+ p− 1− 1) = (1, 2p− 2).

The only non-trivial class of Ep−1 in this degree is indeed σx but we assumed that
dp−1γp(στ0) 6= cσx for every unit c and therefore dp−1γp(στ0) = 0. This shows that
γp(στ0) survives to the E∞ page. This provides the contradiction we need since γp(στ0)
hits the element γp(στ0) ∈ E2 which represents a non-trivial element on the right hand
side of (7).

�

We obtain more non-trivial differentials on Ep−1 by using the nontrivial differentials in
the Bökstedt spectral sequence computing

THHHFp(HFp ∧HFp, HFp ∧HFp) ∼= HFp ∧ THHS(HFp, HFp)
where HFp ∧HFp acts on HFp ∧HFp via the identity map HFp ∧HFp −→ HFp ∧HFp.
Let Ê denote this spectral sequence; we start by describing Ê.
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The calculation of THHS(HFp, HFp) and the description of the differentials in this
spectral sequence is due to Bökstedt [4]. In [16], Hunter provides a new proof of these
differentials in a modern setting of spectra.

Note that π∗(HFp∧HFp) ∼= A∗ where A∗ denotes the dual Steenrod algebra. The dual
Steenrod algebra is the following free graded commutative Fp-algebra

A∗ = Fp[ξr | r ≥ 1]⊗ ΛFp(τs | s ≥ 0)

where |ξr| = 2(pr − 1) and |τs| = 2ps − 1 [24]. It follows by Proposition 4.11 that the Ê2

page of this Bökstedt spectral sequence is given by

(8) Ê2 ∼= HHFp
∗ (A∗,A∗) ∼= A∗ ⊗ ΛFp [σξr | r ≥ 1]⊗ ΓFp(στs | s ≥ 0).

For this spectral sequence, d̂r = 0 for 2 ≤ r < p − 1 and d̂p−1γk(στi) = γk−p(στi)σξi+1

for k ≥ p [16, Theorem 1]. This is a spectral sequence of A∗-algebras [11, IX.2.8].

Together with this A∗-algebra structure, the formula for d̂p−1 determines all the non-
trivial differentials on Êp−1. As shown in [4], d̂r = 0 for r > p− 1.

Let S � HFp ∼−� HFp denote a q-cofibrant replacement in associative S-algebras.

Note that by [11, VII.6.5 and VII.6.7], HFp∧HFp represents the derived smash product.
Therefore, there is a weak equivalence

HFp ∧HFp ∼→ HFp ∧HFp
of HFp-algebras. Through this equivalence, one obtains an isomorphism of spectral se-

quences between Ê and the Bökstedt spectral sequence corresponding to the identity
map HFp ∧HFp → HFp ∧HFp. From now on, we abuse our previous notation and let

Ê denote the latter spectral sequence.

To simplify our discussion, we use the Bökstedt spectral sequence computing

THHHFp(HFp ∧HFp, HFp)

where HFp ∧HFp acts on HFp through a given map

ρ : HFp ∧HFp → HFp
of HFp-algebras. Note that for the moment, we only assume that ρ is a map of HFp-
algebras; later, we will specify this map. Let Ẽ denote the Bökstedt spectral sequence
corresponding to ρ. We have:

Ẽ2 ∼= HHFp
∗ (A∗,Fp) ∼= ΛFp [σξr | r ≥ 1]⊗ ΓFp(στs | s ≥ 0),

where the second isomorphism follows by Proposition 4.11. In order to deduce the dif-
ferentials on this spectral sequence, we use the map

THHHFp(HFp ∧HFp, HFp ∧HFp)→ THHHFp(HFp ∧HFp, HFp)

induced by the map ρ. This induces a map of spectral sequences Ê → Ẽ. On the second
page, this map is given by εA∗ ⊗ id where εA∗ denotes the augmentation map of A∗ on

the first factor of Ê2 in (8) and id denotes the identity map of the rest of the factors of

Ê2; this follows by Proposition 4.11. The map of spectral sequences Ê → Ẽ determines
the differentials of Ẽ. We obtain the following lemma.

Lemma 5.3. As above, let Ẽ denote the Bökstedt spectral sequence corresponding to a
map ρ : HFp ∧HFp → HFp of HFp-algebras. We have:

Ẽ2 ∼= HHFp
∗ (A∗,Fp) ∼= ΛFp [σξr | r ≥ 1]⊗ ΓFp(στs | s ≥ 0),
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d̃r = 0 for 2 ≤ r < p− 1,

d̃p−1γk(στi) = γk−p(στi)σξi+1

for k ≥ p and d̃r = 0 for r ≥ p.

The following lemma allows us to compare the spectral sequences Ẽ and E.

Lemma 5.4. Let HFp be as above. There exists a map η : HFp ∧HFp → HFp ∧HZ Y of
HFp-algebras that satisfies the following properties.

(1) We have π∗(η)(τ0) = τ0 (up to a unit of Fp).

(2) There is a map of HFp-algebras ρ : HFp ∧HFp → HFp that render the map η to
a map of HFp-algebras over HFp with respect to the HFp-algebra structure of (6).

(3) The induced map of spectral sequences η∗ : Ẽ
∗ → E∗ carries ΓFp(στ0) ⊂ Ẽ2 iso-

morphically to ΓFp(στ0) ⊂ E2

Proof. Let Z denote the HZ-algebra corresponding to the the formal DGA with homology
ΛFp [x]. Because the DGAs corresponding to Y and Z are topologically equivalent, Y and
Z are weakly equivalent as S-algebras, see Example 1.2. Let S � cZ ∼−� Z denote a
q-cofibrant replacement of Z in S-algebras. Since Y is q-fibrant as an S-algebra, there is
a weak equivalence ν : cZ ∼→ Y of S-algebras.

Since there is a map of DGAs from Fp to the formal DGA with homology ΛFp [x],
there is a map HFp → Z in the homotopy category of HZ-algebras. This forgets to
a map HFp → Z in the homotopy category of S-algebras. In turn, we obtain a map

φ : HFp → cZ of S-algebras as cZ is q-fibrant and weakly equivalent to Z and HFp is
q-cofibrant.

This gives us a map ν ◦φ : HFp → Y . From this, we obtain the desired map η through
the following composite.

η : HFp ∧HFp
HFp∧(ν◦φ)−−−−−−→ HFp ∧ Y → HFp ∧HZ Y

Note that HFp∧Y may not be representing the derived smash product but this does not
cause a problem.

Now we prove our claim π∗(η)(τ0) = τ0. We have the following commuting diagram.

HFp ∧HFp HFp ∧ Y HFp ∧HFp

HFp ∧HZ Y HFp ∧HZ HFp

HFp∧(ν◦φ) HFp∧εY

HFp∧HZεY

The composite of the top horizontal arrows is a weak equivalence since it is given by the
map HFp ∧ (εY ◦ ν ◦ φ) where the S-algebra map εY ◦ ν ◦ φ : HFp → HFp has to be a
weak equivalence because it carries the unit to the unit in homotopy. In degree 1, A∗ is
generated by τ0 as an Fp-module. Therefore, the composite of the top horizontal arrows
carries τ0 to τ0 up to a unit. At the level of homotopy groups, the right hand vertical
map is the graded ring map A∗ → ΛFp(τ0) that carries τ0 to τ0. This shows that the τ0

on the top left corner is carried to the τ0 on the bottom right corner. Due to Lemma 7.3,
we have

π∗(HFp ∧HZ Y ) ∼= ΛFp(τ0)⊗ ΛFp(x).

In particular, π1(HFp ∧HZ Y ) is generated by τ0 as an Fp-module. Since the τ0 on the
upper left corner travels to a non-trivial element on the bottom right corner, we deduce
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that it hits τ0 up to a unit in π∗(HFp∧HZ Y ). In other words, π∗(η)(τ0) = τ0 up to a unit
of Fp as desired. This finishes the proof of the first item of the lemma.

We define the map ρ through the composite:

ρ : HFp ∧HFp
η−→ HFp ∧HZ Y

id∧HZεY−−−−−→ HFp ∧HZ HFp
m−→ HFp,

where m denotes the multiplication map of HFp and id denotes the identity map of HFp.
It is clear that ρ is a map of HFp-algebras. Since the map HFp ∧HZ Y → HFp is the
composite of the last two maps above, η is a map of HFp-algebras over HFp as desired.

Now we prove the last item in the lemma. The canonical inclusion i : ΛFp(τ0) → A∗
induces the following composite

HHFp
∗ (ΛFp(τ0),Fp)→ HHFp

∗ (A∗,Fp) ∼= Ẽ2

η2−→ HHFp
∗ (ΛFp(τ0)⊗ ΛFp(x),Fp) ∼= E2

which is given by

ΓFp(στ0)→ ΛFp [σξr | r ≥ 1]⊗ ΓFp(στs | s ≥ 0)
η2−→ ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x)

due to Lemmas 5.1 and 5.3. The first map in this composite is the canonical inclusion
by the naturality of the tensor splitting in Proposition 4.10. Therefore, it is sufficient to
show that the composite map is the canonical inclusion. Note that the composite map
is induced by the map of rings π∗(η) ◦ i. This map is the canonical inclusion ΛFp(τ0) →
ΛFp(τ0)⊗ΛFp(x) since π∗(η)(τ0) = τ0 (up to a unit). Using this, in combination with the
naturality of the tensor splitting in Proposition 4.10, we deduce that the composite is the
canonical inclusion. This gives the desired result as the first map is also the canonical
inclusion.

�

The following lemma provides all the non-trivial differentials of E that we need to
know.

Remark 5.5. Since we do not assume that Y is an En HZ-algebra for n > 1, we also
do no assume that the Bökstedt spectral sequence E is multiplicative. Nevertheless, to
simplify notation, we sometimes denote the elements of the form x ⊗ y as xy in the
tensor splitting provided by Proposition 4.10. This makes sense since the second page
of the Bökstedt spectral sequences we consider have canonical ring structures (omitting
the differentials) and the tensor splittings provided by Proposition 4.10 respect these ring
structures.

Lemma 5.6. In the spectral sequence E of Lemma 5.1, we have

dp−1γk(στ0) = γk−p(στ0)σx

for every k ≥ p.

Proof. By Lemma 5.4, there is a map

η : HFp ∧HFp → HFp ∧HZ Y

of HFp-algebras satisfying the properties listed in Lemma 5.4. See Lemma 5.3 for a

description of the Bökstedt spectral sequence Ẽ computing THHHFp(HFp ∧HFp, HFp).
The map η induces a map of spectral sequences η∗ : Ẽ

∗ → E∗. By Lemma 5.1, the
non-trivial elements of ΓFp(στ0)⊗ΛFp(σx) ⊂ E2 survive non-trivially to Ep−1. Similarly,
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the non-trivial elements of ΓFp(στ0)⊗ΛFp(σξ1) ⊂ Ẽ2 survive non-trivially to Ẽp−1 due to

Lemma 5.3. Combining this with Lemma 5.4, we obtain that ηp−1 carries ΓFp(στ0) ⊂ Ẽp−1

isomorphically to ΓFp(στ0) ⊂ Ep−1. This provides the third equality in:

ηp−1(σξ1) = ηp−1(d̃p−1γp(στ0)) = dp−1ηp−1(γp(στ0)) = dp−1γp(στ0) = σx,

where the first equality follows by Lemma 5.3, the second equality follows by the fact
that η∗ is a map of spectral sequences and the last equality follows by Lemma 5.2. This
implies that

η2(σξ1) = σx.

By Lemma 5.4, we have η2(γk(στ0)) = γk(στ0). Since η2 is a map of rings, we deduce
that

η2(γk(στ0)σξ1) = γk(στ0)σx.

Note that for the previous statement, we did not assume that the spectral sequences E
and Ẽ are multiplicative spectral sequences. We only use the fact that E2

∗,∗ and Ẽ2
∗,∗ have

ring structures and η2 is a ring map. By the triviality of the relevant differentials on E
and Ẽ, we deduce the following.

(9) ηp−1(γk(στ0)σξ1) = γk(στ0)σx

We are now ready to deduce the non-trivial differentials claimed in the lemma. We
have the following for every k ≥ p.

dp−1γk(στ0) = dp−1ηp−1(γk(στ0))

= ηp−1(d̃p−1γk(στ0))

= ηp−1(γk−p(στ0)σξ1)

= γk−p(στ0)σx

Here, the first equality follows by Lemma 5.4, the second equality follows by the fact that
η∗ is a map of spectral sequences, the third equality follows by Lemma 5.3 and the last
equality follows by (9). �

The following is a picture of a part of the Ep−1 page. Note that the horizontal axis
denotes the homological degree and the vertical axis denotes the internal degree.
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5B. The Bökstedt spectral sequence for extensions of Y . Here, we set up and
describe the spectral sequences we use for various Postnikov extensions of Y . Recall that
throughout this section, we have d = |x| = 2p− 2.

Remark 5.7. We do not yet claim the existence of an HZ-algebra X with homotopy
ring Fp[x]/(xm) and 2p − 2 Postnikov section equivalent to Y for m > 2, c.f. Theorem
1.8. Before we prove such an X exists, we prove several properties of a hypothetical such
X without claiming that it exists. Note that our statements below regarding X would
be vacuously true if such an X did not exist.

Let X be an HZ-algebra whose 2p− 2 Postnikov section is equivalent to Y and homo-
topy ring is Fp[x]/(xm) for m > 2. We always assume that X is q-cofibrant. Since Y is
q-fibrant, the 2p− 2 Postnikov section map of X provides a map

ψ : X → Y

of HZ-algebras serving as the 2p − 2 Postnikov section of X. Furthermore, we consider
HFp ∧HZ X as an HFp-algebra over HFp through the composite map

(10) υ : HFp ∧HZ X
id∧HZψ−−−−→ HFp ∧HZ Y

id∧HZεY−−−−−→ HFp ∧HZ HFp
m−→ HFp.

In this situation, the map HFp ∧HZ ψ is a map of HFp-algebras over HFp.
Let E denote the Bökstedt spectral sequence computing THHHFp

∗ (HFp ∧HZ X,HFp)
where HFp ∧HZ X acts on HFp via υ. Note that Lemma 7.3 provides

π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ Fp[x]/(xm)

where |τ0| = 1. We have:

E2 ∼= HHFp
∗ (ΛFp(τ0)⊗ Fp[x]/(xm),Fp)

∼= HHFp
∗ (ΛFp(τ0),Fp)⊗ HHFp

∗ (Fp[x]/(xm),Fp)
∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕmx),

where the second equality follows by Proposition 4.10 and the last equality follows by
Propositions 4.11 and 4.12.

Lemma 5.8. Let X be an HZ-algebra with 2p− 2 Postnikov section equivalent to Y and
homotopy ring Fp[x]/(xm) for some m > 2. Let E denote the Bökstedt spectral sequence
corresponding to the map υ given above. We have

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕmx) =⇒ THHHFp
∗ (HFp ∧HZ X,HFp).

For every z ∈ ΓFp(στ0)⊗ ΛFp(σx) ⊂ E2 and 1 < r < p− 1,

drz = 0

and if z 6= 0, then z is not in the image of dr. Futhermore,

dp−1γk(στ0) = γk−p(στ0)σx

for every k ≥ p.

Proof. The identification of the second page is established before the statement of the
lemma.

The statement on the triviality of the differentials follows by degree reasons. The proof
of this fact is as in the proof of Lemma 5.1.
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What is left to prove is the last statement. Let E denote the spectral sequence calcu-
lating THHHFp(HFp ∧HZ Y,Fp) as before. The E2 page of this spectral sequence is given
by:

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x),

see Lemma 5.1. Note that E2 is the same as E2 except that instead of the generator ϕ2x
in degree (2, 2d), E2 has a generator ϕmx in degree (2,md).

To compare the spectral sequences E and E, we use the map HFp∧HZψ. This is a map
of HFp-algebras over HFp and therefore induces a map of spectral sequences ψ∗ : E → E.

To understand ψ∗, we need to know the induced map

π∗(HFp ∧HZ ψ) : π∗(HFp ∧HZ X)→ π∗(HFp ∧HZ Y ).

In Lemma 7.3 below, we show that this map is given by:

π∗(HFp ∧HZ ψ) = id⊗ π∗ψ : ΛFp(τ0)⊗ Fp[x]/(xm)→ ΛFp(τ0)⊗ ΛFp(x),

where id denotes the identity map of ΛFp(τ0) and π∗ψ : Fp[x]/(xm)→ ΛFp(x) is the ring
map that sends x to x.

Now we show that the induced map E2 → E2 carries ΓFp(στ0) ⊗ ΛFp(σx) ⊗ 1 ⊂ E2

isomorphically onto ΓFp(στ0)⊗ ΛFp(σx)⊗ 1 ⊂ E2 in the canonical way. By the splitting
of π∗(HFp∧HZψ) above and the naturality of the splitting in Proposition 4.10, we obtain
that the map E2 → E2 is of the form id⊗f where id denotes the identity map of ΓFp(στ0)
and f denotes the map

HHFp
∗ (Fp[x]/(xm),Fp) ∼= ΛFp(σx)⊗ ΓFp(ϕmx)

→ HHFp
∗ (ΛFp(x),Fp) ∼= ΛFp(σx)⊗ ΓFp(ϕ2x)

induced by π∗ψ. Furthermore, σx ⊗ 1 on the left hand side is represented by x ∈
Fp[x]/(xm) in the first simplicial degree of the simplicial ring Fp[x]/(xm)⊗• whose ho-
motopy (homology of its normalized chain complex) is HHFp

∗ (Fp[x]/(xm),Fp). Similarly,
σx⊗1 on the right hand side is represented by x ∈ ΛFp(x) in the first simplicial degree of

the simplicial ring ΛFp(x)⊗• whose homotopy is HHFp
∗ (ΛFp(x),Fp). Since π∗ψ(x) = x, we

obtain that f(σx⊗1) = σx⊗1. This proves that the map ψ2 : E2 → E2, given by id⊗f ,
carries ΓFp(στ0)⊗ ΛFp(σx)⊗ 1 ⊂ E2 isomorphically onto ΓFp(στ0)⊗ ΛFp(σx)⊗ 1 ⊂ E2.

Using the second statement in the lemma and Lemma 5.1, we deduce that

ψp−1 : Ep−1 → Ep−1

also carries ΓFp(στ0)⊗ΛFp(σx)⊗ 1 ⊂ Ep−1 isomorphically onto ΓFp(στ0)⊗ΛFp(σx)⊗ 1 ⊂
Ep−1. From this and Lemma 5.6, we deduce that

dp−1γk(στ0) = γk−p(στ0)σx

for every k ≥ p for the spectral sequence E. �

6. Classification of Postnikov extensions

We start this section with classification of various Postnikov extensions of interest. At
the end of this section, we prove Theorems 1.8 and 1.9.

Throughout this section, let d = |x| = 2p−2 and let Y denote a q-cofibrant HZ-algebra
corresponding to the unique non-formal DGA with homology ΛFp(x); see Example 1.2.
Note that in this section, we do not assume that p is odd.
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6A. Postnikov extensions of DGAs with truncated polynomial homology. Let
X be a q-cofibrant HZ-algebra whose d Postnikov section is equivalent to Y and whose
homotopy ring is Fp[x]/(xm) for some m > 1. As before, we do not assume the existence
of such an X for m > 2. On the other hand, we have X ' Y when m = 2.

Let E denote the spectral sequence computing THHHFp(HFp ∧HZX,HFp). For odd p,
this spectral sequence is described in Lemma 5.8 for m > 2, and it is described in Lemma
5.1 for m = 2 (where it is denoted by E). The construction of this spectral sequence for
p = 2 follows as in the odd prime case.

Proposition 6.1. Let X be an HZ-algebra as above and let d = |x| = 2p−2. For degrees
less than md+ 2:

THHHFp
∗ (HFp ∧HZ X,HFp) ∼= Fp[µ]/(µp),

with |µ| = 2. In degree md+ 2, we have

THH
HFp

md+2(HFp ∧HZ X,HFp) ∼= Fp.

For odd p, this Hochschild homology group is generated by the class ϕmx ∈ E2.

Proof. We have

E2
s,t = HH

Fp

s,t(π∗(HFp ∧HZ X),Fp) =⇒ THH
HFp

s+t (HFp ∧HZ X,HFp).

We start with the case p = 2. By Lemma 7.4, we have π∗(HF2 ∧HZ X) ∼= F2[ξ1]/(ξ2m
1 )

where |ξ1| = 1. Therefore using Proposition 4.12, we obtain

E2 ∼= HHF2

* (F2[ξ1]/(ξ2m
1 ),F2) ∼= ΛF2(σξ1)⊗ ΓF2(ϕ

2mξ1)

with deg(σξ1) = (1, 1) and deg(ϕ2mξ1) = (2, 2m). By degree reasons, this spectral se-
quence degenerates at the E2 page, i.e. dr = 0 for r ≥ 2. This completes the proof of the
proposition for p = 2.

Let p be an odd prime. We have

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕmx).

For every z ∈ ΓFp(στ0)⊗ ΛFp(σx)⊗ 1 and 1 < r < p− 1,

dr(z) = 0

and if z 6= 0, then z is not in the image of dr. By Lemmas 5.6 and 5.8,

dp−1γk(στ0) = γk−p(στ0)σx

for every k ≥ p. See the figure at the end of Section 5A for an image of the Ep−1 page of
this spectral sequence for m = 2. For m > 2 the image would be similar except the fact
that the class ϕ2x would be replaced by the class ϕmx.

For the proof of the first statement, we start by noting that every element of total degree
less than md + 2 lies in ΓFp(στ0) ⊗ ΛFp(σx) ⊗ 1 ⊂ E2. With the differentials mentioned

above, the elements γk(στ0)σx for k ≥ 0 represent the trivial class on the E∞ page and
the elements γl(στ0) for l ≥ p do not survive to the E∞ page. The elements γk(στ0) for
k < p carry trivial differentials up to the Ep−1 page; the rest of the differentials on these
elements are also trivial because they have homological degree less than p. Also note that
there are no elements that could hit them because every element of larger homological
degree also have larger internal degree. Therefore, the elements γk(στ0) for k < p survive
non-trivially to the E∞ page. This shows that below total degree md+ 2, what survives
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to the E∞ page is the truncation of ΓFp(στ0)⊗1⊗1 above total degree d. In other words,
for total degrees less than md+ 2, we have

E∞ ∼= Fp[στ0]/(στ p0 ).

This completes the proof of the first part of the proposition.

Now we prove the second part of the proposition. Note that the classes γk(στ0)σx have
odd total degree. Considering this, one observes that the only classes on the E2 page
with total degree md + 2 are γmd/2+1(στ0) and ϕmx. As mentioned before, γmd/2+1(στ0)

do not survive to the E∞ page since md/2 + 1 ≥ p. Therefore, it is sufficient to show
that ϕmx survives non-trivially to the E∞ page. Since ϕmx has homological degree 2,
all the differentials on ϕmx are trivial. Furthermore, an element that could possibly hit
ϕmx should have odd total degree and internal degree less than that of ϕmx. This is
the case only for elements of the form γk(στ0)σx. However, these elements gets to carry
trivial differentials up to Ep−1. Furthermore, they are in the image of the differentials on
Ep−1; therefore, they carry trivial differentials on Ep−1 and after too. We deduce that
the elements γk(στ0)σx cannot hit ϕmx. Therefore, ϕmx survives non-trivially to the E∞

page.

�

The corollary below provides the classification of type (Fp,md) Postnikov extensions
of X, see Theorem 3.2.

Corollary 6.2. Let X be an HZ-algebra as above. There are isomorphisms:

Dermd+1
HZ (X,HFp)/Aut(Fp) ∼= THH

HFp

md+2(HFp ∧HZ X,HFp)/Aut(Fp)
∼= Fp/Aut(Fp)
= {[0], [1]}.

Proof. The first isomorphism follows by Theorem 4.2, Proposition 4.5 and Proposition
4.7. The second isomorphism follows by Proposition 6.1 and the last isomorphism follows
by the fact that Fp is a field. �

The type (Fp,md) Postnikov extension of X corresponding to the trivial element in
the corollary above provides the square zero extension

X ⊕ ΣmdHFp.
We call this the trivial extension. In the homotopy ring of the trivial extension, xm = 0.
Since our goal is to obtain Postnikov extensions that build up to an HZ-algebra with
polynomial homotopy ring, we are not interested in this trivial extension. In Proposition
6.4, we show that the Postnikov extension corresponding to the non-trivial element do
satisfy xm 6= 0 as desired.

Lemma 6.3. Let f : A∗ → C∗ be a map of non-negatively graded commutative Fp-algebras
over a non-negatively graded commutative Fp-algebra B∗. If f is an isomorphism below
degree n for some n > 0, then the induced map

HHFp
∗,∗(A∗, B∗)→ HHFp

∗.∗(C∗, B∗)

is also an isomorphism below internal degree n.

Proof. Let A⊗•∗ ⊗B∗ denote the simplicial ring whose degree m homotopy (i.e. degree m
homology of its normalization) is HHFp

m,∗(A∗, B∗) and let C⊗•∗ ⊗ B∗ denote the simplicial

ring whose degree m homotopy is HHFp
m,∗(C∗, B∗). The map A∗ → C∗ induces a map of
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simplicial graded rings A⊗•∗ ⊗ B∗ → C⊗•∗ ⊗ B∗ which is an isomorphism below internal
degree n at each simplicial degree. Since the homotopy of a simplicial graded ring is
calculated (internal) degree wise, the induced map in homotopy is an isomorphism below
internal degree n. �

Proposition 6.4. Let X denote an HZ-algebra whose homotopy ring is Fp[x]/(xm) for
some m > 1 and whose d Postnikov section is equivalent to Y where d = |x| = 2p − 2.
There is a unique non-trivial (Fp,md) type Postnikov extension of X. The homotopy ring
of this non-trivial extension is Fp[x]/(xm+1). Indeed, this is the only Postnikov extension
of X with homotopy ring Fp[x]/(xm+1).

Proof. Due to Corollary 6.2 and Theorem 3.2, there are only two type (Fp,md) Postnikov
extensions of X up to equivalences of Postnikov extensions. This proves the first state-
ment of the proposition. As discussed before the proposition, the trivial extension results
in a homotopy ring that is not isomorphic to Fp[x]/(xm+1). This shows that the second
statement in the proposition implies the third statement.

Now we prove the second statement of the proposition. Let ψ : Z → X denote the
unique non-trivial type (Fp,md) Postnikov extension of X. This implies that π∗Z ∼=
π∗X ⊕ ΣmdFp as graded abelian groups.

The Postnikov section map ψ : Z → X is a map of HZ-algebras. Therefore, the
md− 2 truncation of π∗Z and π∗X are isomorphic as rings. There are only two possible
ring structures on π∗Z. One of them is Fp[x]/(xm+1) and the other one is the square
zero extension Fp[x]/(xm) ⊕ ΣmdFp. In order to prove the proposition, we need to show
that π∗Z ∼= Fp[x]/(xm+1) as a ring. We assume to the contrary that there is a ring
isomorphism π∗Z ∼= Fp[x]/(xm)⊕ ΣmdFp and obtain a contradiction.

The contradiction we obtain is the following. Let

kmd ∈ Dermd+1
HZ (X,HFp) ∼= Fp

denote a non-trivial derivation resulting in the Postnikov extension ψ and let i denote
the trivial derivation. This means that there is the following homotopy pullback square.

Z X[0]

X X[0] ∨ Σmd+1HFp

ψ i

kmd

This shows that the map ψ : Z → X pulls back the non-trivial derivation kmd to the
trivial derivation. Assuming π∗Z ∼= π∗X ⊕ΣmdFp as a ring, we obtain a contradiction by
showing that the derivation ψ∗kmd given by kmd ◦ ψ is non-trivial.

Now we formulate this statement using Hochschild homology. This is similar to the
argument in the proof of Lemma 5.2. By the naturality of the isomorphism in Theorem
4.2, kmd ◦ ψ is nontrivial if the map

Fp ∼= THHmd+2
HZ (X,HFp)→ THHmd+2

HZ (Z,HFp)

induced by ψ carries 1 ∈ Fp to a non-trivial element on the right hand side. By Proposi-
tions 4.5 and 4.7, it is also sufficient to show that the map

(11) THH
HFp

md+2(HFp ∧HZ Z,HFp)→ THH
HFp

md+2(HFp ∧HZ X,HFp) ∼= Fp

induced by ψ is nontrivial, i.e. 1 ∈ Fp is in the image of this map.
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Let Ê denote the Bökstedt spectral sequence computing THHHFp(HFp ∧HZ Z,HFp)
where HFp ∧HZ Z acts on HFp through the composite map

HFp ∧HZ Z
id∧HZψ−−−−→ HFp ∧HZ X

υ−→ HFp.

Here, υ is as in (10). Recall that E denotes the spectral sequence calculating

THHHFp(HFp ∧HZ X,HFp).

With the composite map above, HFp ∧HZ ψ becomes a map of HFp-algebras over HFp.
Therefore, there is an induced map of spectral sequences

ψ∗ : Ê → E.

As before, we have different arguments for p = 2 and for odd primes. We start with
the p = 2 case where we have d = 2. By Lemma 7.4, we have:

π∗(HF2 ∧HZ Z) ∼= F2[ξ1]/(ξ2m
1 )⊗ Fp[z],

for degree less than 2m+ 1 where |z| = 2m. By Lemma 6.3, this shows that

Ê2 ∼= HHF2

* (F2[ξ1]/(ξ2m
1 )⊗ F2[z],F2)

for the internal degrees less than 2m+ 1. Furthermore, we have

HHF2

* (F2[ξ1]/(ξ2m
1 )⊗ F2[z],F2)

∼= HHF2

* (F2[ξ1]/(ξ2m
1 ),F2)⊗ HHF2

* (F2[z],F2)

∼= ΛF2(σξ1)⊗ ΓF2(ϕ
2mξ1)⊗ ΛF2(σz)

where the first isomorphism is the natural splitting in Proposition 4.10 and the second
isomorphism follows by Propositions 4.12 and 4.11.

By Lemma 7.4, the restriction of the map π∗(HF2∧HZZ)→ π∗(HF2∧HZX) to degrees
less than 2m+ 1 is given by the same restriction of the map

F2[ξ1]/(ξ2m
1 )⊗ F2[z]→ F2[ξ1]/(ξ2m

1 )

that carries ξ1 to ξ1 and z to 0. This is id⊗ε where id is the identity map and ε denotes the
augmentation map F2[z] → F2. By the naturality of the tensor splitting in Proposition
4.10, we obtain that after restricting to internal degrees less than 2m+ 1, the map

ψ2 : Ê2 ∼= ΛF2(σξ1)⊗ ΓF2(ϕ
2mξ1)⊗ ΛF2(σz)→ E2 ∼= ΛF2(σξ1)⊗ ΓF2(ϕ

2mξ1)

is given by id ⊗ ε where id is the identity map on ΛF2(σξ1) ⊗ ΓF2(ϕ
2mξ1) and ε denotes

the augmentation map ΛF2(σz)→ F2. We obtain that

(12) ψ2(ϕ2mξ1) = ϕ2mξ1.

As mentioned in the proof of Proposition 6.1, all the differentials are trivial on Er for
r ≥ 2 due to degree reasons. Furthermore, ϕ2mξ1 ∈ E2 represents the non-trivial element

on the right hand side of (11). Since it has homological degree 2, ϕ2mξ1 in Ê2 survives

to the Ê∞ page, i.e. d̂rϕ2mξ1 = 0 for every r ≥ 2. This shows that ϕ2mξ1 ∈ Ê2 survives

to the Ê∞ page and due to (12), it hits a non-trivial element on the right hand side of
(11). This finishes the proof of the proposition for p = 2.

Let p be an odd prime. By Lemma 7.3, there is an isomorphism of rings π∗(HFp ∧HZ
Z) ∼= ΛFp(τ0)⊗ π∗Z. Therefore, we have

π∗(HFp ∧HZ Z) ∼= ΛFp(τ0)⊗ (Fp[x]/(xm)⊕ ΣmdFp) ∼= ΛFp(τ0)⊗ Fp[x]/(xm)⊗ Fp[z]
30



for degrees less than md+ 1 where |z| = md. By Lemma 6.3, we have

Ê2 ∼= HHFp
∗ (ΛFp(τ0)⊗ Fp[x]/(xm)⊗ Fp[z],Fp)

for internal degrees less than md+ 1. As before, we obtain

HHFp
∗ (ΛFp(τ0)⊗ Fp[x]/(xm)⊗ Fp[z],Fp)

∼= HHFp
∗ (ΛFp(τ0),Fp)⊗ HHFp

∗ (Fp[x]/(xm),Fp)⊗ HHFp
∗ (Fp[z],Fp)

∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕmx)⊗ ΛFp(σz).

(13)

As in Lemmas 5.1 and 5.8, we have

E2 ∼= HHFp
∗ (ΛFp(τ0)⊗ Fp[x]/(xm),Fp)

∼= HHFp
∗ (ΛFp(τ0),Fp)⊗ HHFp

∗ (Fp[x]/(xm),Fp)
∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕmx).

(14)

The Postnikov section map ψ : Z → X induce the map

id⊗ π∗ψ : π∗(HFp ∧HZ Z) ∼= ΛFp(τ0)⊗ (Fp[x]/(xm)⊕ ΣmdFp)→
π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ Fp[x]/(xm)

by Lemma 7.3. Restricting to degrees less than md+ 1, this corresponds to the map

id⊗ ε : ΛFp(τ0)⊗ Fp[x]/(xm)⊗ Fp[z]→ ΛFp(τ0)⊗ Fp[x]/(xm)

where id is the identity map of ΛFp(τ0) ⊗ Fp[x]/(xm) and ε denotes the augmentation
map Fp[z]→ Fp. Recall that the tensor splittings in Equations (13) and (14) are natural.

Therefore, the restriction of the map ψ2 : Ê2 → E2 to internal degrees less than md + 1
is given by id ⊗ ε′ where id is the identity map on ΓFp(στ0) ⊗ ΛFp(σx) ⊗ ΓFp(ϕmx) and
ε′ denotes the augmentation map ΛFp(σz) → Fp induced by ε. In particular, the map

ψ2 : Ê2 → E2 satisfies

(15) ψ2(ϕmx) = ϕmx.

Due to Proposition 6.1, ϕmx ∈ E2 represents a non-trivial element on the right hand side

of (11). Since ϕmx ∈ Ê2 has homological degree 2, all the differentials are trivial on ϕmx

and therefore it survives to the Ê∞ page. Due to (15), we deduce that the element on

the left hand side of (11) represented by ϕmx ∈ Ê2 hits a non-trivial element on the right
hand side of (11). This provides the contradiction we needed. �

6B. Proof of Theorem 1.8. We start with the following construction which provides
the first example of a non-formal DGA with homology Fp[x]. Recall that for this section,
we have d = |x| = 2p− 2.

Construction 6.5. The m = 2 case of Proposition 6.4 states that the HZ-algebra Y has
a unique type (Fp, 2d) Postnikov extension Z3 with homotopy ring Fp[x]/(x3). In other
words, there is a map of HZ-algebras

Z3 → Y

inducing the map Fp[x]/(x3) → Fp[x]/(x2) that carries x to x in homotopy. Applying
Proposition 6.4 inductively, on obtains a tower of HZ-algebras

· · · → Z4 → Z3 → Y → HFp
where π∗Zm ∼= Fp[x]/(xm) and the structure maps induce the ring maps that carry x to x
in homotopy (except the last map). Taking the homotopy limit of this tower provides an
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HZ-algebra Z with homotopy ring Fp[x]. By construction, the d Postnikov section of Z
is Y . Since the d Postnikov section of Z corresponds to a non-formal DGA, we conclude
that the DGA corresponding to Z is not formal.

For the convenience of the reader, we provide a restatement of Theorem 1.8.

Theorem 1.8. There is a unique DGA whose homology is Fp[x2p−2] (with |x2p−2| = 2p−2)
and whose 2p−2 Postnikov section is non-formal. Furthermore for every m > 1, there is
a unique DGA whose homology is Fp[x2p−2]/(xm2p−2) and whose 2p − 2 Postnikov section
is non-formal.

Theorem 1.8 can also be stated as follows. There is a unique HZ-algebra whose ho-
motopy ring is Fp[x] and whose 2p− 2 Postnikov section is equivalent to Y . Furthermore
for every m > 1, there is a unique HZ-algebra whose homotopy ring is Fp[x]/(xm) and
whose 2p− 2 Postnikov section is equivalent to Y .

Proof. We start with the first statement. Construction 6.5 provides an HZ-algebra Z
with homotopy ring Fp[x] and d Postnikov section equivalent to Y . As in page 296 of [3],
we can choose a Postnikov tower of Z

· · · → Z[2d]→ Z[d]→ Z[0]

where each Z[nd] is q-cofibrant as an HZ-algebra and the structure maps are q-fibrations.
Note that we skip the Postnikov sections between Z[nd] and Z[(n + 1)d] because π∗(Z)
is trivial between degrees nd and (n+ 1)d. We also have Z[d] ' Y .

Let T be an HZ-algebra with homotopy ring Fp[x] and d Postnikov section equivalent
to Y . In order to finish the proof of the first statement in the theorem, we need to show
that T is weakly equivalent to Z as an HZ-algebra. As before, there is a Postnikov tower
of T

· · · → T [2d]→ T [d]→ T [0]

where the structure maps are q-fibrations. We construct a weak equivalence between the
Postnikov towers of T and Z. In other words, we construct weak equivalences fi : Z[id] ∼→
T [id] of HZ-algebras that make the following diagram commute.

· · · Z[2d] Z[d] Z[0]

· · · T [2d] T [d] T [0]

' f2 ' f1 ' f0

For the base case, note that Z[0] ' HFp ' T [0]. Since Z[0] is q-cofibrant and T [0] is
q-fibrant, we obtain a weak equivalence f0 of HZ-algebras.

We consider Z[d] as an HZ-algebra over T [0] through the composite map

Z[d]→ Z[0]
f0−→ T [0].

This composite map and the map T [d]→ T [0] are Postnikov extensions of T [0] ' HFp of
type (Fp, d) in HZ-algebras. Up to weak equivalences of Postnikov extensions, there are
only two type (Fp, d) Postnikov extensions of HFp in HZ-algebras [9, 3.15]. Furthermore,
the trivial extension provides an HZ-algebra that is not weakly equivalence to Y [9,
3.15]. Since Z[d] ' Y ' T [d], we deduce that the Postnikov extensions T [d]→ T [0] and
Z[d] → T [0] are weakly equivalent as type (Fp, d) Postnikov extensions of T [0] ' HFp.
In particular, T [d] and Z[d] are weakly equivalent as HZ-algebras over T [0].
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The category of HZ-algebras over T [0] carries a model structure where the fibrations,
cofibrations and weak equivalence are precisely the morphisms that forget to fibrations,
cofibrations and weak equivalences of HZ-algebras respectively. In particular, T [d] is
fibrant as an HZ-algebra over T [0] and Z[d] is cofibrant as an HZ-algebra over T [0].
Therefore, there is a weak equivalence f1 : Z[d] ∼→ T [d] of HZ-algebras over T [d]. This
provides the map f1 we needed.

We do induction through the Postnikov towers. For a given n ≥ 1, assume that there
are weak equivalences f` : Z[`d] ∼→ T [`d] for every ` ≤ n that commute with the structure
maps. We consider Z[(n+ 1)d] as an HZ-algebra over T [nd] through the composite

Z[(n+ 1)d]→ Z[nd] ∼→ T [nd].

The maps Z[(n + 1)d] → T [nd] and T [(n + 1)d] → T [nd] are Postnikov extensions of
T [nd] of type (Fp, (n + 1)d). Furthermore, these are non-trivial Postnikov extensions as
their homotopy rings are given by Fp[x]/(xn+2). Since T [nd] satisfies the hypothesis of
Proposition 6.4, there is a unique non-trivial type (Fp, (n + 1)d) Postnikov extension of
T [nd]. In particular, Z[(n+ 1)d]→ T [nd] and T [(n+ 1)d]→ T [nd] are equivalent as type
(Fp, (n + 1)d) Postnikov extensions of T [nd]. In particular, Z[(n + 1)d] and T [(n + 1)d]
are weakly equivalent as HZ-algebras over T [nd]. Since Z[(n + 1)d] is cofibrant and
T [(n + 1)d] is fibrant in the model category of HZ-algebras over T [nd], we obtain the
desired weak equivalence fn+1 that make the relevant structure maps commute.

This finishes the inductive process and we obtain a weak equivalence between the
Postnikov towers of Z and T . Since Z and T are equivalent to the homotopy limits of
their respective Postnikov towers, we obtain that the HZ-algebras T and Z are weakly
equivalent as desired. This finishes the proof of the first statement of the theorem.

The proof of the second statement of the theorem follows in a similar manner. In
Construction 6.5, we show that for every m > 1, there exists an HZ-algebra Zm with
homotopy ring Fp[x]/(xm) and d Postnikov section equivalent to Y . In this case, the
Postnikov tower of Zm is bounded above. The proof of the uniqueness statement follows
by the same arguments as before except that it involves Postnikov towers with finitely
many stages.

�

6C. Proof of Theorem 1.9. We start with a restatement of Theorem 1.9.

Theorem 1.9. Let X be the non-formal DGA with homology Fp[x2p−2] given in Theorem
1.8. We have

HHZ
∗ (X,Fp) = Fp[µ]/(µp) with |µ| = 2.

Proof. There are isomorphisms

HHZ
∗ (X,HFp) ∼= THHHZ

∗ (X,HFp) ∼= THHHFp
∗ (HFp ∧HZ X,HFp).

Note that we abuse notation and denote the HZ-algebra corresponding to X also by X.
As usual, we compute the right hand side by using the Bökstedt spectral sequence.

We start with the case p = 2. By Lemma 7.4, we have π∗(HF2 ∧HZ X) ∼= F2[ξ1]
with |ξ1| = 1. This shows that the second page of the spectral sequence calculating
THHHF2(HF2 ∧HZ X,HF2) is given by HHF2

* (F2[ξ1],F2) ∼= ΛF2(σξ1) due to Proposition
4.11. All the differentials are trivial by degree reasons and this proves the lemma for
p = 2, i.e. we have

HHF2

* (HF2 ∧HZ X,F2) ∼= F2[µ]/(µ2) with |µ| = 2.
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Let p be an odd prime. By Lemma 7.3, we have

π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ Fp[x].

It follows by Propositions 4.10 and 4.11 that the spectral sequence calculating

THHHFp(HFp ∧HZ X,HFp)
is given by

E2 ∼= HHFp
∗ (ΛFp(τ0)⊗ Fp[x],Fp) ∼= ΓFp(στ0)⊗ ΛFp(σx).

Since the 2p − 2 Postnikov section of X is non-formal, and since there is a unique non-
formal DGA with homology ΛFp(x), we deduce that the 2p− 2 Postnikov section of X is
equivalent to Y . Using the Postnikov section map X → Y and arguing as in the proof of
Lemma 5.8, one sees that there is a map of spectral sequences

E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)→ E2 ∼= ΓFp(στ0)⊗ ΛFp(σx)⊗ ΓFp(ϕ2x)

given by the canonical inclusion where E denotes the spectral sequence in Lemma 5.1.

Using this map and Lemma 5.1, we deduce that dr = 0 for 1 < r < p−1. Furthermore,
Lemma 5.6 implies that all the non-trivial differentials of Ep−1 are given by

dp−1γk(στ0) = γk−p(στ0)σx.

where k ≥ p. This shows that the E∞ page is given by the truncation of ΓFp [στ0] above
total degree 2p− 2. This proves that

THHHFp
∗ (HFp ∧HZ X,HFp) ∼= Fp[µ]/(µp)

as desired.

�

Remark 6.6. It is interesting to compare this with the Hochschild homology groups of
the formal DGA Z with homology Fp[x2p−2]. Since Z is an Fp-DGA,

Fp ⊗L
Z Z
∼= (Fp ⊗L

Z Fp)⊗L
Fp
Z.

The homology of the Fp-DGA Fp ⊗L
Z Fp is an exterior algebra with a single generator in

degree 1. A straightforward André–Quillen cohomology computation shows that there
is a unique Fp-DGA with such homology, see Theorem 3.2. We deduce that the Fp-
DGA Fp ⊗L

Z Fp is formal. This shows that Fp ⊗L
Z Z is also formal. In particular, all the

differentials in the Bökstedt spectral sequence computing HHFp
∗ (Fp ⊗L

Z Z,Fp) are trivial.
We obtain

HHZ
∗ (Z,Fp) ∼= HHFp

∗ (Fp ⊗L
Z Z,Fp) ∼= Γ(y)⊗ Λ(z)

where |y| = 2 and |z| = 2p− 1.

7. Homology calculations

To calculate the second page of the Bökstedt spectral sequence in various cases, we
need to know the ring structure on π∗(HFp ∧HZ X) where X denotes an HZ-algebra of
interest.

We make use of the Tor spectral sequence of [11, IV.4.1]. Let R be a commutative
S-algebra and let K and L be R-modules. For a spectrum E and a map φ of spectra, we
denote π∗E and π∗φ by E∗ and φ∗ respectively. The Tor spectral sequence is given by
the following.

E2
s,t = TorR∗s,t (K∗, L∗) =⇒ πs+t(K ∧R L)

Note that throughout this section, all the smash products are assumed to be the corre-
sponding derived smash products.

34



Lemma 7.1. Let E and F be HZ-modules whose homotopy groups are Fp-modules. The
second page of the Tor spectral sequence calculating π∗(E ∧HZ F ) is given by

E2 ∼= ΛFp(z)⊗ π∗E ⊗ π∗F
where deg(z) = (1, 0). Furthermore, dr = 0 for r ≥ 2.

If π∗E and π∗F are concentrated in degrees that are multiples of some d ≥ 2, then there
is an isomorphism of graded abelian groups

π∗(E ∧HZ F ) ∼= ΛFp(z)⊗ π∗E ⊗ π∗F
where |z| = 1. This isomorphism is natural in the following sense. Given HZ-module
maps f : E → E ′ and g : F → F ′ where E ′∗ and F ′∗ are graded Fp-modules concentrated
in degrees that are multiples of d, then the induced map π∗(f∧HZg) is given by id⊗f∗⊗g∗
where id is the identity map of ΛFp(z).

Proof. We have the following standard resolution of Fp as a Z-module

· · · → 0→ Z .p−→ Z
where the last map denotes multiplication by p. To obtain a free resolution of π∗E, one
takes a direct sum of suspended copies of this resolution indexed by a basis of π∗E. Since
π∗F is an Fp-module, applying the functor − ⊗ π∗F to this resolution one obtains the
following.

· · · → 0→ π∗E ⊗ π∗F
0−→ π∗E ⊗ π∗F

Therefore, the E2 page of the Tor spectral sequence calculating π∗(E ∧HZ F ) is given by

ΛFp(z)⊗ π∗E ⊗ π∗F
where deg(z) = (1, 0). There are no non-trivial differentials since the E2 page is concen-
trated in homological degrees 0 and 1. This proves the first statement of the lemma.

Assuming π∗E and π∗F are concentrated in degrees that are multiples of d, π∗E⊗π∗F
is also concentrated in degrees that are multiples of d ≥ 2. Therefore, for each total
degree, there is at most one bidegree of E2 with a non-trivial entry. In particular, we
have no additive extension problems. The naturality follows by the functoriality of the
Tor spectral sequence and the fact that there are no extension problems. �

Remark 7.2. Let K be an HZ-module and let Ho(HZ -Mod) denote the homotopy
category of HZ-modules. Since π∗(Σ

iHZ) is free over π∗HZ ∼= Z, we obtain the following
using the Ext spectral sequence in (3).

Ho(HZ -Mod)(ΣiHZ, K) ∼= HomZ(Z, πiK) ∼= πiK

In other words, for a given class k ∈ πiK, there is a unique map ΣiHZ → K in
Ho(HZ -Mod) that carries 1 ∈ πi(Σ

iHZ) ∼= Z to k ∈ πiK. In this situation, we say
the map ΣiHZ → K represents k ∈ πiK. One obtains a similar correspondence for
HFp-modules. Given an HFp-module K and a class k ∈ πiK, there is a unique map
ΣiHFp → K in the homotopy category of HFp-modules that carries 1 ∈ πi(ΣiHFp) ∼= Fp
to k ∈ πiK.

Lemma 7.3. Let d be an integer with d > 2. Furthermore, let X be an HZ-algebra whose
homotopy ring is an Fp-algebra concentrated in degrees that are multiples of d. There is
an isomorphism of rings

π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ π∗X
where |τ0| = 1.
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Let E and F be HZ-algebras satisfying the hypothesis above and let ψ : E → F be a
map of HZ-algebras. The induced map π∗(HFp∧HZψ) is the map given by id⊗π∗ψ where
id denotes the identity map of ΛFp(τ0).

Proof. There is also a zig-zag of Quillen equivalences between the model categories of
HFp-algebras and Fp-DGAs [29]. Let Z denote the HFp-algebra corresponding to the
formal Fp-DGA with homology π∗X; in particular, we have π∗Z ∼= π∗X as rings. Note
that we have the following isomorphism of rings

(16) π∗(HFp ∧HZ Z) ∼= π∗((HFp ∧HZ HFp) ∧HFp Z) ∼= ΛFp(τ0)⊗ π∗Z

where the first isomorphism follows by the fact that Z is an HFp-algebra and the second
isomorphism follows by the fact that all the higher Tor terms are trivial in the relevant
Tor spectral sequence as Fp is a field. We start by proving that X is isomorphic to Z as
a monoid in the homotopy category of HZ-modules Ho(HZ -Mod).

Since every chain complex is quasi-isomorphic to its homology, the chain complexes
corresponding to X and Z are quasi-isomorphic, i.e. X and Z are weakly equivalent as
HZ-modules. One can also see this by using the Ext spectral sequence in (3) for maps of
HZ-modules from X to Z and the fact that Z has global dimension 1. In this spectral
sequence, E0,0

2 = HomZ(π−∗X, π−∗Z) survives non-trivially to the E∞-page. Therefore,
one can choose an equivalence φ : X → Z of HZ-modules that induces a ring isomorphism
φ∗ : π∗X → π∗Z.

Now we show that φ is a monoid isomorphism in Ho(HZ -Mod). For this, we need to
show two things. We need to show that this map carries the unit to the unit and that it
preserves the multiplication.

We start by showing that φ preserves the unit. Let uX : HZ→ X and uZ : HZ→ Z in
Ho(HZ -Mod) denote the unit maps of X and Z respectively. Recall from Remark 7.2 that
in Ho(HZ -Mod), a map out of HZ is uniquely determined by the image of 1 ∈ π0HZ ∼= Z
in homotopy. Therefore, in order to show that φ◦uX = uZ in Ho(HZ -Mod), it is sufficient
to show that

π∗(φ ◦ uX)(1) = π∗(uZ)(1).

Since uX and uZ come from maps of HZ-algebras, they preserve the unit at the level of
homotopy groups. Furthermore, we chose φ in a way that φ∗ is a ring homomorphism.
In particular, φ∗ also sends the unit to the unit. This establishes the identity above and
shows that φ preserves the unit.

To show that φ preserves the multiplication, we need to to show that the following
diagram commutes in Ho(HZ -Mod).

(17)

X ∧HZ X Z ∧HZ Z

X Z

φ∧HZφ

mX mZ

φ

All the smash products are derived as usual and mX and mZ denote the multiplication
maps of X and Z respectively. To show that this diagram commutes, we need to identify
the homotopy classes of maps from X ∧HZ X to Z in HZ-modules.

There is an adjunction between the homotopy categories of HZ-modules and HFp-
modules where the left adjoint

HFp ∧HZ − : Ho(HZ -Mod)→ Ho(HFp -Mod)
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is the extension of scalars functor and the right adjoint is given by the forgetful functor.
Note that the extension of scalars functor is strong monoidal due to the equality

(18) HFp ∧HZ (E ∧HZ F ) ∼= (HFp ∧HZ E) ∧HFp (HFp ∧HZ F )

that holds for every pair of HZ-modules E and F .

Since Z is an HFp-module, we obtain the following.

Ho(HZ -Mod)(X ∧HZ X,Z) ∼= Ho(HFp -Mod)(HFp ∧HZ (X ∧HZ X), Z)
∼= Ho(HFp -Mod)((HFp ∧HZ X) ∧HFp (HFp ∧HZ X), Z)

(19)

Here, the first isomorphism is due to the adjunction and the second isomorphism follows
by (18). By Lemma 7.1, there is the following isomorphism of graded abelian groups.

π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ π∗X

Since Fp is a field, the Tor spectral sequence shows that smashing over HFp results in
a tensor product in homotopy. We obtain the following isomorphism of graded abelian
groups.

π∗((HFp ∧HZ X) ∧HFp (HFp ∧HZ X)) ∼= ΛFp(τ0)⊗ π∗X ⊗ ΛFp(τ0)⊗ π∗X

Furthermore, the set of homotopy classes of maps between HFp-modules are simply
given by the set of maps of homotopy groups. This follows by the Ext spectral sequence
calculating the homotopy classes of maps of HFp-modules; this spectral sequence has
trivial terms in non-zero cohomological degrees because Fp is a field. Using this fact and
the identification in (19), we deduce the following.

Ho(HZ -Mod)(X ∧HZ X,Z) ∼= HomFp(ΛFp(τ0)⊗ π∗X ⊗ ΛFp(τ0)⊗ π∗X, π∗Z)

Let f and g denote the maps on the right hand side corresponding to the maps mZ ◦
(φ∧HZ φ) and φ ◦mX of Diagram (17) respectively. In order to prove that Diagram (17)
commutes, i.e. in order to deduce that φ is an isomorphism of monoids, it is sufficient to
show that f = g.

In ΛFp(τ0)⊗π∗X⊗ΛFp(τ0)⊗π∗X, the elements of the form τ0⊗x1⊗τ0⊗x2, τ0⊗x1⊗1⊗x2

and 1⊗ x1⊗ τ0⊗ x2 for x1, x2 ∈ π∗X lie in degrees, 2 + dm, 1 + dm and 1 + dm for some
m respectively. Since π∗Z is concentrated in degrees that are multiples of d and because
d ≥ 3, all the elements mentioned above are necessarily mapped to zero by both f and
g. In particular, f and g agree on elements with a τ0 factor.

Therefore, it is sufficient to show that f and g agree for elements of the form 1⊗ x1 ⊗
1⊗ x2 for every x1, x2 ∈ π∗X.

The adjoint of the map mZ ◦ (φ∧HZ φ), which induces the map f in homotopy, is given
by the following composite.

(HFp ∧HZ X) ∧HFp (HFp ∧HZ X)→ (HFp ∧HZ Z) ∧HFp (HFp ∧HZ Z)

→ HFp ∧HZ Z → Z
(20)

Here, the first map is the canonical map induced by φ, the second map is the multiplication
map of HFp ∧HZ Z and the third map is the HFp-algebra structure map of Z. Using the
functoriality of the Tor sequence, we obtain that the induced ring map at the level of
homotopy groups by the map of HZ-algebras:

(21) X ∼= HZ ∧HZ X → HFp ∧HZ X,
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is the canonical inclusion π∗X → ΛFp(τ0)⊗π∗X. One obtains a similar result by replacing
X with Z in the map above. Because the following diagram commutes,

(22)

HZ ∧HZ X HZ ∧HZ Z

HFp ∧HZ X HFp ∧HZ Z

HZ∧HZφ

HFp∧HZφ

we deduce that the map

π∗(HFp ∧HZ φ) : ΛFp(τ0)⊗ π∗X → ΛFp(τ0)⊗ π∗Z
carries 1 ⊗ x to 1 ⊗ φ∗(x). Therefore, the first map in (20) carries 1 ⊗ x1 ⊗ 1 ⊗ x2

to 1 ⊗ φ∗(x1) ⊗ 1 ⊗ φ∗(x2). Due to (16), the second map carries the latter element to
1⊗ φ∗(x1)φ∗(x2) = 1⊗ φ∗(x1x2) and the third map carries this element to φ∗(x1x2). We
deduce that f(1⊗ x1 ⊗ 1⊗ x2) = φ∗(x1x2).

Therefore, we need to show that g also carries 1⊗x1⊗ 1⊗x2 to φ∗(x1x2). The adjoint
of φ ◦mX , which induces g in homotopy, is given by the composite map

(HFp ∧HZ X) ∧HFp (HFp ∧HZ X)→ HFp ∧HZ X
HFp∧HZφ−−−−−→ HFp ∧HZ Z → Z

where the first map is the multiplication map of HFp ∧HZ X and the last map is the
HFp-algebra structure map of Z. Using (21) as before, we deduce that the ring structure
on 1 ⊗ π∗X ⊂ π∗(HFp ∧HZ X) is given by the ring structure on π∗X. In particular, we
deduce that the first map in the composite above carries 1⊗ x1 ⊗ 1⊗ x2 to 1⊗ x1x2 at
the level of homotopy groups. Due to (22), this element is carried to 1⊗ φ∗(x1x2) by the
second map HFp ∧HZ φ. Due to (16), the last map in the composite carries 1⊗ φ∗(x1x2)
to φ∗(x1x2). We deduce that the induced map at the level of homotopy groups by the
composite above, and therefore g, carries 1⊗ x1 ⊗ 1⊗ x2 to φ∗(x1x2). This shows that f
and g agree and that Diagram (17) commutes. Therefore, φ is an isomorphism of monoids
between X and Z in Ho(HZ -Mod).

Since HFp∧HZ− is a strong monoidal functor, we deduce that HFp∧HZX and HFp∧HZ
Z are isomorphic as monoids in Ho(HFp -Mod). Since the homotopy rings of HFp-algebras
are determined by their isomorphism classes as monoids in Ho(HFp -Mod), we deduce that
π∗(HFp∧HZX) is isomorphic to π∗(HFp∧HZZ) as rings. Using (16), we obtain the desired
ring isomorphism

π∗(HFp ∧HZ X) ∼= ΛFp(τ0)⊗ π∗X.
The naturality of this isomorphism follows by the naturality result in Lemma 7.1. �

The following lemma provides a counter example to the lemma above for d = 2; this
is obtained by using X = Y in the first item of the lemma below.

We use the following lemma to prove the p = 2 case of Theorem 1.8. Note that in this
section, we do not assume the existence of X or Z satisfying the hypothesis of the items
in the lemma below for m > 2. However, this does not cause a problem since the lemma
would be vacuously true if such objects did not exist.

Lemma 7.4. Let Y denote the HZ-algebra corresponding to the non-formal DGA given
in Example 1.2 for p = 2. Also, let X and Z be HZ-algebras with 2 Postnikov section
equivalent to Y . For m > 1 and |x| = 2, we have the following.

(1) If the homotopy ring of X is F2[x]/(xm), then there is an isomorphism of rings

π∗(HF2 ∧HZ X) ∼= F2[ξ1]/(ξ2m
1 )
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where |ξ1| = 1.
(2) If the homotopy ring of X is F2[x], then there is an isomorphism of rings

π∗(HF2 ∧HZ X) ∼= F2[ξ1]

where |ξ1| = 1.
(3) Assume that there is an isomorphism π∗Z ∼= F2[x]/(xm) ⊕ F2w of rings where
|w| = 2m and ⊕ denotes the square zero extension. There is a map of rings

F2[ξ1]/(ξ2m
1 )⊗ F2[w]→ π∗(HF2 ∧HZ Z)

whose restriction to degrees less than 2m+ 1 is an isomorphism, where |ξ1| = 1.
Furthermore, the ring map π∗(HF2∧HZZ)→ π∗(HF2∧HZZ[(m−1)2]) induced

by the Postnikov section map Z → Z[(m− 1)2] agrees with the ring map

F2[ξ1]/(ξ2m
1 )⊗ F2[w]→ F2[ξ1]/(ξ2m

1 )

that carries ξ1 to ξ1 and w to 0 on degrees below 2m+ 1.

Proof. We start by proving the first part of the lemma for X ' Y , i.e. we prove the case
m = 2 of the first part.

Let E be the HZ-algebra HZ ∧ HF2. This is the HZ-algebra obtained from HF2

through the functor HZ ∧ − : S-algebras→ HZ-algebras. We have

(23) π∗(HF2 ∧HZ E) ∼= π∗(HF2 ∧HZ (HZ ∧HF2)) ∼= π∗(HF2 ∧HF2) ∼= F2[ξi|i ≥ 1]

where |ξi| = 2i − 1. Note that this is the dual Steenrod algebra. Furthermore, we have

π∗E = π∗(HZ ∧HF2) ∼= F2[ξ2
1 ]⊗ F2[ξi|i ≥ 2]

where |ξi| = 2i − 1 for i ≥ 2 as before and |ξ2
1 | = 2.

Let ψ : E → E[2] be the 2 Postnikov section of E. In homotopy, this induces the map

π∗(ψ) : F2[ξ2
1 ]⊗ F2[ξi|i ≥ 2]→ ΛF2(x)

that satisfies π∗(ψ)(ξ2
1) = x.

By Lemma 7.1, the map

HF2 ∧HZ ψ : HF2 ∧HZ E → HF2 ∧HZ E[2]

induces a map of Tor spectral sequences given by the map

(24) id⊗ π∗(ψ) : ΛF2(t)⊗ F2[ξ2
1 ]⊗ F2[ξi|i ≥ 2]→ ΛF2(t)⊗ ΛF2(x)

on the second page where id denotes the identity map of ΛF2(t) and deg(t) = (1, 0). Fur-
thermore, both spectral sequences degenerate on the second page due to degree reasons.
The spectral sequence on the right hand side provides an isomorphism

π∗(HF2 ∧HZ E[2]) ∼= ΛF2(z)⊗ ΛF2(x)

of graded abelian groups where |z| = 1. Note that the spectral sequence on the left
computes F2[ξi|i ≥ 1], see (23).

The element t on the left hand side of (24) is the only class of total degree 1. Therefore,
it represents ξ1 ∈ F2[ξi|i ≥ 1]. Similarly, ξ2

1 on the left hand side represents ξ2
1 ∈ F2[ξi|i ≥

1]. Since the map in (24) carries t to t and ξ2
1 to x, we obtain that the ring map

π∗(HF2 ∧HZ ψ) : π∗(HF2 ∧HZ E) ∼= F2[ξi|i ≥ 1]→ π∗(HF2 ∧HZ E[2])

carries ξ1 to z and ξ2
1 to x as there are no extension problems. We obtain that z2 = x

in π∗(HF2 ∧HZ E[2]). Furthermore, by Lemma 7.5 below, zx 6= 0 in π∗(HF2 ∧HZ E[2]).
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Therefore, zx = z3 is the non trivial element denoted by z ⊗ x above. This recovers the
ring structure on π∗(HF2 ∧HZ E[2]), we obtain an isomorphism of rings

(25) π∗(HF2 ∧HZ E[2]) ∼= F2[ξ1]/(ξ4
1).

Now, we show that E[2] is weakly equivalent as an HZ-algebra to Y . As described in
Example 1.2, there are only two HZ-algebras with homotopy ring ΛF2(x); one of these
is the HZ-algebra corresponding to the formal F2-DGA with homology ΛF2(x) and the
other one is Y . If E[2] is the HZ-algebra corresponding to the formal F2-DGA, then it
is an HF2-algebra. In that case, we have the following isomorphisms of rings

π∗(HF2 ∧HZ E[2]) ∼= π∗((HF2 ∧HZ HF2) ∧HF2 E[2]) ∼= ΛF2(z)⊗ ΛF2(x).

However, this contradicts (25). Therefore, E[2] is not the HZ-algebra corresponding to
the formal F2-DGA with homology ΛF2(x); we deduce that E[2] ' Y as HZ-algebras.
This, together with (25), provides the desired isomorphisms of rings

π∗(HF2 ∧HZ Y ) ∼= π∗(HF2 ∧HZ E[2]) ∼= F2[ξ1]/(ξ4
1).

This finishes the proof of the first part of the lemma for m = 2.

We prove the first part by doing induction over m in π∗X = F2[x]/(xm). The proof of
the m = 2 case is given above. Assume that the first item of the lemma is true for some
m ≥ 2 and we are given an HZ-algebra X with π∗X = F2[x]/(xm+1) and 2 Postnikov
section equivalent to Y . Note that by Lemma 7.1, we have an isomorphism of graded
abelian groups

π∗(HF2 ∧HZ X) ∼= ΛF2(z)⊗ π∗X
where |z| = 1. Our goal is to understand the ring structure on ΛF2(z)⊗ π∗X. Note that
the HZ-algebra map

(26) X ∼= HZ ∧HZ X → HF2 ∧HZ X

induces a ring map π∗X → ΛF2(z) ⊗ π∗X. By the functoriality of the Tor spectral
sequence, it is clear that this is the canonical inclusion. This shows that the ring structure
on π∗X ⊂ ΛF2(z)⊗ π∗X is given by that of π∗X.

Let ψ denote the Postnikov section mapX → X[(m−1)2]. By the induction hypothesis,
the statement in the lemma is true for X[(m − 1)2]. Furthermore by Lemma 7.1, the
following ring map

(27) π∗(HF2 ∧HZ X)→ π∗(HF2 ∧HZ X[(m− 1)2]) ∼= F2[ξ1]/(ξ2m
1 )

is an isomorphism below degree 2m. This shows that π∗(HF2∧HZX) has the desired ring
structure in degrees less than 2m. In particular, we have z2 = x. The only non-trivial
classes of π∗(HF2 ∧HZ X) in degrees larger than 2m − 1 are xm and z ⊗ xm. Therefore,
it is sufficient to show that z2m = xm and z2m+1 = z ⊗ xm. Since the ring structure on
π∗X ⊂ ΛF2(z) ⊗ π∗X is given by that of π∗X, z2m = (z2)m = xm as desired. Now we
show that z2m+1 = z ⊗ xm. Since z ⊗ xm is the only non-trivial class in its degree, and
since z2m+1 = zz2m = zxm, it is sufficient to show that zxm is non-trivial. This follows
by Lemma 7.5 below. This finishes the proof of the first part of the lemma.

Now we prove the second part of the lemma; let π∗X = F2[x]. By Lemma 7.1, the map
of rings

π∗(HF2 ∧HZ X)→ π∗(HF2 ∧HZ X[m2])

induced by the Postnikov section X → X[m2] is an isomorphism below degree 2m + 2.
For every m > 1, we already established the ring structure on the right hand side as
X[m2] satisfies the hypothesis of the lemma and π∗(X[m2]) ∼= F2[x]/xm+1. As we can
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choose m to be arbitrarily large, this establishes the ring structure on π∗(HF2 ∧HZX) as
desired. This finishes the proof of the second part of the lemma.

Now we prove the third part using the first part of the lemma. By Lemma 7.1, there
is an isomorphism of graded abelian groups

π∗(HF2 ∧HZ Z) ∼= ΛF2(z)⊗ π∗Z

where |z| = 1 and π∗Z = F2[x]/(xm)⊕F2w with |w| = 2m. As in Equation (26), the map
Z → HF2∧HZZ shows that the ring structure on π∗Z ⊂ ΛF2(z)⊗π∗Z is given by the ring
structure on π∗Z. Furthermore, we consider the Postnikov section map Z → Z[(m−1)2].
Note that Z[(m− 1)2] satisfies the hypothesis of the first part of the lemma. Arguing as
in (27), we deduce that the ring structure on π∗(HF2∧HZZ) below degree 2m is given by
F2[ξ1]/(ξ2m

1 ) where x ∈ π∗Z ⊂ π∗(HF2 ∧HZ Z) corresponds to ξ2
1 . Since xm = 0 in π∗Z,

we deduce that ξ2m
1 = 0 in π∗(HF2 ∧HZ Z). This shows that there is a map

F2[ξ1]/(ξ2m
1 )⊗ F2[w]→ π∗(HF2 ∧HZ Z)

of rings that carries ξ1 to z and w to w. Furthermore, this map induces an isomorphism

F2[ξ1]/(ξ2m
1 )⊗ F2[w] ∼= π∗(HF2 ∧HZ Z)

of rings after restricting to degrees less than 2m+ 1.

For the last statement of the third part of the lemma, note that Z[(m − 1)2] satisfies
the hypothesis of the first part. It follows by Lemma 7.1 that, after restricting to degrees
less than 2m+ 1, the ring map induced by the Postnikov section map Z → Z[(m− 1)2]
is given by the same restriction of the map of rings

π∗(HF2 ∧HZ Z) ∼= F2[ξ1]/(ξ2m
1 )⊗ F2[w]→ π∗(HF2 ∧HZ Z[(m− 1)2]) ∼= F2[ξ1]/(ξ2m

1 )

carrying ξ1 to ξ1 and w to 0. This finishes the proof of the third part of the lemma. �

What is left to prove is the following lemma.

Lemma 7.5. Let X be an HZ-algebra with homotopy ring F2[x]/(xm+1) for some m ≥ 1
where |x| = 2. Furthermore, let

π∗(HF2 ∧HZ X) ∼= ΛF2(z)⊗ π∗X

be an identification of graded abelian groups provided by the Tor spectral sequence, see
Lemma 7.1. Under this identification, the ring structure on π∗(HF2 ∧HZ X) satisfies
zxm 6= 0.

Proof. The multiplication map of HF2 ∧HZ X is given by the composite

(HF2 ∧HZ X) ∧HF2 (HF2 ∧HZ X) ∼= HF2 ∧HZ (X ∧HZ X)→ HF2 ∧HZ X

where the map on the right is induced by the multiplication map

mX : X ∧HZ X → X

of X.

In order to understand the product of z with xm, we choose a morphism

z : ΣHF2 → HF2 ∧HZ X

of HF2-modules representing the unique non-trivial class z in π1(HF2∧HZX) and a map

xm : Σ2mZ→ X
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of HZ-modules representing the unique non-trivial class xm in π2mX, see Remark 7.2.
Using the induced map of Tor spectral sequences, one sees that

idHF2 ∧HZ x
m : HF2 ∧HZ Σ2mHZ→ HF2 ∧HZ X

represents the unique non-trivial degree 2m element 1⊗xm in π∗(HF2∧HZX). Note that
idHF2 denotes the identity map of HF2 and we have HF2 ∧HZ Σ2mHZ ∼= Σ2mHF2. The
product

zxm : Σ2m+1HF2 → HF2 ∧HZ X

is given by composing vertically and then horizontally and then vertically twice in the
following commuting diagram.
(28)

Σ2m+1HF2

ΣHF2 ∧HF2 (HF2 ∧HZ Σ2mHZ) (HF2 ∧HZ X) ∧HF2 (HF2 ∧HZ X)

ΣHF2 ∧HZ Σ2mHZ (HF2 ∧HZ X) ∧HZ X ∼= HF2 ∧HZ (X ∧HZ X)

HF2 ∧HZ X

∼=
z∧HF2 (idHF2∧HZx

m)

∼= ∼=

z∧HZx
m

idHF2∧HZmX

Here, the vertical isomorphisms are given by the cancellation of HF2 by ∧HF2 . When
we say the class represented by z ∧HZ x

m in homotopy, we mean the image of 1 ∈
π2m+1(ΣHF2∧HZ Σ2mHZ) ∼= F2 under the map π2m+1(z ∧HZ x

m). This is consistent with
the notation of Remark 7.2 since z∧HZx

m is a map of HF2-modules . Note that z∧HZx
m

is a map of HF2-modules because z is a map of HF2-modules. Similarly, when we say
the class represented by (idHF2 ∧HZ mX) ◦ (z ∧HZ x

m) in homotopy, we mean the image
of 1 ∈ π2m+1(ΣHF2 ∧HZ Σ2mHZ) under the map π2m+1((idHF2 ∧HZ mX) ◦ (z ∧HZ x

m)).

Using the Tor spectral sequence for HF2-modules, one observes that the smash product
of HF2-modules denoted by ∧HF2 results in a tensor product at the level of homotopy
groups. Using this, we deduce that z ∧HF2 (idHF2 ∧HZ x

m) hits a non-trivial class in
homotopy. Due to the commuting square above, we deduce that z ∧HZ x

m represents a
non-trivial class in homotopy.

In order to prove the lemma, i.e. in order to show that zxm represents a non-trivial
class in homotopy groups, it is sufficient to show that the map

(idHF2 ∧HZ mX) ◦ (z ∧HZ x
m) : ΣHF2 ∧HZ Σ2mHZ→ HF2 ∧HZ X

represents a non-trivial class in π2m+1(HF2 ∧HZ X).

Again due to Lemma 7.1, we have

(29) π∗(X ∧HZ X) ∼= ΛF2(v)⊗ π∗X ⊗ π∗X

where |v| = 1. Let

α : Σ2m+1HZ→ X ∧HZ X

denote a map of HZ-modules representing the class v⊗1⊗xm. We consider the following
diagram
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(30)

Σ2m+1HZ

HZ ∧HZ X ∧HZ X

HF2 ∧HZ X ∧HZ X HF2 ∧HZ HF2 ∧HZ X HF2 ∧HF2 HF2 ∧HZ X

ΣHF2 ∧HZ Σ2mHZ

α

f

p `

z∧HZx
m

where f is induced by the map HZ → HF2, p is induced by the Postnikov section map
X → HF2 and ` is the canonical map.

Note that the composite map ` ◦ p ◦ f is isomorphic to the canonical map

X ∧HZ X → HF2 ∧HZ X

induced by the Postnikov section map X → HF2. Due to Lemma 7.1, this map carries
the class v ⊗ 1 ⊗ xm to the non-trivial class z ⊗ xm. In particular, we deduce that ` ◦ p
carries the homotopy class corresponding to f ◦ α to a non-trivial element.

On the other hand, the homotopy class corresponding to z ∧HZ x
m gets carried to a

trivial class by ` ◦ p as the following composite map of HF2-modules is null-homotopic,
see Remark 7.2.

ΣHF2
z−→ HF2 ∧HZ X → HF2 ∧HZ HF2 → HF2 ∧HF2 HF2

∼= HF2

We deduce that f ◦α and z∧HZ x
m represent distinct elements in π∗(HF2∧HZX ∧HZX).

Due to (29), the Tor spectral sequence computing HF2 ∧HZ (X ∧HZX) is given by the
following:

F 2 ∼= ΛF2(t)⊗ ΛF2(v)⊗ π∗X ⊗ π∗X =⇒ π∗(HF2 ∧HZ (X ∧HZ X))

where deg(t) = (1, 0) and deg(v) = (0, 1). Note that all the differentials of our Tor
spectral sequences are trivial on the second page and after as the global dimension of Z
is 1. We need to understand the class in F 2 that represents the homotopy class z∧HZ x

m.

Considering the map of Tor spectral sequences induced by f , one observes that the
homotopy class corresponding to f ◦ α is represented by 1⊗ v ⊗ 1⊗ xm on F 2. Since it
represents an element distinct from f ◦ α, and since there are no extension problems, we
deduce that z ∧HZ x

m is represented by a class that is different than 1⊗ v ⊗ 1⊗ xm.

The map

ζ : HF2 ∧HZ (X ∧HZ X)→ HF2 ∧HZ (X ∧HZ X[2m− 2])

induced by the Postnikov section map X → X[2m− 2] induces the canonical map

ζ2 : F 2 ∼= ΛF2(t)⊗ ΛF2(v)⊗ π∗X ⊗ π∗X → ΛF2(t)⊗ ΛF2(v)⊗ π∗X ⊗ π∗X[md− 2]

at the level of Tor spectral sequences.

The composite ζ ◦ (z ∧HZ x
m) is null-homotopic because the composite map

Σ2mHZ xm−→ X → X[2m− 2]
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is null-homotopic as π2m(X[2m−2]) = 0, see Remark 7.2. Therefore, the map of spectral
sequences ζ2 should carry a class representing z ∧HZ x

m to the trivial element.

The only non-trivial elements of F 2 that have total degree |z ∧HZ x
m| = 2m + 1 and

gets carried to 0 are 1 ⊗ v ⊗ 1 ⊗ xm and t ⊗ 1 ⊗ 1 ⊗ xm. Since we already showed that
1⊗ v⊗ 1⊗ xm do not represent z ∧HZ x

m, and since we know that z ∧HZ x
m corresponds

to a non-trivial class in homotopy, we deduce that the homotopy class corresponding to
z ∧HZ x

m is represented by

(31) t⊗ 1⊗ 1⊗ xm + c1(1⊗ v ⊗ 1⊗ xm)

in F 2 for some c1 ∈ F2. Note that the c1 6= 0 case is actually redundant as the first
summand has a higher homological degree than the second.

Therefore, to finish the proof of the lemma, it is sufficient to show that the class
represented by the element above is carried to a non-trivial class in HF2 ∧HZ X by the
map idHF2 ∧HZ mX .

Note that for every x1, x2 ∈ π∗X, the map

π∗mX : π∗(X ∧HZ X) ∼= ΛF2(v)⊗ π∗X ⊗ π∗X → π∗X

carries v ⊗ x1 ⊗ x2 to 0 because π∗X is concentrated in even degrees. For a general HZ-
algebra X, the product of classes x1, x2 ∈ π∗(X) is defined to be the image of the class
1⊗ x1 ⊗ x2 through the map above. Therefore, the map above should carry 1⊗ x1 ⊗ x2

to x1x2.

We use Lemma 7.1 to calculate the map of spectral sequences induced by the map

idHF2 ∧HZ mX : HF2 ∧HZ (X ∧HZ X)→ HF2 ∧HZ X.

On the second page, we have

id⊗ π∗mX : F 2 ∼= ΛF2(t)⊗ ΛF2(v)⊗ π∗X ⊗ π∗X → ΛF2(t)⊗ π∗X
where id denotes the identity map of ΛF2(t) and deg(t) = (1, 0) on both sides. The image
of the element in F 2 representing z ∧HZ x

m is given by

(32) id⊗ π∗mX(t⊗ 1⊗ 1⊗ xm + c1(1⊗ v ⊗ 1⊗ xm)) = t⊗ xm.
This represents a non-trivial class in π∗(HF2 ∧HZ X). Indeed, this finishes the proof of
the lemma. Wrapping up, z ∧HZ x

m represents the class z ⊗ 1⊗ 1⊗ xm in

π∗((HF2 ∧HZ X) ∧HF2 (HF2 ∧HZ X)) ∼= ΛF2(z)⊗ π∗X ⊗ ΛF2(z)⊗ π∗X
due to Diagram (28). To prove the lemma, we show that this class maps to a non-trivial
element by the multiplication map of HF2 ∧HZ X. Equation (31) provides the class in
F 2 representing z ∧HZ x

m and Equation (32) states that this class goes to a non-trivial
element by the multiplication map of HF2 ∧HZ X as desired. �
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