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Abstract

The critical condition for the deflagration to detonation transition (DDT) on the tip of elongated

flames in tubes is revisited. Outstanding experiments and numerics, performed in 2010, have

shown that a train of successive shock waves are produced by the self-accelerating flame-front.

Just prior to the DDT, a pre-conditioned state is thus generated in a slice of unreacted gas adjacent

to the flame front with a temperature too low for self-ignition, leaving unexplained the abrupt

transition. Using a simplified one-dimensional model, the objective of the theoretical analysis

of this short note is to identify the pre-conditioned state just prior to the spontaneous formation

of a flow singularity on the flame front. This finite-time singularity responsible for the DDT is

produced by the least further increase in propagation velocity beyond a critical value. The attention

is focused on the unsteady compression waves emitted in the unreacted gas by the self-accelerating

flame front. The unsteady effects were overlooked by the previous theoretical analyses.

Keywords: Deflagration-to-detonation transition. Laminar flow. Finite-time singularity.

1. Introduction

Various mechanisms of the deflagration-to-detonation transition (DDT) in gaseous mixtures

are mentioned in the modern literature. The attention will be limited here to a tentative explana-

tion of the DDT on the tip of a self-accelerating curved flame propagating in a radius tube larger

than the laminar flame thickness but small enough for the flow to be laminar. The real problem

is multidimensional. However the DDT mechanism can be enlightened in plane geometry with a

flame treated as a discontinuity pushed from behind by a flow of burned gas perpendicular to the
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flame front [1] [2]. In the real process, this burned gas flow, called back flow in the following,

is generated by the lateral wings of the elongated flame and is thus proportional to the elonga-

tion of the curved front. The attention is focused on a small rate of elongation, smaller than the

inverse of the transit time across the laminar flame speed. In one centimeter radius tubes, this oc-

curs typically some time after the formation of the tulip-shaped flame. Extending the pioneering

analysis of Deshaies-Joulin (1989) [3] (DJ), strong arguments have been recently provided in [1]

and [2] indicating that the abrupt transition (1µs) observed in the outstanding 2010 experiments

and numerics [4] [5] could correspond to a critical condition similar to the one identified long ago

by DJ for the self-similar solutions. The DJ analysis describes a thermal feed back which can

be summarized as follows; the laminar flame speed is an increasing function of the temperature

which is controlled by the lead shock, the strength of which increases with the flame speed. Con-

sidering a plane turbulent flame in the wrinkled regime with a propagation velocity larger than the

laminar flame speed by a wrinkling factor σ > 1, DJ showed that, because of a nonlinear effect

associated with the high thermal sensitivity of the laminar flame speed, the self-similar solutions

present a turning point for a critical value of σ about 10, beyond which no solution exists. Such a

turning point exists also for the laminar flame at the tip of the curved front for a critical elongation

[1]. Moreover a finite-time singularity of the flow was shown to develop on the flame when the

increasing elongation reaches the critical value [1] [2]. Unfortunately, these analyses are based

on self-similar solutions that are quasi-static in the sense that the flow is homogeneous and steady

between the flame and the lead shock, each of them propagating with a constant velocity, subsonic

and supersonic respectively. A key element of the sudden transition is overlooked by the self-

similar solutions, namely the unsteadiness and non-homogeneity of the compression waves that

are generated by a self-accelerating flame front. The purpose of this short note is precisely to take

into account the strong unsteady effects of the compression waves emitted by the self-accelerating

flame front. The objective is to find out a generic expression for the critical propagation velocity

of the tip of the curved flame front at which the DDT is produced quasi-spontaneously by the least

further increase on flame elongation.

As mentioned by Liberman and co-workers [4] [5], a train of successive shockwaves is issued

from the self-accelerating flame and generates a critical pre-conditioned state for the DDT. The
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attention is focused here on the theoretical identification of this pre-conditioned state just prior

to the transition. Focusing the attention on the unsteady process in the one-dimensional flow

of unreacted gas, a finite-time singularity of the solution of the Euler’s equations is shown to

occur systematically on the self-accelerating flame front. This divergence of the flow gradient on

the flame front is expected to be the basic explanation of the DDT observed in experiments and

numerics [4] [5].

2. One-dimensional model

The model is the same as in [1] [2]. The flame acts as a semi-transparent piston with a velocity

UP(t) proportional to the laminar flame velocity Ub(Tu) relative to the burned gas for the same

temperature of unburned gas Tu(t) as on the tip of the elongated flame. Assuming an internal

structure of the flame in quasi-steady state, the piston velocity in the laboratory frame is, according

to the mass conservation, UP = ub +Ub = uu +UL where ub is the back flow of burned gas, uu is the

flow of unburned gas and UL is the laminar flame speed relative to the unreacted gas. The lateral

skirt of the flame front being quasi-parallel to the lateral wall of the tube, a radial flow of burned

gas is emitted with a velocity Ub from the lateral wall. Following [6], the mass conservation in the

turning flow of burned gas leads to a longitudinal back flow ub impinging on the flame tip from

behind, taking the form ub ≈ [2L(t)/R]Ub(Tu). The elongation of the curved front 2L(t)/R > 1

increasing like the length of the flame skirt L(t) (R denotes the radius of the tube), the piston

velocity UP takes the form

ub = [2L(t)/R]Ub(Tu) ⇒ UP(t) = S (t)Ub
(
Tu(t)

)
, S (t) ≡ 1 + 2L(t)/R ≈ 2L(t)/R, (1)

where S is the elongation parameter. The flow velocity of the fresh mixture just ahead of the flame

is uu = UP−(Tu/Tb)Ub where Tu is the local temperature of the unburned gas and Tb = Tu+q/cp the

flame temperature, q and cp being respectively the chemical energy and the specific heat per unit

mass, UL = (Tu/Tb)Ub. If the elongation parameter is sufficiently larger than unity, the unreacted

gas flow on the piston is approximately equal to the piston velocity and the piston acts like an
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impermeable piston,

S (t) � 1 : uu ≈ UP, UP(t) = S (t)Ub
(
Tu(t)

)
, S (t) ≈ 2L(t)/R. (2)

This approximation simplifies the algebra and can easily be removed without modifying qualita-

tively the results. An impermeable piston is the simplest one-dimensional model for pointing out

a fundamental mechanism of DDT on the tip of elongated flames.

A second ingredient is that the laminar flame speed is an increasing function of the temperature,

characterized by a parameter of thermal sensitivity1 b̃ > 1,

b̃ ≡
Tu

Ub(Tu)
dUb

dTu
> 1, (3)

with, typically b̃ & 2 for energetic mixtures [1]. For simplicity, we will use the exponential form

associated with an Arrhenius law in the limit of large activation energy,

Ub
(
Tu(t)

)
Ub

(
Tu(0)

) = exp
[
b̃
(

Tu(t)
Tu(0)

− 1
)]
. (4)

The analysis can be performed with a temperature dependence different from (4) to the price of a

more complex algebra. The essential ingredient is a function Ub(Tu) increasing strongly enough

with the temperature. The detailed temperature-dependence is not important and the exponential

form (4) is convenient for an analytically description.

3. Analysis of the critical dynamics

3.1. Preliminary considerations

Starting from a small elongation of the finger flame, a train of successive shock waves is created

in the unburned mixture at finite distance from the piston (flame front). Just before the abrupt

transition observed in [4] [5], the rate of increase of UP is not larger than the rate of increase of the

1The thermal sensitivity of the laminar flame velocity of energetic mixtures is mainly due to the pre-factor of the
Arrhenius law, as explained in [1]
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elongation 1/tevol which is typically smaller than the inverse of the transit time of a fluid particle

across the flame. Moreover, the gradient of the unreacted flow is small near the piston in the fresh

gas between the flame front and the last shock wave formed ahead of the flame. Therefore the

flow velocity near the piston is nearly equal to the piston velocity and the temperature is quasi-

uniform. However, this temperature depends on the past history of the piston acceleration. When

a train of successive shock waves is produced, the temperature on the piston is not the same as in a

self-similar solution characterized by a single lead shock propagating in the unburned gas at rest.

This is a consequence of the nonlinearity of the Rankine-Hugoniot relations. What can be said

about the critical state adjacent to the flame just prior to the transition ? This is the first question

addressed in this note, the second one concerns the sharp flow gradient occurring suddenly on the

flame front.

3.2. Formulation

Starting at time t = 0 after the last formation of a shock at finite distance from the flame,

the flow in a slice of the fresh mixture adjacent to the piston is quasi-uniform nearby the flame

front and equal to the piston velocity u(x, t = 0) = UP(0) with a gas temperature also quasi-

uniform, T ≈ TP(0). The subscript u has been removed for saving the notation. This situation is

similar locally to a self-similar solution but the thermodynamic state of the unburned gas adjacent

to the flame depends now on the past history of the piston acceleration. Compression waves are

then launched from the self-accelerating piston. Before the formation of a new shock on the

leading edge of the compression wave, the dissipative processes (heat conduction and viscosity)

are negligible so that the compression waves are quasi-isentropic. More precisely, the fluctuation

of entropy generated by the shock are assumed small without noticeable effect on the state near the

piston. This is the case before the leading edge of the compression wave reaches the last formed

shock. According to the classical theory of simple compression waves in a perfect gas (Riemannn

1860), the temperature of the gas is related to the unsteady flow by a quadratic relation,

T
T (0)

=

[
1 +

1
2

(γ − 1)
u − UP(0)

a(0)

]2

. (5)
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This relation can be linearized as long as the flow velocity varies by an amount smaller than the

speed of sound

0 6
u − UP(0

a(0)
� 1 :

T
T (0)

− 1 ≈ (γ − 1)
u − UP(0)

a(0)
. (6)

Using (6) on the piston, a relation between the temperature of the gas on the piston and the piston

velocity is obtained,

on the piston: u = UP and
T

T (0)
− 1 = (γ − 1)

UP(t) − UP(0)
a(0)

. (7)

According to (2) and (4), the chemical kinetics provides us with an additional relation between T

and UP which involves the thermal sensitivity of the laminar flame speed b̃, defined in (3),

UP − UP(0)
UP(0)

=
S

S (0)
exp

[
b̃
(

T
T (0)

− 1
)]
− 1. (8)

A key point is that the variation of the laminar flame speed Ub(T ) with the temperature in (4)

is stronger than the temperature dependence (5) of the isentropic flow in a compression wave.

From an asymptotic point of view, the association of a strongly nonlinear relation (8) with a linear

approximation (7) is consistent for a large thermal sensitivity b̃ � 1 and a small propagation Mach

number of the laminar flame Ub/a � 1, in the distinguished limit limb̃→∞ b̃(γ − 1)Ub(0)/a(0) =

O(1).

3.3. Critical elongation and pre-conditioned state

Introducing the notation ΘP ≡ b̃ [TP/T (0) − 1] = O(1) for the temperature TP on the piston

and the parameter B ≡ b̃ (γ − 1)Ub(0)/a(0) < 1 depending on both thermal sensitivity and initial

state, equations (7)-(8) lead to a nonlinear relation between the gas temperature on the piston ΘP

and the elongation parameter S ,

ΘP(t) = BS (0)
[

S (t)
S (0)

exp ΘP(t) − 1
]

with S (0) 6 S max(0) where S max(0) ≡
1
B
> 1, (9)

the last expression is discussed few lines below.
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A first outcome of (9) is that the temperature on the piston depends on the time only through the

elongation S (t). The parameter B ≡ b̃ (γ−1)Ub(0)/a(0) = O(1) of a unity order in the limit b̃→ ∞

is smaller than unity (B < 1) because the Mach number of the laminar flame speed Ub(0)/a(0) of

a very energetic mixture is typically ten times smaller than the inverse of the parameter b̃ (γ −

1) controlling the thermal sensitivity, (γ − 1)b̃Ub/a ≈ 10−1. The nonlinear relation linking the

temperature and the elongation can be obtained numerically using an expression of the laminar

flame speed more general than (4). For example, this was done in [1] for the self-similar problem.

The simplicity of the nonlinear equation (9) allows a simple analytical description leading to an

accurate order of magnitude of the solution.

A second outcome of (9) is the existence of an upper bound of the initial elongation S (0) 6

S max(0) = 1/B. For an initial elongation S (0) 6 S max(0), the flame temperature and the flame

velocity increases with the time up to a critical value S ∗, as it should be on a physical branch of

solutions. The solution of (9) shows effectively the existence of a critical elongation S ∗ larger than

its initial value but smaller than S max(0), S (0) 6 S ∗ 6 S max(0),

S ∗

S max(0)
= exp

[
S (0)

S max(0)
− 1

]
6 1 where S max(0) =

1
b̃ (γ − 1)Ub(0)/a(0)

(10)

0 <
S (0)

S max(0)
6 1 ⇒ S (0) 6 S ∗ 6 S max(0),

1
e
<

S ∗

S max(0)
6 1 (11)

and Θ∗P ≡ b
[

T ∗P
T (0)

− 1
]

= 1 −
S (0)

S max(0)
> 0, (12)

T ∗P is the critical gas temperature on the piston, T ∗P = TP(S ∗). The critical elongation S ∗ in (10)

corresponds to a turning point on the C-shaped curve (9) ”temperature versus elongation” ΘP(S ),

reminiscent of the critical wrinkling factor in the pioneering analysis [3] above which self-similar

solutions no longer exist. Here, according to (9), isentropic compression waves can no longer be

launched from the self-accelerating flame if the elongation is larger than its critical value (S > S ∗)

since the boundary condition on the piston can no longer be satisfied. Before discussing in more

detail the C-shaped curve TP(S ) in (9), it is worth mentioning that a singularity of the flow will

be shown in § 3.4 to be formed on the flame front when S reaches S ∗, enlightening the underlying

dynamical nature of the critical condition near the turning point S = S ∗.
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A single parameter characterizing the unburned gas at rest ahead of the lead shock was involved

in the C-shaped curve of the self-similar solutions, see [3] and (19) in [1], so that the critical

condition was the same for any initial point on the C-shaped curve. In contrast to the self-similar

solutions, the C-shaped curve TP(S ) in (9) and also the critical elongation S ∗ in (10) both depend

on the initial condition S (0) pointing out the limited interest of the self-similar solutions. However,

for an initial elongation S (0) closer and closer to its maximum value S max(0), the critical elongation

S ∗ approaches quickly S max(0) from below, as shown by an expansion of S (0) around S max(0) in

(10)

0 <
S max(0) − S (0)

S max(0)
� 1 ⇒

S max(0) − S ∗

S max(0)
≈

(
S max(0) − S (0)

S max(0)

)2

� 1. (13)

This limiting case S ∗ ≈ S max(0) for S (0) ≈ S max(0) leads to a universal critical Mach number

U∗P/a
∗
u of the piston velocity (i.e. the critical velocity of the tip of the elongated flame) depending

only on the reactive mixture through the thermal sensitivity b̃ of the laminar flame speed,

2
L∗

R
=

1
(γ − 1)b̃ U∗b/a

∗
u

⇒
U∗P
a∗u

=
1

(γ − 1)b̃
(14)

yielding U∗P/a
∗
u ≈ 1.25 for b̃ ≈ 2, in good agreement with the experiments [4] [5]. In the last

relation in (14) yielding the critical value of the piston velocity U∗P, the temperature of the unburned

gas just ahead of the flame occurs only through the speed of sound which increases weakly with the

temperature like
√

T . Therefore, according to (2) and (14), the upper bound of the piston velocity

(velocity of the flame tip) U∗P = 2(L∗/R)U∗b = a∗u/[(γ − 1)b̃] varies as the inverse of the thermal

sensitivity b̃ with a coefficient of proportionality which does not change much. The smaller the

Mach number U∗b/a
∗
u, the greater the critical elongation L∗/R.

The result (14) differs from the self-similar solution recalled in § 3.2 of [1] by the fact that

the critical condition is related to the state of the fresh gas adjacent to the flame front and not

to the state of the initial mixture at rest in front of the lead shock. The thermodynamic state of

this pre-conditioned state is not fully determined by the first equation (14) relating the elongation

to the flame temperature through (4). The critical state depends on the past history of the self-
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accelerating flame. A self-similar solution is relevant to describe the DDT only if the flame speed

is quasi-constant from the initial condition so that no secondary shocks are formed. This is not

the case in [4] [5] showing the formation of a train of successive shock waves near the flame front

before the DDT on the flame tip. Most of the time this occurs in tubes during a phase of re-

acceleration after a transitory stage of deceleration associated with the formation of a tulip-shaped

flame. Numerical simulations have also observed transition in the fold of a tulip flame [7] [8].

This multidimensional phenomenon is not considered in this short note in which the attention is

focused on the DDT occurring before or after the formation of a tulip-shaped flame. In any case,

no tulip flame is formed in very narrow tubes in which the DDT was nevertheless observed [9]

[10].

If the initial elongation S (0) is not close enough to its upper bound S max(0), more precisely if

the time delay for reaching the critical condition is longer than the time delay for a shock wave

to be created on the leading edge of the isentropic rarefaction wave, the condition on the piston

will not correspond well to the critical condition of spontaneous transition. Consequently, the

pre-conditioned state of the slice of unburned mixture adjacent to the flame front just prior to the

transition [4] [5], should correspond roughly to (14). In any case, according to (14), the Mach

number U∗P/a
∗
u cannot be larger than 1/[(γ − 1)b̃]. This confirms a conclusion obtained previously

with the self-similar solution: the DDT is produced for a flame velocity much smaller than the

one which would be required for self-igniting the reactive gaseous mixture ahead of the flame

front. According to (14), the critical flow velocity corresponds to a Mach number of the shock

propagating in the gas at rest smaller than 2.5, which is effectively too small for self-ignition of

the compressed reactive gaseous mixture, in full agreement with the experiments.

The solution of the unsteady flow presented in the following subsection enlightens the DDT

mechanism by exhibiting the singular character of the underlying dynamics of the flow near the

turning point of the C-shaped curve [2].

3.4. Finite-time singularity of the solution of the Euler’s equation

If S (t) is a prescribed function increasing with the time without bound, a singularity of the

solution of the Euler’s equations appears spontaneously on the flame front at the critical time t∗,
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S (t∗) = S ∗. This is why isentropic compression waves can no longer be launched from the flame

front for t > t∗ (S (t) > S ∗). Such a scenario was mentioned in [1] within the context of self-similar

solutions, hoping that the inconsistency of the static nature of the solutions could be overcome in

some way, see the foot note 3 p. 9 in [1]. The proper way is to solve the fully unsteady problem

by considering the compression waves, instead of the self-similar solutions.

The finite-time singularity of the isentropic flow generated by a self-accelerating piston reach-

ing a finite velocity in a finite time with a divergence of the acceleration is predicted by the C-

shaped curve (10) and takes a universal form near the critical condition [2], regardless of the

context. The analysis is briefly outlined below for making the present short note self-contained.

Additional comments are also included. Only the main steps are recalled; the reader is referred to

[2] for the technical details. The critical dynamics is solved by the Riemann’s method, taking full

advantage of the quadratic relation S (UP) ∝ (1 − UP/U∗P)2 near the critical point (maximum of

the function S (UP) in (8)-(9)). Following Riemann, the equation for the flow velocity of a simple

compression wave satisfying the downstream boundary condition limx→∞ u = UP(0) reads

∂ [u − UP(0)]
∂t

+

(
γ + 1

2
[u − UP(0)] + [a(0) + UP(0)]

)
∂ [u − UP(0)]

∂x
= 0. (15)

The solution u(x, t) can be written in the form2,

x =

(
γ + 1

2
[u − UP(0)] + [a(0) + UP(0)]

)
t + f (u) (16)

where the function f (u) is determined by the boundary condition on the piston, x = XP(t) =∫ t

0
UP(t)dt′ : u = UP(t). Thanks to the quadratic form S (UP) ∝ (1−UP/U∗P)2, a generic law for the

piston velocity is easily obtained [1]

0 6
(t∗ − t)

t∗evol

� 1 :
U∗p − UP(t)

U∗P
=

√
t∗ − t
t∗evol

,
U∗p − UP(0)

U∗P
=

√
t∗

t∗evol

(17)

2Equation (15) is called in the modern literature ”Burger’s equation” even though it was mentioned a century
before; the form (16) was anticipated by Poisson (1808), see p.118 of the textbook [11]. Its derivation from the
Euler’s equations can be found p. 368 of [12]
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where 1/t∗evol is the gtowth rate of the elongation at the critical time t∗. The law (17) is the same

for any value of the critical velocity U∗P and any growth rate of the elongation, as small as it could

be. Coming back to the flow field, the boundary condition on the piston x = XP(t) =
∫ t

0
UP(t)dt′ :

u = UP(t) then shows that the function f (u) is a cubic polynomial, see (67)-(68) in [2], so that,

according to (16), the problem reduces to solve a third-degree polynomial in (1− u/U∗P), see (74)-

(75) in [2]. Close to the critical velocity and for (1 − u/U∗P) � a∗u/U
∗
P, the cubic term is negligible

and the problem is reduced to solve a second-order algebraic equation. Moreover this equation

further simplifies for (t∗ − t)/t∗ � (a∗u/U
∗
P)2 yielding the following analytical expression of the

flow field

u(x, t)
U∗P

= 1 −

√
(t∗ − t)

t∗evol

+
[x − XP(t)]

a(0)t∗evol

. (18)

The condition for the validity of (18) is less drastic than in [2]. More particularly, (18) is not

limited to a small Mach number of the piston U∗P/a
∗
u � 1 which, according to (14), would require

a too large value of b̃ � 1, larger than in very energetic mixtures. The flow field (18) satisfies

the boundary condition (17) on the piston, as it should be. A weak discontinuity is exhibited

at the leading edge x = xwd(t) where the initial flow, namely the initial velocity of the piston, is

recovered, u(x, t)|x=xwd(t) = UP(0). The point x = xwd(t) propagates effectively at the speed of sound

relative to the gas flow xwd(t)−XP(t) = a(0)t, as it is checked by using (17). As already mentioned,

close to the critical point, the initial sound speed a(0) can be replaced by a∗u. According to (14)

and (18), the gradient of the flow

t∗evol
∂u(x, t)
∂x

= −
U∗P
a∗u

1/2√
(t∗−t)
t∗evol

+
[x−XP(t)]

a∗ut∗evol

where
U∗P
a∗u

=
1

(γ − 1) b̃
(19)

presents a finite-time singularity on the piston at the critical time t∗ which, according to (17),

corresponds to a divergence of the acceleration of the piston dUP/dt ∝ 1/
√

(t∗ − t)/t∗evol when the

piston velocity reaches the critical value U∗P. The flow (18) is indeed solution of the linear version

of (15) so that the wave-breaking mechanism which is responsible for the formation of shock

waves, is not involved in the genesis of the finite-time singularity of the flow on the flame front.
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The singularity (19) comes from the quadratic form S (UP) ∝ (1 − UP/U∗P)2 near the turning point

S = S ∗ on the curve UP(S ).

Could this finite-time singularity of the gradient of the flow on the flame front (19) be respon-

sible for the formation of a shock wave inside the flame structure leading to a quasi-instantaneous

DDT? This is likely because the temperature inside the flame structure is higher than in the un-

reacted gas ahead of the flame where the temperature is not large enough for self-igniting the

unreacted gas in the compressed gas behind the shock waves emitted by the self-accelerating

flame front. This problem requires to investigate the unsteady flame structure. In that respect, the

ZFK flame model with a back flow ub ≈ [2L(t)/R]Ub(Tu) applied at the reaction sheet is worth

investigating by solving analytically (or numerically) a free boundary problem yielding the instan-

taneous velocity of the reaction sheet UP(t) in the form of an eigenvalue. A finite-time singularity

of the flow gradient, associated with the singularity of the acceleration dUP(t)/dt at a critical value

U∗P = UP(t∗), is expected to occur on the reaction sheet. The analysis is beyond the scope of the

present note. The achievement of such a difficult analysis is the price to pay for a full understand-

ing of a fundamental problem, namely the sudden transition of a subsonic reaction-diffusion wave

(the flame) into a supersonic wave (the detonation).

4. Discussion of the results

The results (14) and (18)-(19) predict the characteristics of the pre-conditioned state of the slab

of fresh mixture adjacent to the self-accelerating flame, observed just prior to DDT in a laminar

regime [4] [5]. The finite-time singularity of the solution of the Euler’s equation in the laminar

flow of unreacted gas ahead of the flame front could be the key of the DDT. The solution of the

unsteady flame structure remains to be carried out in order to confirm this statement. The analysis

is in process.

The result (14) explains why the DDT in the laminar regime can be observed only with strongly

energetic mixtures, never with gaseous mixtures in air, as discussed now. The critical length in

the first equation (14) is reached only if the Mach number of the laminar flame velocity Ub/au is

large enough to make the critical elongation L/R accessible. The elongation of curved flames in

tubes is due to hydrodynamical mechanisms. It is typically not larger than 10 in centimeter radius
12



tubes. According to (14) with γ = 1.4 and b̃ ≈ 2, a critical elongation L∗/R about 10 requires

Ub/au not smaller than 0.06. Such a fast flame occurs in stoichiometric mixtures of hydrogen

or acetylene in pure oxygen whose laminar flame speed UL (relative to the fresh mixture gas)

and gas expansion parameter Tb/Tu are respectively close to 10 m/s and 10. In ordinary gaseous

combustible mixtures in air the Mach umber Ub/au is between ten to a hundred times smaller.

On the opposite case of highly energetic mixtures, the critical ratio L∗/R can be small enough to

concern the cellular structure of self-accelerating flames propagating freely in open space under

the Rayleigh-Taylor instability. This could be the case in astrophysics for flames sustained by

nuclear reactions.

Another interesting result in (14) is that the critical Mach number U∗P/a
∗
u (measured in the

laboratory frame) of the flame pushed from behind by the back flow depends only on the thermal

sensitivity of the laminar flame speed (3).
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