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HIGHER TOPOLOGICAL HOCHSCHILD HOMOLOGY OF PERIODIC
COMPLEX K-THEORY

BRUNO STONEK

Abstract. We describe the topological Hochschild homology of the periodic complex K-theory
spectrum, THH(KU), as a commutative KU -algebra: it is equivalent to KU [K(Z, 3)] and to
F (ΣKUQ), where F is the free commutative KU -algebra functor on a KU -module. Moreover,
F (ΣKUQ) ' KU ∨ ΣKUQ, a square-zero extension. In order to prove these results, we first
establish that topological Hochschild homology commutes, as an algebra, with localization at
an element.

Then, we prove that THHn(KU), the n-fold iteration of THH(KU), i.e. Tn ⊗ KU , is
equivalent to KU [G] where G is a certain product of integral Eilenberg-Mac Lane spaces, and to
a free commutative KU -algebra on a rational KU -module. We prove that Sn⊗KU is equivalent
to KU [K(Z, n + 2)] and to F (ΣnKUQ). We describe the topological André-Quillen homology
of KU as KUQ.

1. Introduction

Topological Hochschild homology (THH) of structured ring spectra was introduced by Bök-
stedt [Bök85] and Breen [Bre78]; for an introduction to the subject, see [DGM13, Chapter 4],
[EKMM97, Chapter IX] and [Shi00]. It is the generalization to structured ring spectra of classical
Hochschild homology (HH) of rings.

It was realized in [MSV97] that the THH of a commutative ring spectrum R can be expressed
as S1⊗R, where ⊗ denotes the tensor of the category of commutative ring spectra over unbased
spaces. Tensors with other spaces also give interesting information [BCD10], [CDD11], and
we refer to them as giving “higher THH” of R. For example, tori Tn give n-fold iterated
THH. Spheres Sn give a topological version of Pirashvili’s higher order Hochschild homology
of commutative rings [Pir00]. Complete calculations of these invariants for a given R are scarce:
see for example [Sch11] for the case of spectra, [Vee18] and [BLP+15] for partial computations
for the Eilenberg-Mac Lane ring spectrum HFp of the field with p elements and other related
ring spectra, and [DLR18] for Eilenberg-Mac Lane spectra of some rings of integers.

In this paper, we present complete descriptions of the commutative KU -algebras Tn⊗KU and
Sn ⊗KU for n ≥ 1, where KU is the ring spectrum of periodic complex topological K-theory.
Close results to the n = 1 case were known, as we explain below, but only additively. The
classical André-Quillen homology of commutative rings also has a topological analogue, denoted
TAQ [Bas99]: we determine the KU -module TAQ(KU).

Our computations showcase some interesting phenomena. The formulas for the (higher)
topological Hochschild homology and topological André-Quillen homology of KU which we
obtain are the ones we would get if KU was somehow a Thom spectrum (which it isn’t),
see Remarks 5.22, 7.20 and 8.5.2. Also, our results show that the conclusion of McCarthy-
Minasian’s adaptation of the Hochschild-Kostant-Rosenberg theorem [MM03], which applies
only to connective ring spectra, holds for KU (Remark 8.5.3).

Finally, another remarkable phenomenon highlighted by our computations involves invariance
under stable equivalences of spaces: let R be a commutative ring spectrum and X and Y be
spaces such that ΣX ' ΣY . One may ask the question of whether X ⊗ R ' Y ⊗ R, i.e. of
whether − ⊗ R is a stable invariant. This turns out not to be true in general [DT18], but the
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2 BRUNO STONEK

computations of [Vee18] show that, in a certain range relating n and p, X ⊗HFp ' Y ⊗HFp
when X = Tn and Y =

n∨
i=1

(Si)∨(
n
i). Our results show that the same is true for R = KU , see

Remark 6.14. It would be interesting to know whether −⊗KU is a stable invariant, and to try
to characterize the commutative ring spectra R such that −⊗R is a stable invariant.

Summary of results We work in the context of S-modules and commutative S-algebras
from [EKMM97]. We use an adaptation of the model for KU given by Snaith [Sna79], [Sna81],
namely Σ∞+ K(Z, 2)[x−1], to this context. If we are to use this model to compute THH(KU),
we first need to prove that THH commutes with localizations: this is done in Corollary 4.12,
taking care of the multiplicative structure.

Our first expression for THH(KU) as a commutative KU -algebra is obtained in Theorem
5.21:

THH(KU) ' KU [K(Z, 3)],

where the underlying KU -module of KU [K(Z, 3)] is KU ∧K(Z, 3)+. The second one is given
in Theorem 5.25: there are weak equivalences of commutative KU -algebras

KU ∨ ΣKUQ F (ΣKUQ)
∼
oo

∼
// THH(KU).

Here F denotes the free commutative KU -algebra on a KU -module functor, and the KU -algebra
structure on KU ∨ ΣKUQ is that of a square-zero extension.

Note that, previously, McClure and Staffeldt [MS93, 8.1] established that THH(L) ' L∨ΣLQ
as spectra, where L is the p-adic completion of the Adams summand of KU for a given odd
prime p. In [AHL10, 7.9], the authors show that THH(KO) ' KO ∨ ΣKOQ as KO-modules;
here KO is the periodic real complex K-theory ring spectrum. Note that these results (and
others closely related, see Remark 5.28) are about the additive structure and do not involve the
multiplicative structure, which we take into consideration. Finally, note that a lot of effort was
devoted to describing THH(ku) [Aus05], where ku denotes the connective complex K-theory
spectrum: that case is markedly harder.

We consider the iterated THH of KU . The first expression we gave above for THH(KU)

directly generalizes: one replaces K(Z, 3) by a suitable product of integral Eilenberg-Mac Lane
spaces. See Theorem 6.9: there is a zig-zag of weak equivalences of commutative KU -algebras

THHn(KU) ' KU

[
n∏
i=1

K(Z, i+ 2)×(ni)

]
.

The second expression for THH(KU) also generalizes: this is Theorem 6.13, where we get a
zig-zag of weak equivalences of commutative KU -algebras

F

(
n∨
i=1

(Si)∨(
n
i) ∧KUQ

)
' Tn ⊗KU.

The expression KU ∨ ΣKUQ for THH(KU) also generalizes to THHn(KU). In this case, the
augmentation ideal THHn

(KU) is still rational, but it has a non-trivial non-unital commutative
KU -algebra structure. We describe the non-unital commutative Q[t±1]-algebra THHn

∗ (KU) as
iterated Hochschild homology. See Theorem 6.22.

We then shift our attention to X ⊗KU , where X is a based CW-complex which is a reduced
suspension, e.g. a sphere Sn. In this case, the first description for THH(KU) generalizes as a
zig-zag of weak equivalences of commutative KU -algebras:

Sn ⊗KU ' KU [K(Z, n+ 2)].
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This is Theorem 7.19. The second description for THH(KU) generalizes as

F (Sn ∧KUQ) ' Sn ⊗KU.

This is a particular case of Theorem 7.16. Finally, we establish that

TAQ(KU) ' KUQ

as KU -modules, where TAQ(KU) denotes the topological André-Quillen KU -module of KU .
This is Corollary 8.4.

Remark on trace methods One reason for the importance of THH is its relation to
algebraic K-theory. If R is a (discrete) ring, then the trace map K(R)→ HH(R) factors through
the topological Hochschild homology of the Eilenberg-Mac Lane ring spectrum of R. Moreover,
the trace map K(A)→ THH(A) exists for any ring spectrum A. Out of topological Hochschild
homology one can build topological cyclic homology, TC(A), and the trace map further factors
through it. The spectrum TC(A) is closely related to algebraic K-theory: see [DGM13]. We
might thus see THH as a more easily approachable stepping stone on the way to the more
fundamental algebraic K-theory.

It is important to note, however, that THH(KU) is unlikely to be of assistance in the
determination of K(KU) via the methods we pointed out in the previous paragraph. First of
all, note that one of the most useful theorems for computing algebraic K-theory via trace maps,
namely, the theorem of Dundas-Goodwillie-McCarthy [DGM13, 7.0.0.2] only applies to connective
ring spectra. Therefore, one may wish to get to K(KU) by noting that KU is the localization
of ku, and by applying trace methods for ku. Indeed, in [BM08], Blumberg and Mandell prove
that K(KU) sits in a localization cofiber sequence K(Z) → K(ku) → K(KU) → ΣK(Z). In
[BM20], they establish an analogous cofiber sequence for THH, but the term involving KU is
not THH(KU) but an appropriate modification of it which receives a trace map from K(KU);
Ausoni shows in [Aus10, 8.3] how to compute the V (1)-homotopy (p odd) of K(KU) using this
approach, and in [AR12, 3.6] him and Rognes determine K(KU) rationally. Note that these
computations do not involve THH(KU).

On the other hand, an interesting question to ask is if there are any elements in K(KU)

which survive to THH(KU) via the trace. We know that that V (1)∗THH(KU) = 0 and
V (0)∗THH(KU) ∼= V (0)∗KU , but rationally, the trace K(KU)→ THH(KU) is non-zero (see
[AR12, Paragraph 5.3]). Therefore, the trace K(KU) → THH(KU) might well be useful in
studying the integral homotopy type of K(KU). More generally, it would be interesting to detect
elements in THHn(KU) that survive from the n-fold iterated algebraic K-theory of KU via
the iterated trace. See [CDD11]: they propose THHn as “a computationally tractable cousin of
n-fold iterated algebraic K-theory”.

Comment on cofibrancy At the heart of the computation of THH(KU) lies the iso-
morphism THH(S[G]) ∼= S[BcyG] where G is a topological commutative monoid. The core of
this result was already known; we prove it in Proposition 4.4, taking care of the multiplicative
structures. This is a point-set result. However, the procedure of localization of a commutative
S-algebra at a homotopy element takes a cofibrant commutative S-algebra as input, so if we
are to exploit the isomorphism just stated for the computation of THH(KU) via Snaith’s theo-
rem, we first need to prove that THH preserves the weak equivalence to S[G] from a cofibrant
commutative S-algebra replacement of it. This is obtained in Section 5.1. Assuming G is a
CW-complex with unit a 0-cell, the key property that S[G] satisfies is that it is flat, i.e. smashing
an S-module with it preserves weak equivalences. This, along with the fact that the simplicial
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cyclic bar construction Bcy
• S[G] is a proper simplicial S-module, proves to be enough.

Outline of the paper In Section 2, we review some model categorical aspects of [EKMM97],
particularly those pertaining to commutative S-algebras. In Section 3, we prove some elementary
properties of localization of a commutative S-algebra at an element. In Section 4, we review
some needed aspects of topological Hochschild homology, and we prove that THH commutes
with localization at an element. Section 5 contains the results pertaining to THH(KU), and in
Sections 6 and 7 we prove our results about Tn ⊗KU and Sn ⊗KU . Finally, in Section 8, we
determine the topological André-Quillen homology of KU .

Conventions By space we will mean “compactly generated weakly Hausdorff topological
space”, and we will denote the cartesian closed category they form by Top, which we endow with
the Quillen model structure. The corresponding model category of based spaces will be denoted
by Top∗. We will work with the categories of [EKMM97]: our main objects are S-modules,
commutative S-algebras R, R-modules and commutative R-algebras A.

Acknowledgments I would like to thank Christian Ausoni, my PhD supervisor, for
suggesting this project, sharing his ideas and his support; Geoffroy Horel for his very useful
suggestions; Eva Höning for our many engaging and fruitful discussions; Christian Schlichtkrull
for his careful reading and his corrections; and Bjørn Dundas for so warmly and selflessly sharing
so much of his time, ideas and insights at the University of Bergen. I would also like to thank
Tobias Barthel and Magdalena Zielenkiewicz for their assistance with later revisions.

Parts of the content of this article are part of the author’s PhD dissertation at Université Paris
13. Research partially supported by the ANR-16-CE40-0003 project ChroK and the Fondation
Sciences Mathématiques de Paris (FSMP). The author would like to thank the Max Planck
Institute for Mathematics at Bonn for their hospitality.

2. Model structures

We will freely use the language of (enriched, monoidal) model categories as expounded in e.g.
[MP12].

The category S-Mod of S-modules has a Top∗-enriched symmetric monoidal cofibrantly
generated model structure [EKMM97, VII.4]. A commutative S-algebra is, by definition, a
commutative monoid in S-Mod. The category they form, S-CAlg, can also be described as
the category of P-algebras where P is the commutative monoid monad. The forgetful functor
U : S-CAlg→ S-Mod creates a model structure on S-CAlg1. In particular, there is a Quillen

adjunction S-Mod
F
// S-CAlg

U
oo . The category S-CAlg has a Top-enriched symmetric monoi-

dal cofibrantly generated model structure. In both S-Mod and S-CAlg, the monoidal product
is the smash product ∧ and the monoidal unit is the sphere spectrum S.2

1A functor U : C → M creates a model structure on C if M is a model category and C is a model category
such that f is a fibration (resp. weak equivalence) in C if and only if Uf is a fibration (resp. weak equivalence)
inM. We say that U strongly creates the model structure of C if, in addition, f is a cofibration in C if and only
if Uf is a cofibration inM. We are following the nomenclature of [MP12, 15.3.5].

2Note that the pushout-product axiom is satisfied in S-CAlg: indeed, the smash product of commutative
S-algebras R and T is their coproduct, i.e. the pushout of T ← S→ R [EKMM97, II.3.7]. Therefore, a “pushouts
commute with pushouts” argument proves that the pushout-product map is an isomorphism. This proves, more
generally, that any model category with the cocartesian monoidal structure (i.e. the monoidal product is the
coproduct and the unit is the initial object) satisfies the pushout-product axiom and hence is a monoidal model
category.
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Let R ∈ S-CAlg, and consider the category of R-modules, R-Mod. The forgetful functor
R-Mod→ S-Mod creates a model structure on R-Mod, and R-Mod acquires a Top∗-enriched
symmetric monoidal cofibrantly generated model category structure. The forgetful functor
U : R-CAlg → R-Mod creates a model structure on R-CAlg, and thus R-CAlg has a Top-
enriched symmetric monoidal cofibrantly generated model category structure. In both R-CAlg

and R-Mod, the monoidal product is the smash product relative to R, ∧R, and the monoidal
unit is R. In all these model categories, all objects are fibrant.

Cofibrancy is more delicate. The sphere S-module S is not cofibrant as an S-module, but it is
cofibrant as a commutative S-algebra. More generally, the underlying R-module of a cofibrant
commutative R-algebra is generally not cofibrant as an R-module.

Let R be a commutative S-algebra. We record the following useful properties:

(1) IfM is a cofibrant R-module, thenM ∧R− preserves all weak equivalences of R-modules,
so if X is any R-module, then M ∧RX represents the derived smash product [EKMM97,
III.3.8]. Note that X ∧R − preserves weak equivalences between cofibrant R-modules.
Indeed: let f : M → N be such a weak equivalence. Let γX : ΓX → X be a cofibrant
replacement of X. We have a commutative diagram

(2.1) X ∧RM
id∧f

// X ∧R N

ΓX ∧RM
∼

id∧f
//

∼γX∧id

OO

ΓX ∧R N

∼ γX∧id

OO

where the two vertical maps and the bottom horizontal map are weak equivalences by
the result just quoted, so the top vertical map is a weak equivalence, too.

(2) Suppose R is cofibrant as a commutative S-algebra. Let A and B be cofibrant commuta-
tive R-algebras. Let γA : ΓA→ A and γB : ΓB → B be cofibrant replacements of A and
B in the category of R-modules. Then

γA ∧ γB : ΓA ∧R ΓB → A ∧R B

is a weak equivalence of R-modules [EKMM97, VII.6.4, 6.5, 6.7]. This tells us that A∧RB
computes the derived smash product of A and B as R-modules. As a consequence of
this and of (1), by the 2-out-of-3 property we deduce that

γA ∧ idB : ΓA ∧R B → A ∧R B

is a weak equivalence, since γA ∧ γB = (γA ∧ idB) ◦ (idΓA ∧ γB). Similarly, idA ∧ γB is
also a weak equivalence.

(3) As in any model category, the coproduct of cofibrant objects is cofibrant. Hence, if A
and B are cofibrant commutative R-algebras, then A ∧R B is a cofibrant commutative
R-algebra [EKMM97, VII.6.8].

(4) Let S→ A→ B be cofibrations of commutative S-algebras. Then the functor B ∧A − :

A-CAlg→ B-CAlg preserves weak equivalences between commutative A-algebras which
are cofibrant as commutative S-algebras [EKMM97, VII.7.4].

(5) The category R-CAlg can also be described as the category of objects of S-CAlg under
R. As such, the forgetful functor R-CAlg→ S-CAlg strongly creates a model structure
on R-CAlg [MP12, Theorem 15.3.6]. This model structure coincides with the one
described above [Hön17, Remark 2.4.1]. In conclusion, a map f : A→ B is a cofibration
in R-CAlg if and only if it is a cofibration in S-CAlg. In particular, if R is a cofibrant
commutative S-algebra and A is a cofibrant commutative R-algebra, then A is cofibrant
as a commutative S-algebra.
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Note: in [EKMM97] they call q-cofibration what we call a cofibration. We will have no use
for what they call a cofibration. We use the term “homotopy category” in the model categorical
sense [MP12, 14.4.1]: in [EKMM97] these were called derived categories.

Remark 2.2. The following remarks will be used below. In a cofibrantly generated model category
constructed via Quillen’s small object argument, the factorization of an arrow as a cofibration
followed by an acyclic fibration is functorial [Rie14, 12.2.2], a concept carefully defined e.g. in
[Rie14, 12.1.1], [MP12, 14.1.10]. As an example, the category S-CAlg admits such a functorial
factorization. We can factor the unit maps in order to obtain a functorial cofibrant replacement
functor Q.

Let R be a commutative S-algebra. If A is a commutative R-algebra, then we may factor the
unit map η : R → A with the functorial factorization in S-CAlg described above. Denote by
QRA the object appearing in the factorization, i.e. η is factored as R→ QRA→ A. From item
(5) above we obtain that the first arrow is a cofibration in R-CAlg and the second arrow is an
acyclic fibration in R-CAlg. The functoriality of the factorization proves that this defines a
functor QR of cofibrant replacement in the category R-CAlg.

We end this section on model structures with the following general lemma which will be used
in the proof of Theorem 7.16. We thank Eva Höning for explaining this lemma to us.

Lemma 2.3. Let

(2.4) B

u ∼
��

A
f

oo

∼ v

��

g
// C

w∼
��

B′ A′
f ′

oo

g′
// C ′

be a diagram in a model category where the vertical arrows are weak equivalences, all objects are
cofibrant and one map in each horizontal line is a cofibration. Suppose both squares are homotopy
commutative. Then there is a natural zig-zag of weak equivalences between the pushouts of both
horizontal lines.

Proof. Let (Cyl(A), i0, i1) denote a cylinder object for A. Let H : Cyl(A) → B′ denote a
homotopy from uf to f ′v, and G : Cyl(A) → C ′ denote a homotopy from wg to g′v. We have
the following (strictly) commutative diagram:

B

u ∼
��

A
f

oo
g

//

id
��

C

w∼
��

B′

id
��

A
uf

oo
wg

//

i0∼
��

C ′

id
��

B′ Cyl(A)
H
oo

G
// C ′

B′

id
��

id

OO

A

v∼
��

f ′v
oo

g′v
//

i1∼
OO

C ′

id
��

id

OO

B′ A′
f ′

oo

g′
// C ′

By a repeated application of the homotopy invariance of homotopy pushouts [Hir03, Dual of
13.3.4], we obtain a zig-zag of weak equivalences between the homotopy pushout of (f, g) and the
homotopy pushout of (f ′, g′). But these homotopy pushouts are computed by the (categorical)



HIGHER TOPOLOGICAL HOCHSCHILD HOMOLOGY OF PERIODIC COMPLEX K-THEORY 7

pushouts, since in (2.4) all objects are cofibrant and one map in each line is a cofibration [Hir03,
Dual of 13.3.8]. �

3. Inversion of an element

In this section, we recall the procedure of inverting a homotopy element in a commutative
S-algebra following [EKMM97] and prove some properties which will be needed below.

Theorem 3.1. [EKMM97, VIII.2.2, VIII.4.2] Let R be a cofibrant commutative S-algebra and
x ∈ π∗R. There exists a cofibrant commutative R-algebra R[x−1] with unit j : R → R[x−1]

satisfying that π∗(R[x−1]) = π∗(R)[x−1], and if f : R → T is a map in S-CAlg such that
(π∗f)(x) ∈ π∗T is invertible, then there exists a map f̃ : R[x−1] → T in S-CAlg making the
following diagram commute:

R
f

//

j

��

T

R[x−1]
f̃

<< .

The map f̃ is unique up to homotopy of commutative S-algebras. Moreover, if the morphism
π∗(R)[x−1] → π∗T coming from the universal property for localizations of commutative π∗(R)-
algebras is an isomorphism, then f̃ is a weak equivalence.

The previous theorem is valid, mutatis mutandis, if S is replaced by some cofibrant commutative
S-algebra.

Lemma 3.2. The multiplication map µ : R[x−1] ∧R R[x−1]→ R[x−1] is a weak equivalence of
commutative R[x−1]-algebras.

Proof. The Tor spectral sequence [EKMM97, IV.4.1] here takes the form

E2
∗,∗ = Torπ∗R∗,∗ (π∗R[x−1], π∗R[x−1])⇒ π∗(R[x−1] ∧R R[x−1]).

Since the localization morphism π∗R→ π∗R[x−1] is flat, the spectral sequence is concentrated
in the 0-th column and thus the edge homomorphism

(3.3) ∇ : π∗R[x−1]⊗π∗R π∗R[x−1]→ π∗(R[x−1] ∧R R[x−1])

is an isomorphism. Since ∧R is the coproduct in the category of commutative R-algebras, we
can consider the canonical maps i1, i2 : R[x−1]→ R[x−1] ∧R R[x−1]. The edge homomorphism
∇ coincides with the map (π∗i1, π∗i2) defined via the universal property of the coproduct of
commutative π∗R-algebras. We have the following commutative diagram of commutative π∗R-
algebras:

π∗R[x−1]

id

++

ι1
//

π∗i1 ))

π∗R[x−1]⊗π∗R π∗R[x−1]

∇
��

π∗R[x−1]
ι2
oo

π∗i2uu

id

ss

π∗(R[x−1] ∧R R[x−1])

π∗µ

��

π∗R[x−1]

where ι1, ι2 are the canonical inclusions into a coproduct of commutative π∗R-algebras. Again,
by the universal property of the coproduct of commutative π∗R-algebras, there is a unique arrow
π∗R[x−1]⊗π∗R π∗R[x−1]→ π∗R[x−1] making the outer diagram commute. One such arrow is the
canonical isomorphism that one has for any such algebraic localization, i.e. h : S−1A⊗AS−1A

∼=→
S−1A for any commutative ring A and multiplicative subset S ⊂ A. Another such arrow is
π∗µ ◦ ∇. Therefore, h = π∗µ ◦ ∇. Since ∇ and h are isomorphisms, so is π∗µ. �
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If f : R → T is a morphism between cofibrant commutative S-algebras and x ∈ π∗R, then
Theorem 3.1 gives us a map of cofibrant commutative S-algebras

R
f

//

jR
��

T

jT
��

R[x−1]
f [x−1]

// T [(π∗f)(x)−1]

such that if f is a weak equivalence, then f [x−1] is a weak equivalence. Note that f [x−1] turns
T [(π∗f)(x)−1] into a commutative R[x−1]-algebra.

The previous square induces an arrow from the pushout R[x−1]∧RT in R-CAlg. The following
theorem tells us that it is a weak equivalence. Compare with [EKMM97, V.1.15] which handles
the case where T is replaced by an R-module.

Proposition 3.4 (Base change for localization). Let f : R → T be a morphism of cofibrant
commutative S-algebras and x ∈ π∗R. The morphism of commutative R-algebras

(3.5) (f [x−1], jT ) : R[x−1] ∧R T → T [(π∗f)(x)−1]

is a weak equivalence.

Note that (3.5) is also a weak equivalence in R[x−1]-CAlg and in T -CAlg. Note as well that
if ε : T → R is a morphism of S-algebras such that ε ◦ f = idR so that T becomes an augmented
commutative R-algebra, then in (3.5) both sides are naturally augmented over R[x−1] and the
morphism commutes with the augmentations.

Proof. Denote the morphism (f [x−1], jT ) by h, for simplicity. Like in the proof of Lemma 3.2,
the Tor spectral sequence that computes the homotopy groups of R[x−1] ∧R T from those of
R[x−1] and T collapses, since π∗R → π∗R[x−1] = (π∗R)[x−1] is flat. Therefore, the map π∗h,
fitting in a commutative diagram

π∗(R[x−1] ∧R T )
π∗h

// (π∗T )[(π∗f)(x)−1]

(π∗R)[x−1]⊗π∗R π∗T,

∼=

OO

∼=

55

is an isomorphism, since the diagonal map is an isomorphism. Indeed, this is the map appearing
in the analogous statement in commutative algebra of the theorem we are proving, applied to
π∗f : π∗R → π∗T . But this statement of commutative algebra is not hard to prove: it follows
from the universal properties and the extension-restriction of scalars adjunction. �

Proposition 3.6. Let R and T be cofibrant commutative S-algebras, x ∈ πnR and y ∈ πmT .
Denote by x ∧ y the image of x⊗ y under the morphism

π∗R⊗π∗S π∗T // π∗(R ∧ T ) .

There is a weak equivalence of commutative S-algebras

R[x−1] ∧ T [y−1]→ (R ∧ T )[(x ∧ y)−1]

which is natural on R and T .

Note that this is is also a map of commutative R[x−1] and T [y−1]-algebras.
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Proof. Let i1 : R → R ∧ T , i2 : T → R ∧ T be the canonical maps into the coproduct. There
exists a map f making the following diagram commute.

R

jR

��

i1
// R ∧ T

jR∧T
// (R ∧ T )[(x ∧ y)−1]

R[x−1]
f

44

Indeed, applying π∗ to the horizontal composition, we get the map

π∗(jR∧T ◦ i1) : π∗R→ π∗(R ∧ T )[(x ∧ y)−1]

which maps x to x∧ 1. This is an invertible element with inverse (1∧ y)(x∧ y)−1, since the map
(π∗i1, π∗i2) : π∗R⊗π∗Sπ∗T → π∗(R∧T ) is multiplicative. Therefore, the property of Theorem 3.1
provides us with the arrow f in S-CAlg. Similarly, we get a map g : T [y−1]→ (R∧T )[(x∧y)−1].
We assemble f and g into the coproduct map in S-CAlg

(f, g) : R[x−1] ∧ T [y−1]→ (R ∧ T )[(x ∧ y)−1].

Now recall from [EKMM97, Section V.1] that R[x−1] is weakly equivalent, in R-Mod, to the
homotopy colimit of the tower

(3.7) R
x
// Σ−nR

x
// Σ−2nR

x
// . . . .

The T -module T [y−1] is described similarly. The R ∧ T -module (R ∧ T )[(x ∧ y)−1] is weakly
equivalent to the homotopy colimit of the tower

R ∧ T
x∧y
// Σ−n−mR ∧ T

x∧y
// Σ−2n−2mR ∧ T

x∧y
// . . . .

Smashing the homotopy colimit computing R[x−1] with the one computing T [y−1] we obtain
the homotopy colimit computing (R ∧ T )[(x ∧ y)−1], since the diagonal map N → N × N is
homotopy cofinal. The map (f, g) is compatible with these identifications, hence it is a weak
equivalence. �

Notation 3.8. Let f : R → T be a weak equivalence of cofibrant commutative S-algebras. If
x ∈ π∗R, we denote the algebra T [(π∗f)(x)−1] by T [x−1]. Similarly, if y ∈ π∗T we define R[y−1]

as T [(π∗f)−1(y)−1]. In particular, if R and T are connected by a zig-zag of weak equivalences
of cofibrant commutative S-algebras, then a homotopy element x ∈ π∗R defines T [x−1] and
conversely.

We now turn to the inversion of an element in a non-cofibrant commutative S-algebra A. Let
Q be a cofibrant replacement functor in the category of commutative S-algebras, as obtained in
Remark 2.2.

Definition 3.9. Let A ∈ S-CAlg and x ∈ π∗A. We define A[x−1]h to be the cofibrant commu-
tative S-algebra (QA)[x−1].

Remark 3.10. If Ã is a cofibrant commutative S-algebra and Ã→ A is a weak equivalence, then
there is a weak equivalence of commutative S-algebras Ã→ QA, and hence a weak equivalence
Ã[x−1] → QA[x−1] of cofibrant commutative S-algebras. Indeed, the existence of this weak
equivalence follows from the lifting properties for the model category S-CAlg and the 2-out-of-3
property for weak equivalences:

S //
��

��

QA

∼
����

Ã

>>

∼
// A.
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In particular, the object A[x−1]h in the homotopy category of commutative S-algebras does not
depend on the choice of Q, up to isomorphism. This explains the choice of the letter h for the
subscript.

4. Topological Hochschild homology

4.1. Symmetric monoidal categories. Let (V,⊗,1) be a symmetric monoidal category. De-
note by Mon(V) and CMon(V) the corresponding symmetric monoidal categories of monoids
and commutative monoids in V , respectively. Denote by sV the category of simplicial objects in
V; it is a symmetric monoidal category with levelwise monoidal product.

Suppose V is closed and cocomplete. Then if A ∈ CMon(V), the category A-Mod of A-
modules gets a relative monoidal product ⊗A such that (A-Mod,⊗A, A) is a symmetric monoidal
category. One can thus speak of commutative A-algebras, which are the commutative monoids in
A-Mod. We denote by A-CAlg the category they form. An augmented commutative A-algebra
B has an augmentation map B → A which is a morphism of commutative monoids.

Let F : V → W be a strong symmetric monoidal functor between cocomplete closed symmetric
monoidal categories, and suppose F preserves colimits. Then F induces a functor on commutative
monoids, on modules over commutative monoids, and on commutative algebras. More specifically,
there is an induced functor F : A-CAlg→ F (A)-CAlg.

We will need the following

Lemma 4.1. Let F : V → W be a functor as above, and let A ∈ CMon(V). Then there is a
natural isomorphism

CMon(V)
A⊗−

//

F
��

A-CAlg

F
��

CMon(W)
F (A)⊗−

// F (A)-CAlg.

EM

Proof. First, note that there is a strong symmetric monoidal functor A ⊗ − : V → A-Mod,
which therefore induces the functor at the top of the diagram, and similarly for the one in the
bottom. The isomorphism

∇ : F (A)⊗ F (B)→ F (A⊗B)

natural in B ∈ CMon(V) is given by the structure isomorphism of F . The only thing one
needs to check is that ∇ is a map of F (A)-commutative algebras, but this is a straightforward
verification. �

4.2. Simplicial cyclic bar construction in general. The results in this section are similar
to the ones in [Sto18, Section 1] which are done for the simplicial reduced bar construction.

Definition 4.2. The simplicial cyclic bar construction is a functor

Bcy
• : Mon(V)→ sV

defined as follows. If A ∈Mon(V) with multiplication µ : A⊗A→ A and unit η : 1→ A, then
Bcy
n (A) = A⊗n+1. The faces di : A⊗n+1 → A⊗n, i = 0, . . . , n are defined as

di = id⊗i ⊗ µ⊗ id⊗n−i−1 if i = 0, . . . , n− 1, and

dn = (µ⊗ id⊗(n−1)) ◦ σn+1

where σn+1 : A⊗n+1 → A⊗n+1 is the isomorphism that puts the last A term at the beginning.
The degeneracies si : A⊗n+1 → A⊗n+2 are

si = id⊗i+1 ⊗ η ⊗ id⊗n−i for all i = 0, . . . , n.
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This is a strong symmetric monoidal functor, so it induces a functor between the categories of
commutative monoids. But a version of the Eckmann-Hilton argument (see e.g. [AM10, 6.29])
says that CMon(Mon(V)) ∼= CMon(V), so we get a functor

Bcy
• : CMon(V)→ sCMon(V).

For a commutative monoid A in V , we have that Bcy
• (A) ∈ sA-CAlg. Indeed, there is a natural

morphism cA→ Bcy
• A in sCMon(V), where cA denotes the constant simplicial object at A. In

simplicial level n, it is id ⊗ η⊗n : A → A⊗n+1. We could specify the simplicial commutative
A-algebra structure of Bcy

• (A) more explicitely: the A-module structure on A⊗n+1 ∼= A⊗ A⊗n
is given by acting on the first factor, and the multiplication over A is given by

A⊗n+1 ⊗A A⊗n+1 ∼= A⊗ (A⊗n ⊗A⊗n)
id⊗µ

// A⊗A⊗n

where µ denotes the product of A⊗n ∈ CMon(V).
Note moreover that Bcy

• (A) admits a map of simplicial commutative monoids to cA: in sim-
plicial level n, it is the multiplication of n elements of A, which makes sense by commutativity
of A. So Bcy

• (A) is a simplicial augmented commutative A-algebra.

There is a relative version of this construction: if M is an A-bimodule, then one can define
Bcy
• (A,M) which has Bcy

n (A,M) = M ⊗ A⊗n with similar faces and degeneracies. If M is a
commutative A-algebra, then Bcy

• (A,M) is a simplicial augmented commutative M -algebra.

Let F : V → W be a strong symmetric monoidal functor between cocomplete closed sym-
metric monoidal categories which preserves colimits. Since it takes commutative A-algebras
to commutative F (A)-algebras, then F (Bcy

• A) is a simplicial commutative F (A)-algebra. The
structure morphisms of F provide an isomorphism

(4.3) Bcy
• (FA)

∼=→ F (Bcy
• A)

of simplicial augmented commutative F (A)-algebras.

4.3. Geometric realization. Consider F = Σ∞+ : Top → S-Mod: it is a strong symmetric
monoidal left adjoint functor [EKMM97, II.1.2]. If G is a topological commutative monoid, we
denote by S[G] the S-module Σ∞+ G together with the commutative S-algebra structure induced
by the monoid structure of G. Note that the map G→ ∗ gives S[G] an augmentation S[G]→ S.

Endow the cartesian category Top with the standard cosimplicial space ∆•top and the symmet-
ric monoidal category S-Mod with the cosimplicial spectrum Σ∞+ ∆•top. By [Sto18, 2.9], these
beget strong symmetric monoidal functors of geometric realization

| − | : sTop→ Top and | − | : sS-Mod→ S-Mod.

If A is a topological commutative monoid or a commutative S-algebra, define

Bcy(A) := |Bcy
• (A)|.

It is an augmented commutative A-algebra. In the S-module case, this object defines the
topological Hochschild homology of A, denoted THH(A) (which coincides with the derived
smash product A ∧LAe A when A is a cofibrant commutative S-algebra [EKMM97, IX.2.7]),
and if M is an A-bimodule or commutative A-algebra then |Bcy

• (A,M)| defines THH(A,M).
Note that if f : A → B is a weak equivalence of cofibrant commutative S-algebras, then
THH(A) → THH(B) is a weak equivalence. First note that Bcy

• (A) → Bcy
• (B) is a weak

equivalence in each level. Indeed, f∧p+1 is a weak equivalence since f is a weak equivalence
and A and B are cofibrant. Then, since the simplicial cyclic bar construction gives a proper
simplicial S-module [EKMM97, IX.2.8], we can apply [EKMM97, X.2.4] to get the conclusion.
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Since the functors | − | are strong symmetric monoidal, by realizing the isomorphism (4.3) we
obtain the following

Proposition 4.4. Let G be a topological commutative monoid. There is an isomorphism of
augmented commutative S[G]-algebras

THH(S[G])
∼=
// S[Bcy(G)].

Versions of the previous proposition have appeared in [SVW00, Remark 4.4], in [HM97, The-
orem 7.1] in the setting of functors with smash product, and in [DGM13, Example 4.2.2.7] in
the setting of Γ-spaces. Note that we take care to note that this isomorphism respects the
commutative S[G]-algebra structures.

The following proposition is obtained by applying Lemma 4.1 to the functor Σ∞+ ; the isomor-
phism commutes with the augmentations by inspection.

Proposition 4.5. Consider G,H ∈ CMon(Top). There is an isomorphism of augmented
commutative S[G]-algebras

S[G] ∧ S[H]
∼=
// S[G×H]

natural in H.

4.4. Cyclic bar construction of a topological abelian group. Let G be a topological
abelian group with unit 0. Denote by BG the model for the classifying space of G which is given
by the geometric realization of the reduced bar construction B•(0, G, 0) of G: it is a topological
abelian group. Moreover, if G is a CW-complex with 0 a 0-cell and addition is a cellular map,
then the same can be said of BG. All of this is due to Milgram [Mil67].

The space G×BG gets the structure of a commutative G-algebra, via the inclusion of the first
factor G→ G×BG, which is a morphism of topological abelian groups. It has an augmentation
given by projection to the first factor.

Proposition 4.6. Let G be a topological abelian group. There is a homeomorphism of augmented
commutative G-algebras

BcyG ∼= G×BG.

Proof. Let G• denote the constant simplicial commutative G-algebra on G. Consider the maps
r• : Bcy

• G→ G•, (g0, . . . , gp) 7→ g0 + · · ·+ gp, and p• : Bcy
• G→ B•G, (g0, . . . , gp) 7→ (g1, . . . , gp).

They assemble to a map

Bcy
• G

(r•,p•)
// G• ×B•G, (g0, . . . , gp) 7→ (g0 + · · ·+ gp, g1, . . . , gp).

We also have maps i• : G• → Bcy
• G, g 7→ (g, 0, . . . , 0) and s• : B•G → Bcy

• G, (g1, . . . , gp) 7→
(−g1 − · · · − gp, g1, . . . , gp). We sum them up to a map

G• ×B•G
i•+s•

// Bcy
• G, (g, g1, . . . , gp) 7→ (g − g1 − · · · − gp, g1, . . . , gp).

The maps (r•, p•) and i• + s• are morphisms of simplicial augmented commutative G-algebras
which are inverse to one another. (Note that the obvious isomorphisms G×Gp ∼= Gp+1 are not
good, because they do not commute with the last face map.) Applying geometric realization we
obtain the result. �

A classical result (which we will not use) states that BcyG is homotopy equivalent to the free
loop space of BG (see e.g. [BHM93, Section 2]).



HIGHER TOPOLOGICAL HOCHSCHILD HOMOLOGY OF PERIODIC COMPLEX K-THEORY 13

4.5. Inverting an element in THH. Let R be a cofibrant commutative S-algebra and x ∈ π∗R.
Denote by η : R → THH(R) the unit. Since THH(R) = Bcy(R) is cofibrant as a commuta-
tive S-algebra [SVW00, Lemma 3.6], Proposition 3.4 gives a weak equivalence of augmented
commutative R[x−1]-algebras

(4.7) THH(R,R[x−1]) ∼= R[x−1] ∧R THH(R)
∼
// THH(R)[π∗η(x)−1].

For simplicity, we denote the codomain of this arrow by THH(R)[x−1].
We now aim to prove that THH(R,R[x−1]) and THH(R[x−1]) are weakly equivalent com-

mutative R[x−1]-algebras. We will obtain this as a consequence of the following more general
theorem, by taking the sequence (4.9) to be S→ R→ R[x−1].

Theorem 4.8. Let

(4.9) S→ A
f→ B

be a sequence of cofibrations of commutative S-algebras. Suppose that the multiplication map
µ : B ∧A B → B is a weak equivalence. Then the map of augmented commutative B-algebras

(4.10) B ∧A THH(A) ∼= THH(A,B)
THH(f,id)

// THH(B,B) = THH(B)

is a weak equivalence.

This theorem is valid mutatis mutandis when S is replaced by some cofibrant commutative
S-algebra.

We draw inspiration from [Hön17, Lemma 2.4.10]. For R ∈ S-CAlg, denote Re := R ∧R.

Proof. Consider A (resp. B) as a commutative Ae-algebra (resp. Be-algebra) via the multiplica-
tion map Ae → A (resp. Be → B). Recall that THH(A,B) ∼= B ∧Ae B(A,A,A) and similarly
for THH(B) (see [EKMM97, IV.7.2, IX.2.4] for a definition of the two-sided bar construction
B(A,A,A) and a proof of the isomorphism).

Let B̃ ∼→ B be a cofibrant replacement of B in the category of commutative Be-algebras.
There is a commutative diagram of S-modules

(4.11) THH(A,B)

THH(f,id)

��

B̃ ∧Ae B(A,A,A)
∼
oo

∼
//

(id,f)

��

B̃ ∧Ae A

f
��

THH(B) B̃ ∧Be B(B,B,B)
∼
//

∼
oo B̃ ∧Be B.

Indeed, recall that there is a weak equivalence of commutative Ae-algebras B(A,A,A) → A

[EKMM97, IV.7.5] and a cofibration in S-CAlg Ae → B(A,A,A) given by inclusion of the first
and last smash factors. See [Hön17, Proof of Lemma 2.4.8] for a proof of this last fact.

The arrow (id, f) in the middle is defined via the universal property for the coproduct in
commutative Ae-algebras, using the canonical map B̃ → B̃ ∧Be B(B,B,B) to the first factor,
and the map B(A,A,A) → B(B,B,B) defined by smash powers of f at the simplicial level
followed by the canonical map to the second factor.

The arrow f is described as follows. First note that there are isomorphisms

B̃ ∧Ae A ∼= B̃ ∧Be (Be ∧Ae A) ∼= B̃ ∧Be (B ∧A B).

The last step comes from the isomorphism of commutative Be-algebras Be ∧Ae A ∼= B ∧A B
which appears e.g. in [Lin00, Lemma 2.1]. Then f is defined to be the composition

B̃ ∧Ae A ∼= B̃ ∧Be (B ∧A B)
id∧µ

// B̃ ∧Be B.
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The previous diagram appears as the geometric realization of a diagram in simplicial S-modules.
The arrows in this latter diagram are very explicitely defined, and it is immediate that they
make the diagram commute.

Therefore, to see that THH(f, id) is a weak equivalence, it suffices to see that id∧µ is a weak
equivalence. This is the case: indeed, the functor B̃ ∧Be − preserves weak equivalences between
cofibrant commutative S-algebras because B̃ is cofibrant as a commutative Be-algebra. Now
note that B ∧A B is a cofibrant commutative S-algebra because it is a cofibrant commutative
A-algebra (it is a coproduct of two cofibrant commutative A-algebras). �

Lemma 3.2 allows us to apply Theorem 4.8 to S→ R→ R[x−1]. Putting this together with
the weak equivalence (4.7), we obtain:

Corollary 4.12. Let R be a cofibrant commutative S-algebra, and let x ∈ π∗R. There are weak
equivalences of augmented commutative R[x−1]-algebras

THH(R)[x−1] THH(R,R[x−1])
∼
oo

∼
// THH(R[x−1]).

Remark 4.13. We have recently become aware that, in [SVW00, Page 353], the authors state that
“one can prove that THH commutes with localizations”, pointing to an article in preparation
which never appeared.

Remark 4.14. We know three proofs of the fact that Hochschild homology commutes with lo-
calizations. Weibel [Wei94, 9.1.8(3)] proves it using the fact that Tor behaves well under flat
base change. Brylinski [Bry89] (see also [Lod98, 1.1.17]) proves it by comparing the homological
functors defined on A-bimodules S−1HHn(A,−) and HHn(S−1A,S−1−), where S is a multi-
plicative subset of the commutative algebra A. In [WG91], Geller and Weibel prove the more
general result that Hochschild homology behaves well with respect to étale maps of commutative
algebras A→ B, of which a localization map is an example. Our proof of Theorem 4.8 is closer
to the first of these approaches.

Remark 4.15. For a map f : A→ B of commutative S-algebras as in Theorem 4.8, the question
of under what conditions is (4.10) a weak equivalence has been considered before. For example,
in [MM03, Lemma 5.7] the authors prove that it holds when A and B are connective and the
unit B → THHA(B) is a weak equivalence. Mathew [Mat17, Theorem 1.3], working in the
context of the E∞-rings of Lurie, proved that a map A → B of E∞-rings satisfies that (4.10)
is an equivalence provided f is étale, with no hypotheses on connectivity. There is a notion of
localization of E∞-rings, and Lurie proved that localization maps are étale [Lur, 7.5.1.13]. This
gives a short proof of Theorem 4.8 applied to S→ R→ R[x−1] in the context of E∞-rings: this
is the point of view adopted for the more general result of [RSV19, Corollary 7.4].

5. Topological Hochschild homology of KU

5.1. Flatness. Let G be a topological commutative monoid. We cannot prove that the commu-
tative S-algebra S[G] is cofibrant (and we believe it is not, in general), even if G satisfies good
cofibrancy hypotheses. Instead, we remark that, when G is a CW-complex and the unit is a
0-cell, S[G] is flat (to be defined below) and Bcy

• (S[G]) is a proper simplicial S-module: these
properties ensure that THH(S[G]) has homotopical meaning. We thank Cary Malkiewich and
Michael Mandell for helping us realize this.

Definition 5.1. An S-module M is flat if M ∧ − : S-Mod → S-Mod preserves all weak
equivalences.

Note that if M is flat and N is any S-module, then N ∧M computes the derived smash
product.
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Remark 5.2. Flat S-modules satisfy the following properties:

• Any cofibrant S-module is flat, and S is flat.
• Smash products of flat S-modules are flat.
• Coproducts of flat S-modules are flat.
• Weak equivalences between flat S-modules are closed under finite smash products.

We do not know whether the underlying S-module to a cofibrant commutative S-algebra is
automatically flat.

Lemma 5.3. Let A and A′ be cofibrant commutative S-algebras, N be any S-module and M be
a flat S-module. Let f : A→ N , g : A′ →M be weak equivalences of S-modules. Then

f ∧ g : A ∧A′ → N ∧M

is a weak equivalence of S-modules.

Proof. Let γA : ΓA→ A and γA′ : ΓA′ → A′ be cofibrant replacements of A and A′ in S-Mod.
Consider the following commutative diagram:

A ∧A′
f∧g

// N ∧M

ΓA ∧ ΓA′

γA∧γA′
OO

id∧(g◦γA′ )
// ΓA ∧M.

(f◦γA)∧id

OO

By Properties (1) and (2) of Section 2, the left vertical map and the bottom horizontal map are
weak equivalences. The right vertical map is a weak equivalence because M is flat. In conclusion,
f ∧ g is a weak equivalence. �

Lemma 5.4. Let Y be a based CW-complex. Then Σ∞Y is a flat S-module. Also, the functor
Σ∞Y ∧ − : S-Mod→ S-Mod is left Quillen, so if M is a cofibrant S-module, then Σ∞Y ∧M
is so too.

Proof. The first statement is [MM02, 4.11(i)]. Recall that Σ∞Y ∧ − is isomorphic to Y ∧ −,
where the latter ∧ denotes the tensor of S-Mod over Top∗ [EKMM97, II.1.4]. Since S-Mod is
a Top∗-model category and Y is cofibrant in Top∗, this implies that Σ∞Y ∧ − is left Quillen,
so it takes the cofibrant M to a cofibrant S-module. �

Proposition 5.5. Let G be a CW-complex which is a topological commutative monoid with
unit a 0-cell. Let f : S̃[G] → S[G] be a weak equivalence in S-CAlg, where S̃[G] is a cofibrant
commutative S-algebra. Then

THH(f) : THH(S̃[G])→ THH(S[G])

is a weak equivalence of commutative S̃[G]-algebras.

Proof. First, note that Bcy
• (S[G]) is a proper simplicial S-module. Indeed, by Proposition 4.4,

Bcy
• (S[G]) ∼= S[Bcy

• G]. Now, the functor Σ∞+ : Top→ S-Mod preserves properness of simplicial
objects, as was observed in [EKMM97, IV.7.8]. But Bcy

• (G) is a proper simplicial space, since it
is good [BCS10, 3.2] and any good simplicial space is proper [Lew82, Proof of 2.4(b)]. Therefore,
by [EKMM97, X.2.4], it suffices to see that Bcy

• (f) : Bcy
• (S̃[G])→ Bcy

• (S[G]) is levelwise a weak
equivalence.

The map f ∧ f : S̃[G] ∧ S̃[G] → S[G] ∧ S[G] is a weak equivalence by the previous two
lemmas. For higher smash powers of f , the statement is proven by an analogous argument and
induction. �
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Remark 5.6. More generally, we have just proven that if A→ B in S-CAlg is a weak equivalence
where A is a cofibrant commutative S-algebra and B is a flat S-module such that Bcy

• (B) is a
proper simplicial S-module, then THH(A)→ THH(B) is a weak equivalence of commutative
A-algebras.

5.2. Topological Hochschild homology of S[G][x−1]. Let G be a CW-complex which is a
topological abelian group with unit a 0-cell and cellular addition map. As remarked in Section 4.4,
these assumptions guarantee that BG is again a CW-complex, so that S[BG] is a flat S-module
by Lemma 5.4. This will be useful in the proof of Theorem 5.9.

We first isolate a result that does not involve inverting an element.

Lemma 5.7. There is an isomorphism of augmented commutative S[G]-algebras

THH(S[G]) ∼= S[G] ∧ S[BG] = S[G][BG].

Proof. It is an application of Propositions 4.4, 4.6 and 4.5:

THH(S[G])
∼=
// S[BcyG]

∼=
// S[G×BG] S[G] ∧ S[BG].

∼=
oo �

Let x ∈ π∗S[G]. Recall from Definition 3.9 that S[G][x−1]h is defined as (QS[G])[x−1] where
Q is a cofibrant replacement functor in the category of commutative S-algebras coming from a
functorial factorization. It factors the unit eR : S→ R of a commutative S-algebra R as

(5.8) S
eR

//
!!

eQR
!!

R

QR.

∼
qR

== ==

Theorem 5.9. The commutative S[G][x−1]h-algebras THH(S[G][x−1]h) and S[G][x−1]h[BG] are
weakly equivalent as S[G][x−1]h-algebras.

For any commutative S-algebra A, the notation A[BG] stands for the commutative A-algebra
A ∧ S[BG]: thus, its underlying A-module is A ∧ (BG)+. No confusion should arise from the
usage of square brackets for two different notions.

Proof. For ease of notation, let us denote S[G] by A and S[BG] by B. As in Remark 2.2
for R = QA, the functor Q begets a cofibrant replacement functor QQA in the category of
commutative QA-algebras. For ease of notation we denote it by QA. This functor factors the
unit uX : QA→ X of a QA-commutative algebra X as

(5.10) QA
uX

//
##

uQAX
##

X

QAX.

∼

qAX

<< <<

Using Corollary 4.12, we obtain a zig-zag of two weak equivalences of commutative QA[x−1]-
algebras

THH(QA[x−1]) ' THH(QA)[x−1].

By Proposition 5.5, the map of commutative QA-algebras THH(QA)→ THH(A) is a weak
equivalence. We apply QA and obtain a weak equivalence of commutative QA-algebras

QA(THH(QA))
∼
// QATHH(A).

Note that if we had applied Q instead of QA, we would not be able to guarantee that the above
morphism be a morphism of QA-algebras.
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We also have a weak equivalence of commutative QA-algebras QATHH(QA)→ THH(QA).
After inverting x, we obtain a zig-zag of weak equivalences of commutative QA[x−1]-algebras:

(5.11) THH(QA)[x−1] (QATHH(QA))[x−1]
∼
oo

∼
// (QATHH(A))[x−1].

Now, by Lemma 5.7, THH(A) ∼= A ∧B as commutative A-algebras, so we obtain an isomor-
phism of commutative QA[x−1]-algebras

(QATHH(A))[x−1] ∼= (QA(A ∧B))[(x ∧ 1)−1].

We now construct a weak equivalence of commutative QA-algebras

r : QAA ∧QB → QA(A ∧B)

where QAA∧QB is a QA-algebra by means of the map QA
uQAA

// QAA
id∧eQB

// QAA ∧QB. Since
∧ is the coproduct in the category of commutative S-algebras, we define the map r to be the
morphism in S-CAlg given as follows. It is QA(id ∧ eB) : QAA → QA(A ∧ B) on the first
component. On the second component, it is the map t : QB → QA(A ∧ B) gotten from the
functorial factorization on S-CAlg applied to the vertical arrows in the following commutative
diagram:

S
eQA

//

eB

��

QA

qA∧eB
��

B
eA∧idB

// A ∧B.

This defines the map r as a morphism of commutative S-algebras. It is a morphism of com-

mutative QA-algebras: the composition QA
uQAA

// QAA
QA(id∧eB)

// QA(A ∧B) coincides with
uQA(A∧B) by functoriality of the factorization. We will now prove that r is a weak equivalence.
First, consider the following diagram:

QAA //

QA(id∧eB) ((

qAA∧eB
,,

QAA ∧QB

r

��

QBoo

t
vv

eA∧qB

rr

QA(A ∧B)

qAA∧B
��

A ∧B
The two upper triangles commute by definition of r. The two lower triangles also commute: the
left one by definition of QA(id ∧ eB), the right one by definition of t. By the universal property
of the coproduct in S-CAlg, this proves that qAA∧B ◦ r = qAA ∧ qB. Lemma 5.3 applies to prove
that qAA ∧ qB is a weak equivalence. Therefore, since qAA∧B is also a weak equivalence, so is r.

Inverting x ∧ 1 in r, we obtain a weak equivalence of commutative QA[x−1]-algebras

QA(A ∧B)[(x ∧ 1)−1] (QAA ∧QB)[(x ∧ 1)−1].
∼
oo

By Proposition 3.6, there is a weak equivalence of commutative QA[x−1]-algebras

(5.12) (QAA ∧QB)[(x ∧ 1)−1] QAA[x−1] ∧QB.∼
oo

From (5.10) applied to X = A, we get that qA = qAA ◦ uQAA, so uQAA : QA → QAA is a weak
equivalence of commutative QA-algebras. We can invert x to obtain the weak equivalence of
commutative QA[x−1]-algebras QA[x−1]→ QAA[x−1], which after smashing with QB becomes

QAA[x−1] ∧QB QA[x−1] ∧QB,∼
oo
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a weak equivalence of commutative QA[x−1]-algebras.
Now consider the weak equivalence qB : QB → B of commutative S-algebras. Lemma 5.3

applies to prove that
QA[x−1] ∧QB ∼

// QA[x−1] ∧B

is a weak equivalence of commutative QA[x−1]-algebras. Putting together all these weak
equivalences, we obtain a zig-zag of weak equivalences of commutative (QS[G])[x−1]-algebras
THH((QS[G])[x−1]) ' ((QS[G])[x−1])[BG]. �

Remark 5.13. In this remark, we explain how compatible is the zig-zag of weak equivalences just
obtained with the augmentations.

Ignoring the last weak equivalence in the zig-zag of weak equivalences obtained in the proof,
we have obtained

(5.14) THH(QA[x−1]) ' QA[x−1] ∧QB.

The left-hand side is naturally augmented over QA[x−1]. We now give the right-hand side an
augmentation over QA[x−1] defined from the universal property of the coproduct in S-CAlg.
On the first factor, it is the identity. On the second factor, it is the arrow:

QB
Q(eA◦εB)

// QA // QA[x−1]

where εB is the augmentation of B = S[BG] coming from BG → ∗ and the second map is the
localization map. If one goes through the proof of the previous theorem, one can prove that the
zig-zag (5.14) commutes with the augmentations, in the following sense: this zig-zag fits as one
long horizontal side of a ladder diagram, where the other side starts and ends with QA[x−1] and
in the middle has as objects QA[x−1], QAQA[x−1] or QAA[x−1], connected to each other via the
obvious weak equivalences or via identities when possible. The ingredients used in the proof of
this are: the fact that Corollary 4.12 and Lemma 5.7 are compatible with the augmentations, the
naturality of Proposition 3.6 and of THH, and the functoriality of the factorization (cofibrations,
acyclic fibrations).

The last weak equivalence

(5.15) QA[x−1] ∧QB → QA[x−1] ∧B

is more problematic. The only sensible augmentation over QA[x−1] to define on the codomain
would be id ∧ εB, but then the weak equivalence (5.15) commutes with the augmentations only
up to homotopy of commutative QA[x−1]-algebras. Indeed, in the following diagram

QB
Q(eA◦εB)

//

qB
��

QA

qA∼
��

B

eQA◦εB
88

eA◦εB
// A

the square commutes, the bottom triangle commutes, but the upper triangle does not seem to
commute. However, since qA is a weak equivalence, it commutes in the homotopy category of
QA-CAlg.

5.3. Snaith’s theorem and first description of THH(KU). There is a cofibrant commu-
tative S-algebra KU of complex topological K-theory [EKMM97, VIII.4.3]. It is obtained by
applying the localization theorem we reviewed in Theorem 3.1 to the cofibrant commutative
S-algebra ku of connective complex K-theory and its Bott element. Here ku is constructed by
multiplicative infinite loop space theory.

The presentation for KU which we will use relies on the following theorem of Snaith [Sna79],
[Sna81].
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Theorem 5.16. KU is weakly equivalent as a homotopy commutative ring spectrum to
S[CP∞][x−1]tel, where x ∈ π2(S[CP∞]) is represented by the map induced from the inclusion
CP 1 → CP∞, i.e.

(5.17) Σ∞S2 ∼= Σ∞CP 1 → S ∨ Σ∞CP∞ ' Σ∞+ CP∞.

Here S[CP∞][x−1]tel means the homotopy commutative ring spectrum obtained with a telescope
construction, as in (3.7).

As remarked in [EKMM97, VIII.4], the more structured version of the inversion of a homotopy
element described in Section 3 is weakly equivalent to this telescope construction as homotopy
commutative ring spectra (i.e. commutative monoids in the homotopy category of spectra).
Indeed, the technology of S-algebras did not exist at the time Snaith’s theorem got published,
but this is not a problem:

Theorem 5.18. [BR05, 6.2] Let A be an E∞-ring spectrum which is weakly equivalent to KU
as a homotopy commutative ring spectrum. Then A is weakly equivalent to KU as an E∞-ring
spectrum.

Any E∞-ring spectrum A admits a weak equivalence of E∞-ring spectra from the commutative
S-algebra S∧LA, and this construction is functorial [EKMM97, II.3.6]; moreover, the morphisms
of commutative S-algebras are exactly the morphisms of the underlying E∞-ring spectra. So
if A in the statement of Theorem 5.18 was a commutative S-algebra to begin with, then it is
weakly equivalent to KU as a commutative S-algebra.

Let K(Z, 2) denote the topological abelian group given by B(BZ), where B is the classifying
space construction reviewed in Section 4.4. The homotopy commutative ring spectrum S[CP∞]

is weakly equivalent to the cofibrant commutative S-algebra QS[K(Z, 2)]. Therefore,

S[CP∞][x−1]tel ' QS[K(Z, 2)][x−1]

as homotopy commutative ring spectra. By the results above, we obtain that

(5.19) KU ' QS[K(Z, 2)][x−1]

as commutative S-algebras. This is the description of KU that we shall be using, so from now
on we let KU denote the cofibrant commutative S-algebra QS[K(Z, 2)][x−1] that we have also
denoted by S[K(Z, 2)][x−1]h.

Remark 5.20. We thank Christian Schlichtkrull for pointing out the article [Art83] to us. In
Theorems 5.1 and 5.2 therein, it is proven that if t ∈ πn(S[K(Z, n)]) is a generator, then the
spectrum S[K(Z, n)][t−1]tel is contractible for n odd and is equivalent to HQ[t±1] for n ≥ 4 even.
So the case n = 2 which we treat here is the only interesting localization of S[K(Z, n)].

Note that Z is a CW-complex (with only 0-cells) and a (discrete) topological abelian group
with cellular addition map, so this guarantees that K(Z, 2) satisfies the same hypotheses, as
recalled in Section 4.4. Therefore, we can apply Theorem 5.9 to obtain:

Theorem 5.21. The commutative KU -algebras THH(KU) and KU [K(Z, 3)] are weakly equiv-
alent as commutative KU -algebras.

Remark 5.13 tells us that the zig-zag of weak equivalences is compatible up to homotopy with
the augmentations.

Remark 5.22. Compare with what happens to THH(MU): in [BCS10], the authors establish a
weak equivalence of S-modules THH(MU) 'MU∧SU+. They actually prove the following more
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general result. Let BF denote a classifying space for stable spherical fibrations. If f : X → BF is
a 3-fold loop map and T (f) is its Thom spectrum, then there is a weak equivalence of S-modules

(5.23) THH(T (f)) ' T (f) ∧BX+.

Note that this result was improved to a weak equivalence of E∞ S-algebras by Schlichtkrull
[Sch11, Corollary 1.2] in the case where X is a grouplike E∞-space and f is an E∞-map.

Our Theorem 5.21 gives in particular a weak equivalence of S-modules

THH(KU) ' KU ∧K(Z, 3)+.

By comparing this formula to (5.23), one is naturally led to conjecture that KU is the Thom
spectrum of an ∞-loop map K(Z, 2) ' BU(1)→ BU . However, this is not possible, since such
Thom spectra are connective. In the last decade, more general Thom spectra which can be
non-connective have been introduced, and in [RSV19, Example 4.23] the authors remarked that
KU cannot be such a Thom spectrum of a map from K(Z, 2), as a consequence of the Thom
isomorphism theorem. One possible explanation of why does KU behave like a Thom spectrum
to the eyes of topological Hochschild homology is to be found in that paper, where the above
expression for THH(KU) is obtained by considering KU as an étale extension of S[K(Z, 2)],
which is a trivial Thom spectrum.

5.4. Rationalization. In this section we review some facts about rationalization of S-modules
and of based spaces that we will be using, often without explicit mention.

Consider a model for the Eilenberg-Mac Lane spectrum of Q which is a commutative S-algebra
[EKMM97, II.4]. Let HQ be a cofibrant S-module equivalent to it in the category of S-modules.
In particular, HQ is a homotopy commutative ring spectrum. Denote by ι : S → HQ its unit
and by µ : HQ ∧HQ→ HQ its multiplication map, which is a weak equivalence.

We consider Bousfield localization [EKMM97, VIII.1], [MP12, 19.2] of S-modules with respect
toHQ, and we call this process rationalization. A mapX → Y of S-modules is anHQ-equivalence
(or rational equivalence) if it is a weak equivalence after smashing it with HQ. An S-module W
is HQ-acyclic if HQ∧W ' ∗. An S-module X is HQ-local (or rational) if, for every HQ-acyclic
S-module W , the only map W → X in the homotopy category of S-modules is the trivial one.
A rationalization map for X is an HQ-equivalence X → Y where Y is rational; rationalizations
are unique up to homotopy. Note that HQ ∧ X is rational since it is an HQ-module [Rav84,
1.17]. The following diagram is homotopy commutative:

HQ ∧X id∧ι∧id
//

id ((

HQ ∧HQ ∧X

µ∧id

��

HQ ∧X,

so we only need µ ∧ id to be a weak equivalence in order to assert that ι ∧ id : X → HQ ∧X
is a rationalization of X. This is true because, as we have seen in Property (1) of Section 2,
all S-modules X satisfy that X ∧ − preserves weak equivalences between cofibrant S-modules.
Therefore, ι∧ id : X → HQ∧X is a rationalization map for X, and from now on we let X → XQ
mean this map. This construction is functorial in X ∈ S-Mod.

From this construction one deduces some properties: if f : X → Y is a weak equivalence of
S-modules then it is a rational equivalence, since HQ is cofibrant. The homotopy groups of XQ
are isomorphic to Q⊗π∗X. An S-module is rational if and only if X → XQ is a weak equivalence,
if and only if the homotopy groups of X are rational (i.e. Q-vector spaces). If f : X → Y is
a rational equivalence between rational S-modules, then it is a weak equivalence. If X is the
suspension spectrum of a based CW-complex, then XQ = HQ ∧X is cofibrant (Lemma 5.4).
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Let Y be another S-module. We have a map

XQ ∧ YQ → (X ∧ Y )Q

given by applying the multiplication map of HQ, and it is a weak equivalence. In particular,
the smash product of the rationalization maps, X ∧ Y → XQ ∧ YQ, is a rationalization of X ∧ Y .
Note that if X and Y are rational and one of them is cofibrant or flat, so that X ∧ Y computes
the derived smash product, then π∗(X ∧ Y ) ∼= π∗X ⊗Q π∗Y by a Künneth spectral sequence
argument computing HQ∗(X ∧ Y ) [EKMM97, IV.4.7].

Let n be any integer. The degree n map n : S → S induces a map n : X → X on any
S-module X by smashing with it. If p : X → X is a weak equivalence for every prime p then the
homotopy groups of X are rational, since p induces the multiplication by p map on homotopy
groups. Therefore, in this case, X is rational.

Based spaces X also admit rationalizations q : X → XQ (see [FHT01, 9.(b)] or [MP12, 6.5]
for the simply-connected case which is the one we shall be using). We will need the following
fact concerning the rationalization of integral Eilenberg-Mac Lane spaces [FHT01, Page 202]:
for n ≥ 2, there are homotopy equivalences

K(Z, n)Q
∼←

{
SnQ if n is odd,
ΩSn+1

Q if n is even.

Actually, the authors prove that, for n even, there is a rational homotopy equivalence ΩSn+1 →
K(Z, n), so we get a homotopy equivalence (ΩSn+1)Q

∼→ K(Z, n)Q, which is not exactly what
we wrote. But more generally, we have that (ΩX)Q is homotopy equivalent to ΩXQ. Indeed, by
taking homotopy groups, we quickly see that ΩXQ is rational and that Ωq : ΩX → ΩXQ is a ratio-
nal homotopy equivalence. Since rationalizations are unique up to homotopy, this gives the result.

If X is a based simply-connected space with rationalization map q : X → XQ, then Σ∞q :

Σ∞X → Σ∞XQ is immediately seen to be a rationalization of Σ∞X. Therefore, (Σ∞X)Q
is homotopy equivalent to Σ∞XQ, i.e. rationalization of based spaces and of S-modules are
compatible under the Σ∞ functor.

5.5. THH(KU), continuation. We will now describe the commutativeKU -algebra THH(KU)

as the free commutative KU -algebra on the KU -module ΣKUQ, and we will prove this algebra
is weakly equivalent to the split square-zero extension of KU by ΣKUQ. Let us first define this
concept.

Let R be a commutative S-algebra, let A be a commutative R-algebra and let M be a non-
unital commutative A-algebra. Then A ∨ M (coproduct of A-modules) has a commutative
A-algebra structure. Indeed, after distributing, a multiplication map

(A ∨M) ∧A (A ∨M)→ A ∨M

looks like

(5.24) (A ∧A A) ∨ (A ∧AM) ∨ (M ∧A A) ∨ (M ∧AM)→ A ∨M.

We may define a map like (5.24) by defining maps from each of the wedge summands to A ∨M .
Define the maps to A∨M from A∧AA, A∧AM and M ∧AA to be the canonical isomorphisms
followed by the canonical maps into the respective factor. Finally, consider the map M ∧AM →
A∨M given by the multiplication map of M followed by the canonical map to A∨M . We have
thus defined a multiplication map (5.24) such that A∨M is a commutative A-algebra with unit
given by the canonical map A → A ∨M . We say that A ∨M is a split extension of A by M .
Note that A ∨M is augmented over A: the augmentation is the identity on A and the trivial
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map on M . If the multiplication of M is trivial, then A ∨M is a split square-zero extension of
A by M ; in this case, M is no more than an A-module.

The rest of this section is devoted to the proof of the following

Theorem 5.25. There are weak equivalences of commutative KU -algebras

KU ∨ ΣKUQ F (ΣKUQ)
h

∼
oo

f̃

∼
// THH(KU)

where KU∨ΣKUQ is a split square-zero extension. Here f : ΣKUQ → THH(KU) is a morphism
of KU -modules to be constructed in (5.39), and the morphism f̃ is induced from f by the free
commutative algebra functor F : KU -Mod → KU -CAlg. The map h is adjoint to the wedge
inclusion of KU -modules ΣKUQ → KU ∨ ΣKUQ.

Remark 5.26. The functor F , or more generally, the free commutative algebra functor FR :

R-Mod → R-CAlg where R is a commutative S-algebra, is the left adjoint of the forgetful
functor UR : R-CAlg→ R-Mod, or alternatively, the free algebra functor for the monad PR on
R-Mod defined as

(5.27) PR(M) =
∨
n≥0

M∧Rn
/

Σn = R ∨M ∨
∨
n≥2

M∧Rn
/

Σn ,

where Σn is the symmetric group on n elements (see e.g. [EKMM97, II.7.1] or [Bas99, Section
1]). Note that FRM is augmented over R: the augmentation is the identity on the 0-th term
and the trivial map on the other terms.

As explained in Section 2, the functor UR : R-CAlg→ R-Mod is a right Quillen functor, so
FR : R-Mod→ R-CAlg is a left Quillen functor. In particular, it preserves weak equivalences
between cofibrant R-modules.

Note as well that, if R is a cofibrant commutative R-algebra andM ∈ R-Mod is cofibrant, then
the arrow

∨
n≥0(M∧Rn)hΣn → FR(M) induced from the canonical arrows from the homotopy

orbits to the orbits is a weak equivalence [EKMM97, III.5.1]. This is a step in the proof of the
determination of the model structure on R-CAlg.

Remark 5.28. A spectrum-level result related to Theorem 5.25 was obtained by McClure and
Staffeldt in [MS93, Theorem 8.1]: they showed that THH(L) ' L ∨ ΣLQ as spectra, where L
is the p-adic completion of the Adams summand of KU for a given odd prime p; the result was
extended to p = 2 by Angeltveit, Hill and Lawson in [AHL10, 2.3]. Ausoni [Aus05, Proposition
7.13] formulated without proof the analogous theorem (for an odd p) for KU completed at p in
place of L. In Corollary 7.9 of [AHL10], the authors show that THH(KO) ' KO ∨ ΣKOQ as
KO-modules. The methods used in the proofs of the results just cited are different from ours.

We first prove some results needed for the proof. Note that in the following statement we are
considering K(Z, 3) as a based space: we are not adding a disjoint basepoint.

Proposition 5.29. There is a zig-zag of weak equivalences of KU -modules

KU ∧K(Z, 3) ' ΣKUQ.

Proof. Let p be a prime and consider the cofiber sequence of KU -modules

(5.30) KU
p
// KU // KU/p.

If p > 2, then KU/p is equivalent to
p−2∨
i=0

Σ2iK(1) (see [Ada69, Lecture 4]), where K(1) ' L/p is

the first Morava K-theory at p. If p = 2, then K(1) ' KU/2.
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The homology K(1)∗K(Z, 3) is trivial: see [RW80, Theorem 12.1] for the p > 2 case, and
[JW85, Appendix] for the p = 2 case. Therefore, after smashing (5.30) with K(Z, 3), we get a
weak equivalence of KU -modules

KU ∧K(Z, 3)
p∧id

∼
// KU ∧K(Z, 3)

for all primes p. This means that KU ∧K(Z, 3) is rational, and so we have weak equivalences

KU ∧K(Z, 3)
∼
// (KU ∧K(Z, 3))Q

KUQ ∧K(Z, 3)Q

∼

OO

KUQ ∧ S3
Q

∼
oo

∼
// (KU ∧ S3)Q

∼
// ΣKUQ

by the results quoted in Section 5.4, plus Bott periodicity for the last step. �

Lemma 5.31. The S-modules (ΣHQ)∧n
/

Σn are weakly contractible for all n ≥ 2.

Proof. First, note that ΣHQ is a cofibrant S-module. Indeed, HQ is a cofibrant S-module and
S1 is a CW-complex, so by Lemma 5.4 ΣHQ = Σ∞S1 ∧HQ is a cofibrant S-module. Therefore,
we can apply [EKMM97, III.5.1] to deduce that the map from the homotopy orbits

((ΣHQ)∧n)hΣn → (ΣHQ)∧n
/

Σn

is a weak equivalence. We will prove that the homotopy orbits form a weakly contractible
S-module, thus finishing the proof.

The homotopy orbits spectral sequence [Tsa97, 3.2] here looks like this:

E2
∗,∗
∼= H∗(Σn;π∗((ΣHQ)∧n))⇒ π∗(((ΣHQ)∧n)hΣn).

Remark that π∗((ΣHQ)∧n) ∼= H̃∗((S
1)∧n;Q) as Σn-modules, since indeed rearranging the factors

in (ΣHQ)∧n = (Σ∞S1 ∧ HQ)∧n is Σn-equivariant and so is the iterated multiplication map
(HQ)∧n → HQ (at least up to homotopy).

Since the homology of Σn with rational coefficients vanishes in positive degrees, the only group
in the E2-page of the spectral sequence which could be non-trivial is H0(Σn; H̃n((S1)∧n;Q)).
The action of Σn on (S1)∧n permutes the factors. Under the homeomorphism (S1)∧n ∼= Sn, each
σ ∈ Σn acts on Sn by a map Sn → Sn whose degree is the sign of σ. Indeed, one can decompose
σ as a composition of transpositions, which reduces the problem to the determination of the
degree of the map S2 → S2 determined by permuting the two smash factors. This map does
have degree −1, since it is a reflection of S2 along a plane cutting the sphere in two identical
parts.

In conclusion, the action of Σn on H̃n(Sn;Q) ∼= Q is the rational sign representation of Σn,
so H0(Σn; H̃n(Sn;Q)) vanishes. Therefore, the E2-page of the spectral sequence is trivial, and
thus π∗(((ΣHQ)∧n)hΣn) = 0, finishing the proof. �

For the next results, recall that FR denotes the free commutative R-algebra on an R-module
functor described in Remark 5.26.

Corollary 5.32. The map of commutative augmented S-algebras

hS : FS(ΣHQ)→ S ∨ ΣHQ

defined as the adjoint to the wedge inclusion of S-modules ΣHQ→ S∨ΣHQ is a weak equivalence,
where S ∨ ΣHQ is a split square-zero extension.

Proof. We have that FS(ΣHQ) = S ∨ ΣHQ ∨
∨
n≥2

(ΣHQ)∧n
/

Σn . By construction, hS is the

identity on the first two wedge summands and it is a trivial map on the n ≥ 2 summands, so it
is a weak equivalence by the previous lemma. �
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Proposition 5.33. Let R be a cofibrant commutative S-algebra. The map of commutative
augmented S-algebras

h : FR(ΣRQ)→ R ∨ ΣRQ.

defined as the adjoint to the wedge inclusion of R-modules ΣRQ → R∨ΣRQ is a weak equivalence,
where R ∨ ΣRQ is a split square-zero extension.

Remark 5.34. Note that we are applying FR to a cofibrant R-module, and so in particular
FR(ΣRQ) is a cofibrant commutative R-algebra. Indeed, as observed in Lemma 5.31, ΣHQ is
a cofibrant S-module. Now, the extension of scalars functor R ∧ − : S-Mod → R-Mod is left
Quillen: indeed, its right adjoint, the restriction of scalars functor, is right Quillen since the
model structure in R-Mod is created through it. Therefore, R ∧ (ΣHQ) ∼= ΣRQ is a cofibrant
R-module.

Proof. Note that for an S-module X, we have a natural isomorphism FR(R ∧X) ∼= R ∧ FS(X).
Indeed,

FR(R ∧X) =
∨
n≥0

(R ∧X)∧Rn
/

Σn
∼= R ∧

∨
n≥0

X∧n
/

Σn = R ∧ FS(X)

since the functor R ∧ − : S-Mod → R-Mod is a left adjoint and strong symmetric monoidal.
Therefore,

(5.35) FR(ΣRQ) ∼= FR(R ∧ ΣHQ) ∼= R ∧ FS(ΣHQ).

From Corollary 5.32 we get a weak equivalence of commutative augmented S-algebras hS :

FS(ΣHQ)→ S ∨ ΣHQ, and it is readily verified that the following diagram commutes:

R ∧ FS(ΣHQ)
id∧hS

// R ∧ (S ∨ ΣHQ)

∼=
��

FR(ΣRQ)

∼=

OO

h
// R ∨ ΣRQ.

Therefore, h is a weak equivalence if and only if id∧hS is a weak equivalence, which follows from
an application of Lemma 5.3. �

Remark 5.36. Let i : R ∨ ΣRQ → FR(ΣRQ) be the R-module map given by the wedge inclusion.
By construction of h, we have that h ◦ i = id. In particular, i is a weak equivalence.

Proof of Theorem 5.25. The map h is the one gotten in Proposition 5.33 for the case R =

KU . We now aim to establish the equivalence of commutative KU -algebras f̃ : F (ΣKUQ) →
THH(KU). First, we work additively, and then we will determine the multiplicative structure.

Recall that for any well-based space X, there is a homotopy equivalence of based spaces
Σ(X+) ' S1 ∨ ΣX. It makes the following diagram of based spaces commute:

S1

{{

i1

$$

Σ(X+)
'

// S1 ∨ ΣX

where the left diagonal map is Σu : Σ(∗+)→ Σ(X+); here u : ∗ → X is the basepoint. The map
i1 is the wedge inclusion in the first factor. Applying Σ∞1 (the left adjoint to the 1-st space functor
from spectra to based spaces) gives a homotopy equivalence of S-modules Σ∞+ X ' S ∨ Σ∞X,
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and the previous diagram becomes the following commutative diagram of S-modules:

(5.37) S
e

}}

i1

$$

Σ∞+ X
'

// S ∨ Σ∞X.

Here i1 is the wedge inclusion in the first factor.
Applying this to X = K(Z, 3) and combining it with Theorem 5.21 and Proposition 5.29, we

obtain weak equivalences of KU -modules

THH(KU) ' KU ∧ Σ∞+ K(Z, 3)
'→ KU ∧ (S ∨ Σ∞K(Z, 3)) ∼=(5.38)

∼= KU ∨ (KU ∧K(Z, 3)) ' KU ∨ ΣKUQ.

Note that each of the KU -modules in that chain has a map of S-modules from KU , namely:
η : KU → THH(KU) is the unit,KU → KU∧Σ∞+ K(Z, 3) is id∧e,KU → KU∧(S∨Σ∞K(Z, 3))

is id ∧ i1, KU → KU ∨ (KU ∧K(Z, 3)) is the inclusion in the first factor and the same goes
for KU ∨ ΣKUQ. The weak equivalences above are compatible with these maps: the first one
because it is a zig-zag of weak equivalences of KU -algebras, then we use the commutativity of
(5.37), and then it follows from an inspection of how the distributivity isomorphism works.

In the homotopy category of KU -Mod, we consider the map ΣKUQ → THH(KU) which is
the inclusion into KU ∨ΣKUQ followed by the isomorphism obtained from (5.38). Since ΣKUQ
is a cofibrant KU -module, we can represent this map by a morphism of KU -modules

(5.39) f : ΣKUQ → THH(KU).

After passing to the homotopy category of KU -modules, the map of KU -modules

(5.40) (η, f) : KU ∨ ΣKUQ → THH(KU)

coincides with the isomorphism obtained from (5.38), by construction and by the remarks right
after (5.38). In particular, (η, f) is a weak equivalence of KU -modules.

The morphism of KU -modules f induces a map of commutative KU -algebras

f̃ : F (ΣKUQ)→ THH(KU).

To see that it is a weak equivalence, note that, by definition of f̃ , it is such that f̃ ◦ i = (η, f),
where the weak equivalence of KU -modules i : KU ∨ ΣKUQ → F (ΣKUQ) was introduced in
Remark 5.36. Since (η, f) and i are weak equivalences, then f̃ is a weak equivalence, too. �

Remark 5.41. In this remark, we prove that f̃ : F (ΣKUQ)→ THH(KU) is compatible with the
augmentations in a sense to be made explicit below.

Each of the steps in the zig-zag of weak equivalences of KU -modules (5.38) between KU ∧
K(Z, 3)+ and KU ∨ ΣKUQ is augmented over KU and the maps in the zig-zag commute with
the augmentations. Here KU ∧ K(Z, 3)+ has the augmentation over KU given by id ∧ ε, as
in the last part of Remark 5.13, and KU ∨ ΣKUQ has the augmentation over KU given by
id∨ ∗, where ∗ denotes the trivial map. As for the intermediate steps, KU ∧ (S∨Σ∞K(Z, 3)) is
augmented by id∧ (id∨∗), and KU ∨ (KU ∧K(Z, 3)) is augmented by id∨ (id∧∗) = id∨∗. The
only non-trivial part in this verification is in the first step, the one obtained from the homotopy
equivalence Σ∞+ K(Z, 3) ' S ∨ Σ∞K(Z, 3) used in (5.37). More generally, for any well-based
space X the following diagram commutes:

Σ∞+ X
'

//

ε
!!

S ∨ Σ∞X

id∨∗
zz

S
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where ε : Σ∞+ X → S is obtained from X → ∗. This follows from the commutativity of the
following diagram of based spaces:

Σ(X+)
'

//

##

S1 ∨ ΣX

zz

S1

where the left diagonal map is Σ(X → ∗)+ and the right diagonal map is the identity map on
S1 and the suspension of the trivial based map X → S0 on ΣX.

Combining this with Remark 5.13, we obtain a “diagram”

THH(KU)
∼

��

KU ∧ Σ∞+ K(Z, 3)
∼

��

KU ∨ ΣKUQ

id∨∗
uu

KU
∼

KU

understood to mean that the left square is actually a ladder diagram of commutativeKU -algebras
and the right triangle is a ladder diagram (with the lower side collapsed to KU) of KU -modules.
The triangle commutes (in the sense that all the triangles it hides commute), and the square
commutes up to a homotopy of commutative KU -algebras. Similarly to how we constructed
f : ΣKUQ → KU , we can obtain a morphism of commutative KU -algebras g : KU → KU such
that the following diagram is homotopy commutative in KU -modules:

THH(KU)

��

KU ∨ ΣKUQ
(η,f)

∼
oo

id∨∗
��

KU KU.
g

∼
oo

Precomposing with the canonical map into the second factor ΣKUQ → KU ∨ΣKUQ, we obtain
the homotopy commutative diagram in KU -modules:

THH(KU)

��

ΣKUQ
f

∼
oo

∗
��

KU KU.
g

∼
oo

Since F is left Quillen and ΣKUQ is a cofibrant KU -module, this implies that the diagram

(5.42) THH(KU)

��

F (ΣKUQ)
f̃

∼
oo

��

KU KU.
g

∼
oo

is homotopy commutative in KU -CAlg, by an application of [Hir03, 8.5.16].

5.6. The morphism σ. If R is a commutative S-algebra, there is a natural transformation of
S-modules [MS93, Section 3], [EKMM97, IX.3.8], [AR05, 3.12]

σ : ΣR→ THH(R).

Consider the map of S-modules

(η, σ) : KU ∨ ΣKU → THH(KU).

It is tempting to conjecture that its rationalization

(ηQ, σQ) : KUQ ∨ ΣKUQ → THH(KU)Q
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is a weak equivalence, since by the results of the previous section, the S-modules KUQ ∨ ΣKUQ
and THH(KU)Q are weakly equivalent.

However, this is not the case. I thank Geoffroy Horel and Thomas Nikolaus for pointing out
this fact and the following proof to me. We will prove that σ : ΣKU → THH(KU) is zero in π1,
therefore it is still zero after rationalization. By naturality of σ, we have a commutative diagram

(5.43) ΣS σ
//

Σι
��

THH(S) ' S

THH(ι)
��

ΣKU
σ
// THH(KU)

where ι : S → KU is the unit of KU . After taking π1, we obtain a commutative diagram of
abelian groups

(5.44) Z //

id

��

Z/2

��

Z // Q.

Therefore, Z→ Q must be the zero map, since only the abelian group map Z/2→ Q is the zero
map.

Note that the same proof works for L (the p-adic completion of the Adams summand of KU ,
p a prime) instead of KU . Recall that π∗L ∼= Z(p)[(v1)±1], with v1 in degree 2p − 2. After
replacing KU with L in (5.43) and taking π1, we obtain a square which looks like (5.44) except
with a Z(p) on the lower left corner. The vertical map Z → Z(p) is the unit of Z(p): this still
forces π1σ : π1(ΣL)→ π1(THH(L)) to be zero.

This corrects an error in [MS93, 8.4] where it is claimed that there is a weak equivalence
LQ ∨ ΣLQ

∼→ THH(L)Q induced by (η, σ). As a positive result, we have Theorem 5.25 and the
weak equivalence (5.40) instead.

6. Iterated topological Hochschild homology of KU

Let A be a commutative S-algebra. We denote by THHn(A) the iterated topological Hochschild
homology of A, i.e. THH(. . . (THH(A))) where THH is applied n times. Other expressions
for THHn(A) include Tn ⊗ A or ΛTn(A), where Tn is an n-torus and Λ is the Loday functor
[CDD11]. Note that THHn(A) is an augmented commutative A-algebra.

We will now give two different descriptions of THHn(KU) for n ≥ 2. The first one, given
in Theorem 6.9, generalizes Theorem 5.21 which describes THH(KU) via Eilenberg-Mac Lane
spaces. The second one, given in Theorem 6.13, generalizes Theorem 5.25 which describes
THH(KU) as a free commutative KU -algebra on a KU -module.

We have also given a description of the commutative KU -algebra THH(KU) as the split
square-zero extension KU ∨ ΣKUQ in Theorem 5.25. For n ≥ 2, THHn(KU) is not a split
square-zero extension of KU , as we shall see. However, it is a split extension: we will describe
the non-unital commutative algebra structure of the homotopy groups of its augmentation ideal,
which is rational as in the n = 1 case.

6.1. Description via Eilenberg-Mac Lane spaces. Let G be a CW-complex which is a
topological abelian group with unit a 0-cell and a cellular addition map. Applying Lemma 5.7
and Proposition 4.5, we obtain isomorphisms of commutative S[G]-algebras:

THH2(S[G]) ∼= THH(S[G] ∧ S[BG]) ∼= THH(S[G×BG])

∼= S[G×BG] ∧ S[B(G×BG)] ∼= S[G] ∧ S[BG×BG×B2G]

which we have written as S[G][BG×BG×B2G].
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For general n ≥ 2, the same type of computation gives a description of THHn(S[G]): we
obtain an isomorphism of commutative S[G]-algebras

(6.1) THHn(S[G]) ∼= S[G][Ba1G× · · · ×Ba2n−1G].

The numbers ai can be described as follows. Let v0 = 0. Define by induction

(6.2) vn = (vn−1, vn−1 + (1, . . . , 1)) = (a0, . . . , a2n−1) ∈ N2n

for n ≥ 1. For example, v1 = (0, 1), v2 = (0, 1, 1, 2) and v3 = (0, 1, 1, 2, 1, 2, 2, 3). This sequence
of integers can be found in the On-Line Encyclopedia of Integer Sequences [Slo]. We can give
an easier description. Let In be the multiset having as elements the numbers i with multiplicity(
n
i

)
, for i = 1, . . . , n. Denote the multiplicity of an element x of a multiset by |x|. Now note

that the multiset underlying the sequence (a1, . . . , a2n−1) defined in (6.2) coincides with In, by
Pascal’s rule. Therefore, the isomorphism (6.1) can be reformulated as

(6.3) THHn(S[G]) ∼= S[G]

[
n∏
i=1

(BiG)×(ni)

]
.

The following theorem generalizes Theorem 5.9 to higher iterations of THH.

Theorem 6.4. Let x ∈ π∗S[G] and n ≥ 1. There is a zig-zag of weak equivalences of commutative
S[G][x−1]h-algebras

(6.5) THHn(S[G][x−1]h) ' S[G][x−1]h[Ba1G× · · · ×Ba2n−1G],

or alternatively,

(6.6) THHn(S[G][x−1]h) ' S[G][x−1]h

[
n∏
i=1

(BiG)×(ni)

]
.

Proof. The proof is by induction. The base case is Theorem 5.9. We do the induction step for
n = 2 for simplicity: for higher n it is analogous, only more cumbersome to write down.

We use the notations introduced for the proof of Theorem 5.9, namely A = S[G], B = S[BG],
Q is the cofibrant replacement functor in S-CAlg obtained from a given functorial factorization
in S-CAlg, and QA is the cofibrant replacement functor in QA-CAlg obtained by factoring the
unit of a QA-commutative algebra in S-CAlg. From the proof of that theorem, we obtain a
zig-zag of weak equivalences of cofibrant commutative QA[x−1]-algebras which we follow by an
isomorphism gotten by applying Proposition 4.5:

(6.7) THH(QA[x−1]) ' QA(A ∧B)[(x ∧ 1)−1] ∼= QAS[G×BG][(x× 1)−1].

We apply THH to obtain weak equivalences of commutative QA[x−1]-algebras

THH2(QA[x−1]) ' THH(QAS[G×BG][(x× 1)−1])

' (QAS[G×BG])[(x× 1)−1] ∧QS[B(G×BG)].

The second line comes from the zig-zag of weak equivalences obtained as follows. First, we observe
that if C is a QA-commutative algebra, then QAC → C defines a functorial cofibrant replacement
of C in the category of commutative S-algebras. We apply this remark to C = S[G×BG]. As a
consequence, analogous steps to the ones taken in the proof of Theorem 5.9 from the beginning
up to (5.12) apply mutatis mutandis and get us the result. We continue:

(QAS[G×BG])[(x× 1)−1] ∧QS[B(G×BG)] ∼= QA(A ∧B)[(x ∧ 1)−1] ∧QS[BG×B2G]

' QA[x−1] ∧QB ∧QS[BG×B2G]

' (QA[x−1])[BG×BG×B2G].
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Here, the first step is gotten from the isomorphism in (6.7). In the course of the proof of
Theorem 5.9 we obtained a zig-zag of weak equivalences of commutative QA[x−1]-algebras
QA(A∧B)[(x∧1)−1] ' QA[x−1]∧QB. The steps in this zig-zag are all cofibrant commutative S-
algebras and QS[BG×B2G] is a cofibrant commutative S-algebra: this explains the second step.
The third step is an application of Lemma 5.3 together with the isomorphism from Proposition
4.5. �

Remark 6.8. As in Remark 5.13, the zig-zag in the previous theorem is compatible up to homotopy
of commutative QA[x−1]-algebras with the augmentations, where the right-hand side of (6.5) is
augmented by means of the map Ba1G× · · · ×Ba2n−1G→ ∗ and similarly in (6.6).

As a corollary, we obtain:

Theorem 6.9. There is a zig-zag of weak equivalences of commutative KU -algebras

(6.10) THHn(KU) ' KU [K(Z, a1 + 2)× · · · ×K(Z, a2n−1 + 2)],

or alternatively,

(6.11) THHn(KU) ' KU

[
n∏
i=1

K(Z, i+ 2)×(ni)

]
.

For example,

(6.12) THH2(KU) ' KU [K(Z, 3)×K(Z, 3)×K(Z, 4)].

The previous theorem generalizes the expression of Theorem 5.21 for THH(KU) as
KU [K(Z, 3)] to THHn(KU). We can also generalize the expression for THH(KU) as F (ΣKUQ)

of Theorem 5.25. Note that the proof uses results from Section 7 below.

Theorem 6.13. Let n ≥ 2. There is a zig-zag of weak equivalences of commutative KU -algebras

F

(
n∨
i=1

(Si)∨(
n
i) ∧KUQ

)
' THHn(KU).

Proof. Since −∧KUQ : S-Mod→ KU -Mod and F : KU -Mod→ KU -CAlg are left adjoints,
they preserve coproducts, so:

F

(
n∨
i=1

(Si)∨(
n
i) ∧KUQ

)
∼= F

(
n∨
i=1

(ΣiKUQ)∨(
n
i)

)
∼=

n∧
KU
i=1

F (ΣiKUQ)∧KU(ni).

From (7.17), we obtain a zig-zag of weak equivalences of commutative KU -algebras
n∧
KU
i=1

F (ΣiKUQ)∧KU(ni) '
n∧
KU
i=1

(Si ⊗KU)∧KU(ni).

Using Theorem 7.19,
n∧
KU
i=1

(Si ⊗KU)∧KU(ni) '
n∧
KU
i=1

KU [K(Z, i+ 2)]∧KU(ni) ∼= KU

[
n∏
i=1

K(Z, i+ 2)×(ni)

]

which is weakly equivalent to THHn(KU) by Theorem 6.9. �

Remark 6.14. We might be tempted to prove the previous theorem more directly, arguing from
the weak equivalence of based spaces

(6.15) ΣTn ' Σ
n∨
i=1

(Si)∨(
n
i).
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However, we do not know a priori whether this guarantees that THHn(KU) = Tn ⊗ KU is

weakly equivalent to
(

n∨
i=1

(Si)∨(
n
i)
)
⊗KU (which we can easily compute using the description

from Theorem 7.19 of Si ⊗KU for all i ≥ 1 and the fact that − ⊗KU preserves coproducts).
Indeed, there are counterexamples to the statement that if A is a commutative S-algebra, then
X ⊗A ' Y ⊗A provided ΣX ' ΣY [DT18]. After having proved the theorem, though, we have
that KU does satisfy this for the special case of (6.15). The partial results of [Vee18] (extended
by [BLP+15]) prove that A = HFp also satisfy it for (6.15), at least in a certain range relating
n and p. We are led to ask ourselves the question, as [DT18, 4.1] did for A = HFp, of whether
more generally KU is such that X ⊗KU ' Y ⊗KU provided ΣX ' ΣY . More ambitiously,
it would be interesting to find conditions on any commutative S-algebra A that guarantee this
property.

6.2. The augmentation ideal. In this section, we investigate the augmentation ideal of
THHn(KU). Let us define this concept.

Let R be a commutative S-algebra and A be a commutative R-algebra with augmentation
ε : A→ R. Denote by A the fiber of ε, i.e. it is the R-module obtained as the pullback

A

��

i
// A

ε

��

∗ // R

in R-Mod. It gets a non-unital multiplication from the universal property of pullbacks, by
considering the following commutative diagram in R-Mod. See [Bas99, Section 2] for further
elaboration.

A ∧R A

��

i∧i
// A ∧R A

ε∧ε
��

µ
// A

ε

��

∗ // R ∧R R ∼=
// R

Consider the augmentation ε : THHn(KU)→ KU . To ensure that we compute its homotopy
fiber, we first replace ε by a fibration in the category of commutative KU -algebras, i.e. we
replace ε by the fibration appearing in its factorization by an acyclic cofibration followed by a
fibration. We denote the fiber of this new fibration by THHn

(KU).
We first need a generalization of Proposition 5.29:

Proposition 6.16. Let r ≥ 3. There are zig-zags of weak equivalences of KU -modules

KU ∧K(Z, r) '

ΣKUQ if r is odd,∨
m≥1

KUQ if r is even.

Proof. When r is odd, the proof of Proposition 5.29 works just as well, and when r is even it
gives us

KU ∧K(Z, r) ' KUQ ∧K(Z, r)Q.
So let r be even. As noted in Section 5.4, K(Z, r)Q ' ΩSr+1

Q . Now we use the James splitting
which says that, for X a connected based CW-complex, ΣΩΣX ' Σ

∨
m≥1X

∧m. Therefore,
Σ∞ΩΣX ' Σ∞

∨
m≥1X

∧m. Rationalizing it and applying it to X = Sr, we obtain

Σ∞K(Z, r)Q ' Σ∞ΩSr+1
Q ' Σ∞

∨
m≥1

SrmQ .

Since r is even, Bott periodicity gives the result. �
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Corollary 6.17. The augmentation ideal THHn
(KU) is rational.

Proof. The expression (6.10) gives, after splitting off the units of the spherical group rings like
in (5.38), a zig-zag of weak equivalences of KU -modules

(6.18) THHn(KU) ' KU ∧ (S ∨ Σ∞K(Z, a1 + 2)) ∧ · · · ∧ (S ∨ Σ∞K(Z, a2n−1 + 2)).

Distributing the terms in the right-hand side and applying Proposition 6.16 proves that the
homotopy fiber of the augmentation of the right-hand side is rational. Since the zig-zag is
compatible up to homotopy with the augmentations (Remark 6.8), this implies that the homotopy
fibers are weakly equivalent, so in particular THHn

(KU) is rational. �

Recall that HQ is a homotopy commutative ring spectrum whose multiplication map is a weak
equivalence, and it is a cofibrant S-module. In particular, KUQ is a homotopy commutative ring
spectrum, and from (6.10) we obtain a zig-zag of weak equivalences of commutative KUQ-ring
spectra:

THHn(KU)Q ' KUQ ∧K(Q, a1 + 2)+ ∧ · · · ∧K(Q, a2n−1 + 2)+.

By using the identification of the rationalized Eilenberg-Mac Lane spaces of Section 5.4 and the
computation of the rational homology of loop spaces of odd-dimensional spheres [FHT01, Page
225], we obtain

Proposition 6.19. There is an isomorphism of commutative Q[t±1]-algebras

(6.20) HQ∗(THHn(KU)) ∼= Q[t±1]⊗
⊗
ai odd

E(σit)⊗
⊗

aj even

Q[σjt]

where |σrt| = ar + 2 and i, j ∈ {1, . . . , 2n − 1}.

For example,

HQ∗(THH2(KU)) ∼= Q[t±1]⊗ E(σt)⊗ E(σt)⊗Q[σ2t]

with |σt| = 3 and |σ2t| = 4.

We can recognize the right-hand side of the expression (6.20) as an iterated Hochschild
homology algebra:

(6.21) HQ∗(THHn(KU)) ∼= HHQ,n
∗ (Q[t±1]).

Indeed, HHQ
∗ (Q[t±1]) ∼= Q[t±1]⊗E(σt), and HHQ

∗ (E(σt)) ∼= E(σt)⊗Q[σ2t]. These Hochschild
homology calculations are classical and can be found e.g. in [MS93, Section 2] and [AR05, 2.4].
We use that localization commutes with Hochschild homology [Wei94, Theorem 9.1.8(3)]. Also
note that in general, the Hochschild homology of an exterior algebra is isomorphic to the tensor
product of this same exterior algebra with a divided power algebra, but over Q such algebras
are polynomial.

Denote by HHQ,n
∗ (B) the kernel of the augmentation HHQ,n

∗ (B)→ B. From these remarks
and the proof of Corollary 6.17, we obtain:

Theorem 6.22. There is an isomorphism of non-unital commutative Q[t±1]-algebras

THH
n
∗ (KU) ∼= HH

Q,n
∗ (Q[t±1]).
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7. ΣY ⊗KU

In this section, we evaluate the commutative KU -algebra ΣY ⊗KU when Y is a based CW-
complex, by comparing it with Y ⊗KU (S1 ⊗KU). We are very grateful to Bjørn Dundas for
suggesting this line of argument.

Recall that if R is a commutative S-algebra, the category R-CAlg is tensored over Top

[EKMM97, VII.2.9]. If A ∈ R-CAlg, then the tensor S1 ⊗R A is naturally isomorphic to
THHR(A) as a commutative augmented A-algebra [MSV97], [EKMM97, IX.3.3], [AR05, Section
3]. Therefore, in this section we will identify S1 ⊗R A and THHR(A) without further notice.

7.1. The morphism ν. Let C be a category enriched and tensored over Top. Denote its tensor
by ⊗. Fix a based space (Z, z0). We denote by νZ the natural transformation

(7.1) C
id

%%

Z⊗−

99�� νZ C

whose component in C ∈ C is given by

(7.2) νZC := ηCZ (z0) : C → Z ⊗ C.

Here ηCZ : Z → C(C,Z ⊗ C) is the unit at Z of the adjunction

(7.3) Top

−⊗C
(( C.

C(C,−)

jj

Let us now highlight the naturality properties of νZC at C and at Z. Let ϕ : C → C ′ be a
morphism in C. The naturality of the isomorphism

C(Z ⊗ C,Z ⊗−) ∼= Top(Z, C(C,Z ⊗−))

gives the commutativity of the following diagram.

(7.4) C

ϕ

��

νZC
// Z ⊗ C

id⊗ϕ
��

C ′
νZ
C′

// Z ⊗ C ′

Let u : Z → Z ′ be a morphism of based spaces. The naturality of ηC gives the commutativity
of the following diagram.

(7.5) C
νZC
//

νZ
′

C ##

Z ⊗ C
u⊗id
��

Z ′ ⊗ C

Example 7.6. The category Top∗ is tensored over Top: if X ∈ Top∗ and Y ∈ Top, then Y ⊗X
is defined as Y+ ∧X. When (Y, y0) is based, we denote by

(7.7) nYX : X → Y+ ∧X

the map νYX of (7.2) applied to C = Top∗. More explicitely, the map nYX takes X to the copy of
X lying over y0 in Y+ ∧X.
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7.2. In commutative algebras. Let R be a commutative S-algebra. Let A be a commutative
R-algebra and (X,x0) be a based space. The map (7.2) in this scenario is a map of commutative
R-algebras

νXA : A→ X ⊗R A
which gives X ⊗RA the structure of a commutative A-algebra. In particular, when X = S1, this
is the usual structure of an A-algebra of THHR(A).

Now, take R = S and A = KU . Let (Y, y0) be a based space. We use the symbol ⊗ to denote
the tensor of S-CAlg over Top. Consider the following diagram in KU -CAlg. Here the map
e : S1 → ∗ collapses the circle into its basepoint, and we have identified F (∗∧KUQ) and ∗⊗KU
with KU .

(7.8) Y ⊗KU F (S1 ∧KUQ)

id⊗f̃∼
��

F (S1 ∧KUQ)
νY
F (S1∧KUQ)
oo

f̃∼
��

F (e∧id)
// KU

g∼
��

Y ⊗KU (S1 ⊗KU) S1 ⊗KU
νY
S1⊗KU

oo

e⊗id
// KU

The weak equivalence f̃ comes from Theorem 5.25. The map g : KU → KU comes from (5.42):
in that remark we proved that the right square commutes up to a homotopy of commutative
KU -algebras. The left square commutes as an application of the commutativity of (7.4). Note
that id ⊗ f̃ is a weak equivalence because Y ⊗KU − is a left Quillen functor, assuming Y is a
based CW-complex.

We will now identify the members of the left column.

Proposition 7.9. Let (X,x0) and (Y, y0) be based spaces, and let A be a commutative R-algebra.

(1) There is an isomorphism of commutative A-algebras

Y ⊗A (X ⊗R A) ∼= (Y+ ∧X)⊗R A

where ⊗R (resp. ⊗A) denotes the tensoring of R-CAlg (resp. A-CAlg) over Top.
Moreover, the isomorphism makes the following diagram in A-CAlg commute. The

morphism nYX : X → Y+ ∧X was defined in (7.7).

(7.10) X ⊗R A
νYX⊗RA

//

nY
X⊗id ((

Y ⊗A (X ⊗R A)

∼=
��

(Y+ ∧X)⊗R A

(2) Let M be an A-module. Let F : A-Mod → A-CAlg be the free commutative algebra
functor. There is an isomorphism

Y ⊗A F (X ∧M) ∼= F (Y+ ∧X ∧M)

making the following diagram commute.

F (X ∧M)

F (nY
X∧id) ))

νY
F (X∧M)

// Y ⊗A F (X ∧M)

∼=
��

F (Y+ ∧X ∧M)

In the expression Z ∧M for a based space Z we are using the tensor of A-Mod over
Top∗.
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Proof. (1) Let B be a commutative A-algebra with unit ϕ : A→ B. Using the defining adjunction
for Y ⊗A −, we get a homeomorphism

(7.11) A-CAlg(Y ⊗A (X ⊗R A), B) ∼= Top(Y,A-CAlg(X ⊗R A,B)).

The morphisms of commutative A-algebras X ⊗R A → B are the morphisms of commutative
R-algebras g : X ⊗R A→ B making the following diagram commute:

A
ϕ

  

νXA

{{

X ⊗R A g
// B.

Recalling the definition of ν, this means that

(7.12) g ◦ ηAX(x0) = ϕ.

The adjoint map of g by the defining adjunction of −⊗R A is the map in Top

(7.13) X
ηAX
// R-CAlg(A,X ⊗R A)

g∗
// R-CAlg(A,B).

Let the space R-CAlg(A,B) be pointed by ϕ : A → B. The condition (7.12) on the map g

is then translated to the adjoint (7.13) by stating that it is a based map, i.e. it takes x0 to ϕ.
Thus, continuing (7.11),

(7.14) Top(Y,A-CAlg(X ⊗R A,B)) ∼= Top(Y, UTop∗(X,R-CAlg(A,B))),

where U : Top∗ → Top is the functor forgetting the basepoint. It is the right adjoint to the
functor (−)+ : Top→ Top∗ which adds a disjoint basepoint, so we continue:

Top(Y,UTop∗(X,R-CAlg(A,B))) ∼= UTop∗(Y+,Top∗(X,R-CAlg(A,B))).

Since Top∗(X,−) : Top∗ → Top∗ is the right adjoint to − ∧X, we get:

UTop∗(Y+,Top∗(X,R-CAlg(A,B))) ∼= UTop∗(Y+ ∧X,R-CAlg(A,B)).

By the same argument proving (7.14), we get

UTop∗(Y+ ∧X,R-CAlg(A,B)) ∼= A-CAlg((Y+ ∧X)⊗R A,B).

In conclusion, we have a homeomorphism

A-CAlg(Y ⊗A (X ⊗R A), B) ∼= A-CAlg((Y+ ∧X)⊗R A,B),

and the Yoneda lemma finishes the proof.
The isomorphism was established using a chain of adjunctions. Following this chain, one

observes that both nYX and νYX⊗RA
, which are defined via units of adjunctions by analogous

procedures, make the diagram (7.10) commute.

(2) The functor F is defined via a continuous monad in A-Mod (i.e. it is enriched over Top),
see [EKMM97, proof of VII.2.9]. Therefore, the functor F preserves tensors over Top, so we get
the desired isomorphism. �

Applying the previous proposition to R = S, A = KU , X = S1 and M = KUQ, the diagram
(7.8) can be replaced with the following one.

(7.15) F (Y+ ∧ S1 ∧KUQ)

∼
��

F (S1 ∧KUQ)
F (nY

S1∧id)
oo

F (e∧id)
//

f̃∼
��

KU

g∼
��

(Y+ ∧ S1)⊗KU S1 ⊗KU
nY
S1⊗id

oo

e⊗id
// KU
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We suppose that Y is a based CW-complex, so that the vertical map on the left is a weak
equivalence.

Now, note that the following is a pushout square of based or unbased spaces.

S1 e
//

nY
S1

��

∗

��

Y+ ∧ S1 // Y ∧ S1

Since the functors −⊗KU : Top→ KU -CAlg and F (− ∧KUQ) : Top∗ → KU -CAlg are left
adjoints, they preserve pushouts, so the pushout of the top line of (7.15) is F (Y ∧S1∧KUQ) and
the pushout of the bottom line is (Y ∧S1)⊗KU. Now, the three vertical maps of (7.15) are weak
equivalences. The horizontal maps pointing left are cofibrations: indeed, nYS1 is a cofibration,
KUQ is a cofibrant KU -module (similarly as in Remark 5.34) so − ∧KUQ is left Quillen, F is
left Quillen and −⊗KU is left Quillen. Moreover, all the objects in the diagram are cofibrant
in KU -CAlg. Since the left square commutes and the right square commutes up to a homotopy
of commutative KU -algebras, an application of Lemma 2.3 plus the naturality of nYS1 in Y (7.5)
proves the following

Theorem 7.16. There is a zig-zag of weak equivalences of commutative KU -algebras

F (Y ∧ S1 ∧KUQ) ' (Y ∧ S1)⊗KU

natural in the based CW-complex Y .

This determines ΣY ⊗KU as the free commutativeKU -algebra on theKU -module ΣY ∧KUQ,
up to weak equivalence. In particular, we have a zig-zag of weak equivalences of commutative
KU -algebras

(7.17) F (ΣnKUQ) ' Sn ⊗KU

for every n ≥ 1.
As in Remark 5.34, the KU -modules ΣnKUQ are cofibrant for n ≥ 0. Since F is a left Quillen

functor, Bott periodicity implies that we have zig-zags of weak equivalences of commutative
KU -algebras

(7.18) Sn ⊗KU '

{
F (ΣKUQ) if n is odd,
F (KUQ) if n is even

for every n ≥ 1.
The line (7.17) generalizes the expression of Theorem 5.25 for THH(KU) as the free com-

mutative KU -algebra on ΣKUQ. The following generalizes the expression of Theorem 5.21 for
THH(KU) via Eilenberg-Mac Lane spaces.

Theorem 7.19. Let n ≥ 1. Then Sn ⊗KU ' KU [K(Z, n+ 2)] as commutative KU -algebras.

Proof. We learned of results similar to the following from [Vee18]: if S→ A→ B are cofibrations
of commutative S-algebras, then there is a weak equivalence

Sn+1 ⊗A B
∼← BA(B,Sn ⊗A B,B)

where the term on the right side is a two-sided bar construction. Here ⊗A denotes the tensor of
commutative A-algebras over Top. Let us give a proof. Since the functor −⊗AB is left Quillen,
it preserves pushouts and cofibrations, so we have a pushout of commutative A-algebras where
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the arrows Sn ⊗A B → Dn+1 ⊗A B are cofibrations:

Sn ⊗A B // //
��

��

Dn+1 ⊗A B

��

Dn+1 ⊗A B // Sn+1 ⊗A B.

Therefore,

Sn+1 ⊗A B ∼= (Dn+1 ⊗A B) ∧Sn⊗AB (Dn+1 ⊗A B)
∼← BA(Dn+1 ⊗A B,Sn ⊗A B,Dn+1 ⊗A B)
∼← BA(B,Sn ⊗A B,B)

where the weak equivalence in the middle is an application of [EKMM97, VII.7.3], and the last
one comes from two applications of [EKMM97, VII.7.2].

We use this to prove the result by induction. The result is true for n = 1 (Theorem 5.21);
suppose it is true for some n ≥ 1. Then

Sn+1 ⊗KU ' BS(KU,KU [K(Z, n+ 2)],KU)

' BS(KU,KU,KU) ∧BS(S,S[K(Z, n+ 2)],S)

' KU ∧ S[K(Z, n+ 3)] = KU [K(Z, n+ 3)].

Here we have used that BS(S, S[G],S) ∼= S[BG] for G a topological commutative monoid. This
result is proven in the same fashion as Proposition 4.4, which deals with the analogous result for
the cyclic bar construction. �

Remark 7.20. In Remark 5.22 we observed that KU behaves like a Thom spectrum to the eyes of
topological Hochschild homology. Comparing Theorems 6.9 and 7.19 with [Sch11, 1.1] or [RSV19,
4.11], we see that, more generally, KU behaves like a Thom spectrum to the eyes of X ⊗− when
X is an n-torus or an n-sphere, n ≥ 1. See also Remark 8.5.2 for a similar observation about
TAQ.

8. Topological André-Quillen homology of KU

If A → B is a morphism of commutative S-algebras, one can define its cotangent complex
ΩB|A ∈ B-Mod, also known as its topological André-Quillen B-module, TAQ(B|A): see [Bas99].
We adopt the latter notation. When A = S, we delete it from the notation.

Theorem 8.1. The KU -modules TAQ(KU) and KU ∧K(Z,2) are weakly equivalent.

Here K(Z,2) is the S-module associated to the topological abelian group K(Z, 2): it is a
model for Σ2HZ. More generally, as explained in [BM05] before Theorem 5, for a topological
abelian group G there is an S-module associated to G whose zeroth space is G. We denote it by
G. More generally, we denote by X the S-module associated to an E∞-space X whose zeroth
space is the group completion of X.

In the next proof we will use the localization of a module, which we have not used before. For
the purposes of this section, if R is a cofibrant commutative S-algebra, x ∈ π∗R and M is an
R-module, then we define the R[x−1]-module M [x−1] by R[x−1] ∧RM [EKMM97, VII.4].

Proof. Basterra [Bas99, Proposition 4.2] proved that, if A → B → C are maps of cofibrant
commutative S-algebras, then

TAQ(B|A) ∧B C → TAQ(C|A)→ TAQ(C|B)
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is a homotopy cofiber sequence of C-modules. Recall from (5.19) that we defined KU as
QS[K(Z, 2)][x−1], where Q is a cofibrant replacement functor in S-CAlg and x ∈ π2S[K(Z, 2)].
The following sequence of cofibrant commutative S-algebras

S→ QS[K(Z, 2)]→ QS[K(Z, 2)][x−1]

begets a homotopy cofiber sequence of KU -modules

(8.2) TAQ(QS[K(Z, 2)]) ∧QS[K(Z,2)] KU → TAQ(KU)→ TAQ(KU |QS[K(Z, 2)]).

Now, TAQ(KU |QS[K(Z, 2)]) is contractible, since QS[K(Z, 2)] → KU is a localization map
[MM03, Remark 3.4]. Since by definition the leftmost factor of (8.2) is TAQ(QS[K(Z, 2)])[x−1],
the sequence (8.2) gives a weak equivalence of KU -modules

(8.3) TAQ(QS[K(Z, 2)])[x−1]
∼→ TAQ(KU).

But [BM05, Theorem 5] gives that if G is a topological abelian group, then the QS[G]-modules
TAQ(QS[G]) and QS[G] ∧G are weakly equivalent. Taking G = K(Z, 2), localizing this equiva-
lence at x and combining it with (8.3), we get weak equivalences of KU -modules

KU ∧K(Z,2) ' TAQ(QS[K(Z, 2)])[x−1]
∼→ TAQ(KU). �

We thank the anonymous referee for pointing us in the direction of the proof of the following
fact, of which our previous proof was less simple.

Corollary 8.4. The KU -modules TAQ(KU) and KUQ are weakly equivalent.

Proof. From Bott periodicity and the comment following the statement of Theorem 8.1, we get
that TAQ(KU) and KU ∧ HZ are weakly equivalent. But the map KU ∧ HZ → KU ∧ HQ
induced from the inclusion Z ⊂ Q is a weak equivalence [Swi75, 16.25], hence the result. �

Remark 8.5. (1) The topological André-Quillen B-module TAQ(B|A) can be computed as a
stabilization, as follows from the work of [BM05] and as made more explicit e.g. in [Sch11,
Page 164]. More precisely, there is a tower with Ωn(Sn⊗̃AB) in level n whose homotopy
colimit is weakly equivalent to TAQ(B|A); here Sn⊗̃AB is the B-module which is the
cofiber of the map B → Sn ⊗A B given by the inclusion of the basepoint in Sn. The
symbol ⊗A denotes the tensor over Top of the category of commutative A-algebras.
From Theorem 7.19 we deduce that Sn⊗̃KU ' KU ∧K(Z, n + 2): we have identified
these in Proposition 6.16. This indicates a different way of computing TAQ(KU).

(2) Compare Theorem 8.1 with the reformulation found e.g. in [Sch11, Page 164] of a result
of [BM05]. It states that if f : X → BF is a map of ∞-loop spaces where BF is a
classifying space for stable spherical fibrations, then TAQ(T (f)) ' T (f) ∧X. Just as in
Remark 7.20, the result for TAQ(KU) coincides with the result we would obtain if we
knew that KU was somehow the Thom spectrum of a map K(Z, 2)→ BU .

(3) Consider the version of the Hochschild-Kostant-Rosenberg theorem in [MM03, Theorem
1.1]: if A is a connective smooth commutative S-algebra, there is a weak equivalence of
commutative A-algebras F (ΣTAQ(A))

∼→ THH(A), where F : A-Mod → A-CAlg is
the free commutative algebra functor.3 This statement does not apply to KU since KU
is not connective (we have not checked the smoothness condition), but the conclusion
is true (Theorem 5.25 and Corollary 8.4). Just as in Remarks 5.22, 7.20 and the one
just above, here is an example of a theorem that does not apply to KU because KU
is not connective, but whose conclusion is nonetheless true. We speculate that there
should be a version of the HKR theorem for E∞-ring spectra which dispenses with the

3Note, however, that the proof contains a gap: see [AV17, Footnote 4]. We thank Benjamin Antieau for
pointing this out to us.
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connectiveness hypothesis. I would like to thank Tomasz Maszczyk for asking me about
the HKR theorem in relation to Theorem 5.25, thus inciting me to make these reflections.
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