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REACHABILITY ANALYSIS FOR ROBUSTNESS EVALUATION OF THE SIT-TO-STAND MOVEMENT FOR POWERED LOWER LIMB ORTHOSES

A sensitivity-based approach for computing over-approximations of reachable sets, in the presence of constant parameter uncertainties and a single initial state, is used to analyze a three-link planar robot modeling a Powered Lower Limb Orthosis and its user. Given the nature of the mappings relating the state and parameters of the system with the inputs, and outputs describing the trajectories of its Center of Mass, reachable sets for their respective spaces can be obtained relying on the sensitivities of the nonlinear closed-loop dynamics in the state space. These over-approximations are used to evaluate the worst-case performances of a finite time horizon linear-quadratic regulator (LQR) for controlling the ascending phase of the Sit-To-Stand movement.

INTRODUCTION

Powered Lower Limb Orthoses (PLLOs) are medical devices worn in parallel of the legs that must work in synchrony with their users to assist standing and/or walking. State of the art PLLOs for people with paraplegia (≈114,000 individuals in the USA [START_REF]Spinal cord injury facts and figures at a glance[END_REF]) can be safely used for gait training [START_REF] Baunsgaard | Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics[END_REF], but they have yet to provide full autonomy to perform the Sit-to-Stand (STS) movement, which is the sequence of actions executed for rising from a chair. The STS movement consists of three phases: preparation, ascending and stabilization [START_REF] Galli | Quantitative analysis of sit to stand movement: Experimental set-up definition and application to healthy and hemiplegic adults[END_REF]. Since a PLLO must ensure safety, regardless of variability of its dimensions from manufacturing, and the weight fluctuations of its user, we aim to analyze the robustness of a controlled PLLO against parameter uncertainty.

In this paper, the robustness is evaluated through the use of reachability analysis, which deals with the problem of computing the set of all possible successors of a system, given its initial state and a set of admissible parameters. Since a reachable set can rarely be computed exactly except in simple cases [START_REF] Asarin | Reachability analysis of dynamical systems having piecewise-constant derivatives[END_REF], we instead rely on the computation of over-approximations, for which various methods and representations exist, such as ellipsoids [START_REF] Kurzhanskiy | Ellipsoidal techniques for reachability analysis of discrete-time linear systems[END_REF], polytopes [START_REF] Chutinan | Computational techniques for hybrid system verification[END_REF] or level-sets [START_REF] Mitchell | Level set methods for computation in hybrid systems[END_REF]. The considered approach is based on the results presented in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF], where the computation of interval over-approximations for an uncertain system relies on its sensitivity matrices, i.e. the partial derivatives of its trajectories with respect to the uncertain parameters. While being inspired by the results in [START_REF] Xue | Just scratching the surface: Partial exploration of initial values in reach-set computation[END_REF] for the case of systems whose sensitivity matrix is sign-stable over the set of parameters, the strength of the results from [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] used in this paper is that it is applicable to any dynamical system whose sensitivity matrix is bounded.

The main objective of our study is to apply this reachability analysis approach to the PLLO, in order to evaluate the worst-case performances of the closed-loop behavior obtained from the finite horizon linear-quadratic regulator (LQR) designed in [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF]. Since a proper evaluation of these performances should not be limited to the states, but also include the position and velocity of the Center of Mass (CoM), and the inputs; we extend the method in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] to be able to apply the reachability analysis to static systems such as those defined by an output map of the system or the feedback controller.

We start by reviewing the dynamics of the three-link planar robot used to model the PLLO and its user, the motion planning strategy for obtaining adequate reference trajectories for the ascending phase of a STS movement, and the equations required to solve for the design of the LQR controller. The reachability analysis from [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] is then presented for a generic dynamical system along its extension to deal with static systems. Finally, these results are applied to the closed-loop PLLO in simulation to assess the robustness of the LQR controller.

Since coordinate aligned boxes play an important role in this study, for a, b ∈ R n we use the notations a < b to mean a i < b i ∀i (with similar elementwise definitions for ≤, ≥, and >) and we define an interval of

R n as [a, b] := {ξ ∈ R n |a ≤ ξ ≤ b} ⊆ R n .

DYNAMICS FOR MODELING THE POWERED LOWER LIMB ORTHOSIS AND ITS USER

Assuming sagittal symmetry, no movement of the head relative to the torso, and that feet are fixed to the ground, we model the user, crutches and PLLO as a three-link planar robot with revolute joints coaxial to the ankles, knees and hips, as shown in Figure 1. θ 1 is the angular position of link 1 (shanks) measured from the horizontal, θ 2 is the angular position of link 2 (thighs) relative to link 1, and θ 3 is the angular position of link 3 (torso) relative to link 2. The system parameters are the masses of the links m 1 , m 2 , and m 3 ; the moments of inertia about their respective CoMs I 1 , I 2 , and I 3 ; their lengths l 1 , l 2 , and l 3 ; and the distances of their CoMs from the joints l c1 , l c2 , and l c3 . The actuators of the orthosis exert torque τ h about the hips; while torque τ s , horizontal force F x and vertical force F y capture the inertial and gravitational forces of the arms and loads applied on the shoulders of the user by its interaction with the ground through crutches. There is no actuation at the knees in compliance to the architecture used in the most affordable device in the market for users with complete paraplegia [11].

For notational convenience, denote c i := cos θ i (t), c i j := cos θ i (t) + θ j (t) , c i jk := cos θ i (t) + θ j (t) + θ k (t) , and similarly for sin (•). In terms of the joint angles θ = θ 1 ; θ 2 ; θ 3 , input u = τ h ; τ s ; F x ; F y , parameters p = m 1 ; m 2 ; m 3 ; I 1 ; I 2 ; I 3 ; l 1 ; l 2 ; l 3 ; l c1 ; l c2 ; l c3 , and

k 0 p := m 1 + m 2 + m 3 -1 , k 1 p := l c1 m 1 + l 1 m 2 + l 1 m 3 , k 2 p := l c2 m 2 + l 2 m 3 , k 3 p := l c3 m 3 ,
the Euler-Lagrange equations of the three-link planar robot in Figure 1 can be written, with the aid of the symbolic multibody dynamics package PyDy [START_REF] Gede | Constrained multibody dynamics with Python: From symbolic equation generation to publication[END_REF], as

M θ (t), p θ (t) + F θ (t), θ (t), p = A τ θ (t), p u (t) . (1) 
M (θ, p) ∈ R 3×3 , M (θ, p) 0 is the symmetric mass matrix of the system with entries

M 11 = I 1 + I 2 + I 3 + l 2 c1 m 1 + m 2 l 2 1 + 2l 1 l c2 c 2 + l 2 c2 + m 3 l 2 1 + 2l 1 l 2 c 2 + 2l 1 l c3 c 23 + l 2 2 + 2l 2 l c3 c 3 + l 2 c3 M 12 = I 2 + I 3 + l c2 m 2 (l 1 c 2 + l c2 ) + m 3 l 1 l 2 c 2 + l 1 l c3 c 23 + l 2 2 + 2l 2 l c3 c 3 + l 2 c3 M 13 = I 3 + l c3 m 3 l 1 c 23 + l 2 c 3 + l c3 M 22 = I 2 + I 3 + l 2 c2 m 2 + m 3 l 2 2 + 2l 2 l c3 c 3 + l 2 c3 M 23 = I 3 + l c3 m 3 l 2 c 3 + l c3 M 33 = I 3 + l 2 c3 m 3 .
F θ, θ, p ∈ R 3 is the vector of energy contributions due to the acceleration of gravity g = 9.81 [ m /s 2 ] and Coriolis forces

F θ, θ, p = Ω (θ, p)          θ2 1 θ1 + θ2 2 θ1 + θ2 + θ3 2          + g        k 1 ( p)c 1 + k 2 ( p)c 12 + k 3 ( p)c 123 k 2 ( p)c 12 + k 3 ( p)c 123 k 3 ( p)c 123        , with Ω (θ, p) =        l 1 (k 2 ( p)s 2 + k 3 ( p)s 23 ) -k 2 ( p)l 1 s 2 + k 3 ( p)l 2 s 3 -k 3 ( p) (l 1 s 23 + l 2 s 3 ) l 1 (k 2 ( p)s 2 + k 3 ( p)s 23 ) k 3 ( p)l 2 s 3 -k 3 ( p)l 2 s 3 l 1 k 3 ( p)s 23 k 3 ( p)l 2 s 3 0        . A τ (θ, p) ∈ R 3×4 is the generalized force matrix A τ (θ, p) =        0 -1 -l 1 s 1 -l 2 s 12 -l 3 s 123 l 1 c 1 + l 2 c 12 + l 3 c 123 0 -1 -l 2 s 12 -l 3 s 123 l 2 c 12 + l 3 c 123 1 -1 -l 3 s 123 l 3 c 123        .

MOTION PLANNING

Biomechanical studies measure the kinematics of the CoM of the human body instead of joint angles to classify and assess dynamic balance of the STS movement [START_REF] Fujimoto | Dynamic balance control during sit-to-stand movement: An examination with the center of mass acceleration[END_REF]. Therefore, considering θ 2 , and the position coordinates of the CoM of the three-link planar robot in its inertial frame (x CoM , y CoM ), we define z := θ 2 ; x CoM ; y CoM and plan the STS motion over the finite time horizon t ∈ t 0 , t f with reference trajectories

θ2 (t) = θ2 t 0 + θ2 t f -θ2 t 0 Θ 1 t, t f , xCoM (t) = xCoM t 0 + xCoM t f -xCoM t 0 Θ 2 t, t f , ŷCoM (t) = ŷCoM t 0 + ŷCoM t f -ŷCoM t 0 Θ 3 t, t f , (2) 
where Θ i t, t f are polynomial functions satisfying Θ i t 0 , t f = 0 and Θ i t f , t f = 1. This rest-to-rest maneuver formulation is taken from [START_REF] Sira-Ramirez | Diferentially Flat Systems[END_REF].

Relying on kinematic equations, we showed in [START_REF] Narvaez-Aroche | Motion planning of the Sit to Stand movement for powered lower limb orthoses[END_REF] that for feasible and realistic STS movements excluding the vertical position

(θ 1 = π /2, θ 2 = θ 3 = 0), a transformation of the form θ (t) ; θ (t) ; θ (t) = h ẑ (t), ż (t), z (t), p (3) 
exists; so that once ż and z are computed from (2), the reference trajectories for the ascending phase in the z space can be mapped into θ with the nominal values of the parameters p. We take a computed torque approach [START_REF] Slotine | Applied Nonlinear Control[END_REF] for obtaining the reference trajectories û (t). Since the system of equations in (1) is underdetermined, we solve, at every t ∈ t 0 , t f , a control allocation problem [START_REF] Johansen | Control allocation -a survey[END_REF] with the constrained least-squares program

û (t) = arg min ξ ∈R 4 1 2 W u ξ 2 2 (4) subject to A τ θ (t), p ξ = M θ (t), p θ (t) + F θ (t), θ (t), p u ≤ ξ ≤ u,
where W u ∈ R 4×4 and u, u ∈ R 4 are user-specified weights and box constraints, respectively.

FINITE TIME HORIZON LQR CONTROLLER

The Euler-Lagrange equations must be linearized in order to design an LQR controller. Define x ∈ R 6 as x := θ; θ , from (1), the dynamics of the three-link planar robot are

ẋ (t) = θ (t) M -1 θ (t), p A τ θ (t), p u (t) -F θ (t), θ (t), p =: f x (t), p, u (t)
With reference state trajectories x (t) := θ (t), θ (t) from ( 2) and( 3), the state deviation variables

δ x (t) = x (t) -x (t) satisfy δx (t) := f x (t), p, u (t) -f x (t), p, û (t) ,
which can be approximated with a first order Taylor series expansion of f (x (t), p, u (t)) about x (t), p and û (t):

δx (t) ≈ ∂ f x, p, u ∂ x x = x (t) p = p u = û (t) (x (t) -x (t)) + ∂ f x, p, u ∂p x = x (t) p = p u = û (t) p -p + ∂ f x, p, u ∂u x = x (t) p = p u = û (t) (u (t) -û (t)) = A (t) δ x (t) + B 1 (t) δ p + B 2 (t) δ u (t) . (5) 
From [START_REF] Athans | Optimal Control: An Introduction to the Theory and its Applications[END_REF], for unconstrained δ u (t), symmetric matrices Q, S 0 and R 0, the optimal control of the stabilizable LTV system in ( 5) with δ x (t) as output, and quadratic cost

J L Q R = 1 2 δ x t f Sδ x t f + 1 2 t f t 0 δ x (t) Qδ x (t) + δ u (t) Rδ u (t) dt
exists, is unique, time varying, and is given by

δ u (t) = -R -1 B 2 (t) P (t) δ x (t) =: -K LQR (t) δ x (t), (6) 
where, considering the boundary condition P t f = S, P (t) is the solution of the Riccati matrix differential equation

Ṗ (t) = -P (t) A (t) -A (t) P (t) + P (t) B 2 (t) R -1 B 2 (t) P (t) -Q. (7) 
The closed-loop nonlinear dynamics of the three-link robot modeling the PLLO and its user performing the STS movement under state feedback control become

ẋ (t) = f x (t), p, û (t) -K LQR (t) (x (t) -x (t)) =: f cl t, x (t), p . (8) 

SENSITIVITY-BASED REACHABILITY ANALYSIS UNDER PARAMETER UNCERTAINTY

In this section, we first review the method presented in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] to over-approximate the reachable sets of an uncertain dynamical system and then introduce an approach extending these results to auxiliary static systems, such as those defined by an output function or a feedback controller. For the sake of generality, we thus initially consider a time-varying system

ẋ(t) = ϕ(t, x(t), p), (9) 
where x ∈ R n x is the state and p ∈ R n p is a constant but uncertain parameter. Consider that ( 9) has a single initial state x 0 ∈ R n x at time t 0 ∈ R and let p, p ∈ R n p define the parameter uncertainty of ( 9) as an interval [p, p] ⊆ R n p . Then the trajectories of ( 9) are denoted by function Φ, where Φ(t;t 0 , x 0 , p) ∈ R n x represents the successor reached at time t ≥ t 0 by system (9) starting from initial state x 0 and with constant parameter p ∈ [p, p]. Next, let

RS(t, [p, p]) := {Φ(t;t 0 , x 0 , p) | p ∈ [p, p]} ⊆ R n x
denote the reachable set of (9) at time t ≥ t 0 for all possible parameter values in [p, p], and

S(t;t 0 , x 0 , p) := ∂Φ(t;t 0 , x 0 , p) ∂p ∈ R n x ×n p (10)
be the sensitivity of the trajectories of ( 9) with respect to the parameter uncertainty. The reachability analysis in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] is based on a boundedness assumption on this sensitivity matrix at each time t.

Assumption 1. For all (i, j) ∈ {1, . . ., n x } × {1, . . ., n p } there exists S i j , S i j : [t 0 , +∞) → R such that for all t ≥ t 0 and p ∈ [p, p] we have

S i j (t;t 0 , x 0 , p) ∈ [S i j (t), S i j (t)].
For each time t ≥ t 0 and index i ∈ {1, . . ., n x }, let parameter values π i (t), π i (t) ∈ [p, p] and row vector d i (t) ∈ R n p be written as follows

           π i (t) := [π i 1 (t); . . . ; π i n p (t)] π i (t) := [π i 1 (t); . . . ; π i n p (t)] d i (t) := [d i 1 (t), . . ., d i n p (t)]
and whose elements are defined for each j ∈ {1, . . ., n p } based on the sign of the variable S * i j (t) denoting the center of the scalar interval [S i j (t), S i j (t)]:

       S * i j (t) ≥ 0 ⇒ π i j (t) = p j , π i j (t) = p j , d i j (t) = min(0, S i j (t)), S * i j (t) < 0 ⇒ π i j (t) = p j , π i j (t) = p j , d i j (t) = max(0, S i j (t)). (11) 
These vectors can then be used as in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] to obtain over-approximations of the reachable sets of (9).

Proposition 1.

Under Assumption 1 and the definition of vectors π i (t), π i (t), d i (t) in (11), we define two functions r, r : [t 0 , +∞) → R n x such that for each t ≥ t 0 and i ∈ {1, . . ., n x }:

     r i (t) = Φ i (t;t 0 , x 0 , π i (t)) -d i (t)(π i (t) -π i (t)), r i (t) = Φ i (t;t 0 , x 0 , π i (t)) + d i (t)(π i (t) -π i (t)).
Then an interval over-approximation of the reachable set of (9) at time t is given by RS

(t, [p, p]) ⊆ [r (t), r (t)]. If in addition d i j (t) = 0 for all (i, j) ∈ {1, . . ., n x } × {1, . . ., n p }, then [r (t), r (t)] is a tight over-approximation (smallest interval containing RS(t, [p, p])).
The result presented in Proposition 1 is applicable to any system described by a trajectory function Φ. In the remainder of this section, we aim to apply this approach not only to the dynamical system [START_REF] Xue | Just scratching the surface: Partial exploration of initial values in reach-set computation[END_REF], but also to two auxiliary static systems to be defined later. To distinguish these systems, we thus denote with the superscript x (e.g. Φ x , S x , RS x ) the variable specifically related to the dynamical system [START_REF] Xue | Just scratching the surface: Partial exploration of initial values in reach-set computation[END_REF].

In order to use Proposition 1 on system (9) we first need to obtain bounds on its sensitivity matrix at each time t as in Assumption 1. For this, we first apply the chain rule to the sensitivity definition [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF] to obtain a time-varying affine system that describes the evolution of the sensitivity matrix [START_REF] Khalil | Nonlinear systems[END_REF] in terms of the Jacobian matrices of (8) evaluated along the trajectory Φ x (t;t 0 , x 0 , p):

Ṡx (t;t 0 , x 0 , p) = ∂ f cl (t, x, p) ∂ x x=Φ x (t;t 0 , x 0 , p) S x (t;t 0 , x 0 , p) + ∂ f cl (t, x, p) ∂p x=Φ x (t;t 0 , x 0 , p) , (12) 
which is initialized with the zero matrix S x (t 0 ;t 0 , x 0 , p) = 0 n x ×n p . The sensitivity bounds [S x i j (t), S x i j (t)] for (9) at time t ≥ t 0 can then be estimated through a sampling approach consisting in first solving the sensitivity system [START_REF] Gede | Constrained multibody dynamics with Python: From symbolic equation generation to publication[END_REF] numerically over [t 0 , t f ] for a finite set of randomly chosen parameters P ⊂ [p, p]. Then, for each time t ∈ [t 0 , t f ] where r (t) and r (t) are to be computed, and each element S x i j of the sensitivity matrix [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF], an approximation [S x i j (t), S x i j (t)] of the bounds [S x i j (t), S x i j (t)] in Assumption 1 is obtained from the extremal values of the computed sensitivities over the set of parameter samples P:

         S x i j (t) = max p ∈ P S x i j (t;t 0 , x 0 , p), S x i j (t) = min p ∈ P S x i j (t;t 0 , x 0 , p). (13) 
Since the resulting bounds [S x i j (t), S x i j (t)] are not guaranteed to satisfy Assumption 1, a more reliable approximation may be found by iteratively enlarging these bounds through a falsification approach. An iteration of the falsification at time t looks for parameters in [p, p] whose sensitivity does not lie within the bounds from the sampling approach, which is achieved by solving the optimization problem

J F (t) := min p∈[p, p] min i, j S x i j (t) -S x i j (t) 2 -S x i j (t; t 0 , x 0 , p) - S x i j (t) + S x i j (t) 2 .
The cost function used in this minimization problem is defined for each pair (i, j) ∈ {1, . . ., n x } × {1, . . ., n p } by an inverted and translated absolute value function such that it returns a negative value if and only if S x i j (t;t 0 , x 0 , p) [S x i j (t), S x i j (t)]. As a result, finding J F (t) < 0 guarantees that there exists a pair (i, j) ∈ {1, . . ., n x } × {1, . . ., n p } for which the sensitivity bounds [S x i j (t), S x i j (t)] have been falsified. These bounds thus need to be updated according to the sensitivity value S x i j (t;t 0 , x 0 , p * ) for the optimizer p * ∈ [p, p] associated with the obtained local minimum. This falsification procedure is then repeated until we obtain J F (t) ≥ 0.

Remark 1. Although falsification can help to improve the approximation of the sensitivity bounds, it cannot provide formal guarantees that Assumption 1 is satisfied with the enlarged bounds, because the optimization problem can only find local minima.

There exists an alternative approach based on interval analysis presented in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF] for which such guarantees are provided, but it has been shown to be of limited practical use, due to the overly conservative nature of the obtained sensitivity bounds.

Applying Proposition 1 with the obtained sensitivity bounds S x , S x : [t 0 , +∞) → R n x ×n p thus results in two functions r x , r x : [t 0 , +∞) → R n x over-approximating the reachable set of (9) at each time t ≥ t 0 :

RS x (t, [p, p]) := {Φ x (t;t 0 , x 0 , p) | p ∈ [p, p]} ⊆ [r x (t), r x (t)]. (14) 
Consider now an output map ζ : R n x × [p, p] → R n y defining the output y = ζ (x, p) of system (9) based on its state and parameter. A reachability analysis on the output y ∈ R n y is thus done by applying Proposition 1 to the static system describing the evolution of y in terms of the trajectories of x:

Ψ y (t;t 0 , x 0 , p) := ζ (Φ x (t;t 0 , x 0 , p), p). ( 15 
)
Similarly to [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF], we can define the sensitivity S y of ( 15 

With knowledge of the sensitivity bounds S x , S x : [t 0 , +∞) → R n x ×n p for (9) and the mapping ζ : R n x × [p, p] → R n y , the sensitivity bounds S y , S y : [t 0 , +∞) → R n y ×n p for the static system (15) can be computed. Equation ( 11) is thus reused with S y , S y to apply Proposition 1 on ( 15) and obtain over-approximation functions r y , r y : [t 0 , +∞) → R n y such that for each time t ≥ t 0 :

RS y (t, [p, p]) := {Ψ y (t;t 0 , x 0 , p) | p ∈ [p, p]} ⊆ [r y (t), r y (t)]. (17) 
Assuming that ( 9) is actually a closed-loop system obtained from the use of a feedback controller u(t) = K (t, x(t), p) with K : [t 0 , +∞) × R n x × R n p → R n u , we can apply the same approach as for the output y by defining the static system Ψ u (t;t 0 , x 0 , p) := K (t, Φ x (t;t 0 , x 0 , p), p).

(

) 18 
The sensitivity S u of ( 18) with respect to the parameter p is then obtained similarly to S y in ( 16): 

S u t;t 0 , x 0 , p := ∂Ψ u t;t 0 , x 0 , p ∂p = ∂ ∂p (K (t, Φ x (t;t 0 , x 0 , p), p)) = ∂K t,
which then leads to sensitivity bounds S u , S u : [t 0 , +∞) → R n u ×n p for the static system (18) to be used in Proposition 1 and obtain over-approximation functions r u , r u : [t 0 , +∞) → R n u such that for each time t ≥ t 0 we have

NUMERICAL APPLICATION OF THE REACHABILITY ANALYSIS FOR AN STS MOVEMENT

The ascending phase of the STS movement under study starts from rest, with the shank and torso segments parallel to the vertical, and the thigh segment parallel to the horizontal, by setting x (t 0 ) = [90°; -90°; 90°; 0; 0 the corresponding initial position of the CoM of the three-link robot is ( xCoM (t 0 ), ŷCoM (t 0 )) = (0.309, 0.6678) [m].

For planning the rest-to-rest maneuver from ẑ (t), ż (t) and z (t) in ( 2), define

Θ i t, t f := -2 t 3 t 3 f + 3 t 2 t 2 f for i = 1, 2, 3
, which is the only cubic polynomial satisfying Θi t 0 , t f = Θi t f , t f = 0, Θ i t 0 , t f = 0, and Θ i t f , t f = 1. Considering t 0 = 0 and t f = 3.5 [s] and a final configuration that places the CoM directly above the origin of the inertial frame with the values θ2 t f = -5°, xCoM t f = 0 and ŷCoM t f = 0.974 [m], the reference state trajectories x (t) can be determined from (3). When solving for û (t) in ( 4), it is enforced that the contributions from τ h (t), τ s (t) and F y (t) outweigh F x (t) taking W u = diag ([1, 1, 10, 1]) and, because the user of the PLLO always pushes the crutches down to propel upwards, the constraint F y (t) ≥ 0 is imposed; all other inputs are unconstrained. After numerically computing the linearization in ( 5), the weight matrices from [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF] are plugged into [START_REF] Mitchell | Level set methods for computation in hybrid systems[END_REF], which is solved with tools documented in [START_REF] Moore | Finite horizon robustness analysis using integral quadratic constraints[END_REF] to obtain their corresponding time-varying gain K LQR (t) ∈ R 4×6 from [START_REF] Chutinan | Computational techniques for hybrid system verification[END_REF]. Using this gain for the state feedback control of the STS movement, brings the dynamics of the three-link robot modeling the PLLO and its user to the closed-loop form in [START_REF] Meyer | Sampled-data reachability analysis using sensitivity and mixed-monotonicity[END_REF].

Q = diag ([
Considering a sampling of the time horizon [0, 3.5] at a frequency of 100 [H z] to obtain a set of 351 sampled times denoted as T s := {0 : 0.01 : 3.5}; the goal of this section is to apply the sensitivity-based reachability analysis to compute, at each time t ∈ T s , the over-approximations [r x (t), r x (t)], [r y (t), r y (t)] and [r u (t), r u (t)] defined in ( 14), ( 17) and ( 20), for the state x = [θ 1 ; θ 2 ; θ 3 ; θ1 ; θ2 ; θ3 ], the output defined as y := [x CoM ; y CoM ; ẋCoM ; ẏCoM ] and the control input u = [τ h ; τ s ; F x ; F y ]. The parameter uncertainties lie within the interval [p, p] ⊆ R 12 in Table 1, which was calculated for a fluctuation of ±5% of the nominal weight of the user with anthropometric data from [START_REF] Bartel | Orthopaedic biomechanics: mechanics and design in musculoskeletal systems[END_REF]. With a set P b ⊂ [p, p] of 500 parameters drawn from a Latin Hypercube, the first step in the analysis is to numerically solve the sensitivity equation ( 12) over the time horizon [0, 3.5] for all p ∈ P b . According to the sampling approach of the previous section, the sensitivity bounds S x , S x : [0, 3.5] → R 6×12 are then estimated by minimizing/maximizing the entries of the matrices [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF] for each t ∈ T s as in [START_REF] Fujimoto | Dynamic balance control during sit-to-stand movement: An examination with the center of mass acceleration[END_REF].

The sensitivity bounds from sampling may be refined through the falsification approach presented in the previous section. The time spent in a single falsification iteration over the bounds estimated by sampling S x (t), S x (t) for the first 17 elements in T s are shown in Figure 2, together with the calculated cost J F (t). It can be seen that the falsification is done quickly for the first few time steps, but going further into T s , it grows to the point where it becomes unpractical to continue executing it. In addition, the positive values of J F (t) mean that the first iteration of the falsification does not provide any improvement of the sensitivity obtained in the sampling approach. On the basis of these observations and of Remark 1, the results that follow only rely on the sampling approach with the assumption that the sensitivity bounds [S x i j (t), S x i j (t)] obtained from the exploration of the solutions of the sensitivity equation ∀p ∈ P b are close enough to an over-approximation of the set {S x i j (t;t 0 , x 0 , p) | p ∈ [p, p]}, as required in Assumption 1. A consequence of this assumption is that even though the reachability analysis result in Proposition 1 might not always be a true over-approximation of the reachable set, it still provides an accurate measure of the worst-case performances for the closed-loop system (8).

Once [S x i j (t), S x i j (t)] are known, Proposition 1 is applied to obtain the over-approximations [r x (t), r x (t)] for every t ∈ T s , which are displayed in green in Figure 3 for each state in x. To visualize their tightness, the plots also provide, in blue, the trajectories of the closed-loop system (8) for a set P s ⊆ [p, p] of 500 parameters from a Latin Hypercube sampling (note that this set is different from P b ). The reference trajectory Φ x (t; 0, x 0 , p) of ( 8) for p is in red. The over-approximations for θ 1 (t) in Figure 3a show that the terminal position of the shank segment under the parameter uncertainties will only be slightly off the vertical (±0.5°), easing the stabilization phase for completing standing. The ones for θ 2 (t) in Figure 3b do not become positive, meaning that the controller will not cause the knee of the user to hyperextend. Also, since θ 3 (t) in Figure 3c never goes negative and only approaches zero at the end of the horizon, the torso will have natural configurations while ascending.

The output y = [x CoM ; y CoM ; ẋCoM ; ẏCoM ] is computed with the mapping ζ : R 6 × [p, p] → R 4 defined from the kinematic equations for the CoM of the three-link planar robot in Figure 1 that were derived in [START_REF] Narvaez-Aroche | Motion planning of the Sit to Stand movement for powered lower limb orthoses[END_REF]:

y =           x CoM y CoM ẋCoM ẏCoM           =           k 0 k 1 c 1 + k 2 c 12 + k 3 c 123 k 0 k 1 s 1 + k 2 s 12 + k 3 s 123 -θ1 y CoM -θ2 k 0 k 2 s 12 + k 3 s 123 -θ3 k 0 k 3 s 123 θ1 x CoM + θ2 k 0 k 2 c 12 + k 3 c 123 + θ3 k 0 k 3 c 123           =: ζ x, p . (21) 
Defining

k 4 θ, p := k 0 p k 2 p s 12 + k 3 p s 123 , k 5 θ, p := k 0 p k 3 p s 123 , k 6 θ, p := k 0 p k 2 p c 12 + k 3 p c 123 , k 7 θ, p := k 0 p k 3 p c 123 , k 8 x, p := k 0 p k 2 p s 12 + k 3 p s 123 θ2 + l c3 m 3 s 123 θ3 , k 9 x, p := k 0 p k 2 p c 12 + k 3 p c 123 θ2 + l c3 m 3 c 123 θ3 ,
the partial derivative of ( 21) with respect to x is written as

∂ζ x, p ∂ x = ζ x 11 0 ζ x 21 ζ x 11 ∈ R 4×6 , (22) 
with entries ζ x i j ∈ R 2×3 given by

ζ x 11 = -y CoM -k 4 θ, p -k 5 θ, p x CoM k 6 θ, p k 7 θ, p , ζ x 21 = - x CoM θ1 + k 6 θ, p θ2 + k 7 θ, p θ3 k 7 θ, p θ3 0 y CoM θ1 + k 4 θ, p θ2 + k 5 θ, p θ3 k 5 θ, p θ3 0 -       0 k 6 θ, p θ1 + θ2 k 7 θ, p θ1 + θ2 + θ3 0 k 4 θ, p θ1 + θ2 k 5 θ, p θ1 + θ2 + θ3      
. 

-l c1 s 1 -(l 1 s 1 + l c2 s 12 ) -l 1 s 1 + l 2 s 12 + l c3 s 123 l c1 c 1 l 1 c 1 + l c2 c 12 l 1 c 1 + l 2 c 12 + l c3 c 123 + k 0 p θ1 y CoM y CoM y CoM -x CoM -x CoM -x CoM + k 0 p θ2 0 -l c2 s 12 -l 2 s 12 + l c3 s 123 0 l c2 c 12 l 2 c 12 + l c3 c 123 + k 0 p k 8 x, p k 8 x, p k 8 x, p -l c3 s 123 θ3 -k 9 x, p -k 9 x, p l c3 c 123 θ3 -k 9 x, p , ζ p 23 = k 0 p       -m 2 + m 3 s 1 θ1 -m 3 s 12 θ1 + θ2 0 m 2 + m 3 c 1 θ1 m 3 c 12 θ1 + θ2 0       , ζ p 24 = k 0 p       -m 1 s 1 θ1 -m 2 s 12 θ1 + θ2 -m 3 s 123 θ1 + θ2 + θ3 m 1 c 1 θ1 m 2 c 12 θ1 + θ2 m 3 c 123 θ1 + θ2 + θ3       .
Plugging ( 22) and ( 23) into ( 16) we obtain the sensitivity bounds S y , S y : [0, 3.5] → R 6×12 and use Proposition 1 on (15) to calculate the over-approximation bounds r y (t), r y (t) for t ∈ T s , shown in Figures 4a-4d in green. The reference trajectory ζ (Φ x (t; 0, x 0 , p), p) is in red, and the trajectories ζ (Φ x (t; 0, x 0 , p), p) for all p ∈ P s are in blue. It is clear from the over-approximations of these figures, that the good trajectory tracking in the space of x observed in Figures 3a-3f, does not translate well in the space of y under parameter uncertainties. E.g., the bounds for y CoM (t) in Figure 4b are up to ±5 [cm] from its reference trajectory, while ẏCoM (t) in Figure 4d can exhibit deviations of ±2 [cm/s].

Figure 5a shows the projection of the over-approximation interval [r y (t), r y (t)] for the position of the CoM x CoM ; y CoM at t 0 = 0 (cyan), t = 1.75 (magenta) and t f = 3.5 (green). The clouds of successors ζ (Φ x (t; 0, x 0 , p), p) from the random parameters p ∈ P s are displayed in blue for each of these three time instants. The nominal trajectory for the whole STS movement is in red. Note that despite having a single initial state x 0 for the closed-loop system (8), the over-approximation [r y (0), r y (0)] at t 0 = 0 is not reduced to a single point, due to the influence of the parameter uncertainty p ∈ [p, p] on the initial position of the CoM through the mapping y 0 = ζ (x 0 , p). The size of the box enclosing the final position of the CoM allows to assess that there is no risk of sit-back or step failures [START_REF] Eby | Modeling and control considerations for powered lower-limb orthoses: A design study for assisted STS[END_REF].

Figure 5b depicts the projection of the over-approximation interval [r y (t), r y (t)] for the velocity of the CoM ẋCoM ; ẏCoM . The reference trajectory in red goes from [0; 0] at t 0 = 0 to [-0.13; 0.13] at t = 1.75 and back to [0; 0] at t f = 3.5. In this plane, the projection of [r y (0), r y (0)] is reduced to the single state {[0; 0]} due to the starting conditions at rest θ1 (0) = θ2 (0) = θ3 (0) = 0. Notice that the projection of [r y (3.5), r y (3.5)] at the final time is almost flat, since ẏCoM (3.5) goes close to 0 for every parameter in [p, p], which is beneficial to avoid the feet to lose contact with the ground.

For the reachability analysis with respect to the control input u = [τ h ; τ s ; F x ; F y ], we use the state feedback u(t) = K (t, x(t), p) defined by the controller in (6):

K (t, x(t), p) := û(t) -K LQR (t)(x(t) -x(t)). ( 24 
)
The sensitivity S u in [START_REF] Khalil | Nonlinear systems[END_REF] can then be reduced to:

S u t; 0, x 0 , p = -K LQR (t) S x t; 0, x 0 , p . (25) 
Applying Proposition 1 on Ψ u (t; 0, x 0 , p) with the sensitivity bounds from (25), allows to compute the over-approximation bounds r u (t), r u (t) shown in green in Figures 6a-6d, alongside the reference trajectory û(t) in red, and the trajectories Ψ u (t; 0, x 0 , p) = û(t) -K LQR (t)(Φ x (t; 0, x 0 , p) -x(t)) for the 500 random p ∈ P s in blue. Since the inputs related to the upper body loads at the shoulders joint are expected to be learnt by the user through training, it is not a good feature of this particular finite time horizon LQR controller that the over-approximations for τ s (t), F x (t), and F y (t) exhibit deviations of up to ±40 [N • m], ±10 [N] and ±13 [N], respectively. Although it could be feasible to apply such loads, the predicted variability with the parameter uncertainty might make it difficult for a user to properly time the actions for a successful ascending phase.

Despite applying the reachability analysis with sensitivity bounds estimated from the finite set P b , which are not guaranteed to contain all possible sensitivity values over the parameter interval [p, p], Figures 3a-6d show that all trajectories of (8) with random parameters (in blue) are indeed contained within the computed over-approximations, and are overly conservative only for F x (t) in Figure 6c. As it can be seen in Figures 4c and4d, the over-approximations calculated with Proposition 1 may present non-smooth behaviors. This is due to the definition of the compensation term d i j (t) in (11) which may have non-continuous jumps over time between a constant value at 0 and the sensitivity bound functions S i j , S i j : [t 0 , t f ] → R. As an illustration, Figure 7 presents a zoom of Figure 4d, where two such non-smooth behaviors are visible on the bounds of the over-approximation (in green) corresponding to the jump from 0 to S 

CONCLUSIONS AND FURTHER WORK

This paper considered the control problem of the Sit-to-Stand (STS) movement for a Powered Lower Limb Orthosis (PLLO) and its user. A sensitivity-based reachability analysis was applied to evaluate the robustness against parameter uncertainty of a finite time horizon LQR controller. Based on the initial computation of lower and upper bounds for the possible sensitivity values over the parameter uncertainty interval, this approach then obtains an over-approximation of the set reachable by the closed-loop system at a given time. An extension of this reachability analysis was also introduced to cover auxiliary static systems such as those defined by an output function or the state feedback control.

The over-approximations computed for the PLLO were finally provided in simulations to evaluate the worst-case performances of the system under the control design in [START_REF] Narvaez-Aroche | Finite time robust control of the sit-to-stand movement for powered lower limb orthoses[END_REF]. The results highlighted its weaknesses to both track the reference trajectories for the kinematics of the CoM, and guarantee small variations of the inputs at the shoulders joints, by displaying large projections of the reachable sets on these variables. Since the loads on shoulders are expected to be applied by the user with no intervention of the controller, it is desirable to observe small differences between the bounds set by the over-approximations while aiming to minimize the training time needed for the user to perform safe and autonomous STS movements. Future work on this topic will thus exploit the over-approximations of the reachable sets to define a performance metric for choosing a more suitable control strategy.

Figure 1 :

 1 Figure 1: Three-link planar robot for modeling a Powered Lower Limb Orthosis (PLLO) and its user during a Sit-To-Stand (STS) movement.

Figure 2 :

 2 Figure 2: Length of a falsification iteration at time t and cost J F (t).

( a )

 a Angular position of link 1 relative to the horizontal. (b) Angular position of link 2 relative to link 1. (c) Angular position of link 3 relative to link 2. (d) Angular velocity of link 1. (e) Angular velocity of link 2. (f) Angular velocity of link 3.
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 3113221421 Figure 3: State over-approximations [r x (t), r x (t)] for every t ∈ T s during the STS movement.

  (a) Torque applied at the hips by the PLLO. (b) Torque at the shoulders of the user. (c) Horizontal force at the shoulders of the user. (d) Vertical force at the shoulders of the user.

Figure 6 :

 6 Figure 6: Input over-approximations [r u (t), r u (t)] for every t ∈ T s during the STS movement.

  t = 0.62 [s] and the jump from S y 48 to S y 48 at time t = 0.63 [s]. A workstation of 4 cores at 2.7[GH z] running Matlab Parallel Toolbox completes the sensitivity-based reachability analysis of this section in 5.9[h]. 1.05[h] are spent in solving the sensitivity equation (12) for the set of 500 p ∈ P b . Computing S x , S x : [0, 3.5] → R 6×12 and [r x (t), r x (t)] take 1.92[h], S y , S y : [0, 3.5] → R 4×12 and [r y (t), r y (t)] take 1.89[h], and S u , S u : [0, 3.5] → R 4×12 and [r u (t), r u (t)] take 1.03[h].

Figure 7 :

 7 Figure 7: Effect of d i j (t) on over-approximation bounds.

Table 1 :

 1 Bounds for the Parameter Uncertainties of the System [p, p]

	Link	m i kg	I i kg • m 2	l i [m]	l ci [m]
	1	[9.2, 10.2]	[1.10, 1.21] [0.52, 0.54] [0.23, 0.30]
	2	[11.2, 13.2] [0.49, 0.54] [0.39, 0.42] [0.17, 0.23]
	3	[42.3, 46.8] [2.40, 2.65] [0.51, 0.53] [0.24, 0.28]

RS u (t, [p, p]) := {Ψ u (t;t 0 , x 0 , p) | p ∈ [p, p]} ⊆ [r u (t), r u (t)].(20)
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