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Abstract

The critical condition for the deflagration to detonation transition (DDT) on the tip of elongated
flames in tubes is revisited. Outstanding experiments and numerics, performed in 2010, have
shown that a train of successive shock waves are produced by the self-accelerating flame-front.
Just prior to the DDT, a pre-conditioned state is thus generated in a slice of unreacted gas adjacent
to the flame front with a temperature too low for self-ignition, leaving unexplained the abrupt
transition. Using a simplified one-dimensional model, the objective of the theoretical analysis
of this short note is to identify the pre-conditioned state just prior to the spontaneous formation
of a flow singularity on the flame front. This finite-time singularity responsible for the DDT is
produced by the least further increase in propagation velocity beyond a critical value. The attention
is focused on the unsteady compression waves emitted in the unreacted gas by the self-accelerating
flame front. The unsteady effects were overlooked by the previous theoretical analyses.
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1. Introduction

Various mechanisms of the deflagration-to-detonation transition (DDT) in gaseous mixtures
are mentioned in the modern literature. The attention will be limited here to a tentative explana-
tion of the DDT on the tip of a self-accelerating curved flame propagating in a radius tube larger
than the laminar flame thickness but small enough for the flow to be laminar. The real problem
is multidimensional. However the DDT mechanism can be enlightened in plane geometry with a

flame treated as a discontinuity pushed from behind by a flow of burned gas perpendicular to the
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flame front [1] [2]. In the real process, this burned gas flow, called back flow in the following,
is generated by the lateral wings of the elongated flame and is thus proportional to the elonga-
tion of the curved front. The attention is focused on a small rate of elongation, smaller than the
inverse of the transit time across the laminar flame speed. In one centimeter radius tubes, this oc-
curs typically some time after the formation of the tulip-shaped flame. Extending the pioneering
analysis of Deshaies-Joulin (1989) [3] (DJ), strong arguments have been recently provided in [1]]
and [2] indicating that the abrupt transition (1us) observed in the outstanding 2010 experiments
and numerics [4] [S] could correspond to a critical condition similar to the one identified long ago
by DJ for the self-similar solutions. The DJ analysis describes a thermal feed back which can
be summarized as follows; the laminar flame speed is an increasing function of the temperature
which is controlled by the lead shock, the strength of which increases with the flame speed. Con-
sidering a plane turbulent flame in the wrinkled regime with a propagation velocity larger than the
laminar flame speed by a wrinkling factor o > 1, DJ showed that, because of a nonlinear effect
associated with the high thermal sensitivity of the laminar flame speed, the self-similar solutions
present a turning point for a critical value of o~ about 10, beyond which no solution exists. Such a
turning point exists also for the laminar flame at the tip of the curved front for a critical elongation
[1]. Moreover a finite-time singularity of the flow was shown to develop on the flame when the
increasing elongation reaches the critical value [[1] [2]. Unfortunately, these analyses are based
on self-similar solutions that are quasi-static in the sense that the flow is homogeneous and steady
between the flame and the lead shock, each of them propagating with a constant velocity, subsonic
and supersonic respectively. A key element of the sudden transition is overlooked by the self-
similar solutions, namely the unsteadiness and non-homogeneity of the compression waves that
are generated by a self-accelerating flame front. The purpose of this short note is precisely to take
into account the strong unsteady effects of the compression waves emitted by the self-accelerating
flame front. The objective is to find out a generic expression for the critical propagation velocity
of the tip of the curved flame front at which the DDT is produced quasi-spontaneously by the least
further increase on flame elongation.

As mentioned by Liberman and co-workers [4] [S], a train of successive shockwaves is issued

from the self-accelerating flame and generates a critical pre-conditioned state for the DDT. The
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attention is focused here on the theoretical identification of this pre-conditioned state just prior
to the transition. Focusing the attention on the unsteady process in the one-dimensional flow
of unreacted gas, a finite-time singularity of the solution of the Euler’s equations is shown to
occur systematically on the self-accelerating flame front. This divergence of the flow gradient on
the flame front is expected to be the basic explanation of the DDT observed in experiments and

numerics [4] [5]].

2. One-dimensional model

The model is the same as in [[1] [2]. The flame acts as a semi-transparent piston with a velocity
Up(t) proportional to the laminar flame velocity U,(T,) relative to the burned gas for the same
temperature of unburned gas 7,(¢) as on the tip of the elongated flame. Assuming an internal
structure of the flame in quasi-steady state, the piston velocity in the laboratory frame is, according
to the mass conservation, Up = u, + U, = u, + U where u, is the back flow of burned gas, u, is the
flow of unburned gas and U} is the laminar flame speed relative to the unreacted gas. The lateral
skirt of the flame front being quasi-parallel to the lateral wall of the tube, a radial flow of burned
gas 1s emitted with a velocity U, from the lateral wall. Following [6], the mass conservation in the
turning flow of burned gas leads to a longitudinal back flow u;, impinging on the flame tip from
behind, taking the form u;, ~ [2L(t)/R]U,(T,). The elongation of the curved front 2L(¢)/R > 1
increasing like the length of the flame skirt L(#) (R denotes the radius of the tube), the piston

velocity Up takes the form

up = RLO/RIUNT) = Up() = SOUNTL(D), S =1+2L0/R~2LMO/R, (1)

where § is the elongation parameter. The flow velocity of the fresh mixture just ahead of the flame
isu, = Up—(T,/T,)U, where T, is the local temperature of the unburned gas and T, = T,,+g/c), the
flame temperature, g and c, being respectively the chemical energy and the specific heat per unit
mass, Uy = (T,/T,)U,. If the elongation parameter is sufficiently larger than unity, the unreacted

gas flow on the piston is approximately equal to the piston velocity and the piston acts like an



impermeable piston,
St)>1: u,~Up, Upt)=SOU,T,()), S()=2L{1)/R. 2)

This approximation simplifies the algebra and can easily be removed without modifying qualita-
tively the results. An impermeable piston is the simplest one-dimensional model for pointing out
a fundamental mechanism of DDT on the tip of elongated flames.

A second ingredient is that the laminar flame speed is an increasing function of the temperature,

characterized by a parameter of thermal sensitivit bh>1,

> 1, 3)

with, typically b > 2 for energetic mixtures [1]. For simplicity, we will use the exponential form

associated with an Arrhenius law in the limit of large activation energy,

Ub(Tu(t)) = exp [E( Tu(t) _ 1)] ) (4)

Up(T.(0)) T.(0)

The analysis can be performed with a temperature dependence different from (@) to the price of a
more complex algebra. The essential ingredient is a function U,(T,) increasing strongly enough
with the temperature. The detailed temperature-dependence is not important and the exponential

form (4)) is convenient for an analytically description.

3. Analysis of the critical dynamics

3.1. Preliminary considerations

Starting from a small elongation of the finger flame, a train of successive shock waves is created
in the unburned mixture at finite distance from the piston (flame front). Just before the abrupt

transition observed in [4] [S], the rate of increase of Up is not larger than the rate of increase of the

I'The thermal sensitivity of the laminar flame velocity of energetic mixtures is mainly due to the pre-factor of the
Arrhenius law, as explained in [1]]



elongation 1/z,,,; which is typically smaller than the inverse of the transit time of a fluid particle
across the flame. Moreover, the gradient of the unreacted flow is small near the piston in the fresh
gas between the flame front and the last shock wave formed ahead of the flame. Therefore the
flow velocity near the piston is nearly equal to the piston velocity and the temperature is quasi-
uniform. However, this temperature depends on the past history of the piston acceleration. When
a train of successive shock waves is produced, the temperature on the piston is not the same as in a
self-similar solution characterized by a single lead shock propagating in the unburned gas at rest.
This is a consequence of the nonlinearity of the Rankine-Hugoniot relations. What can be said
about the critical state adjacent to the flame just prior to the transition ? This is the first question
addressed in this note, the second one concerns the sharp flow gradient occurring suddenly on the

flame front.

3.2. Formulation

Starting at time ¢ = 0 after the last formation of a shock at finite distance from the flame,
the flow in a slice of the fresh mixture adjacent to the piston is quasi-uniform nearby the flame
front and equal to the piston velocity u(x,t = 0) = Up(0) with a gas temperature also quasi-
uniform, 7 ~ Tp(0). The subscript u has been removed for saving the notation. This situation is
similar locally to a self-similar solution but the thermodynamic state of the unburned gas adjacent
to the flame depends now on the past history of the piston acceleration. Compression waves are
then launched from the self-accelerating piston. Before the formation of a new shock on the
leading edge of the compression wave, the dissipative processes (heat conduction and viscosity)
are negligible so that the compression waves are quasi-isentropic. More precisely, the fluctuation
of entropy generated by the shock are assumed small without noticeable effect on the state near the
piston. This is the case before the leading edge of the compression wave reaches the last formed
shock. According to the classical theory of simple compression waves in a perfect gas (Riemannn
1860), the temperature of the gas is related to the unsteady flow by a quadratic relation,

1 u—Up(O)

0 - L+350 - 1)—a(0) - &)



This relation can be linearized as long as the flow velocity varies by an amount smaller than the

speed of sound

M—UP(O . L_ N _ M—UP(O)
< 0 <1: ) 1~ (y 1)—a(0) : (6)

Using (6) on the piston, a relation between the temperature of the gas on the piston and the piston

velocity is obtained,

iston: = RN L Ol O
on the piston: u =Up and 70) Il=(-1) O . (7)

According to (2) and (@), the chemical kinetics provides us with an additional relation between T

and Up which involves the thermal sensitivity of the laminar flame speed b, defined in ,

Up=Up®) _ S f(T
U0 S<0>6Xp[b(T<0> 1)] . ®)

A key point is that the variation of the laminar flame speed U,(T) with the temperature in (4))
is stronger than the temperature dependence (5) of the isentropic flow in a compression wave.
From an asymptotic point of view, the association of a strongly nonlinear relation (§)) with a linear
approximation (7)) is consistent for a large thermal sensitivity » > 1 and a small propagation Mach
number of the laminar flame U,/a < 1, in the distinguished limit lim;_,, by — DU,(0)/a(0) =
o(1).

3.3. Critical elongation and pre-conditioned state

Introducing the notation ®p = b[Tpr/T(0) — 1] = O(1) for the temperature 7p on the piston
and the parameter B = b (y — 1)U,(0)/a(0) < 1 depending on both thermal sensitivity and initial
state, equations ((7)-(8) lead to a nonlinear relation between the gas temperature on the piston ®p

and the elongation parameter S ,

®p(1) = BS(0) % expO®p(r) — 1| with S(0) < §,:(0) where §,,.(0)= é >1, (9

the last expression is discussed few lines below.
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A first outcome of (9) is that the temperature on the piston depends on the time only through the
elongation S (¢). The parameter B = b(y—1)U,(0)/a(0) = O(1) of a unity order in the limit bh— o
is smaller than unity (B < 1) because the Mach number of the laminar flame speed U,(0)/a(0) of
a very energetic mixture is typically ten times smaller than the inverse of the parameter b (y —
1) controlling the thermal sensitivity, (y — 1)bU,/a ~ 107", The nonlinear relation linking the
temperature and the elongation can be obtained numerically using an expression of the laminar
flame speed more general than (4). For example, this was done in [1]] for the self-similar problem.
The simplicity of the nonlinear equation (9) allows a simple analytical description leading to an
accurate order of magnitude of the solution.

A second outcome of (9) is the existence of an upper bound of the initial elongation S (0) <
S max(0) = 1/B. For an initial elongation S(0) < §,,,(0), the flame temperature and the flame
velocity increases with the time up to a critical value S*, as it should be on a physical branch of
solutions. The solution of (9) shows effectively the existence of a critical elongation S * larger than

its initial value but smaller than S ,,,.(0), S(0) < S* < S ,,.:(0),

S S(0) 1
= -11<1 h Smax 0) == 10
Smax(o) xP [Smax(o) ] s where ( ) b(’)/ - I)Ub(O)/Ll(O) ( )
S(0) . 1 S
0< S0 <1 = S§0)<S"<8,.0), < < O) <1 (11)
S I ()
and 0, = b[T(O) I|1=1 S0 >0, (12)

T}, is the critical gas temperature on the piston, T, = Tp(S*). The critical elongation §* in
corresponds to a turning point on the C-shaped curve (9) “temperature versus elongation” ®@p(S),
reminiscent of the critical wrinkling factor in the pioneering analysis [3]] above which self-similar
solutions no longer exist. Here, according to (9), isentropic compression waves can no longer be
launched from the self-accelerating flame if the elongation is larger than its critical value (§ > §*)
since the boundary condition on the piston can no longer be satisfied. Before discussing in more
detail the C-shaped curve Tp(S) in (9), it is worth mentioning that a singularity of the flow will
be shown in §[3.4]to be formed on the flame front when S reaches S *, enlightening the underlying

dynamical nature of the critical condition near the turning point S = §*.
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A single parameter characterizing the unburned gas at rest ahead of the lead shock was involved
in the C-shaped curve of the self-similar solutions, see [3] and (19) in [1], so that the critical
condition was the same for any initial point on the C-shaped curve. In contrast to the self-similar
solutions, the C-shaped curve Tp(S) in (9) and also the critical elongation S* in both depend
on the initial condition S (0) pointing out the limited interest of the self-similar solutions. However,
for an initial elongation S (0) closer and closer to its maximum value S ,,,,(0), the critical elongation

S* approaches quickly §,,,.(0) from below, as shown by an expansion of S (0) around S ,,,,(0) in

(10)

0< (13)

Smax(o) - S(O) < . Smax(o) -8 o (Smax(o) - S(O) )2 <1
S max(0) Snax® "\ Spal0) '

This limiting case S* =~ S ,,,(0) for S(0) = §,,..(0) leads to a universal critical Mach number
U} /a;, of the piston velocity (i.e. the critical velocity of the tip of the elongated flame) depending

only on the reactive mixture through the thermal sensitivity 5 of the laminar flame speed,

L 1 U 1

= = » = =
R (y-1DbU,/a a, (y—1b

(14)

yielding U, /a, ~ 1.25 for b ~ 2, in good agreement with the experiments [4] [5]. In the last
relation in (T4)) yielding the critical value of the piston velocity U}, the temperature of the unburned
gas just ahead of the flame occurs only through the speed of sound which increases weakly with the
temperature like V7. Therefore, according to (2) and 1| the upper bound of the piston velocity
(velocity of the flame tip) Uy, = 2(L"/R)U, = a,/[(y - 1)b] varies as the inverse of the thermal
sensitivity b with a coefficient of proportionality which does not change much. The smaller the
Mach number U, /a,, the greater the critical elongation L"/R.

The result differs from the self-similar solution recalled in § 3.2 of [1] by the fact that
the critical condition is related to the state of the fresh gas adjacent to the flame front and not
to the state of the initial mixture at rest in front of the lead shock. The thermodynamic state of
this pre-conditioned state is not fully determined by the first equation relating the elongation

to the flame temperature through (4). The critical state depends on the past history of the self-
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accelerating flame. A self-similar solution is relevant to describe the DDT only if the flame speed
is quasi-constant from the initial condition so that no secondary shocks are formed. This is not
the case in [4] [S]] showing the formation of a train of successive shock waves near the flame front
before the DDT on the flame tip. Most of the time this occurs in tubes during a phase of re-
acceleration after a transitory stage of deceleration associated with the formation of a tulip-shaped
flame. Numerical simulations have also observed transition in the fold of a tulip flame [7] [8]].
This multidimensional phenomenon is not considered in this short note in which the attention is
focused on the DDT occurring before or after the formation of a tulip-shaped flame. In any case,
no tulip flame is formed in very narrow tubes in which the DDT was nevertheless observed [9]
[10].

If the initial elongation S (0) is not close enough to its upper bound § ,,,,(0), more precisely if
the time delay for reaching the critical condition is longer than the time delay for a shock wave
to be created on the leading edge of the isentropic rarefaction wave, the condition on the piston
will not correspond well to the critical condition of spontaneous transition. Consequently, the
pre-conditioned state of the slice of unburned mixture adjacent to the flame front just prior to the
transition [4] [5], should correspond roughly to (I4). In any case, according to (14)), the Mach
number U} /a;, cannot be larger than 1/[(y — 1)b]. This confirms a conclusion obtained previously
with the self-similar solution: the DDT is produced for a flame velocity much smaller than the
one which would be required for self-igniting the reactive gaseous mixture ahead of the flame
front. According to (I4)), the critical flow velocity corresponds to a Mach number of the shock
propagating in the gas at rest smaller than 2.5, which is effectively too small for self-ignition of
the compressed reactive gaseous mixture, in full agreement with the experiments.

The solution of the unsteady flow presented in the following subsection enlightens the DDT
mechanism by exhibiting the singular character of the underlying dynamics of the flow near the

turning point of the C-shaped curve [2].

3.4. Finite-time singularity of the solution of the Euler’s equation

If S(¢) is a prescribed function increasing with the time without bound, a singularity of the

solution of the Euler’s equations appears spontaneously on the flame front at the critical time #*,
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S () = §*. This is why isentropic compression waves can no longer be launched from the flame
front for r > t* (S (f) > S). Such a scenario was mentioned in [1]] within the context of self-similar
solutions, hoping that the inconsistency of the static nature of the solutions could be overcome in
some way, see the foot note 3 p. 9 in [1l]. The proper way is to solve the fully unsteady problem
by considering the compression waves, instead of the self-similar solutions.

The finite-time singularity of the isentropic flow generated by a self-accelerating piston reach-
ing a finite velocity in a finite time with a divergence of the acceleration is predicted by the C-
shaped curve (10) and takes a universal form near the critical condition [2]], regardless of the
context. The analysis is briefly outlined below for making the present short note self-contained.
Additional comments are also included. Only the main steps are recalled; the reader is referred to
[2] for the technical details. The critical dynamics is solved by the Riemann’s method, taking full
advantage of the quadratic relation S(Up) o (1 — Up/ U}Z)2 near the critical point (maximum of
the function S (Up) in (8)-(9)). Following Riemann, the equation for the flow velocity of a simple

compression wave satisfying the downstream boundary condition lim,_,., # = Up(0) reads

9 u —aUp(O)] . (y O]+ [a(0) + UP(O)]) Olu=U:O1 _, (15)
P 2 o0x
The solution u(x, f) can be written in the form{]
1
x= (7; [~ Up(0)] + [a(0) + Up(0>]) t+ ) (16)

where the function f(u) is determined by the boundary condition on the piston, x = Xp(t) =
fot Up(t)dt' : u = Up(t). Thanks to the quadratic form S (Up) oc (1 — Up/ U;‘;)Z, a generic law for the

piston velocity is easily obtained [1]]

=t U, - Up() =t U, =Up@) t
o< =0 oy, D e S (17)
t:vol U;’ t:vol U;; t:vol

2Equation (15)) is called in the modern literature “Burger’s equation” even though it was mentioned a century
before; the form was anticipated by Poisson (1808), see p.118 of the textbook [[11]. Its derivation from the
Euler’s equations can be found p. 368 of [12]

10



where 1/z;  is the gtowth rate of the elongation at the critical time ¢*. The law is the same
for any value of the critical velocity U}, and any growth rate of the elongation, as small as it could
be. Coming back to the flow field, the boundary condition on the piston x = Xp(t) = fot Up(t)dr' :
u = Up(¢t) then shows that the function f(u) is a cubic polynomial, see (67)-(68) in [2], so that,
according to (16)), the problem reduces to solve a third-degree polynomial in (1 — u/U}), see (74)-
(75) in [2]]. Close to the critical velocity and for (1 — u/U}) < a;, /U, the cubic term is negligible
and the problem is reduced to solve a second-order algebraic equation. Moreover this equation
further simplifies for (* — 1)/t* < (a,/U})* yielding the following analytical expression of the
flow field

ur ) _ \/(r* -0 = Xp(0)] a8)

U, r a(0)r*

evol evol

The condition for the validity of (I8) is less drastic than in [2]. More particularly, (I8) is not
limited to a small Mach number of the piston U}/a;, < 1 which, according to (14), would require
a too large value of b > 1, larger than in very energetic mixtures. The flow field satisfies
the boundary condition on the piston, as it should be. A weak discontinuity is exhibited
at the leading edge x = x,,(f) where the initial flow, namely the initial velocity of the piston, is
recovered, u(x, t)|,=y,,» = Up(0). The point x = x,,4(¢) propagates effectively at the speed of sound
relative to the gas flow x,,4(f) — Xp(1) = a(0)t, as it is checked by using (I7). As already mentioned,
close to the critical point, the initial sound speed a(0) can be replaced by a;. According to (14)
and (18)), the gradient of the flow

*

Ou(x, 1) U, 1/2 Up 1
bl =—— where =
O0x @, [C=n | =X a, (y-1b

PP
tevo[ u teval

(19)

presents a finite-time singularity on the piston at the critical time #* which, according to (17)),
corresponds to a divergence of the acceleration of the piston dUp/dr o 1/ /(" = 1)/, when the
piston velocity reaches the critical value Uy,. The flow (18) is indeed solution of the linear version
of so that the wave-breaking mechanism which is responsible for the formation of shock

waves, 1s not involved in the genesis of the finite-time singularity of the flow on the flame front.
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The singularity comes from the quadratic form S (Up) o (1 — Up/U})* near the turning point
S = 8% on the curve Up(S).

Could this finite-time singularity of the gradient of the flow on the flame front (I9) be respon-
sible for the formation of a shock wave inside the flame structure leading to a quasi-instantaneous
DDT? This is likely because the temperature inside the flame structure is higher than in the un-
reacted gas ahead of the flame where the temperature is not large enough for self-igniting the
unreacted gas in the compressed gas behind the shock waves emitted by the self-accelerating
flame front. This problem requires to investigate the unsteady flame structure. In that respect, the
ZFK flame model with a back flow u, ~ [2L(t)/R]U(T,) applied at the reaction sheet is worth
investigating by solving analytically (or numerically) a free boundary problem yielding the instan-
taneous velocity of the reaction sheet Up() in the form of an eigenvalue. A finite-time singularity
of the flow gradient, associated with the singularity of the acceleration dUp(¢)/dt at a critical value
Uy = Up(t"), is expected to occur on the reaction sheet. The analysis is beyond the scope of the
present note. The achievement of such a difficult analysis is the price to pay for a full understand-
ing of a fundamental problem, namely the sudden transition of a subsonic reaction-diffusion wave

(the flame) into a supersonic wave (the detonation).

4. Discussion of the results

The results and (I8)-(19) predict the characteristics of the pre-conditioned state of the slab
of fresh mixture adjacent to the self-accelerating flame, observed just prior to DDT in a laminar
regime [4] [S]. The finite-time singularity of the solution of the Euler’s equation in the laminar
flow of unreacted gas ahead of the flame front could be the key of the DDT. The solution of the
unsteady flame structure remains to be carried out in order to confirm this statement. The analysis
1S in process.

The result explains why the DDT in the laminar regime can be observed only with strongly
energetic mixtures, never with gaseous mixtures in air, as discussed now. The critical length in
the first equation (T4) is reached only if the Mach number of the laminar flame velocity U,/a, is
large enough to make the critical elongation L/R accessible. The elongation of curved flames in

tubes is due to hydrodynamical mechanisms. It is typically not larger than 10 in centimeter radius
12



tubes. According to with ¥y = 1.4 and b ~ 2, a critical elongation L*/R about 10 requires
Uy/a, not smaller than 0.06. Such a fast flame occurs in stoichiometric mixtures of hydrogen
or acetylene in pure oxygen whose laminar flame speed U, (relative to the fresh mixture gas)
and gas expansion parameter 7, /T, are respectively close to 10 m/s and 10. In ordinary gaseous
combustible mixtures in air the Mach umber U,/a, is between ten to a hundred times smaller.
On the opposite case of highly energetic mixtures, the critical ratio L*/R can be small enough to
concern the cellular structure of self-accelerating flames propagating freely in open space under
the Rayleigh-Taylor instability. This could be the case in astrophysics for flames sustained by
nuclear reactions.

Another interesting result in (T4) is that the critical Mach number U}/a;, (measured in the
laboratory frame) of the flame pushed from behind by the back flow depends only on the thermal

sensitivity of the laminar flame speed (3).
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