
HAL Id: hal-04007823
https://hal.science/hal-04007823v1

Preprint submitted on 28 Feb 2023 (v1), last revised 4 Dec 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the global well-posedness of the Calogero-Sutherland
derivative nonlinear Schrödinger equation

Rana Badreddine

To cite this version:
Rana Badreddine. On the global well-posedness of the Calogero-Sutherland derivative nonlinear
Schrödinger equation. 2023. �hal-04007823v1�

https://hal.science/hal-04007823v1
https://hal.archives-ouvertes.fr


ON THE GLOBAL WELL–POSEDNESS OF THE
CALOGERO–SUTHERLAND DERIVATIVE NONLINEAR

SCHRÖDINGER EQUATION

RANA BADREDDINE

Abstract. We consider the Calogero–Sutherland derivative nonlinear Schrödinger

equation in the focusing (with sign +) and defocusing case (with sign −)

i∂tu+ ∂2
xu ± 2

i
∂xΠ(|u|2)u = 0 , (t, x) ∈ R× T ,

where Π is the Szegő projector Π
(∑

n∈Z û(n) e
inx
)
=
∑

n≥0 û(n) e
inx . Thanks

to a Lax pair formulation, we derive the explicit solution to this equation.

Furthermore, we prove the global well–posedness for this L2–critical equation in

all the Hardy Sobolev spaces Hs
+(T) , s ≥ 0 , with small L2–initial data in the

focusing case, and for arbitrarily L2–data in the defocusing case. In addition,

we establish the relative compactness of the trajectories in all Hs
+(T) , s ≥ 0 .
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2 RANA BADREDDINE

1. Introduction

This paper aims to prove the global well–posedness for the Calogero–Sutherland

derivative nonlinear Schrödinger equations on the torus
(
x ∈ T := R/(2πZ)

)
:{

i∂tu+ ∂2
xu± 2D+(|u|2)u = 0 ,

u(t = 0, x) = u0 , x ∈ T ,
(CS)

for small L2-initial data u0 in the focusing case (with sign +) , and for arbitrarily

L2–initial data in the defocusing case (with sign −). The operator D+ in the

nonlinear term of (CS) denotes DΠ , where D = −i∂x , and Π is the Szegő

projector acting on L2(T) as

Π

(∑
n∈Z

û(n) einx

)
:=
∑
n≥0

û(n) einx , (1.1)

with value onto the Hardy space

L2
+(T) :=

{
u ∈ L2(T) | û(n) = 0 , ∀n ∈ Z≤−1

}
≡ Π(L2(T)) . (1.2)

We equip L2
+(T) with the standard inner product of L2(T) , ⟨u | v⟩ =

∫ 2π

0
uv̄ dx

2π
.

Our interest focuses on studying this equation with an unknown function u taken

in the Hardy space of the torus, with a certain regularity. Thus, we denote by

Hs
+(T) , the subspace of the Sobolev space Hs(T) , defined as

Hs
+(T) := Hs(T) ∩ L2

+(T) , s ≥ 0 , (1.3)

and equipped with the Sobolev norm

∥u∥Hs = ∥⟨D⟩su∥L2 , ⟨D⟩s = (1 + |D|2)s/2 .

In Physics, this dynamical (CS)–equation, also called as the Calogero–Moser

equation in the real line, is derived from the classical Calogero–Sutherland–Moser

system (or Toda system) introduced in the end sixties–early seventies [Ca69, Su71].

This physical model corresponds to a N–body problem describing the pairwise

interactions of N identical particles on a circle, with an inverse sin-square potential

(trigonometric–type potential) in the periodic case. Abanov–Bettelheim–Wiegmann

show in [ABW09] that taking the thermodynamic limit of such a model, and

applying a change of variables leads to the (CS)–equation. This latter equation

can also be obtained as a limit of the intermediate nonlinear Schrödinger equation

introduced by Pelinovsky [Pe95] ,

i∂tu = ∂xu
2 + (i− T )∂x(|u|2)u , (INS)

where T is the integral operator

Tu(t, x) =
1

2δ
p.v.

∫ +∞

−∞
coth

(π(x− y)

2δ

)
u(t, y) dy ,
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by taking δ → ∞ . The complex function u in (INS) represents the envelope of the

fluid, and δ denotes its total depth. By passing to the limit δ → ∞ , one obtains

[Pe95] the same equation as (INS) but with the Hilbert transform

Hu(t, x) =
1

π
p.v.

∫ +∞

−∞

u(t, y)

x− y
dy ,

instead of T . And since the Szegő projector ΠR = 1
2
(Id+iH) , then the (CS)–

equation can also be interpreted as a model describing the interfacial wave packets

in a deep stratified fluid.

It turns out that the Calogero–Sutherland DNLS equation is completely

integrable. Thus, what does the word “integrability” mean? In line with the

different perspectives developed by various schools, a number of definitions have

been raised. If the word “integrable system” means for some researchers the

existence of action–angle variables, a coordinate system in which the equation is

completely solvable by quadratures, others would say that it refers to the existence

of a Lax operator associated with the equation, and satisfying the isospectral

property1. However, a common facet of all these definitions is the presence of

infinitely independent integrals of motion, or what we can also call conservation

laws. Naturally, this infinite number of conservation laws plays a crucial role in

proving some global well–posedness results.

In our case, Gérard–Lenzmann derived in [GL22, Lemma 5.1] , for u sufficient

regular, a Lax operator so that the focusing Calogero–Sutherland DNLS equation

(CS)+ enjoys a Lax pair formulation on the real line R . i.e., for any u ∈ Hs
+(R)

with s sufficiently large, there exist two operators (Lu, Bu) such that the Lax

equation

dLu

dt
= [Bu , Lu] , [Bu , Lu] := BuLu − LuBu , (1.4)

is satisfied with

Lu = D − TuTū , Bu = TuT∂xū − T∂xuTū + i(TuTū)
2 . (1.5)

The operator Tu is the Toeplitz operator of symbol u , and is defined for any

u ∈ L∞ by

Tuf = Π(uf) , ∀f ∈ L2
+ , (1.6)

where Π is the Szegő projector given in (1.1) . In what follows, we check that

this Lax equation holds true on the torus T by retrieving the same Lax operators

(Lu, Bu) as on the real line . And, as expected, through this Lax formalism, we

1 See Remark 2.1.
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derive infinite conservation laws ⟨(Lu + λ)s1 | 1⟩ , λ >> 0 , s ≥ 0 , in order to

control the growth of the Sobolev norms ∥u(t)∥Ḣs uniformly for all t ∈ R .2

Observe, the Calogero–Sutherland DNLS equation is invariant under the scaling

u(t, x) 7−→ λ1/2u(λ2t, λx) , λ ∈ R , (t, x) ∈ I × R . (1.7)

This suggests the L2–criticality of (CS) on R as well as on T . In [GL22, Theo-

rem 2.1] , the local well–posedness of the (CS) equation was achieved in Hs
+(R)

for s > 1
2
by following the analysis of [deMP10]. In particular, for s > 3

2
, Gérard–

Lenzmann [GL22, Proposition 2.1] used iterative schemes of Kato’s type and

energy estimates to derive the local well–posedness in Hs
+(R) [Sa79] . On T , the

same proof of iterative schemes holds, and we deduce the local well–posedness in

Hs
+(T) for s > 3

2
. Therefore, we denote by S+(t) the flow of the focusing Calogero–

Sutherland DNLS equation (CS)+ and by S−(t) the flow of the defocusing equation

(CS)− : for all s > 3
2
, t ∈ Imax ,

S±(t) : Hs
+(T) −→ Hs

+(T)
u0 7−→ u(t)

, (1.8)

where Imax denotes the maximal interval of the existence of the solution.

1.1. Main results.

Some notation. In the sequel, we denote for any nonnegative integer a , by N≥a

the subset of Z given by {k ∈ Z | k ≥ a} . Moreover, we denote by BL2
+
(r) the

open ball of L2
+(T) centered at the origin, with radius r > 0 .

The goal of the paper is to prove the global well–posedness of the L2–critical

equation (CS) in all Hs
+(T) , s ≥ 0 . As a starting point, we state the results for

the more challenging equation, the focusing Calogero–Sutherland DNLS equation

i∂tu+ ∂2
xu+ 2D+(|u|2)u = 0 , (CS+)

then, we present the results for the defocusing case 3

i∂tu+ ∂2
xu− 2D+(|u|2)u = 0 . (CS−)

Theorem 1.1. For all s > 3
2
, the Calogero–Sutherland DNLS focusing equation

(CS+) is globally well–posed in Hs
+(T) ∩ BL2

+
(1) . Moreover, the following a priori

2 In particular, one can see that the usual conservation laws : the average ⟨1 |u⟩ , and the

L2 norm ∥u∥L2 are conserved for s = 1 and 2 , since by definition of Lu = D − TuTū we have

Lu1 = −⟨1 |u⟩u .
3 We refer to the introduction of Weinstein [We15] for a mathematical and physical meaning

of the terms focusing and defocusing for any dispersive equation.
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bound holds,

sup
t∈R

∥u(t)∥Hs ≤ C ,

where C = C(u0, s) > 0 is a positive constant.

Remark 1.1. The restriction of smallness on the L2–norm of the initial data, namely

∥u0∥L2 < 1 , appears after applying a sharp inequality (Lemma 2.7) in order to

control the growth of the Sobolev norms ∥u(t)∥Ḣs , s ≥ 0 by the conservation laws.

More details for an eventual way to avoid this condition are presented in Section 6 ,

but so far it is still an open problem.

As a second step, we focus on the main point of this paper : how the flow S+(t)

defined globally on H2
+(T) for u0 ∈ BL2

+
(1) , can be extended to less regularity

spaces for instance L2
+(T) ? Recall, as noted in (1.7) , the Calogero–Sutherland

DNLS equation is L2–critical. Based on the previous Theorem, and under the

notation uε(t) = S+(t)uε
0 , ε > 0 , we state the following result.

Theorem 1.2. Let u0 ∈ BL2
+
(1) . There exists a unique potential u ∈ C(R, L2

+(T))
such that, for any sequence (uε

0) ⊆ H2
+(T) , ∥uε

0 − u0∥L2 −→
ε→0

0 , we have for all

T > 0 ,

sup
t∈[−T,T ]

∥uε(t)− u(t)∥L2 → 0 , ε → 0 .

Moreover, the L2–norm of the limit potential u is conserved in time :

∥u(t)∥L2 = ∥u0∥L2 , ∀t ∈ R. (1.9)

As a consequence, Theorem 1.2 leads to the global well–posedness of the

(CS+) problem in L2
+(T) in the following sense : There exists a unique continuous

extension of the flow defined on H2
+(T) , to L2

+(T) , generating a unique continuous

map

u0 ∈ BL2
+
(1) 7−→ u ∈ C(R, L2

+(T)) .

The key ingredient of the proof is to obtain H
1
2 bounds (inequality (3.20)) on the

eigenfunctions of the Lax operator Luε , which also constitute an orthonormal basis

of L2
+(T) . Therefore, we deduce the strong convergence of these eigenfunctions in

L2 . Finally, using Parseval’s identity, we infer (1.9) .

We also need to emphasize the important aspect of the uniqueness of the limit

potential u(t) , obtained independently of the choice of the sequence (uε
0) that

approximates u0 ∈ L2
+(T) . For this purpose, we derive in Proposition 2.5 , an

explicit formula of the solution of the focusing (CS+) equation. Thus, for any

initial data u0 , the solution of the (CS+) focusing equation is given by

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, z ∈ D := {|z| < 1} , (1.10)
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where S∗ denotes the adjoint of the Shift operator S : h 7→ zh in L2
+(T) , and Lu0

is the Lax operator at t = 0 . We underline two important facts about (1.10) :

I. First, this inversion dynamical formula defined inside the open unit disc

consists an explicit solution for the nonlinear PDE (CS+) . This is not

the first time that an explicit solution occurs while dealing with nonlinear

integrable PDEs. Indeed, Gérard–Grellier derived in [GG15] an explicit

solution for the Szegő equation, and recently Gérard also prove in [Ger22]

that the Benjamin–Ono equation has an explicit solution on R and on T .

The common point to all these dynamical explicit formulas is that they all

rely closely on the structure of the Lax operators induced by these equations.

II. Beyond the fact that we have an explicit solution, this formula stresses out

that the dynamics of the (CS+) equation are encoded by the Lax operator

Lu0 , suggesting thus, that the so–called actions–angles variables must be

related to the spectral elements of the Lax operators Lu .

In view of Theorem 1.2 , we state the third result.

Corollary 1.3. For all 0 ≤ s ≤ 3
2
, the Calogero–Sutherland DNLS focusing

equation (CS+) is globally well–posed in Hs
+(T) ∩ BL2

+
(1) . Moreover, the following

a–priori bound holds,

sup
t∈R

∥u(t)∥Hs ≤ C ,

where C = C(u0, s) > 0 is a positive constant.

Remark 1.2. There is a subtlety hidden in the worlds of “globally well–posed” in

the last statement. In fact, it is important to distinguish here the two different

aspects of global well–posedness. First, we have the classical definition of GWP

used in Theorem 1.1 : for any u0 ∈ Hs
+ there exists a unique solution u defined on

R with value in Hs
+ , such that u depends continuously on the initial data u0 as

a map u0 ∈ Hs
+ 7→ u ∈ C(R, Hs

+) . The second definition is the one described in

Theorem 1.2 in the sense : we suppose that the equation is defined at least in the

distribution sense, then we extend the flow defined on high regularity spaces to

low regularity spaces through continuous extension.

I
L2
+

GWP in the sense of
continuous extension

I
H

3
2
+

GWP in the classical sense

In this corollary, the global well–posedness is in the sense used in Theorem 1.2 .

This will become clearer once the proof is established (see Section 4). We also

expect that, following arguments in [deMP10] , one can go down for the global

well–posedness in the classical sense to Hs
+(T) with s > 1

2
.
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Beyond the global well–posedness results on the Cauchy Problem of (CS+) , we

are interested in some qualitative properties about the flow S+(t) of this equation.

Theorem 1.4. Given an initial data u0 ∈ BL2
+
(1) ∩Hs

+(T) , s ≥ 0 , the orbit of

the solution {S+(t)u0 ; t ∈ R} is relatively compact in Hs
+(T) .

***

The defocusing equation (CS−). Moving now to the defocusing case of the

Calogero–Sutherland DNLS equation, this latter equation enjoys also a Lax pair

structure : for any u(t) ∈ Hs
+ , with s large enough, there exist two operators

L̃u = D+TuTu , B̃u = −TuT∂xu+T∂xuTu + i(TuTu)
2 ,

satisfying the Lax equation

dL̃u

dt
= [B̃u, L̃u] .

Therefore, using the same methods as on the focusing case, we prove that the

conservation laws ⟨L̃s
u1 | 1⟩ , s ≥ 0 , controls uniformly the growth of the Sobolev

norms without requiring any additional condition on the initial data. As a

consequence, we obtain similar results in the defocusing case as in the focusing

case, regardless of how large the initial data is in L2 . To summarize, we have the

following.

Theorem 1.5. The Calogero–Sutherland DNLS defocusing equation (CS−) is

globally well–posed in Hs
+(T) for any s ≥ 0 in the sense of Remark 1.2 . In

addition, for all u0 ∈ Hs
+(T) ,

u(t, z) =
〈
(Id−z e−it e−2itL̃u0 S∗)−1 u0 | 1

〉
,

is the solution to the (CS−)–defocusing equation. Furthermore, the trajectories{
S−(t)u0 ; t ∈ R

}
are relatively compact in Hs

+(T) .

***

Other related equations. As explained in [GL22], the Calogero–Sutherland

DNLS equation (CS) can be seen as mass critical version of the Benjamin–Ono

equation. We refer to [GK21, GKT20] for a deep study of this latter equation

on the torus. Of course, the Calogero–Sutherland DNLS equation (CS) is also

considered as part of the nonlinear Schrödinger’s family. Several authors have

been interested in different types of NLS–equations over the years. Some of these
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equations are classified and presented in [Bo99] . Maybe the most closely related

to the (CS)–equation are :

(i) Cubic NLS equation.

i∂tu+ ∂2
xu± |u|2u = 0 , (NLS-cubic)

which is considered as one of the simplest PDE enjoying complete integrable

properties. Zakharov–Shabat have studied this equation in [ZS72] using in-

verse scattering method. Moreover, global well–posedness results in L2(T) are
presented in Bourgain [Bo93] after he introduced the Xs,b–spaces. His proof

relies on establishing L4(T)–Strichartz estimates and using L2–conservation

norm. Actually, this result of L2–well–posedness is known to be sharp, and it

is illustrated by various types of ill–posedness results below the regularity

L2(T) . Indeed, Burq–Gérard–Tzvetkov proved in [BGT02] that the flow

map of (NLS-cubic) fails to be uniformly continuous for Sobolev regularity

below L2 . Christ–Colliander–Tao [CCT03] and Molinet [Mo09] showed the

discontinuity of the map solution in Hs(T) for s < 0 .

For a deep study of (NLS-cubic) using integrable tools, Birkhoff normal

form, and some applications, we refer to Kappeler–Lohrmann–Topalov–Zung

[KL+17] , Grébert–Kappeler [GK14] and Kappeler–Schaad–Topalov [KST17].

For a study on the line R, we cite [HKV20]. More references are also provided

in [OS12] .

(ii) DNLS equation.

i∂tu+ ∂2
xu+±i∂x

(
|u|2u

)
= 0 , (DNLS)

which is also an integrable equation enjoying infinite conservation laws [KN78].

Using the I-method, Win proved in [Wi10] the global well–posed of (DNLS)–

equation in Hs(T) , s > 1
2
for small data in L2(T) . More recently, Klaus–

Schippa [KS22] presented law regularity a priori estimates of ∥u∥Hs for

0 < s < 1
2
upon small L2–norm, where u ∈ C∞(R,S(T)) and S(T) denotes

the Schwartz space. Actually, they proved the a priori estimates

sup
t∈R

∥u(t)∥Bs
r,2

≲ ∥u(0)∥Bs
r,2

in any Besov space Bs
r,2 , with r ∈ [1,∞] and 0 < s < 1

2
. For a study on the

line R, we cite [JL+20, BP22, BLP21, KNV21, HKV21, HKNV22] .

1.2. Outline of the paper. The paper is organized as follows.

In Section 2 , we discuss some properties about the Lax operators of the

Calogero–Sutherland DNLS focusing equation (CS+) . We derive the explicit

formula of the solution of (CS+) in the first subsection 2.1 . Then, we prove in the
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second subsection 2.2 , the global well–posedness of the (CS+) problem in Hs
+(T)

for any s > 3
2
.

In Section 3 , we extend the flow S+(t) of (CS+) continuously from H2
+(T) to

L2
+(T) ≡ H0

+(T) . To this end, we use an approximation method, and we character-

ize in the first subsection 3.1.1 the limit potential u(t) for all t ∈ R . Then, in the

second subsection 3.2, we make sure that the lack of compactness in L2
+(T) do not

occur while passing to the limit from H2
+(T) to L2

+(T) . In the same subsection,

we derive an orthonormal basis of L2
+(T) where the coordinates of the solution

u(t) have nice evolution in this basis. This evolution suggests that the so–called

“Birkhoff coordinates” are the coordinates of u(t) in this basis.

After that, we deal in Section 4 with the problem of global well–posedness of

(CS+) in Hs
+(T) for 0 < s ≤ 3

2
. Moreover, we address the property of relative

compactness of the orbits of (CS+) in Hs
+(T) , s ≥ 0 .

Moving to Section 5 , we present the Lax pair for the defocusing Calogero–

Sutherland DNLS equation (CS−) and we state the analogous results of (CS+) in

the case of (CS−) .

Finally, in Section 6 , we discuss some remarks and open problems related to this

equation.

Acknowledges. The author would like to thank warmly her Ph.D. advisor

Patrick Gérard for his rich discussions and comments on this paper.

2. The Lax pair structure

As noted in the introduction, we first check that the Lax pair defined in (1.5)

holds the same in the context of the torus T as on the real line R, even though on

the real line R , a complex function f is decomposed as

f = Πf +Πf , Π̂f(ξ) = 1ξ>0f̂(ξ) , ξ ∈ R ,

while on the torus T ,

f = Πf +Πf − ⟨f | 1⟩ , Π

(∑
n∈Z

f̂(n) einx

)
:=

∑
n∈N≥0

f̂(n) einx ,

Proposition 2.1 (The Lax pair). For any s > 3
2
, let u ∈ C([−T, T ], Hs

+(T)) be a

solution of the focusing equation (CS+) . Then, there exist two operators

Lu = D − TuTu , Bu = TuT∂xu − T∂xuTu + i(TuTu)
2

satisfying the Lax equation
dLu

dt
= [Bu, Lu] ,

where Tu is the Toeplitz operator defined in (1.6) .
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Proof. Let u ∈ C([−T, T ], Hs
+(T)) , s > 3

2
, be a solution of (CS+) equation. On

the one hand, we have by definition of Lu and for all h ∈ H1
+(T) ,

dLu(h)

dt
=− T∂tuTū(h)− TuT∂tu(h)

=− Ti∂2
xu+2u∂xΠ(|u|2)Tūh− TuT−i∂2

xū+2ū∂xΠ(|u|2) h

Therefore, since u belongs to the Hardy space,

dLu

dt
= i
[
TuT∂2

xū
− T∂2

xu
Tū

]
− 2u

[
∂xΠ(|u|2)Π(ū · ) + Π(∂xΠ(|u|2)ū · )

]
. (2.1)

On the other hand, expanding the commutator [Bu, Lu](h) = BuLuh−LuBuh , we

obtain

TuT∂xūDh− TuT∂xūTuTūh− T∂xuTūDh+ T∂xuTūTuTūh+ i(TuTū)
2Dh

−DTuT∂xūh+ TuTūTuT∂xūh+DT∂xuTūh− TuTūT∂xuTūh− iD (TuTū)
2 h ,

where by the Leibniz rule, DTuh = −iT∂xuh+ TuDh , so that

DTuT∂xū = TuT∂xūD − iT∂xuT∂xū − iTuT∂2
xū

,

DT∂xuTū = T∂xuTūD − iT∂2
xu
Tū − iT∂xuT∂xū ,

D (TuTū)
2 = −i(T∂xuTūTuTū + TuT∂xūTuTū + TuTūT∂xuTū + TuTūTuT∂xū) + (TuTū)

2D .

As a consequence,

[Bu, Lu] =iTuT∂2
xū

− iT∂2
xu
Tū − 2 (TuTūT∂xuTū + TuT∂xūTuTū)

= i
[
TuT∂2

xū
− T∂2

xu
Tū

]
− 2uΠ

(
∂x|u|2Π(ū · )

)
. (2.2)

Comparing (2.1) and (2.2) , it appears that all that remains to be proved is[
∂xΠ(|u|2)Π(ūh) + Π(∂xΠ(|u|2)ūh)

]
= Π

(
∂x|u|2Π(ūh)

)
, h ∈ H1

+(T) . (2.3)

In fact, any complex function f ∈ L2(T) can be decomposed as

f = Πf +Πf̄ − ⟨f | 1⟩ .

In particular, for f = ūh , we have Π(∂xΠ(|u|2)ūh) equal to

Π(∂xΠ(|u|2)Π(ūh)) + Π(∂xΠ(|u|2)Π(ūh))− ⟨ūh | 1⟩Π(∂xΠ(|u|2)) ,

where the last two terms vanishes, since Π is an orthogonal projector into the

Hardy space. Therefore, the left–hand side of (2.3) coincides with

Π
(
∂xΠ(|u|2)Π(ūh)

)
+Π

(
∂xΠ(|u|2)Π(ūh)

)
,

which is equal to Π (∂x|u|2Π(ūh)) since ⟨∂x(|u|2) | 1⟩ = 0 . □
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2.1. The explicit formula of the solution. Using this Lax pair structure, we

derive in this subsection the explicit formula, solution of the focusing Calogero–

Sutherland DNLS equation (CS+) . To this end, we also need the shift operator

introduced in the following paragraph.

Some Preliminaries. We recall one of the most important operator on Hardy’s

space, the shift operator, defined on L2
+(T) as the isometric map

S : h ∈ L2
+(T) 7−→ eixh ∈ L2

+(T) .

Its adjoint in L2
+(T) is given by

S∗ : h ∈ L2
+(T) 7−→ S∗h = Te−ixh = Π(e−ixh) ∈ L2

+(T) .

In particular, we have

S∗S = Id, SS∗ = Id−⟨ · | 1⟩1, (2.4)

leading to the fact that the shift map S is injective but not surjective. Pointing

out that the Hardy space can be defined with different approaches, for instance,

H2(D) :=
{
u ∈ Hol(D) ; sup

0≤r<1

∫ 2π

0

|u(r eiθ)|2 dθ
2π

< ∞
}

,

which is equivalent via the isometric isomorphism

u(z) =
∑
k≥0

û(k)zk 7−→ u∗(x) :=
∑
k≥0

û(k) eikx ,

to the Hardy space L2
+(T) defined in (1.2) , then one could read the shift opera-

tor acting as multiplication by z . In what follows, we use indifferently u and the

boundary function u∗ , by making a slight abuse of notation and denoting both by u .

***

Coming back to the problem, we need some commutator identities to obtain the

explicit formula. This is the purpose of the next Lemma.

Lemma 2.2. Let u ∈ Hs
+(T) , s > 3

2
, then

[S∗, Lu] = S∗ − ⟨ · |u⟩S∗u , (2.5)

[S∗, Bu] = i
(
S∗L2

u − (Lu + Id)2S∗
)
.

Proof. The first identity is a direct consequence of proving

LuS = SLu + S − ⟨ · |S∗u⟩u , (2.6)

and taking the adjoint of all these operators in L2
+(T) . Recall Lu = D−TuTū . On

the one hand, we have by the Leibniz rule D(Sh) = S(Id+D)h , for all h ∈ H1
+(T) .

On the other hand, observe for all f ∈ L2(T),

Π (Sf) = SΠ(f) + ⟨Sf | 1⟩ .
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In particular, for f = hū , we infer

Tū(Sh) = STūh+ ⟨Sh | u⟩. (2.7)

Hence, taking into consideration that the operators S and Tu commute, we deduce

identity (2.6) .

Now, to prove the second point of (2.5) we use the first point. Recall that

Bu = TuT∂xū − T∂xuTū + i(TuTū)
2 , and by (2.7) we have [Tū, S] = ⟨ · |S∗u⟩, in

other words, [S∗, Tu] = ⟨ · | 1⟩S∗u. Thus, after noting that S∗ and Tū commute, we

deduce

[S∗, TuT∂xū] = ⟨ · | ∂xu⟩S∗u .

[S∗, T∂xuTū] = ⟨ · |u⟩S∗∂xu ,

[S∗, (TuTū)
2] = ⟨ · |TuTūu⟩S∗u+ TuTū(⟨ · |u⟩S∗u) .

As a result,

[S∗, Bu] = ⟨ · | ∂xu⟩S∗u− ⟨ · |u⟩S∗∂xu+ i ⟨ · |TuTūu⟩S∗u+ iTuTū (⟨ · |u⟩S∗u) .

Using the adjoint Leibniz rule S∗D = (D + Id)S∗ and since Lu = D − TuTū , we

infer

[S∗, Bu] = − i ⟨ · |Luu⟩S∗u− iLu(⟨ · |u⟩S∗u)− i ⟨ · |u⟩S∗u

= − i (⟨ · |u⟩S∗u)Lu − i(Lu + Id)(⟨ · |u⟩S∗u) .

We conclude by the first identity of (2.5) that −⟨ · |u⟩S∗u = S∗Lu − LuS
∗ − S∗

and hence

[S∗, Bu] = i
(
S∗L2

u − (Lu + Id)2S∗
)
.

□

Proposition 2.3. Let u(t) ∈ Hs
+(T) , s > 3

2
. The Lax operator (Lu(t), H

1
+(T)) is

a self–adjoint operator with a discrete spectrum bounded from below. Moreover,

Bu(t) is a skew–symmetric bounded operator on L2
+(T) .

Proof. The proof is a direct consequence of Kato–Rellich’s theorem. Indeed, the

differential operator (D,H1
+(T)) is a positive self–adjoint operator on the Hardy

space L2
+(T). In addition, TuTu is relatively bounded with respect to D, since for

all h ∈ H1
+(T) ,

∥TuTūh∥L2 ≤ ∥u∥2L∞ ∥h∥L2 ≤ ε ∥Dh∥L2(T) + ∥u∥2L∞ ∥h∥L2(T) , 0 ≤ ε < 1.

Furthermore, the spectrum of Lu is discrete since the resolvent of Lu is compact by

the Rellich–Kondrachov theorem. And it is bounded from below as the operator

Lu is a semi–bounded operator. Besides, one can easily observe by definition of

Bu = TuT∂xu−T∂xuTu+ i(TuTu)
2 , that this operator is a skew–symmetric operator.

□
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In view of the previous proposition, we denote by (λn(u))n≥0 the eigenvalues

of Lu ordered by increasing modulus, and taking into account their multiplicity

λ0(u) ≤ λ1(u) ≤ λ2(u) ≤ . . . ≤ λn(u) ≤ . . .

Remark 2.1. As discovered in the modern theory of integrable systems [GG+67]

and reformulated by [Lax68], the eigenvalues of a Lax operator correspond to the

integrals of motion of the associated equation. In fact, any Lax operator satisfies

the isospectral property, namely, there exists a one parameter family of unitary

operators U(t) such that U(t)−1Lu(t,·)U(t) is independent of t . That is,

U(t)−1Lu(t)U(t) = Lu0 . (2.8)

In addition, this family of unitary operators U(t) is solution of the Cauchy problem{
d
dt
U(t) = Bu(t,·) U(t)

U(0) = Id .
(2.9)

Therefore, by (2.8) the eigenvalues (λn(u)) of Lu are all conserved along the flow

of (CS+) . That means, λn(u(t)) = λn(u0) for all t ∈ R .

The following lemma provides a rewrite of the Calogero–Sutherland DNLS

equation focusing on (CS+) in terms of the Lax operators Lu and Bu . This will

certainly be useful during the proof of the dynamical explicit formula.

Lemma 2.4. Given u ∈ C([−T, T ], Hs
+(T)) , s > 3

2
, a solution of (CS+) equation,

then

∂tu = Buu− iL2
uu .

Proof. By definition of Bu := TuT∂xu − T∂xuTu + i(TuTu)
2 ,

∂tu−Buu = i∂2
xu+ 2iD+(|u|2)u− TuT∂xuu+ T∂xuTuu− i(TuTu)

2u

=− i
[
D2u− 2u.DΠ(|u|2) + u.Π(Du.u)−Du.Π(|u|2) + (TuTu)

2u
]
.

Applying Leibniz’s rule on D (u.Π(|u|2)) , we infer

∂tu−Buu =− i
[
D2u−D

[
Π(|u|2).u

]
+ u.Π(Du.u)− u.DΠ(|u|2) + (TuTu)

2u
]
.

Again, using Leibniz’s rule on the term DΠ(|u|2) ,

∂tu−Buu = −i
[
D2u−DTuTuu− u.Π(u.Du) + (TuTu)

2u
]
= −iL2

uu .

□

Following [Ger22] and [GG15], we derive the explicit formula for the solution

of the Calogero–Sutherland DNLS focusing equation.

Proposition 2.5 (The explicit formula). Given u0 ∈ Hs
+(T) , s > 3

2
, the solution

of the focusing Calogero–Sutherland DNLS equation (CS+) is given by

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, ∀ z ∈ D .
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Proof. Since u(t, ·) ∈ Hs
+(T) , s > 3

2
, for all t ∈ [−T, T ] , then for all z ∈ D

u(t, z) =
∞∑
k=0

û(t, k)zk =
∞∑
k=0

〈
u(t) | Sk1

〉
zk =

∞∑
k=0

〈
(S∗)k u(t) | 1

〉
zk ,

where by the Neumann series of

∞∑
k=0

(zS∗)k = (Id− zS∗)−1 ,

we infer

u(t, z) =
〈
(Id−zS∗)−1 u(t) | 1

〉
, ∀ z ∈ D . (2.10)

Recall by Remark 2.1 , there exists a unitary operator U(t) solution of the Cauchy

problem (2.9) . Hence,

u(t, z) =
〈
U(t)∗ (Id−zS∗)−1 u(t) | U(t)∗1

〉
(2.11)

=
〈
(Id−zU(t)∗S∗U(t))−1 U(t)∗u(t) | U(t)∗1

〉
.

Since ∂tU(t) = Bu(t)U(t) by (2.9) , and as the operator Bu is a skew–adjoint

operator (Proposition 2.3), we find

• d
dt
[U(t)∗1] = −U(t)∗Bu(t)1 = −iU(t)∗L2

u(t)1 .

• d
dt
[U(t)∗u(t)] = −U(t)∗Bu(t)u(t)+U(t)∗∂tu(t) = −iU(t)∗L2

u(t)u(t) by Lemma 2.4.

• d
dt
[U(t)∗S∗U(t)] = −U(t)∗Bu(t)S

∗U(t)+U(t)∗S∗Bu(t)U(t) = U(t)∗[S∗, Bu(t)]U(t).

where the third point is equal to

d

dt
[U(t)∗S∗U(t)] = iU(t)∗

(
S∗L2

u(t) − (Lu(t) + Id)2S∗
)
U(t)

by Lemma 2.2 . Therefore, using the identity U(t)∗Lu(t) = Lu0U(t)∗ of (2.8) , we

deduce

• d
dt
[U(t)∗1] = −iL2

u0
[U(t)∗1] .

• d
dt
[U(t)∗u(t)] = −iL2

u0
[U(t)∗u(t)] .

• d
dt
[U(t)∗S∗U(t)] = i

(
[U(t)∗S∗U(t)]L2

u0
− (Lu0 + Id)2[U(t)∗S∗U(t)]

)
As a consequence,

U(t)∗1 = e−itL2
u0 1 , U(t)∗u(t) = e−itL2

u0 u(t) , (2.12)

and

U(t)∗S∗U(t) = e−it(Lu0+Id)2 S∗ eitL
2
u0 . (2.13)

Combining (2.11) , (2.12) and (2.13), the claimed formula follows. □
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2.2. Global well–posedness of (CS+) in Hs
+(T) , s > 3

2
. To prove the global

well–posedness of (CS+) , we need to derive some conservation laws and energy

estimates.

Lemma 2.6 (Conservation laws). Let u ∈ C
(
[−T, T ], Hr

+(T)
)
, r > 3

2
. For all

λ >> 0 , the family {Hs(u) := ⟨(Lu + λ)s u |u⟩ ; 0 ≤ s ≤ 2r} is conserved by the

flow of (CS) .

Remark 2.2. Using complex interpolation method [Ta81, Chapter I. 4.], one can

observe as demonstrate in Proposition 2.8 , that the Hs(u) ≤ C∥u∥2
H

s
2
.

Proof. Given u ∈ C
(
[−T, T ], Hr

+(T)
)
, r > 3

2
, we consider the unitary operator U(t)

defined in Remark 2.1 . Then, by (2.12) , we know that U(t)∗u(t) = e−itL2
u0 u(t) .

And, since Lu is a self–adjoint operator by Proposition 2.3 , we infer by (2.8) ,

U(t)∗(Lu(t) + λ)sU(t) = (Lu0 + λ)s .

Therefore, for all 0 ≤ s ≤ 2r ,

Hs(u(t)) =
〈
U(t)∗(Lu(t) + λ)su(t) |U(t)∗u(t)

〉
= ⟨(Lu0 + λ)sU(t)∗u(t) |U(t)∗u(t)⟩

= ⟨(Lu0 + λ)s e−itL2
u0 u(t) | e−itL2

u0 u(t)⟩

As a consequence, Hs(u(t)) = Hs(u0) as (Lu0 + λ)s and e−itL2
u0 commute.

□

Remark 2.3. Using the identity U(t)∗1 = e−itL2
u0 1 of (2.12) and repeating the

same proof of Lemma 2.6 , one can also deduce for λ >> 0 , that the quantities

⟨(Lu + λ)q1 |u⟩ and ⟨(Lu + λ)p1 | 1⟩ are conserved by the flow. Another way to

show this, is to observe by definition of Lu = D − TuTū we have Lu1 = −⟨1 |u⟩u
and the average ⟨u | 1⟩ is conserved along the evolution, since

∂t ⟨u | 1⟩ = i
〈
∂2
xu | 1

〉
+ 2i

〈
DΠ(|u|2) |u

〉
= 0 .

To prove the energy estimates and for future requests, we need the following

lemma.

Lemma 2.7. Let h ∈ H
1
2
+(T) , u ∈ L2

+(T) ,

∥Tūh∥2L2(T) ≤
(
⟨Dh |h⟩+ ∥h∥2L2(T)

)
∥u∥2L2(T) . (2.14)

Proof. By Parseval’s identity,

∥Tūh∥2L2(T) =
∑
n≥0

∣∣T̂ūh(n)
∣∣2 ,

where

T̂ūh(n) = Π̂(hū)(n) =
∑
p≥0

ĥ(n+ p)û(p) . (2.15)
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Applying Cauchy–Schwarz’s inequality, we infer

∥Tūh∥2L2(T) ≤ ∥u∥2L2(T)

∑
p≥0

∑
n≥0

|ĥ(n+ p)|2 .

Set k = n+ p, then∑
p≥0

∑
n≥0

|ĥ(n+ p)|2 =
∑
k≥0

(k + 1)|ĥ(k)|2 = ⟨Dh |h⟩+ ∥h∥2L2(T) .

□

Remark 2.4. (1) Recall that the embedding H
1
2 (T) ↪→ L∞(T) fails to be true.

However, taking the potential u as an element of the Hardy space L2
+(T) ,

improved the estimate from ∥Tūh∥L2 ≤ ∥h∥L∞∥u∥L2 to (2.14) .

(2) From (2.15), one could see that, for all h ∈ H
1
2
+(T) , the Hilbert–Schmidt

norm of the antilinear operator u ∈ L2
+(T) 7→ Tūh is given by

∥Π( ·h)∥2HS =
∑
p≥0

∑
n≥0

|ĥ(n+p)|2 =
∑
k≥0

(k+1)|ĥ(k)|2 = ⟨Dh |h⟩+∥h∥2L2(T) .

In particular, we have u 7→ Tūh is a compact antilinear operator in L2
+(T) .

(3) The inequality (2.14) of Lemma 2.7 is a sharp inequality, since its proof relies

on a simple application of the Cauchy–Schwarz inequality. In particular, if

h = u , inequality (2.14) is an equality, if and only if

u(z) =
c

1− qz
, |q| < 1 , c ∈ C .

Indeed,4 Cauchy–Schwarz’s inequality applied to (2.15) is an equality, if

and only if for all n , p ≥ 0 , there exists cn ∈ C such that

û(n+ p) = cn û(p) . (2.16)

Hence, if û(1) ̸= 0 and û(0) ̸= 0 ,

cn =
û(n+ 1)

û(1)
=

û(n)

û(0)
,

or in other words,

û(n) =

(
û(1)

û(0)

)n

û(0) , ∀n ∈ N .

Therefore, the sequence (û(n)) is a geometric progression with common

ratio q := û(1)
û(0)

, where 0 < |q| < 1 since
∑∞

n=0|û(n)|2 < +∞ . Hence,

u(z) =
∞∑
n=0

û(n)zn =
û(0)

1− qz
.

Now, if û(1) = 0 or û(0) = 0 then by (2.16) we infer for p = 0 or 1 ,

u = û(0) .

4 Following arguments used in [GG08, Lemma 1.]
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We recall that BL2
+
(r) denotes the open ball of L2

+(T) centered at the origin,

with radius r > 0 .

Proposition 2.8. Let u0 ∈ BL2
+
(1)∩Hr

+(T) , r > 3
2
. Then, for all s ≥ 0 , λ >> 0 ,

there exists C = C(u0, s) > 0 independent of t , such that for every f ∈ Hs
+(T) ,

1

C
∥f∥Hs ≤ ∥(Lu(t) + λ)sf∥L2 ≤ C∥f∥Hs (2.17)

Remark 2.5. The condition r > 3
2
can be omitted once we prove in Section 4 that

the flow u0 ∈ BL2
+
(1) ∩Hr

+(T) 7→ u(t) ∈ Hr
+(T ) exists for all r ≥ 0.

Proof. The proof is done by induction on every interval of length 1/2 .

Step 1 : s ∈ [0, 1
2
] . Let s = 1

2
, we have by definition of Lu = D − TuTū ,

∥(Lu(t) + λ)
1
2f∥2L2 = ⟨(Lu + λ)f | f⟩ (2.18)

≥∥f∥2
Ḣ

1
2
− ∥Tūf∥2L2 + λ∥f∥2L2 .

Hence, applying the sharp inequality of Lemma 2.7 ,

∥(Lu(t) + λ)
1
2f∥2L2 ≥ (1− ∥u∥2L2)∥f∥2

Ḣ
1
2
+ (λ− ∥u∥2L2)∥f∥2L2 . (2.19)

Thus, we infer since ∥u∥L2 = ∥u0∥L2 < 1 ,

∥(Lu(t) + λ)
1
2f∥2L2 ≥ C∥f∥2

H
1
2
,

where C > 0 a positive constant independent of t . On the other hand, using the

definition of Lu , it is easy to see that

∥(Lu(t) + λ)
1
2f∥L2 ≤ C∥f∥

H
1
2
.

Therefore, by complex interpolation [Ta81, Chapter I. 4] , we deduce that inequal-

ity (2.17) holds true for all s ∈ [0, 1
2
] .

Step 2 : Uniform bounds on ∥u(t)∥Lp , p ∈ [2,∞) . By step 1, and using the con-

servation laws of Lemma 2.6 , we infer for f = u ,

1

C
∥u(t)∥Hs ≤ ∥(Lu(t) + λ)su(t)∥L2 = ∥(Lu0 + λ)su0∥L2 ≤ C∥u0∥Hs ,

for all s ∈ [0, 1
2
] . Therefore, supt∈R ∥u(t)∥H 1

2
< ∞ , and thus by Sobolev embedding

sup
t∈R

∥u(t)∥Lp < ∞ , ∀p ∈ [2,∞) .
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Step 3 : s ∈ [1
2
, 1] . Let s = 1 , by Step 1,∥∥(Lu(t) + λ)f
∥∥2
L2(T) = ∥Lu(t)f∥2L2 + λ

〈
(Lu(t) + λ)f | f

〉
+ λ

〈
f |Lu(t)f

〉
≥∥Lu(t)f∥2L2 + λ

(
(1− ∥u∥2L2)∥f∥2

Ḣ
1
2
+ (λ− ∥u∥2L2)∥f∥2L2

)
+ λ
(
(1− ∥u∥2L2)∥f∥2

Ḣ
1
2
− ∥u∥2L2∥f∥2L2

)
= ∥Df∥2L2 + ∥uTūf∥2L2 − 2Re ⟨Df |uTūf⟩

+ 2λ(1− ∥u∥2L2)∥f∥2
Ḣ

1
2
+ λ(λ− 2∥u∥2L2)∥f∥2L2

Using Young’s inequality, we deduce∥∥(Lu(t) + λ)f
∥∥2
L2(T) ≥ (1− ε)∥Df∥2L2 + (1− Cε)∥uTūf∥2L2

+ 2λ(1− ∥u∥2L2)∥f∥2
Ḣ

1
2
+ (λ− 2∥u∥2L2)∥f∥2L2 .

Now, applying Cauchy–Schwarz’s inequality on ∥uTūf∥L2 and since ∥u∥L8 and

∥u∥L4 are uniformly bounded by Step 2., we infer∥∥(Lu(t) + λ)f
∥∥2
L2(T) ≥ C∥f∥2H1 .

On the other hand, we have by definition of Lu ,∥∥(Lu(t) + λ)f
∥∥
L2(T) ≤ C∥f∥H1 .

We conclude by complex interpolation as in Step 1. that inequality (2.17) holds

true for all s ∈ [1
2
, 1] . Then, by induction on all the intervals s ∈ [n

2
, n
2
+ 1

2
] , n ∈ N ,

we have that inequality (2.17) is true for all s ≥ 0 . □

Theorem. 1.1. For all s > 3
2
, the Calogero–Sutherland DNLS focusing equation

(CS+) is globally well–posed in Hs
+(T) ∩ BL2

+
(1) . Moreover, the following a–priori

bound holds,

sup
t∈R

∥u(t)∥Hs ≤ C ,

where C = C(u0, s) > 0 is a positive constant.

Proof. Let u0 ∈ Hs
+(T) . Recall by (1.8) , there exists a unique solution u ∈

C([−T, T ], Hs
+(T)) , s > 3

2
, satisfying u(0, ·) = u0 . In addition, by the previous

proposition we infer for ∥u0∥L2 < 1 and for all s > 3
2
,

1

C(u0, s)
∥u(t)∥Hs ≤ ∥(Lu(t) + λ)su(t)∥L2 = ∥(Lu0 + λ)su0∥L2 ≤ C(u0, s) .

This allows us to conclude. □
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3. Extension of the flow of (CS+) to L2
+(T)

In this section, we establish our main result, which states that, for ∥u0∥L2 < 1 ,

the flow of (CS+)

S+(t) : H2
+(T) −→ H2

+(T)
u0 7−→ u(t)

, (3.1)

defined globally on H2
+(T) via Theorem 1.1 , can be extended continuously to the

critical regularity L2
+(T) . Our strategy is the following. Starting from u0 ∈ L2

+(T) ,
∥u0∥L2 < 1 , we approximate u0 by a sequence (uε

0) ⊆ H2
+(T) . After that, we

consider the time evolution of (uε
0) , i.e. the potentials (uε(t)) defined as uε(t) :=

S+(t)uε
0 for all t ∈ R . Our goal is to prove that (uε) has a unique limit u in

C(R, L2
+(T)) independent of the approximate sequence (uε

0) .

u0

uε
0 uε(t)

u(t)
?

L2
+(T ) :

H2
+(T ) :

Note that, due to the presence of the nonlinear term DΠ+(|u|2)u in the

equation, it may seem intriguing to say that there exists a solution with L2–

regularity. Nevertheless, the equation is still well–defined in the distribution sense.

As a matter of fact, one can find multiple examples of nonlinear PDE with this

scenario. Take, for instance, the family of PDEs

i∂tu = λu+ |u|qu, λ ∈ R , q > 1 .

For an initial value u0 ∈ L2, the Cauchy problem associated with these equations

–defined in the distribution sense– has a unique solution in L2

u(t) = u0 e
−i(|u0|q+λ) t ∈ L2,

even though, at first sight, the nonlinear term |u|qu is not well-defined in L2. .

In our approach, we use the approximation method described above, and

the limit potential u(t) obtained by this approximation method shall be called

“solution” to the Cauchy problem (CS+) . This solution will be uniquely well–

characterized, continuous in time, inducing a global continuous flow on L2
+(T) .

In addition, it satisfies the L2 invariant mass (i.e. ∥u(t)∥L2 = ∥u0∥L2 for all t ∈ R ).

3.1. Uniqueness of the limit and weak convergence in L2
+(T).

By passing to the limit as ε → 0 , it is necessary to prove first that the limit

potential u(t) is uniquely well–characterized for all t ∈ R , and is independent of the

choice of the sequence (uε
0) ⊆ H2

+(T) that approximate u0 ∈ L2
+(T) . The key point
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is to use the explicit formula of the solution of the focusing Calogero–Sutherland

DNLS equation. Thus, for all (uε(t)) ⊆ H2
+(T) , we have by Proposition 2.5 ,

uε(t, z) =
〈
(Id−z e−it e

−2itLuε0 S∗)−1 uε
0 | 1
〉
, ∀ z ∈ D . (3.2)

Our goal in this subsection is to pass to the limit in this formula. Therefore, we

need at a first stage to give a meaning to the operator Lu0 with u0 ∈ L2
+(T) .

To handle this, we recall in a few lines the work of Gérard–Lenzmann [GL22,

Appendix A] who defined the operator Lu with u ∈ L2
+(R) via the standard theory

of quadratic form. This new operator will coincide with the former Lax operator

Lu = D − TuTū if u ∈ H2
+(R) . The same proof presented in [GL22, Appendix A],

works out on the torus T . We recall the main points of the proof :

(i) For u ∈ L2
+(T) and f, g ∈ H

1
2
+(T) , we consider the quadratic form

Qu(f, g) =
〈
D1/2f |D1/2g

〉
− ⟨Tūf |Tūg⟩ .

(ii) Using the following inequality : for all η > 0 , ∃Nη ∈ N≥0 ,

∥Tūh∥2L2(T) < 2η2
(
⟨Dh |h⟩+ ∥h∥2L2(T)

)
+ 2N2

η∥u∥2L2 ∥h∥2L2(T) , (3.3)

–which can be obtained by decomposing u in high and low frequency

u(x) = uN(x) +RN(u, x) ,

{
uN(x) :=

∑N
n≥0 û(n)e

inx

RN(u, x) :=
∑

n≥N+1 û(n) e
inx

,

and using Lemma 2.7– we infer

Qu(f, f) ≥ (1− 2η2)∥f∥2
Ḣ1/2 − 2(N2

η∥u∥2L2 + η2) ∥f∥2L2(T) . (3.4)

(iii) Therefore, choosing η small enough, we introduce the positive definite qua-

dratic form

Q̃u(f, g) := Qu(f, g) +K ⟨f | g⟩ , K := K(u) > 0 , f, g ∈ H
1
2
+(T) ,

which define a new inner product on H
1
2
+(T) .

(iv) Using the theory of quadratic forms (see [RS72]), we define for u ∈ L2
+(T) ,

Dom(Lu) =
{
h ∈ H

1
2
+(T) ; ∃C > 0 , |Q̃u(h, g)| ≤ C ∥g∥L2(T) ,∀g ∈ H

1
2
+(T)

}
,

(3.5)

and for any f ∈ Dom(Lu)

⟨Lu(f) | g⟩ = Qu(f, g) , ∀g ∈ H
1
2
+(T) , (3.6)

and one shows that this new operator Lu is a self–adjoint operator with a

dense domain in H
1
2
+(T) .

***
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3.1.1. Spectral properties of Lu0 for u0 ∈ L2
+(T). Now that the operator Lu0 has

been introduced for u0 ∈ L2
+(T) , one can examine some of its spectral properties.

As noted above, the operator Lu0 is a self–adjoint operator with compact resolvent

then it has discrete spectrum. In addition, the quadratic form Qu0 of Lu0 is

bounded from below. Hence,

σ(Lu0) := {λ0(u0) ≤ . . . ≤ λn(u0) ≤ . . .} , λ0 > −∞ . (3.7)

To characterize this spectrum, we use the following proposition.

Proposition 3.1. For every n ∈ N≥0 , the map u ∈ L2
+(T) 7→ λn(u) is Lipschitz

continuous on every bounded subsets of L2
+(T) .

Proof. Let u ∈ L2
+(T) . By the min–max principle,

λn(u) = max
F⊆L2

+
dimF ≤n

min
{
Qu(h, h) ; h ∈ F⊥ ∩H

1
2
+(T) , ∥h∥L2 = 1

}
.

For any subspace F of L2
+(T) of dimension n, let h ∈ H

1
2
+(T) ∩ F⊥ and let

v ∈ L2
+(T) ,

|⟨Luh|h⟩ − ⟨Lvh |h⟩| =
∣∣∣∥Tvh∥2L2(T) − ∥Tuh∥2L2(T)

∣∣∣
≤
∥∥T(u−v)h

∥∥
L2(T)

(
∥Tvh∥L2(T) + ∥Tuh∥L2(T)

)
Applying the inequality of Lemma 2.7, we infer

⟨Lvh |h⟩ ≤ ⟨Luh |h⟩+ C ∥u− v∥L2(T)
(
∥u∥L2(T) + ∥v∥L2(T)

)
∥h∥3

H
1
2
. (3.8)

From Dom(Lu) ∩ F⊥ , we select

h ∈
n⊕

k=0

ker(Lu − λk(u) Id) ∩ span
{
eikx ; k = 0, . . . , n

}
, ∥h∥L2(T) = 1 .

Note that the intersection of all these sets is not empty (by checking dimen-

sions). Therefore, h =
∑m

k=0 ckgk(u) , m ≥ n , where the (gk(u))
m
k=0 denotes any

orthonormal basis of
⊕n

k=0 ker(Lu − λk(u) Id) , thus

⟨Luh |h⟩ ≤
n∑

k=0

|ck|2λk(u) ≤ λn(u) . (3.9)

Moreover, since h ∈ span
{
eikx ; k = 0, . . . , n

}
then

∥h∥2
H

1
2
= ⟨(1 +D)h |h⟩ ≤ 1 + n . (3.10)

Combining (3.8) , (3.9) and (3.10) , we infer

λn(v) ≤ λn(u) + C(1 + n)3/2 ∥u− v∥L2(T)

(
∥u∥L2(T) + ∥v∥L2(T)

)
.

□
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Corollary 3.2 (Characterization of the spectrum of Lu0). Let (u
ε
0) ⊆ H2

+(T) such
that uε

0 → u0 in L2
+(T) . Then the spectrum of Lu0 , is given by

σ(Lu0) =
{
lim
ε→0

λn(u
ε
0) | λn(u

ε
0) ∈ σ(Luε

0
) , n ∈ N≥0

}
.

Proof. In light of the previous proposition, the result follows directly. □

Proposition 3.3. Let u0 ∈ L2
+(T) and (uε

0) ⊆ H2
+(T) such that uε

0 → u0 in L2
+(T).

Then Luε
0
→ Lu0 in the strong resolvent sense as ε → 0 .

Proof. For λ ≪ 0 , let ϕε
λ :=

(
Luε

0
− λ
)−1

h , h ∈ L2
+(T). Since (Luε

0
− λ)ϕε

λ = h ,

then taking the inner product with ϕε
λ ,

Quε
0
(ϕε

λ, ϕ
ε
λ)− λ∥ϕε

λ∥2L2 = ⟨h |ϕε
λ⟩ . (3.11)

Notice that since uε
0 → u0 in L2

+(T) then the integer Nη in (3.3) is uniform for all

ε > 0 , and thus by (3.4) we deduce for η = 1
2
,

Quε
0
(ϕε

λ, ϕ
ε
λ)− λ∥ϕε

λ∥2L2 ≥
1

2
∥ϕε

λ∥2H 1
2
− 2
(
N2∥uε

0∥L2 +
1

4
+ λ
)
∥ϕε

λ∥2L2 ,

which leads, for λ ≪ 0 , to

Quε
0
(ϕε

λ, ϕ
ε
λ)− λ∥ϕε

λ∥2L2 ≥
1

2
∥ϕε

λ∥2H 1
2
,

That is, by (3.11) ,

⟨h |ϕε
λ⟩ ≥

1

2
∥ϕε

λ∥2H 1
2
. (3.12)

Besides, in view of Corollary 3.2 and by (3.7) , we have for all ε > 0 ,

∥ϕε
λ∥L2 ≤ sup

n

1

|λn (uε
0)− λ|

∥h∥L2 ≤ C(λ)∥h∥L2 . (3.13)

Therefore, applying Cauchy–Schwarz’s inequality to (3.12) , we deduce by (3.13) ,

∥ϕε
λ∥2H 1

2
≤ C(λ)∥h∥2L2 , ∀ε > 0 .

Thus, up to a subsequence, there exists ϕλ ∈ L2
+ such that

ϕε
λ ⇀ ϕλ in H2

+(T) and ϕε
λ → ϕλ in L2

+(T) .

It remains to show that ϕλ = (Lu0 − λ)−1h . Indeed, for any g ∈ H
1
2
+(T) , we have

by definition of ϕε
λ ,
〈(
Luε

0
− λ
)
ϕε
λ | g

〉
= ⟨h | g⟩. Namely,

⟨h | g⟩ = Quε
0
(ϕε

λ, g)− λ ⟨ϕε
λ | g⟩

:= ⟨D
1
2ϕε

λ | D
1
2 g⟩ −

〈
Tūε

0
ϕε
λ | Tūε

0
g
〉
− λ ⟨ϕε

λ | g⟩ . (3.14)

Since 
Tūε

0
g −→ Tū0g

Tūε
0
ϕε
λ ⇀ Tū0ϕλ

D
1
2ϕε

λ ⇀ D
1
2ϕλ
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in L2
+(T) as ε → 0 , then passing to the limit in (3.14), we infer for all g ∈ H

1
2
+(T),

⟨h | g⟩ = ⟨D
1
2ϕλ | D

1
2 g⟩ −

〈
Tūε

0g
ϕε
λ | Tūε

0

〉
− λ ⟨ϕλ | g⟩ =: Q(ϕλ, g)− λ ⟨ϕλ | g⟩ .

That is, ϕλ ∈ Dom(Lu0) and ϕλ = (Lu0 − λ)−1h . Therefore, Luε
0
→ Lu0 in the

strong resolvent sense as ε → 0 . □

3.1.2. Characterization of the limit u(t).

Proposition 3.4 (Uniqueness of the limit potential u(t)). Let u0 ∈ L2
+(T) . There

exists a unique potential u(t) ∈ L2
+(T) ,

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, ∀ z ∈ D , (3.15)

such that, for any sequence (uε
0) ⊆ H2

+(T) with ∥uε
0 − u0∥L2 −→

ε→0
0 , we have

uε(t) ⇀ u(t) in L2
+(T) , ∀t ∈ R .

Proof. By the conservation of the L2–norm (Lemma 2.6), we have for all t ∈ R ,

∥uε(t)∥L2 = ∥uε
0∥L2 ≲ ∥u0∥L2 , ∀ε ≪ 1 .

Then, ∀t ∈ R , ∃u∗
t ∈ L2

+(T) such that

uε(t) ⇀ u∗
t in L2

+(T) , and ∥u∗
t∥L2 ≲ ∥u0∥L2 . (3.16)

In order to guarantee that the limit u∗
t is indeed u(t) , for a well-defined potential

u , we use the explicit formula. Indeed, recall by Proposition 2.5 ,

uε(t, z) =
〈
(Id−z e−it e

−2itLuε0 S∗)−1 uε
0 | 1
〉
, ∀ z ∈ D . (3.17)

In addition, by the last Proposition, we have Luε
0
→ Lu0 as ε → 0 in the strong

resolvent sense, since uε
0 → u0 in L2

+(T) . Thus, f(Luε
0
) → f(Lu0) strongly for all

bounded continuous functions f [deO09, Proposition 10.1.9] . In particular for all

t ∈ R , we have for f(x) = e−2ixt ,

e
−2itLuε0 −→ e−2itLu0

in the strong operator topology as ε → 0 . Therefore, passing to the limit in (3.17) ,

we deduce

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, ∀ z ∈ D .

By uniqueness of the limit, we conclude that u∗
t (z) = u(t, z) , with u(t) ∈ L2

+(T)
thanks to the inequality ∥u(t)∥L2 ≲ ∥u0∥L2 of (3.16) . □
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3.2. Strong convergence in L2
+(T) and conservation of the L2-mass. In the

light of the previous subsection, it remains to prove that

∥u(t)∥L2 = ∥u0∥L2 ,

in order to infer the strong convergence of uε(t) → u(t) in L2
+(T) , and induce a

proof to Theorem 1.2 . Indeed, as ε → 0 ,

∥uε(t)∥L2 = ∥uε
0∥L2 −→ ∥u0∥L2 .

The main idea is to use Parseval’s identity on u(t) , where u(t) is written in a

suitable evolving L2
+–basis (f

t
n) and satisfying

|
〈
u(t) | f t

n

〉
| = |

〈
u0 | f 0

n

〉
| , ∀n ∈ N≥0 . (3.18)

Definition 3.5 (An orthonormal basis of L2
+(T)). For all ε > 0 , let uε ∈

C(R, H2
+(T)) . We denote by (f ε,t

n ) the evolving orthonormal basis of L2
+(T) along

the curve t 7→ uε(t) and satisfying the Cauchy problem{
∂tf

ε,t
n = Buε(t)f

ε,t
n

f ε,t
n |t=0

= f ε,0
n

,

for all n , where (f ε,0
n ) is the orthonormal basis of L2

+(T) constituted from the

eigenfunctions of the self–adjoint Lax operator Luε
0
, and Buε(t) is the skew–adjoint

operator defined in (1.5) .

Remark 3.1.

(1) Since for all ε > 0 , Buε(t) is a skew-adjoint bounded operator (cf. Proposi-

tion 2.3) then the orthogonality of the (f ε,t
n ) is conserved in time. Indeed,

for all t ∈ R ,

∂t
〈
f ε,t
n | f ε,t

m

〉
=
〈
Buf

ε,t
n | f ε,t

m

〉
+
〈
f ε,t
n |Buf

ε,t
m

〉
= 0 ,

(2) By [Ku06, Lemma 4.1] , such orthonormal basis is formed by the eigenfunc-

tions of the Lax operator Luε(t) . Typically, we have for all ε > 0 , for all

t ∈ R ,

Luε(t)f
ε,t
n = λn(u

ε
0)f

ε,t
n .

With this choice of L2
+(T)–basis, we have a nice description of the evolution of the

coordinates of uε(t) . This is the aim of the next Lemma.

Lemma 3.6. For all ε > 0 , let uε ∈ C(R, H2
+(T)) . Under the same notation of

Definition 3.5 , we have for any n ∈ N≥0 ,〈
uε(t) | f ε,t

n

〉
=
〈
uε
0 | f ε,0

n

〉
e−iλn(uε

0)
2 t . (3.19)
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Proof. By Lemma 2.4 , and since Luε(t) and Buε(t) are respectively self–adjoint and

skew–adjoint operators

∂t
〈
uε(t) | f ε,t

n

〉
=
〈
Buε(t)u

ε(t) − i L2
uε(t)u

ε(t) | f ε,t
n

〉
+
〈
uε(t) |Buε(t)f

ε,t
n

〉
= − iλ2

n(u
ε
0)
〈
uε(t) | f ε,t

n

〉
,

which leads to the statement. □

Consequence. From the previous lemma, we infer for all ε > 0 , n ∈ N≥0 ,

|
〈
uε(t) | f ε,t

n

〉
| = |

〈
uε
0 | f ε,0

n

〉
| .

At this stage, we want to take ε → 0 in this identity in order to deduce (3.18) .

However, one first might ask two questions :

I. Does the orthonormal basis (f ε,0
n ) constituted from the eigenfunctions of the

self–adjoint Lax operator Luε
0
remains an orthonormal basis of L2

+(T) under
the limit ε → 0 ?

II. Suppose that the answer to the former question is affirmative, and denote

by (f 0
n ) this orthonormal basis limit. Based on Definition 3.5 , could we

construct a time–evolving orthonormal basis, coinciding at t = 0 with (f 0
n ) ,

and inducing a nice evolution as in Lemma 3.6 of the coordinates of u in

this basis ? A priori, the operator Bu defined in (1.5) is not well–defined for

u ∈ Ct[L2
+(T)]x . Therefore, we should find another way to circumvent this

problem.

The following first proposition aims to answer question I. and to characterize

the eigenfunctions of Lu0 for u0 ∈ L2
+(T), by finding a uniform bound on the

growth of the Sobolev norm ∥f ε,0
n ∥

H
1
2
. For the second question II., we avoid the

problem of defining (f t
n) via Definition 3.5 by using the same strategy done in the

previous subsection, that is, we characterize the limit f t
n , for all t ∈ R . Therefore,

we should derive an explicit formula of f ε,t
n , for all ε > 0 in order to pass to

the limit. Unfortunately, we won’t directly obtain that the limit (f t
n) forms an

orthonormal basis of L2
+(T) . However, it shall be an orthonormal family in L2

+(T) ,
which will be sufficient to conclude.

Proposition 3.7. Given u0 ∈ L2
+(T) . There exists a sequence (f 0

n ) ⊆ Dom(Lu0),

such that for any sequence (uε
0) ⊆ H2

+(T) , uε
0 → u0 in L2

+(T) , we have up to a

subsequence

lim
ε→0

∥f ε,0
n − f 0

n ∥L2 = 0 , ∀n ∈ N≥0 .

In addition, for all n ,

Lu0f
0
n = λn(u0)f

0
n .
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Proof. By definition of Luε
0
= D − Tuε

0
Tūε

0
, and since Luε

0
f ε,0
n = λn(u

ε
0)f

ε,0
n , it

follows

λn(u
ε
0) + ∥Tūε

0
f ε,0
n ∥2L2 = ∥f ε,0

n ∥2
Ḣ

1
2
+

, ∀n ≥ 0 .

Note that as uε
0 → u0 in L2

+(T) , and by applying inequality (3.3), we infer that

∃N ≥ 0 independent of ε , such that

λn(u
ε
0) +

1

2
∥f ε,0

n ∥2
Ḣ

1
2
+
(
2N2∥uε

0∥L2 +
1

2

)
∥f ε,0

n ∥2L2 > ∥f ε,0
n ∥2

Ḣ
1
2
.

Hence, by Proposition 3.1 and since uε
0 → u0 in L2

+(T) ,

∥f ε,0
n ∥2

Ḣ1/2 ≲ λn(u0) . (3.20)

Therefore, up to a subsequence, ∃ (f 0
n) such that, as ε → 0 ,

f ε,0
n ⇀ f 0

n in H
1
2
+(T) and f ε,0

n → f 0
n in L2

+(T) . (3.21)

At present, for the second part of the proof we show that the (f 0
n ) are eigenfunc-

tions of Lu0 . Note that by Lemma 2.7 , one can directly check that (f 0
n) ⊆ Dom(Lu0)

where Dom(Lu0) was defined in (3.5). Besides, by definition of Luε
0
, we have for

all g ∈ H
1
2
+(T) ,

⟨D
1
2f ε,0

n | D
1
2 g⟩ −

〈
Tūε

0
f ε,0
n |Tūε

0
g
〉
= λn(u

ε
0)
〈
f ε,0
n | g

〉
, (3.22)

where by Lemma 2.7 Tūε
0
g −→ Tū0g in L2

+(T) , by Proposition 3.1 λn(u
ε
0) → λn(u0) ,

and by (3.21) Tūε
0
f ε,0
n ⇀ Tū0f

0
n . Hence, passing to the limit in (3.22) , we infer〈

Lu0f
0
n | g

〉
= λn(u0)

〈
f 0
n | g

〉
, ∀g ∈ H

1
2
+(T) ,

leading to Lu0f
0
n = λn(u0)f

0
n for all n ≥ 0 , where (λn(u0)) denotes all the spectrum

of Lu0 by Corollary 3.2 .

□

In the sequel, thanks to Corollary 3.2 and Proposition 3.7 , we denote by (f 0
n )

the orthonormal basis of L2
+(T) made up of the eigenfunctions of Lu0 obtained in

the previous proposition. The following lemma aims to give an explicit formula of

the (f ε,t
n ) defined in Definition 3.5 in order to characterize their limits.

Lemma 3.8 (The explicit formula of f ε,t
n ). Under the same notation of Defini-

tion 3.5 , we have for all ε > 0 , t ∈ R ,

f ε,t
n (z) =

〈(
Id−z e

−it(Luε0
+Id)2

S∗ e
itL2

uε0

)−1

f ε,0
n | e−itL2

uε0 1

〉
, ∀ z ∈ D . (3.23)

Proof. Like the proof of Proposition 2.5 , we have

f ε,t
n (z) =

〈
(Id−zS∗)−1 f ε,t

n | 1
〉
, ∀ z ∈ D .
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Using the unitary operator U(t) introduced in Remark 2.1 , we deduce

f ε,t
n (z) =

〈
U(t)∗ (Id−zS∗)−1 f ε,t

n | U(t)∗1
〉

(3.24)

=
〈
(Id−zU(t)∗S∗U(t))−1 U(t)∗f ε,t

n | U(t)∗1
〉

=
〈
(Id−zU(t)∗S∗U(t))−1 f ε,0

n | U(t)∗1
〉
.

By the same computation of (2.12) and (2.13) , the explicit formula of f ε,t
n follows.

□

Proposition 3.9. Let u0 ∈ BL2
+
(1) . Under the same notation of Definition 3.5 ,

there exists an orthonormal family (f t
n) of L2

+(T) , such that for any sequence

(uε
0) ⊆ H2

+(T) , uε
0 → u0 in L2

+(T) , we have up to a subsequence ,

∥f ε,t
n − f t

n∥L2 −→
ε→0

0 .

Proof. This proof is similar to the one done in Proposition 3.7. However, it

presents two main differences. We will discuss these later in the upcoming remark.

Now, coming back to the proof, recall by Proposition 3.4 , there exists a unique

u(t) ∈ L2
+(T) such that for any uε

0 → u0 in L2
+(T) we have uε(t) ⇀ u(t) in

L2
+(T) as ε → 0 . Therefore, by definition of Luε(t) = D − Tuε(t)Tūε(t) , and since

Luε(t)f
ε,t
n = λn(u

ε
0)f

ε,t
n by the second point of Remark 3.1 ,

λn(u
ε
0) + ∥Tūε(t)f

ε,t
n ∥2L2 = ∥f ε,t

n ∥2
Ḣ

1
2
, ∀n ≥ 0 .

Thus, applying Lemma 2.7 ,

(1− ∥uε(t)∥L2) ∥f ε,t
n ∥

Ḣ
1
2
≤ ∥uε(t)∥L2 + λn(u

ε
0) , ∀n ≥ 0 .

Taking ε small enough to guarantee ∥uε(t)∥L2 = ∥uε
0∥L2 < 1 , we deduce by

Proposition 3.1 ,

∥f ε,t
n ∥2

Ḣ1/2 ≲ λn(u0) , ∀n ≥ 0 . (3.25)

Hence, up to a subsequence,

f ε
n(t) ⇀ f ∗

n, t in H
1
2
+(T) , f ε

n(t) → f ∗
n, t in L2

+(T) .

It remains to show that f ∗
n, t is well characterized for all t. Using the explicit

formula of Lemma 3.8 ,

f ε,t
n (z) =

〈(
Id−z e

−it(Luε0
+Id)2

S∗ e
itL2

uε0

)−1

f ε,0
n | e−itL2

uε0 1

〉
, ∀ z ∈ D ,

and applying the same arguments presented in the proof of Proposition 3.4 to

characterize u(t) , one can conclude that there exists

f t
n(z) =

〈(
Id−z e−it(Lu0+Id)2 S∗ eitL

2
u0

)−1

f 0
n | e−itL2

u0 1

〉
, ∀ z ∈ D , (3.26)

where (f 0
n ) denotes the eigenfunctions of Lu0 obtained in Proposition 3.7 . Therefore,

the limit f ∗
n,t = f t

n for all t. Finally, observe that since the (f ε,t
n ) is an orthonormal
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basis of L2
+(T) and since f ε,t

n → f t
n in L2

+(T) , then (f t
n) forms an orthonormal

family in L2
+(T) . □

Remark 3.2. There are two main differences between the proof of Proposition 3.7

and Proposition 3.9 :

(i) First, note that in the last proof, we cannot control the growth of the Sobolev

norm ∥f ε,t
n ∥

H
1
2
uniformly for all t by using the inequality (3.3) , since the

integer Nη in (3.3) is not uniform for all t ∈ R . As an alternative, we rely on

Lemma 2.7 . Consequently, the condition of ∥uε(t)∥L2 < 1 for ε small enough,

is crucial here in order to conclude.

(ii) Second in the previous proof, we had to give a meaning to the limit f ∗
n,t by

characterizing this limit for all t ∈ R .

A common feature about these two proofs is to obtain a uniform bounds on the

growth of the Sobolev norm H
1
2
+(T) of the eigenfunctions f ε,0

n and f ε,t
n to be able

to conclude.

In view of Proposition 3.1 , Lemma 3.6 , Proposition 3.7 and Proposition 3.9 ,

we infer the following lemma.

Lemma 3.10. Let u0 ∈ BL2
+
(1) . There exists an orthonormal family (f t

n) of L
2
+(T)

such that for all n ≥ 0 ,〈
u(t) | f t

n

〉
=
〈
u0 | f 0

n

〉
e−itλ2

n(u0) , ∀t ∈ R . (3.27)

We are, at this stage, in a position to prove Theorem 1.2 .

Theorem. 1.2. Let u0 ∈ BL2
+
(1) . There exists a unique potential u ∈ C(R, L2

+(T))
such that, for any sequence (uε

0) ⊆ H2
+(T) , ∥uε

0 − u0∥L2 −→
ε→0

0 , we have for all

T > 0 ,

sup
t∈[−T,T ]

∥uε(t)− u(t)∥L2 → 0 , ε → 0 .

In addition,

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, ∀ z ∈ D . (3.28)

Moreover, the L2–norm of the limit potential u is conserved in time :

∥u(t)∥L2 = ∥u0∥L2 , ∀t ∈ R.

Proof. Let (tε) ⊆ R such that tε → t as ε → 0. Since ∥uε
0 − u0∥L2 → 0 , then

∥uε(tε)∥L2 = ∥uε
0∥L2 ≲ ∥u0∥L2 .

Hence, for any tε → t , there exists u∗
t ∈ L2

+(T) such that up to a subsequence,

uε(tε) ⇀ u∗
t in L2

+(T) and

∥u∗
t∥L2 ≤ lim inf

ε→0
∥uε(tε)∥L2 = lim inf

ε→0
∥uε

0∥L2 = ∥u0∥L2 . (3.29)
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Our goal is to show that uε(tε) converges strongly in L2
+(T) . As a first step, we

stress out that the weak limit potential u∗
t is well characterized for all t , and is

equal to a unique limit u(t) . For that, we repeat the same proof of Proposition 3.4

by exchanging t into tε with tε → t, and obtain u(t) defined in equation (3.15) .

Therefore, uε(tε) ⇀ u(t) in L2
+(T) , with

∥u(t)∥L2 ≤ ∥u0∥L2 , (3.30)

by (3.29). As a second step, we prove that this weak convergence in L2
+(T) is

actually a strong convergence. This can be achieved by checking

∥uε(tε)∥L2(T) → ∥u(t)∥L2(T) , ε → 0 .

In fact, it is actually sufficient to prove that ∥u(t)∥L2(T) = ∥u0∥L2(T) since

∥uε(tε)∥L2 = ∥uε
0∥L2 −→ ∥u0∥L2 , as ε → 0 . (3.31)

Thanks to (3.30) , we already have ∥u(t)∥L2 ≤ ∥u0∥L2 . Now, to prove ∥u(t)∥L2 ≥
∥u0∥L2 , we use Lemma 3.10 to infer the existence of an orthonormal family (f t

n)

of L2
+(T) such that

∞∑
n=0

|
〈
u(t) | f t

n

〉
|2 =

∞∑
n=0

|
〈
u0 | f 0

n

〉
|2 = ∥u0∥2L2 .

Hence, by Bessel’s inequality

∥u(t)∥L2 ≥ ∥u0∥L2 .

As a conclusion, we have proved for any tε → t , uε(tε) → u(t) in L2
+(T) . This

means, u ∈ C(R,L2
+(T)) and for all T > 0 ,

sup
t∈[−T,T ]

∥uε(t)− u(t)∥L2 → 0 , ε → 0 .

□

In view of the last Theorem, we denote through on, u(t) the solution of (CS+)

in L2
+(T) starting from an initial datum u0 that lies inside the open ball BL2

+
(1) of

L2
+(T) .

Corollary 3.11. The spectrum σ(Lu(t)) is invariant under the flow of (CS+) .

Proof. Let (uε
0) ⊆ H2

+(T) such that ∥uε
0 − u0∥L2 → 0 as ε → 0 . Since, for all

n ∈ N≥0 ,

λn(u
ε
0) = λn(u

ε(t)) , ∀t ∈ R ,

then by passing to the limit, we infer by Proposition 3.1 and Theorem 1.2 that

the spectrum of Lu(t) is conserved in time.

□
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Corollary 3.12. Let u0 ∈ BL2
+
(1) . There exists an orthonormal basis (f t

n) of

L2
+(T) constituted from the eigenfunction of Lu(t) , such that for all n ∈ N≥0 ,〈

u(t) | f t
n

〉
=
〈
u0 | f 0

n

〉
e−itλ2

n(u0) , ∀t ∈ R . (3.32)

Proof. Taking into account Lemma 3.10 , we only need to prove that the orthonor-

mal family (f t
n) found in Proposition 3.9 as

f ε,t
n ⇀ f t

n in H
1
2
+(T) , and f ε,t

n → f t
n in L2

+(T) , (3.33)

is actually an orthonormal basis of L2
+(T) . On the one hand, using (3.33) and

since uε(t) → u(t) in L2
+(T) , one can directly prove that Luε(t)f

ε,t
n ⇀ Lu(t)f

t
n in

L2
+(T) . On the other hand, using Proposition 3.1 , we infer that taking ε → 0 in〈

Luε(t)f
ε,t
n | g

〉
= λn(u

ε(t))
〈
f ε,t
n | g

〉
, ∀g ∈ H

1
2
+(T) ,

leads to 〈
Lu(t) f

t
n | g

〉
= λn(u(t))

〈
f t
n | g

〉
, ∀g ∈ H

1
2
+(T) .

As a result, the (f t
n) describes all the eigenfunctions of the self–adjoint operator

Lu(t) , thanks to Corollary 3.11 and Corollary 3.2 . Hence, they form an orthonormal

basis of L2
+(T) . □

Remark 3.3. The nice evolution in (3.32) of such coordinates suggests that the

so–called “Birkhoff coordinates” of (CS+) are the (⟨u(t) | f t
n⟩) .

4. Proof of Corollary 1.3 and Theorem 1.4

To summarize, we have proved the global well–posedness of (CS+)–equation in

Hs
+(T) , s > 3

2
, and for s = 0 which correspond to H0

+(T) ≡ L2
+(T) . The following

corollary aims to prove the global well–posedness for 0 < s ≤ 3
2
.

I
L2
+

Theorem 1.2 Corollary 1.3
I

H
3
2
+

Theorem 1.1

Corollary. 1.3. For all 0 ≤ s ≤ 3
2
, the Calogero–Sutherland DNLS focusing

equation (CS+) is globally well–posed in Hs
+(T) ∩ BL2

+
(1) . Moreover, the following

a–priori bound holds,

sup
t∈R

∥u(t)∥Hs ≤ C ,

where C = C(u0, s) > 0 is a positive constant.

Proof. For s = 0 , we infer by Theorem 1.2 the global well–posedness of the problem

in L2
+(T) in the sense of continuous extension of the flow from H2

+(T) to L2
+(T) .
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For 0 < s ≤ 3
2
, let u0 ∈ Hs

+(T) ∩ BL2
+
(1) . We consider (uε

0) ⊆ H2
+(T) such that

uε
0 → u0 in Hs

+(T) . Then by Proposition 2.8 ,

1

C
∥uε(tε)∥Hs ≤ ∥(Luε(tε) + λ)suε(tε)∥L2 = ∥(Luε

0
+ λ)suε

0∥L2 ≤ C∥uε
0∥Hs ,

thanks to Lemma 2.6 . Therefore, for all ε > 0 ,

∥uε(tε)∥Hs ≤ C∥u0∥Hs . (4.1)

Hence, as tε → t , we have uε(tε) ⇀ u(t) in Hs
+(T) , where u is a well characterized

function for all t obtained as in Proposition 3.4 . In particular, we infer uε(tε) → u(t)

in L2
+(T) with

∥u(t)∥Hs ≲ ∥u0∥Hs , (4.2)

by (4.1) . As of now, to deduce the strong convergence in Hs
+(T) we use Proposi-

tion 2.8 . Thus, for all ε > 0 ,

∥uε(tε)− u(t)∥2Hs ≲ ∥(Luε(tε) + λ)s(uε(tε)− u(t))∥2L2 (4.3)

= ∥(Luε(tε) + λ)suε(tε)∥2L2 + ∥(Luε(tε) + λ)su(t)∥2L2

− 2Re
〈
(Luε(tε) + λ)suε(tε) | (Luε(tε) + λ)su(t)

〉
Recall that uε(tε) → u(t) in L2

+(T) which leads by Proposition 3.3 to Luε(tε) → Lu(t)

in the strong resolvent sense. Thus, by functional calculus, (see the following

lemma– Lemma 4.1) we infer{
(Luε(tε) + λ)s u(t) → (Lu(t) + λ)s u(t) in L2

+(T) ,
(Luε(tε) + λ)s uε(tε) ⇀ (Lu(t) + λ)s u(t) in L2

+(T) ,

as ε → 0 . In addition, for ε > 0 , recall by Lemma 2.6 ,

∥(Luε(tε) + λ)s uε(tε)∥2L2 = ∥(Luε
0
+ λ)s uε

0∥2L2 . (4.4)

Therefore, passing to the limit in (4.3) , and since uε
0 → u0 in Hs

+(T) combined

with Lemma 4.1 and Proposition 2.8 , we deduce

∥uε(tε)− u(t)∥2Hs ≲ ∥(Lu0 + λ)su0∥2L2 − ∥(Lu(t) + λ)su(t)∥2L2 .

At this stage, it remains to show that the right–hand side of the previous inequality

is vanishing. Indeed, by Corollary 3.11 ,〈
(Lu(t) + λ)su(t) |u(t)

〉
=
∑
n≥0

(λn(u(t)) + λ)s|
〈
u(t) | f t

n

〉
|2

=
∑
n≥0

(λn(u0) + λ)s|
〈
u0 | f 0

n

〉
|2 = ⟨(Lu0 + λ)su0 |u0⟩ ,

where (f t
n) are the orthonormal basis obtained in Corollary 3.12 since uε(tε) → u(t)

in L2
+(T) . As a result, ∥(Lu0 + λ)su0∥2L2 = ∥(Lu(t) + λ)su(t)∥2L2 , and as ε → 0 ,

∥uε(tε)− u(t)∥2Hs −→ 0 .
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Hence, u ∈ C(R, Hs
+(T)) such that (4.2) is satisfied, and for all T > 0 ,

sup
t∈[−T,T ]

∥uε(t)− u(t)∥Hs → 0 .

□

Remark 4.1. (1) The inequality (4.2) in the proof implies that the flow

u0 ∈ Hs
+(T) ∩ BL2

+
(1) 7→ u ∈ C(R , Hs

+(T)) ,

defined in the previous corollary, is continuous.

(2) As observed in the proof, one has for any u ∈ C(R, Hr
+(T)) , r ≥ 0 such that

∥u∥L2 < 1 , the family {Hs(u) := ⟨(Lu + λ)su |u⟩ ; 0 ≤ s ≤ 2r} , λ >> 0 ,

is conserved along the flow. This means, that the conservation laws of

Lemma 2.6 are extended to less regular u . Consequently, as noted in

Remark 2.5 , Proposition 2.8 holds for any u0 ∈ BL2
+
(1) ∩Hr

+(T) , for all
r ≥ 0 .

To conclude the proof of Corollary 4, we need to prove the following functional

analysis result.

Lemma 4.1. Let (Aε) be a sequence of positive self–adjoint operators in L2 .

Suppose that Aε → A in the strong resolvent sense as ε → 0 , and for all s ≥ 0 ,

Dom(As
ε) = Dom(As) = Hs , ε > 0 .

Moreover, assume that for all u ∈ Hs , the (As
εu) are uniformly bounded with

respect to ε > 0 in the following sense ∥As
εu∥ ≤ C∥u∥Hs . Then, for all s ≥ 0 ,

As
εu −→ Asu in H , ε → 0 . (4.5)

Proof. For all R > 0, let χR ∈ C∞(R+) such that χR ≡ 1 on [0, R] and supp(χR) ⊆
[0, 2R] . Note that, for all s ≥ 0 , the subset {χR(A)u ; u ∈ Hs, R > 0} is dense in

Hs . Then, since the (As
εu) are uniformly bounded with respect to ε , it is sufficient

to prove for all R > 0 ,

As
ε χR(A)u −→ AsχR(A)u , ε → 0 ,

to obtain (4.5) . Toward this end, let R > 0, and write for any s ≥ 0 , for all ε > 0 ,

As
ε χR(A)u = As

ε χR̃(Aε)χR(A)u+ As
ε (1− χR̃(Aε))χR(A)u , (4.6)

where χR̃ ∈ C∞(R+) such that χR̃ ≡ 1 on [0, R̃] and supp(χR̃) ⊆ [0, 2R̃] , R̃ ≥ 2R .

Notice that,

∥As
ε (1− χR̃(Aε))χR(A)u∥ = ∥A−s

ε (1− χR̃(Aε))A
2s
ε χR(A)u∥

≤ C2

(2R̃)s
∥u∥Hs .



GLOBAL WELL–POSEDNESS OF CS-DNLS EQUATION 33

Therefore, for all η > 0 , there exists R̃ >> 0 , such that for all ε > 0 ,

∥As
ε (1− χR̃(Aε))χR(A)u∥ < η ,

and so, by (4.6) ,

∥As
ε χR(A)u− As

ε χR̃(Aε)χR(A)u∥ < η , ∀ε > 0 . (4.7)

Besides, recall that Aε → A in the strong resolvent sense as ε → 0 . Hence, by

[deO09, Proposition 10.1.9] , f(Aε) → f(A) as ε → 0 , in the operator norm for all

continuous bounded f . In particular, for f(x) = xs χR̃(x) , we have

As
ε χR̃(Aε)χR(A)u −→ As χR(A)u , ε → 0 . (4.8)

Thus, combining (4.7) and (4.8) , we infer for all η̃ > 0 , there exists ε0 > 0 such

that ∀ε > ε0 ,

∥As
ε χR(A)u− As χR(A)u∥ < η̃ .

□

Beyond the global well–posedness results of the (CS+) Cauchy’s Problem, we

are interested in some qualitative properties about the flow S+(t) of this equation.

Therefore, we prove that all weak limit points of the orbit are actually strong limit

points.

Theorem. 1.4 . Given an initial data u0 ∈ BL2
+
(1) ∩Hs

+(T) , s ≥ 0 , the orbit of

the solution {S+(t)u0 ; t ∈ R} is relatively compact in Hs
+(T) .

Proof. Let (tn) ⊆ R such that tn → ∞ .

Step 1 : s = 0 . By Theorem 1.2 ,

∥u(tn)∥L2 = ∥u0∥L2 . (4.9)

Then, ∃ ũ ∈ L2
+(T) such that, up to a subsequence,

u(tn) ⇀ ũ in L2
+(T) and ∥ũ∥L2 ≤ ∥u0∥L2 .

In order to obtain the strong convergence u(tn) → ũ in L2
+(T) , all it remains is to

show that ∥u(tn)∥L2 → ∥ũ∥L2 , or by (4.9) ,

∥u0∥L2 = ∥ũ∥L2 .

Observe that we already have ∥u0∥L2 ≥ ∥ũ∥L2 . Now, to prove ∥u0∥L2 ≤ ∥ũ∥L2 ,

recall by Corollary 3.12 ,〈
u(tn) | f tn

m

〉
=
〈
u0 | f 0

m

〉
e−itn λ2

m(u0) , (4.10)

where (f tn
m ) is the orthonormal basis of L2

+(T) constituted of the eigenfunctions

of Lu(tn) . The idea is to pass to the limit as tn → ∞ in the above identity and

conclude by using Bessel’s identity. First, we have u(tn) ⇀ ũ in L2
+(T) . Second,
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notice that the (f tn
m ) converges strongly in L2

+(T) as tn → ∞ to an orthonormal

family denoted by (gm) . Indeed, by definition of Lu(tn) ,

λm(u0) + ∥Tu(tn)
f tn
m ∥2L2 = ∥f tn

m ∥2
Ḣ

1
2
,

leading to ∥f tn
m ∥

H
1
2
≲ λm(u0) for all m , thanks to Lemma 2.7 . Hence, by Rellich–

Kondrachov’s Theorem , fm(tn) → gm in L2
+(T) as tn → ∞ . Third, using Cantor

diagonalization procedure, one can extract a subsequence tn → θm mod( 2π
λ2
m
) , as

the circle is compact. Hence, by passing to the limit in (4.10), we obtain

⟨ũ | gm⟩ =
〈
u0 | f 0

m

〉
e−iλ2

m(u0)θm ,

As a result, using Bessel’s inequality, we conclude

∥ũ∥2L2 ≥
∞∑
n=0

|⟨ũ | gn⟩|2 =
∞∑
n=0

|
〈
u0 | f 0

m

〉
|2 = ∥u0∥2L2 ,

Consequently, ∥u(tn)∥L2 → ∥ũ∥L2 and thus u(tn) → ũ in L2
+(T) .

Step 2 : s > 0 . By inequality (4.2) of the proof of Corollary 1.3 , we have

∥u(tn)∥Hs ≲ ∥u0∥Hs leading to

u(tn) ⇀ ũ in Hs
+(T) and ∥ũ∥Hs ≲ ∥u0∥Hs .

In particular, u(tn) → ũ in L2
+(T) . Then, in view of Remark 2.5 ,

∥u(tn)− ũ∥2Hs ≲ ∥(Lu(tn) + A Id)s(u(tn)− ũ)∥2L2 (4.11)

= ∥(Lu(tn) + A Id)s u(tn)∥2L2 + ∥(Lu(tn) + A Id)s ũ∥2L2 ,

− 2Re
〈
(Lu(tn) + λ)s u(tn) | (Lu(tn) + λ)s ũ

〉
,

where by Remark 2 ,

∥(Lu(tn) + A Id)s u(tn)∥2L2 = ∥(Lu0 + λ)s u0∥2L2 .

Besides, as u(tn) → ũ in L2
+(T) , then Lu(tn) → Lũ in the strong resolvent sense

thanks to Proposition 3.3 . Hence, by functional calculus (see Lemma 4.1), we infer{
(Lu(tn) + λ)s ũ → (Lũ + λ)s ũ in L2

+(T) ,
(Lu(tn) + λ)s u(tn) ⇀ (Lũ + λ)s ũ in L2

+(T) ,

as n → ∞ . Therefore, by passing to the limit in (4.11), we deduce

∥u(tn)− ũ∥2Hs ≲ ∥(Lu0 + λ)su0∥2L2 − ∥(Lũ + λ)sũ∥2L2 ,

where the right–hand side vanishes. Indeed, by Corollary 3.11 and Proposition 3.1 ,

λn(ũ) = λn(u0) . Hence,〈
(Lũ + λ)2sũ | ũ

〉
=
∑
n≥0

(λn(u0) + λ)2s|⟨ũ | gn⟩|2 =
∑
n≥0

(λn(u0) + λ)2s|
〈
u0 | f 0

n

〉
|2

=
〈
(Lu0 + λ)2su0 |u0

〉
,
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where (gn) is the orthonormal family of L2
+(T) found in Step 1. Nevertheless, since

u(tn) → ũ in L2
+(T) , one could show as in Corollary 3.12 that this orthonormal

family is indeed an orthonormal basis of L2
+(T) by proving that the (gn) constitutes

all the eigenfunction of the self–adjoint operator Lũ . As a consequence,

∥(Lu0 + λ)s u0∥2L2 = ∥(Lũ + λ)s ũ∥2L2 ,

and thus ∥u(tn)− ũ∥2Hs → 0 , as n → ∞ . □

5. The Calogero–Sutherland DNLS defocusing equation (CS−)

In this section, we consider the defocusing equation of (CS)

i∂tu+ ∂2
xu− 2D+(|u|2)u = 0 . (CS−)

Note that by adapting the argument of [GL22, Proposition 2.1] to the defocusing

equation, one can infer the local well–posedness of the (CS−) problem in Hs
+(T)

for s > 3
2
. And we expect that one can go down to s > 1

2
by following [deMP10] .

Below are a series of lemmas, propositions, and theorems that can be proved

similarly to their analogs in the focusing case. Again, the integrable methods are

the main ingredients to conclude. The first proposition is to announce that the

defocusing equation of (CS−) enjoys also a Lax pair formalism.

Proposition 5.1 (Lax pair for (CS−)). Let u ∈ C([−T, T ] , Hs
+(T)) , s > 3

2
, be a

solution of (CS−) . There exist two operators

L̃u = D+TuTu , B̃u = −TuT∂xu +T∂xuTu + i(TuTu)
2

satisfying the Lax equation

dL̃u

dt
= [B̃u, L̃u] .

Lemma 5.2. Given u ∈ C([−T, T ], Hr
+(T)) , r > 3

2
, a solution of (CS−) equation,

then

∂tu = B̃uu− iL̃2
uu .

As a consequence, the quantities H̃s(u) := ⟨L̃s
uu | u⟩ are conserved by the flow

S−(t) of (CS−) for all 0 ≤ s ≤ 2r .
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Remark 5.1. Expanding the conservation laws H̃k(u) for all k ∈ N≥0 , we have

H̃0(u) = ⟨u(t) | u(t)⟩ = ∥u(t)∥2L2 = ∥u0∥L2

H̃1(u) = ⟨L̃u(t)u(t) | u(t)⟩ = ∥u(t)∥2
Ḣ1/2 + ∥Tū(t)u(t)∥2L2 ≥ ∥u(t)∥2

Ḣ
1
2

H̃2(u) = ∥L̃u(t)u(t)∥2L2 ≥ ∥Du(t)∥2L2 − ∥Tu(t)Tū(t)u(t)∥2L2 ≥ ∥u(t)∥2
Ḣ1 − C(∥u∥

H
1
2
)

...

Unlike the focusing case, here we deduce the uniform control of the growth of

Sobolev norms of the solution u by the conservation laws, without requiring any

additional condition of smallness on the initial data u0 . Therefore, Proposition 2.8

holds in the defocusing case for all u0 ∈ Hr
+(T) , r > 3

2
.

As a result, we state the following theorem which is the analog of Theorem 1.1

but for equation (CS−).

Theorem 5.3. For all s > 3
2
, let u0 ∈ Hs

+(T) . There exists a unique global

solution u ∈ C(R, Hs
+(T)) of the defocusing equation (CS−), satisfying at t = 0,

u(0, ·) = u0 . Furthermore, for all s > 3
2
,

sup
t∈R

∥u(t)∥Hs ≤ C ,

where C = C(u0, s) > 0 is a positive constant.

As for the focusing case, the defocusing Calogero–Sutherland DNLS has an

explicit solution.

Lemma 5.4. Let u0 ∈ C(R, Hs
+(T)) , s > 3

2
then the solution of the defocusing

Calogero–Sutherland DNLS equation (CS−) is given by

u(t, z) =
〈
(Id−z e−it e−2itL̃u0 S∗)−1 u0 | 1

〉
.

In particular, using this explicit formula, we extend the flow S−(t) continuously

from H2
+(T) to Hs

+(T) , for 0 ≤ s ≤ 3
2
. Therefore, we have :

Theorem. 1.5 . The Calogero–Sutherland DNLS defocusing equation (CS−) is

globally well–posed in Hs
+(T) for any s ≥ 0 , in the sense of Remark 1.2 . In

addition, for all u0 ∈ Hs
+(T) ,

u(t, z) =
〈
(Id−z e−it e−2itL̃u0 S∗)−1 u0 | 1

〉
,

is solution of the (CS−)–defocusing equation. Furthermore, the trajectories{
S−(t)u0 ; t ∈ R

}
are relatively compact in Hs

+(T) .
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6. Final remarks and open problems

Let us briefly discuss here some remarks related to the previous sections.

1. One interesting feature about the focusing Calogero–Sutherland DNLS

equation is that it admits a rich dynamic in comparison to the defocusing equation.

For instance, as we shall see [Ba] , the focusing equation has a wider collection of

traveling wave solutions.

2. The problem of global well–posedness of the focusing Calogero–Sutherland

DNLS equation (CS+) without restriction on the initial data is wide open. Never-

theless, we expect that the explicit solution (equation (3.28))

u(t, z) =
〈
(Id−z e−it e−2itLu0 S∗)−1 u0 | 1

〉
, (6.1)

is a key ingredient to answer this question. Indeed, writing for all t ∈ R , Σt the

operator S e2itLu0 eit , we have by (6.1)

u(t, z) =
∑
n≥0

⟨u0 | Σn
t 1⟩ zn . (6.2)

Observe that, if u0 belongs to the space J generated by the orthonormal family

{Σn
t 1 , n ≥ 0} , then using Parseval’s identity on (6.2) , we infer

∥u(t)∥L2(T) = ∥u0∥L2 , t ∈ R , (6.3)

leading to say that the set {u(t) , t ∈ R} is relatively compact in L2
+(T) . Hence, the

integer Nη set out in inequality (3.3) is now independent of t , and thus applying

inequality (3.3) to (2.18) , we obtain for all η > 0 ,

∥(Lu(t) + λ)
1
2f∥2L2 ≥ (1− 2η2)∥f∥2

Ḣ
1
2
+ (λ− 2η2 − 2N2

η∥u0∥L2)∥f∥2L2 ,

instead of having inequality (2.19) :

∥(Lu(t) + λ)
1
2f∥2L2 ≥ (1− ∥u∥2L2)∥f∥2

Ḣ
1
2
+ (λ− ∥u∥2L2)∥f∥2L2 .

Therefore, using (3.3) , we control the growth of all the Sobolev norm ∥u(t)∥Hs

for all s ≥ 0 , and we infer the global well–posedness of the focusing (CS+) in all

Hs
+(T) , s > 3

2
for arbitrary initial data. In addition, by the same manner, we

deduce also H
1
2–bounds on the eigenfunctions (f ε,t

n ) –inequality (3.25)– implying

that the flow S+(t) can be extended to L2
+(T) , for arbitrary initial data. Besides,

if u0 does not belong to J , then we expect blow–up results in finite time T .
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