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contributions of the work. 2

Scientific context

Clustering [START_REF] Bock | Classification, Clustering and Data Analysis: Recent Advances and Applications[END_REF] serves to summarize (typically large) data sets by assessing a partition among observations, the latter being thus summarized by (typically few) characteristic classes. There exists a large number of clustering methods, one can distinguish between geometric methods, based on distances, and model-based clustering methods, based on modeling of the data distribution as a finite mixture of distributions. The advantage of using model-based clustering is to answer classical challenges by relying on theoretical statistics tools, e.g., estimating the partition using an EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF], selecting the number of groups using information criteria such as BIC or ICL [START_REF] Schwarz | Estimating the dimension of a model[END_REF][START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

Mixture models [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF][START_REF] Mclachlan | Finite mixture models[END_REF] are the standard way for the analysis of heterogeneous data across a broad number of fields including bioinformatics, economics, machine learning, among many others. Due to their flexibility, mixture models can be used to cluster data, estimate densities. They are also being used to conduct regression analysis and to analyze regression outcomes. Basically, maximum likelihood estimation [START_REF] Fisher | On an absolute criterion for fitting frequency curves[END_REF] with EM algorithms [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Mclachlan | The EM algorithm and extensions[END_REF]) is a common way to estimate parameters of mixture models.

Related researches

In the probabilistic view, each data object is assumed to be generated from one of K underlying probability distributions. Data points in different clusters are drawn from different probability distributions. These probability sources can take different functional forms, such as multivariate Gaussian or t-distributions, or come from the same families but with different parameters. 1 1.1. SCIENTIFIC CONTEXT Usually, the forms of the mixture densities are assumed to be known, which makes the process of finding the clusters of a given data set equivalent to estimating the parameters of the K underlying models. It is worth mentioning that the mixture densities are useful in supervised classification [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF] because, mixtures can also be seen as a class of models that are able to represent arbitrarily complex probability density functions [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. An application of mixtures to feature selection is illustrated by [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF]. Relation to the choice of the parametric family conditional densities defines what is considered as homogenous class-specific distribution since homogeneity is defined with respect to this family thus defining the shape of the clusters we are looking for. Thus model-based clustering (McLachlan and Peel (2004);McNicholas, (2016) ;Biernacki, (2017)) allows for the analysis of different types of data by simply adapting the cluster distribution see [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF], [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF], and McNicholas and Murphy (2008) for continuous data, Goodman (1974), Celeux and Govaert (1991), Gollini and Murphy (2014), and Marbac, Biernacki, and Vandewalle (2016) for categorical data, Kosmidis and Karlis (2015), McParland and Gormley (2016), Punzo and Ingrassia (2016), Marbac, [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]Vandewalle (2017), andMazo (2017) for mixed data, Sam et al. (2011), Bouveyron and Jacques (2011), and Jacques and Preda (2014b) for functional data, (Daudin, Picard, and Robin, 2008;Zanghi, Ambroise, and Miele, 2008;Ambroise and Matias, 2012) for networks data.

In addition, applications of Gaussian mixture modeling are widespread and often this model class is used as the basic model for clustering metric multivariate data if k-means clustering is not flexible enough. Recent exemplary applications of Gaussian mixture modeling are, among many others, Kim, Yun, Park, Joo, and Kim (2014) in hydrology who cluster a multivariate dataset of hydrochemical measurements from ground watersamples to separate anthropogenic and natural groundwater groups. Perera and Mo (2016) used Gaussian mixture models in ocean engineering to understand marine engine operating regions as part of the ship energy efficiency management plan. In environmental science, Skakun, Franch, Vermote, Roger, Becker-Reshef, Justice, and Kussul (2017) used Gaussian mixture models to determine a data-driven classification method to distinguish winter crop from spring and summer crop.

In this work, we focus on finite mixture model-based clustering and for a case study in the context of data science: Indoor Positioning System using WiFi fingerprinting. Our objectives here are:

• Finite mixture density-based clustering: Mixture likelihood-based approach to clustering, Classification maximum likelihood approach, Relation to covariance structures in the Gaussian mixture model-based clustering and Isotropic Gaussian mixture model-based clustering as a generalization of K-means clustering.

• Exploratory data analysis and visualization (Analyzing to explore the position of the Hand-Held Device, Analyzing to explore signal strength); Data modeling (Predict location by Nearest Neighbor Methods, Variable selection for clustering).

CHAPTER 2. MODEL-BASED CLUSTERING a mixture of densities (2.1) where the data point x is R d -valued (column) vector; the π k 's are mixing proportions (π k > 0, for all k = 1, . . . , K); the f k (x|θ k ) are component densities from the same parametric family (i.e. the homogeneous case) and the vector θ of unknown parameters in this mixture model: θ = (π 1 , . . . , π K-1 , θ 1 , . . . , θ K ).

f (x|θ) = K k=1 π k f k (x|θ k ),
Herein, we shall use model-based clustering in the customary fashion but note that the term can also be used more generally for the application of any model for clustering. Model-based classification (e.g. McNicholas, 2010), or partial classification (cf. McLachlan, 1992, Section 2.7), can be regarded as a semi-supervised version of model-based clustering, while modelbased discriminant analysis (Hastie and [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF] is a supervised version of modelbased clustering. Modelbased clustering, classification, and discriminant analysis are perhaps best explained through their respective likelihoods.

Mixture likelihood-based approach to clustering

The mixture likelihood-based approach is aimed to maximize the likelihood over the mixture parameters. In this context, the parameters of model are determined by maximum likelihood (i.e., it can be said that the mixed model has been fitted to the data), typically using the expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. After fitting the mixture model to get a satisfactory model for the structure of the underlying distribution that generated the data, we can proceed with a process of likelihood nonhierarchical clustering of the data in terms of their fitted posterior probabilities of component membership by using the Bayes optimal rule. We begin by considering the problem of identifying groups, or clusters, of observed data points in a multidimensional space based on Gaussian mixing models (GMMs) for this approach.

Gaussian mixture models

The most popular homogeneous-parametric FMMs are the Gaussian mixture models. In this case, GMM has density function of the form

f (x|θ) = K k=1 π k N(x|θ k ), (2.2) 
(say, a Gaussian mixture of K-heteroscedastic components, completely) where θ k ≡ (µ k , Σ k ) (for k = 1, . . . , K), and each multivariate Gaussian density N(x|θ k ) is called a component of the mixture with mean vector µ k and covariance matrix Σ k , i.e.,

N(x|θ

k ) ≡ N(x|µ k , Σ k ) = 1 (2π) d/2 |Σ k | 1/2 exp - 1 2 (x -µ k ) T Σ -1 k (x -µ k ) (k = 1, . . . , K),
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the parameters π 1 , . . . , π K are referred to as mixing proportions (π k > 0, for all k), and θ is the vector containing all the parameters in π = {π 1 , . . . , π K-1 }, µ = {µ 1 , . . . , µ K }, Σ = {Σ 1 , . . . , Σ K } that represents this model.

We introduce the following EM algorithm for GMMs (for more details of the EM algorithm, as well as GMMs, can be found, e.g., in [START_REF] Mclachlan | Finite mixture models[END_REF] and [START_REF] Bao-Tuyen | Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Models[END_REF]).

EM algorithm for GMMs

Let x 1 , . . . , x N be N independent observations (i.e. an observed-data sample of size N ) from a d-dimensional random vector ( or a feature vector) X = (X 1 , . . . , X d ) T with the density f (x|θ), and we wish to model these observed data using a GMM of the form (2.2),

f (x|θ) = K k=1 π k N(x|µ k , Σ k ).
In the EM framework, the observed-data sample x T ≡ (x 1 , . . . , x N ) is viewed as being incomplete, where (N > d) and each x i is associated with the K-dimensional component label vector z i (which is also called the latent variable) and the kth element of z i , z ki ≡ (z i ) k , takes the value of one or zero according to whether x i belongs to the kth component or not (i = 1, . . . , N ; k = 1 . . . , K).

The component-label vectors z 1 , . . . , z N are taken from a random vector Z having a 1-of-K representation, i.e., Z is distributed according to a multinomial distribution consisting of one draw on K categories with probabilities π 1 , . . . , π K , respectively. From (2.2) the observed-data log likelihood function for the GMM is given by

L(θ|x) = N i=1 log K k=1 π k N(x i |µ k , Σ k ), (2.3) 
and by putting z T ≡ (z 1 , . . . , z N ), then the complete-data log likelihood is

L c (θ|x, z) = N i=1 K k=1 z ki log π k + log N(x i |µ k , Σ k ) . (2.4)
The EM algorithm is summarized below.

The EM Algorithm for Gaussian mixtures

Input: an observed-data sample x T = (x 1 , . . . , x N ), and the number of components (or clusters) K.

Output: an updated estimate of θ at the time when the value of the log likelihood function L(θ|x) is stationary.

Method

Choose an initial parameter θ

[0] = (π [0] 1 , . . . , π [0] K-1 , θ [0] 1 , . . . , θ [0] K ), where θ [0] k = (µ [0] k , Σ [0] k ) (k = 1, . . . , K).

E-Step

This step (on the (q + 1)th iteration) computes the posterior probabilities that x i belongs to the kth component density using the current parameter value θ [q] , τ

[q] ki ≡ E(Z ki |x; θ [q] ) = π [q] k N(x i |µ [q] k , Σ [q] k ) K l=1 π [q] l N(x i |µ [q] l , Σ [q] l ) (i = 1, . . . , N ; k = 1, . . . , K), (2.5)
where Z ki is the random variable that takes the value z ki above.

M-Step

The M-step (on the (q + 1)th iteration) updates θ by the value θ [q+1] /* that maximizes the function Q(θ; θ [q] ) with respect to θ,

θ [q+1] = arg max θ Q(θ; θ [q]
), (2.6) where

Q(θ; θ [q] ) ≡ E[L c (θ|X, Z)|x; θ [q] ] = N i=1 K k=1 τ [q] ki log π k + N i=1 K k=1 τ [q] ki log N(x i |µ k , Σ k ). (2.7) */
We get the updated estimates π

[q+1] k , µ [q+1] k and Σ [q+1] k of π k , µ k and Σ k , respectively, as follows: for k = 1, . . . , K, -the updated estimate of the mixing proportion π k is π [q+1] k = N i=1 τ [q] ki N, (2.8) -the updated estimate of µ k is µ [q+1] k = N i=1 τ [q] ki x i N i=1 τ [q] ki , (2.9) 
-and the updated estimate of

Σ k Σ [q+1] k = N i=1 τ [q] ki (x i -µ [q+1] k )(x i -µ [q+1] k ) T N i=1 τ [q]
ki .

(2.10)

4. The E-and M-steps are alternated repeatedly until the difference between the (incompletedata) log likelihood function L(θ [q+1] |x) and the log likelihood function L(θ [q] |x) is small enough, i.e.

L(θ

[q+1] |x) -L(θ [q] |x) < ε,
for a small value of some threshold ε.

Next, we present the procedure for clustering via the mixture likelihood-based approach.
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Clustering via the mixture likelihood-based approach

Once the mixture model has been fitted, a clustering of the observed data into K clusters can be obtained in terms of the fitted posterior probabilities of component membership by using the Bayes optimal rule. Such approach has been considered by many authors, see, for instance, the books of [START_REF] Titterington | Statistical analysis of finite mixture distributions[END_REF] and [START_REF] Mclachlan | Finite mixture models[END_REF]. This procedure is given below.

Procedure: clustering via the mixture likelihood-based approach Input: the data points x 1 , . . . , x N are assumed to be a sample from a GMM of the form (2.2).

Output: give an outright clustering of data points in this observed-data sample.

Method 1. Fit the K-component mixture model (2.2) to obtain the estimate θ of the parameter θ in the mixture model, using, generally, the EM algorithm.

2.

Computer for i = 1, . . . , N and k = 1, . . . , K the estimated posterior probabilities (see, formula (2.5) 

) τki = πk N(x i | μk , Σk ) K l=1 πl N(x i | μl , Σl ) . ( 2 

Classification maximum likelihood approach

In the classification maximum likelihood (CML) approach based on GMMs by the mixture sampling, the observed-data sample (x 1 , . . . , x N ) is assumed to be taken at random from the Gaussian mixture density (2.2) and the cluster-label latent variables z i , identifying the mixture component origin for x i (1 ≤ i ≤ N )), are treated as unknown parameters. With this approach, θ and the unknown partition

P = (P 1 , . . . , P K ) (P k = {x i |z ki = 1} (1 ≤ k ≤ K))
of the observed data x 1 , . . . , x N are chosen to maximize the log likelihood function as of the form (2.4)). Thus we can write the CML criterion as:

L(θ, P |x) = l({θ k }, P |x) + K k=1 N k log π k , (2.12) 
where (2.13)

N k ≡ |P k | (1 ≤ k ≤ K) (
The CML criterion can be optimized by making use of a classification version of the EM algorithm, the so-called CEM algorithm as the following (see Celeux andGovaert (1992, 1995)).
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The Classification EM (CEM) Algorithm Input: an observed-data sample x T = (x 1 , . . . , x N ) from a Gaussian mixture of the form (2.2). Output: -the clusters P k (1 ≤ k ≤ K) (i.e. an estimated partition P = (P 1 , . . . , P K ) of the observed data x 1 , . . . , x N ).

-the maximum likelihood estimate (MLE) of the parameter θ = (π 1 , . . . , π K-1 ; θ 1 , . . . , θ K ) at the estimated partition P .

Method

Choose an initial partition P

[0] = (P [0] 1 , . . . , P [0]
K ) of the observed data set S ≡ {x 1 , . . . , x N }, and calculate the value of the initial parameter θ

[0] = (π [0] 1 , . . . , π [0] K-1 , θ [0] 1 , . . . , θ [0] K ) from that partition, where θ [0] k = (µ [0] k , Σ [0] k ) (k = 1, . . . , K).
2. E-Step This step (on the (q + 1)th iteration) computes the posterior probabilities that x i belongs to P

[q]

k (i.e. the kth cluster), using the current parameter value θ [q] ,

τ [q] ki = π [q] k N(x i |θ [q] k ) K l=1 π [q] l N(x i |θ [q] l ) (i = 1, . . . , N ; k = 1, . . . , K).
(2.14)

C-Step

The C-step (on the (q + 1)th iteration) updates the partition by using the maximum a posteriori (MAP) principle:

-we get the updated partition

P [q+1] = (P [q+1] 1 , . . . , P [q+1] K ),
where, for each k = 1, . . . , K the kth updated cluster is given by

P [q+1] k = x i ∈ S| k = arg max 1≤l≤K τ [q] li .
(2.15)

M-Step

The M-step (on the (q + 1)th iteration) updates θ by the value θ [q+1] : compute the MLE π [q+1] ≡ (π

[q+1] 1 , . . . , π [q+1] K
) T based on the updated partition P [q+1] , and, for k = 1, . . . , K the MLEs θ (2.18) where N

[q+1] k = (µ [q+1] k , Σ [q+1] k ) using the observed-data subsamples P [q+1] k , respectively. It leads to, for k = 1, . . . , K, -the updated MLE of the mixing proportion π k is π [q+1] k = N [q+1] k N , (2.16) -the updated MLE of µ k is µ [q+1] k = 1 N [q+1] k xi∈P [q+1] k x i , (2.17) -and the updated MLE of Σ k Σ [q+1] k = 1 N [q+1] k xi∈P [q+1] k (x i -µ [q+1] k )(x i -µ [q+1] k ) T ,
[q+1] k

≡ |P

[q+1] k

|. 5. The E-, C-and M-steps are repeated in turn until there is no further change in the assignments into clusters (or until some maximum number of iterations is exceeded). Remark 2.2.1. In cluster analysis, the classification approach of mixtures is an effective way which reveals some of the statistical aspects of many classical clustering criteria. We can see that most of the standard clustering criteria can be viewed as particular CML criteria. Following [START_REF] Bryant | Large-sample results for optimization-based clustering methods[END_REF], the CML criterion (2.12) can refer to as the penalized CML with a penalty term k N k log π k . At this point, we would like to discuss in more detail, as it can be seen from the CEM algorithm that the fitted partition is obtained from the iterative process for updating the clusters based on the MAP criterion in which the MLEs have been calculated using the previous cluster-update data.

This might seem like a strange clustering because, from what we know about the nature of any clustering method that the primary thrust of clustering is to arrange a collection of data (patterns, entities, or units of certain objects) into small clusters so that the elements that are similar become allocated to the same cluster, it would seem more natural to optimize the objective function related to the closeness (or similarity) between the data objects. In this context, naturally a question arises:"What is the relationship between the MAP criteria and the closeness of data objects?". In order to answer for this problem, one very simple way would be to write (2.13) in the form

l({θ k }, P |x) = - 1 2 K k=1 xi∈P k x i -µ k 2 Σ k - 1 2 K k=1 N k log|Σ k | + C, (2.19) 
where C denotes a constant, and the quantity

x i -µ k 2 Σ k ≡ (x i -µ k ) T Σ -1 k (x i -µ k )
is called the squared Mahalanobis distance from

x i to µ k (1 ≤ i ≤ N ; 1 ≤ k ≤ K). Substituting (2.
19) into (2.12), the CML criterion becomes

L(θ, P |x) = - 1 2 K k=1 xi∈P k x i -µ k 2 Σ k + p(|P |, |Σ|, π) , (2.20) 
where we have defined

p(|P |, |Σ|, π) = 2 K k=1 N k log|Σ k | 1 2 - K k=1 N k log π k (2.21) = K k=1 N k log |Σ k | π 2 k ,
in which its arguments are used by the shorthand notations

|P | ≡ (N 1 , . . . , N K ), |Σ| ≡ {|Σ 1 |, . . . , |Σ K |}.
Note that in order to simplify the notation, we have also omitted additive constant term from the CML criterion function by separately sampling (2.19).

So, we can see from (2.20) that the clustering strategy based on the CEM algorithm by maximizing the CML criterion function L(θ, P |x) is equivalent to minimizing the within-cluster sum of the (extended) squared errors with the penalty term p(|P |, |Σ|, π),

Q(θ, P |x) ≡ K k=1 xi∈P k x i -µ k 2 Σ k + p(|P |, |Σ|, π).
(2.22)

Let us consider more about this criterion: (1) obviously, the first quantity in (2.22) concerns the closeness (or similarity) measures of data objects from each of the K clusters; (2) for the second quantity (i.e., the penalty term p(|P |, |Σ|, π)), we can rewrite the term in bracket of (2.21) as 

K k=1 N k log|Σ k | 1 2 - K k=1 N k log π k = N 1 2 K k=1 log|Σ k | N k N - K k=1 N k N log π k = N 1 2 log N |Σ 1 | N1 • • • |Σ K | N K - K k=1 N k N log π k . Note that N |Σ 1 | N1 • • • |Σ K | N K is
Σ k (1 ≤ k ≤ K) of component densities (i.
e. the features of cluster distributions (as orientation, size and shape) to vary between clusters) are not detected by this measure, this is its weaknesses. Therefore, it is necessary to add a measure that gives descriptive summary about the allocations of data objects of the population according to the density of mixture components (i.e. the impurity of the distribution between the within-cluster scatter of data objects), and so, -

K k=1 N k
N log π k is such a quantity which we shall call the quasi-entropy based measure of impurity.

We can see that the MLE θ of θ from the above CEM algorithm leads to the following results:

-the MLE of N |Σ 1 | N1 • • • |Σ K | N K is the (weighted) geometric mean N | Σ1 | N1 • • • | ΣK | NK
, where the kth within-cluster sample covariance matrix Σk is given by (the formula (2.18))

Σk = 1 Nk xi∈ Pk (x i -μk )(x i -μk ) T ,
with μk corresponding to the kth within-cluster sample mean (see formula (2.17))

μk = 1 Nk xi∈ Pk x i ,
(1 ≤ k ≤ K), and -the MLE of the quasi-entropy based measure of impurity (and of the entropy of mixing proportions (-

K k=1 π k log π k ))
is the entropy of the normalized within-cluster variations for a K-partition, written as,

- K k=1 Nk N log Nk N .
The geometrical interpretation of

N | Σ1 | N1 • • • | ΣK | NK
will help us understand more intuitively about this quantity. To do so, we write x T i ≡ (x i1 , . . . , x id ) (1 ≤ i ≤ N ), and so that, for each k ∈ {1, . . . , K} and j ∈ {1, . . . , d}, we can define an R Nk -valued (column) vector y (k) j as is the kth within-cluster observed data of the jth feature X j (i.e. y (k) j is the vector with ith element x ij (for each x i ∈ Pk )). By putting the d deviation (or residual) vectors corresponding to each of the K within-cluster observed data samples,

d (k) j ≡ y (k) j -μkj 1 (k) , j = 1, . . . , d
where the vector forms equal angles with each of the Nk coordinate axes, denoted by 1 (k) T ≡ (1, 1, . . . , 1) (∈ R Nk ), and μkj ≡ 1 Nk xi∈ Pk x ij is the kth within-cluster sample mean of the jth feature X j , j = 2.2. FINITE MIXTURE DENSITY-BASED CLUSTERING 1, 2, . . . , d, respectively, then we can establish the following general result for the (weighted) geometric mean of the K corresponding generalized sample variances | Σ1 |, . . . , | ΣK | by induction (see [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF], Section 7.5)

N | Σ1 | N1 • • • | ΣK | NK = c( N1 , . . . , NK ; d) • N [V (d (1) 1 , . . . , d (1) d )] N1 • • • [V (d (K) 1 , . . . , d (K) d )] NK 2 , (2.23) where c( N1 , . . . , NK ; d) ≡ 1 N N N1 1 • • • N NK K d
is a coefficient which depends on the K within-cluster number of data objects N1 , . . . , NK and the dimension d, and V (d

(k) 1 , . . . , d (k) d )
is the volume of the parallelotope generated by the d deviation vectors d

(k) 1 , . . . , d (k) d .
Equation (2.23) says that the geometric mean of the K generalized sample variances is proportional to the square of the (weighted) geometric mean of the K volumes V (d

(1) 1 , . . . , d (1) d ), . . ., V (d (K) 1 , . . . , d (K) d ).

Relation to covariance structures in the Gaussian mixture model-based clustering

From Remark 2.2.1 above we see that the MLEs of µ k and Σ k are the within-cluster sample mean μk and covariance matrix Σk (1 ≤ k ≤ K), respectively. Each within-cluster sample mean locates the centroid of the corresponding cluster, it can be thought of as the single point μk that best represents all of the data in the sense of minimizing the sum of (extended) squared distances from μk to the data points of the kth cluster. While each within-cluster sample covariance matrix describes the shape of the within-cluster data scatter along with different size and direction. The data scatter concept is a generalization of the moment of inertia concept in mechanics (which corresponds to the squared data scatter of a system of material points). The requirement to minimize the within-cluster sum of the (extended) squared errors

K k=1 xi∈P k x i -µ k 2 Σ k in (2.22
) is based on the mechanical principle as follows: Rotation of a system requires minimum force when the center of rotation minimizes the moment of inertia since the axis of rotation. This principle can be manipulated as a way of getting most "natural" orientations and sizes according to the shape of the set ("cloud") of data points. Thus, in practice, the shape characterization of (sample) scatter can be combined to guide the assumptions about the proper structure of the covariance matrices Σ k (1 ≤ k ≤ K) (of the components) in the mixture model.

As an illustration for this, we consider the two-dimensional Gaussian finite mixture models with two mixture components. Figure 2.1 illustrates a few different hypotheses based on shapes of the scattering of sample points reflected in the properties of Σ k : (a) firstly, we show the case where the shape of the set of sample points consists of two clusters of the 2-dimensionnal spheres from a certain feature vector X = (X 1 , X 2 ) T , using simulated data with a total size of 1000 two-dimensional data points. So, from the visual shape of (sample) scatter obtained, we could restrict the covariance matrices to be proportional to the identity matrix, Σ k = σ 2 I (k = 1, 2), known as the homoscedastic and isotropic covariances. Besides, the corresponding contours of constant density (or the spherically contoured distribution -see [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF], Section 2.7) for this two-dimensional Gaussian finite mixture model with two mixture components are also showed; (b) secondly, by using a real-world dataset, we indicate a bivariate case in which the shape of the set of sample points is ellipsoids of possibly different sizes and orientations. This situation is illustrated on the well-known Old Faithful geyser dataset [START_REF] Azzalini | A look at some data on the old faithful geyser[END_REF]. It is a data frame containing 272 observations from the Old Faithful Geyser in the Yellowstone National Park taken from the Modern Applied Statistics in S library (Venables and Ripley, 2002). Each observation consists of measurements of two features: the duration X 1 (in minutes) of the eruption and the waiting time X 2 (in minutes) to the next eruption. The scatterplot of this dataset provides a visual demonstration of the assumption that there are no restrictions on the geometric structure of the covariance matrices The six contours shown were chosen so as to contain 5%, 25%, 50%, 75%, 95% and 99% of the probability, respectively.

Σ k (k = 1, 2) -

Eigenvalue decomposition of the component-covariance matrices in GMM

From the above consideration, we can see that the choice of distribution for the components is governed by the structure of data scatter. In other words, the structure of the covariance matrices of the components in the mixture model are seen as nuisance parameters which need to be suitably parameterised to allow for identification of the clusters. Another aspect is that the computational task of manipulating and inverting large covariance matrices can become prohibitive. In order to address these problems, it is common to use more parsimonious-restricted forms of the structure of the covariance matrices in the model-based clustering. One way to do this is via the reparameterization of the covariance matrices Σ k (1 ≤ k ≤ K) in terms of their spectral decomposition. The natural results of this are the formation of a family of mixture models when various constraints are imposed upon the eigenvalue-decomposed component covariance matrices. Namely, as in the Gaussian parsimonious clustering models have been proposed by [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF] and are also discussed in [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] and [START_REF] Fraley | Model-based clustering, discriminant analysis, and density estimation[END_REF], the covariance matrix Σ k for the kth component can be parameterized in terms of eigenvalue decomposition, represented as

Σ k = λ k D k A k D T k ,
where D k is the orthogonal matrix of eigenvectors of Σ k , A k is a diagonal matrix whose elements are proportional to the eigenvalues of Σ k in descending order, and λ k is an associated constant of proportionality. These three parameters determine the geometric properties of each component, including the orientation, the shape, and the volume (or size).

Table 2.1 shows the eight general models in the multivariate case. Each of the models identifiers geometric characteristics by using a three-letter code: wherein the letter "E" stands for "equal", "V" stands for "varying", and in particular, "I" is only used for the case in which the clusters are spherical, e.g., EEV denotes a model in which the volumes as well as shapes of all clusters are equal (E), and the orientation is allowed to vary (V) among the clusters. For example, returning to the illustration shown in Figure 2.1, we note that the (a) and (b) cases correspond to the "EII" and "VVV" models, respectively. The values of parameters associated with characteristics designated by "E", "V" or "I" are estimated from the data. Table 2.1: Nomenclature, parameterizations of the covariance matrix Σ k . The symbols A and D denote the diagonal and orthogonal matrices for special cases of the same shape, A k = A, and the same orientation, D k = D, respectively.

Identifier code Σ k Distribution Volume Shape Orientation EII λI Spherical Equal Equal NA VII λ k I Spherical Variable Equal NA EEE Σ ≡ λDAD T Ellipsoidal Equal Equal Equal EVE λDA k D T Ellipsoidal Equal Variable Equal EEV λD k AD T k Ellipsoidal Equal Equal Variable VVV Σ k ≡ λ k D k A k D T k Ellipsoidal Variable Variable Variable VEV λ k D k AD T k Ellipsoidal Variable Equal Variable VVE λ k DA k D T Ellipsoidal Variable Variable Equal
The consideration of the spectral decomposition of covariance matrices for multidimensional normal distributions in the above models is the extensions based on the ideas of Fisher's linear discriminant analysis (LDA) rule in the Bayesian classification (w.r.t. the covariance matrices for different clusters are the same, i.e., Σ k = Σ, for k = 1, . . . , K), and standard quadratic discriminant analysis (QDA) (w.r.t. the covariance matrices Σ k are allowed to differ without constraint). In fact, not only the eight most general models above, [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF] considered 14 possible models for the covariance matrices in the various clustering situations. Their approach generalizes the work of [START_REF] Murtagh | Fitting straight lines to point patterns[END_REF] and build on the models of [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF] (for more detail see [START_REF] Celeux | Gaussian parsimonious clustering models[END_REF]).

Relation to classical clustering criteria based on the similarity

As noted at the beginning of this subsection, we can see that the classical clustering criteria based on the similarity (or dissimilarity) measures, e.g. the most commonly used distance measures, are concerned with the inertia type principle by using the way of minimizing the within-cluster sum of the (extended) squared errors. In the context of clustering based on the eight models above, we shall be interested in the four most useful models in practice that are directly related to this: (1) EII-all clusters are spheres of the same size, Σ k = σ 2 I (k = 1, . . . , K) [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF]; ( 2) EEE-all clusters are ellipsoids of the same size and of the same orientation, Σ k = Σ (k = 1, . . . , K) [START_REF] Friedman | On some invariant criteria for grouping data[END_REF] [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF]; and (4) VVV-all clusters are ellipsoids of different sizes and orientations, no restrictions on Σ k (k = 1, . . . , K) [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF].

; (3) VII-all clusters are spheres of different sizes, Σ k = σ 2 k I (k = 1, . . . , K) (Banfield
From Remark 2.2.1, we known that maximizing the CML criterion function L(θ, P |x) leads to minimizing the within-cluster sum of the (extended) squared errors. Specifically, the minimization of the classical clustering criteria, i.e, the within-cluster sum of the (extended) squared errors, is equivalent to the minimization of the trace of S. Let us return to this discussion and consider the least squares approach, and its relation to maximum likelihood, in more detail. The within-cluster sum of the (extended)
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squared errors can be expressed as follows

K k=1 xi∈P k x i -µ k 2 Σ k = J(P, Σ|x) + K k=1 N k x k -µ k 2 Σ k , (2.24) 
where

J(P, Σ|x) ≡ K k=1 xi∈P k x i -x k 2 Σ k (2.25)
is an important concept called as the sum-of-extended-squared-error criterion, and for each k ∈ {1, . . . , K}, x k is the kth within-cluster sample mean

x k ≡ 1 N k xi∈P k x i . (2.26)
Using the properties of the trace of a matrix, we can write J(P, Σ|x) as

J(P, Σ|x) = K k=1 tr Σ -1 k W k , (2.27) 
where tr(•) denotes the trace of a square matrix, and W k is defined by

W k ≡ xi∈P k (x i -x k )(x i -x k ) T (2.28)
which is known as the sample cross-product matrix for the kth cluster [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF].

Substituting the J(P, Σ|x) into (2.19) then gives the following result for the CML criterion function by separately sampling

l({θ k }, P |x) = - 1 2 J(P, Σ|x) - 1 2 K k=1 N k log|Σ k | - 1 2 K k=1 N k x k -µ k 2 Σ k = - 1 2 K k=1 tr Σ -1 k W k - 1 2 K k=1 N k log|Σ k | - 1 2 K k=1 N k x k -µ k 2 Σ k . (2.29)
Thus, for each partition P = (P 1 , . . . , P K ), after replacing θ k by its MLEs θk in the criterion function l({θ k }, P |x) (k = 1, . . . , K), we get .30) In this situation, note that the MLEs μk = x k (see formula (2.26)) for the mean vectors µ k and Σk for the covariance matrices Σ k (in the most general case, i.e. unconstrained covariances) (the formula (2.18)), for k ∈ {1, . . . , K},

l(P |x) ≡ l({ θk }, P |x) = - 1 2 K k=1 tr Σ-1 k W k - 1 2 K k=1 N k log| Σk |. ( 2 
Σk = S 2 k ≡ W k N k = 1 N k xi∈P k (x i -x k )(x i -x k ) T (2.31)
are all measurable maps of P .

Hence, by making use of the objective function l(P |x) (the formula (2.30)), respective criteria that are equivalent to the CML criterion function l({θ k }, P |x) of the four models (1) -(4) above are these:

CHAPTER 2. MODEL-BASED CLUSTERING (1-SS). Model [EII]: the criterion tr(W ),
where W is the within-cluster scattering matrix (of the partition P = (P 1 , . . . , P K )),

W ≡ K k=1 W k ; (2.32) (2-SS). Model [EEE]: the criterion |W |; (3-SS). Model [VII]: the criterion K k=1 N k log tr(S 2 k ); (4-SS). Model [VVV]: the criterion K k=1 N k log |S 2 k |,
to be minimized by the partition P .

Remark 2.2.2.

(a) From the definition of the sum-of-extended-squared-error criterion (see (2.27)), in the most general case that the covariance matrices are not constrained, we have (by (2.31))

J(P, Σ|x) = K k=1 tr Σ-1 k W k = K k=1 tr W k N k -1 W k = d N.
Based on this important observation, we get a useful result as follows.

Proposition 2.2.1. In the CML approach based on GMM, the sum-of-extended-squared-error criterion J(P, Σ|x) is a constant function of the partition P when Σ is taken to be its MLE Σ, i.e. for every the partition P = (P 1 , . . . , P K ) of the observed data x 1 , . . . , x N ∈ R d , then

J(P, Σ|x) = K k=1 xi∈P k x i -x k 2 Σk = d N.
As an immediate example of the use of this proposition we consider, e.g., finding the MLE of σ 2 in the Model [EII] (Σ k = σ 2 I) (k = 1, . . . , K). Let P denote the set of all partition P = (P 1 , . . . , P K ) of the observed data x 1 , . . . , x N ∈ R d , then the MLE of σ 2 is found from the equation: J(P, Σ|x) = d N (∀P ∈ P). We have by (2.27), for every P ∈ P,

J(P, Σ|x) = d N ⇐⇒ K k=1 tr (σ 2 I) -1 W k = d N ⇐⇒ tr(W ) σ 2 = d N.
This implies that the MLE σ2 of σ 2 is σ2 ≡ tr(W ) d N .

By using the same argument we can be obtained the MLEs of the covariant matrices for the remaining models. Table 2.2 shows the MLEs of Σ k (k = 1, . . . , K) for the four models.

(b) We can now ask question such as: "What about the criteria that are equivalent to the CML criterion function for the mixture sampling scheme?". In order to derive these equivalence criteria we can use an analogous procedure to that used to obtain the four models (1-SS)-(4-SS) as above. Namely, let us consider under the mixture sampling: after replacing the parameter vector 

(1 ≤ k ≤ K) (1) EII Σ k = σ 2 I Σk = σ2 I (with σ2 ≡ tr(W ) d N ) (2) EEE Σ k = Σ Σk = Σ ≡ W N (3) VII Σ k = σ 2 k I Σk = σ2 k I (with σ2 k ≡ 1 d tr(S 2 k )) (4) VVV Σ k (no restrictions) Σk = S 2 k θ = (π 1 , . . . , π K-1 , θ 1 , . . . , θ K ) (with θ k ≡ (µ k , Σ k ) (k = 1, . . . , K)
) by its MLE θ in the CML criterion L(θ, P |x), we obtain immediately the following: (see (2.12) and (2.30))

L(P |x) ≡ L( θ, P |x) = l(P |x) + K k=1 N k logπ k = - 1 2 K k=1 tr Σ-1 k W k + 2 K k=1 N k log | Σk | 1/2 N k = - K k=1 N k log | Σk | 1/2 N k + (const.), where πk ≡ N k N (2.33)
are the MLEs of π k (k = 1, . . . , K), respectively.

We therefore see that maximizing likelihood is equivalent, so far as determining P is concerned, to minimizing the objective function

K k=1 N k log | Σk | 1/2
N k . In summary, under the mixture sampling scheme, respective criteria that are equivalent to maximizing the CML function L(θ, P |x) of the four models (1) -(4) are these:

(1-MS). Model [EII]:

log tr(W ) -2 d N K k=1 N k logN k ; (2-MS). Model [EEE]: log|W | -2 N K k=1 N k logN k ; (3-MS). Model [VII]: K k=1 N k log tr(S 2 k ) -d 2 K k=1 N k logN k ; (4-MS). Model [VVV]: K k=1 N k log |S 2 k | -2 K k=1 N k logN k ,
to be minimized by the partition P ; and common for the four models, the MLEs of µ k and π k are x k and N k N (k = 1, . . . , K), respectively; and the MLEs of the covariance matrices Σ k (k = 1, . . . , K) corresponding to each of the four models (1-MS)-(4-MS) are given in Table 2.2. (c) It is a reasonable question to ask whether closed form formulas for the MLE solutions of parameters θ, P can be found from the CML function L(θ, P |x). The answer is no. It is worth emphasizing that the formulas (2.26), (2.33), and the MLEs of Σ k given in Table 2.2 do not constitute a closedform solution for the parameters of partitional clustering under a GMM because they still depend on the partition P . Given a set of observed data x 1 , . . . , x N ∈ R d from the Gaussian mixture density (2.2), finding the optimal partition P aims to organize them into K clusters while minimizing some prespecified criterion (e.g., one of four criteria (1-MS)-(4-MS) or (1-SS)-(4-SS)). In principle with such combinatorial optimization problems, the optimal partition, based on a given criterion function, can be found by enumerating all possibilities. However, such a brute force approach is infeasible in practice due to the extremely expensive computation, as given by the formula:

C N ; K ≡ K! S(N, K),
where S(N, K) is the Stirling numbers of the second kind (see, e.g., [START_REF] Joarder | Classroom note: An inductive derivation of stirling numbers of the second kind and their applications in statistics[END_REF])

S(N, K) ≡ 1 K! K k=1 (-1) K-k C k K k N .
For example, in order to group 50 observed data into 3 clusters, the number of possible partitions P = (P 1 , P 2 , P 3 ) is 717897984314153 × 10 9 . Therefore, some iterative clustering algorithms, such as the CEM algorithm, are used to seek approximate solution (i.e. the near-optimal partition).

Isotropic Gaussian mixture model-based clustering as a generalization of K-means clustering

The K-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Nagy | State of the art in pattern recognition[END_REF]) is one of the best known and most popular clustering algorithms [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. K-means aims at finding the partition P = (P 1 , . . . , P K ) (of the observed data x 1 , . . . , x N ∈ R d ) which minimizes the within-cluster sum-of-squares,

arg min P ∈P K k=1 xi,xj ∈P k x i -x j 2 ,
where • denotes the Euclidean distance.

The optimal partition to this objective function can also be obtained by solving the following combinatorial optimization problem arg min

P ∈P W (P |x),
where

W (P |x) ≡ K k=1 xi∈P k x i -x k 2 (2.34)
is called the sum-of-squared-error criterion (see, e.g. [START_REF] Banfield | Model-based gaussian and non-gaussian clustering[END_REF]; [START_REF] Duda | Pattern Classification 2nd Edition[END_REF]), and x k is the kth within-cluster sample mean as in Formula (2.26).

The basic clustering procedure of K-means is summarized as follows:

1. Initialize a K-partition randomly or based on some prior knowledge. Calculate the within-cluster sample means x 1 , . . . , x K ;

2. Assign each object in the observed data set to the nearest cluster P k , i.e., for i = 1, . . . , N

x i ∈ P k , if x i -x k < x i -x l (l = 1, . . . , K and l = k);
3. Recalculate the within-cluster sample means based on the current partition;

4. Repeat steps 2 and 3 until there is no change for each cluster.

The K-means clustering solution can be obtained by maximizing the classification likelihood function l({θ k }, P |x), so far as determining P is concerned, of a finite mixture of multivariate Gaussian distributions with identical isotropic covariance matrices Σ k = σ 2 I (i.e. Model [EII]), and equal mixing proportions π k = 1/K (k = 1, . . . , K) with respect to the mixture parameters θ 1 , . . . , θ K (where θ k ≡ (µ k , σ 2 I) (k = 1, . . . , K)). In other words, we can see that the K-means algorithm which can be reinterpreted as an isotropic Gaussian mixture, estimated using the CEM algorithm (Celeux and Govaert, 2.2. FINITE MIXTURE DENSITY-BASED CLUSTERING 1992). Making the relationship between Gaussian mixture models and k-means clustering explicit allows to gain insights into the implicit assumptions imposed when k-means clustering is used.

Consider the identical isotropic Gaussian mixture model, determined by Model [EII]. Combining (2.19) and (2.24), then the CML criteria function will have the form

l({θ k }, P |x) = - 1 2 K k=1 xi∈P k x i -µ k 2 σ 2 I - d N 2 log σ 2 + (const.) = - 1 2σ 2 W (P |x) - 1 2σ 2 K k=1 N k x k -µ k 2 - d N 2 log σ 2 + (const.).
Thus, after replacing the parameter vector θ = (θ 1 , . . . , θ K ) by its MLE θ in the CML criterion function l({θ k }, P |x), maximizing the CML function (so far as determining P is concerned) leads to finding the partition that minimizes the sum-of-quared-error criterion

W (P |x) (see Remark 2.2.2 (b)).
In addition, it can be seen from C step of the CEM algorithm that, assigning each x i to the cluster which provides the maximum posterior probability: (see Formula (2.15))

x i ∈ P k , if τ ki > τ li (l = 1, . . . , K and l = k),
where

τ ki = N(x i | θk ) K l=1 N(x i | θl ) = e -1 2 σ2 xi-x k 2 K l=1 e -1 2 σ2 xi-x l 2 (i = 1, . . . , N ; k = 1, . . . , K),
and σ2 the MLE of σ 2 given in Table 2.

2 (1), Model [EII].
This is equivalent to the object-allocation rule in step 2 of the K-means algorithm,

x i ∈ P k , if x i -x k < x i -x l (l = 1, . . . , K and l = k).
Therefore, we can see that the K-means algorithm is exactly the CEM algorithm for an identical isotropic Gaussian mixture model. The K-means algorithm, which presented as a particular case of the CEM algorithm, is summarized below.

K-means of the CEM type

Input: an observed-data sample x T = (x 1 , . . . , x N ) from an identical isotropic Gaussian mixture model. K from that partition, where

Output: the clusters P k (1 ≤ k ≤ K) (i.
x [q] k ≡ 1 N [q] k xi∈P [q] k x i , N [q] k ≡ |P [q] k | (1 ≤ k ≤ K),
(with q = 0); 2. E-Step This step (on the (q + 1)th iteration) computes,

x i -x [q] k (i = 1, . . . , N ; k = 1, . . . , K); 20 CHAPTER 2. MODEL-BASED CLUSTERING 3. C-Step
The C-step (on the (q + 1)th iteration) updates the partition, for each k = 1, . . . , K the kth updated cluster is given by

P [q+1] k = x i ∈ S| x i -x [q] k < x i -x [q] l (l = 1, . . . , K and l = k) ,
we get the updated partition

P [q+1] = (P [q+1] 1
, . . . , P

[q+1] K

);

M-Step

The M-step (on the (q + 1)th iteration) updates the within-cluster sample means

x [q+1] k = 1 N [q+1] k xi∈P [q+1] k x i (1 ≤ k ≤ K);
5. The E-, C-and M-steps are repeated in turn until there is no further change in the assignments into clusters (or until some maximum number of iterations is exceeded).

The time complexity of K-means is O(N KdT ), where T is the predefined number of iterations (see, e.g. [START_REF] Duda | Pattern Classification 2nd Edition[END_REF]). Since K, d, and T are usually much less than N , the time complexity of K-means is approximately linear (in terms of N ). Therefore, K-means is a good selection for clustering large-scale data sets.

Remark 2.2.3. Let us discuss the sum-of-squared-error criterion W (P |x) in more detail. As before, we put x T i ≡ (x i1 , . . . , x id ) (1 ≤ i ≤ N ), and the kth within-cluster sample mean of the jth feature X j is [EII] and Formula (2.32), it follows that

x kj ≡ 1 N k xi∈P k x ij (1 ≤ j ≤ d). From Criterion (1-SS), Model
W (P |x) = tr(W ) = K k=1 xi∈P k d j=1 (x ij -x kj ) 2 .
This is why the criterion W (P |x) is usually referred to as the sum-of-squared-error criterion. On the other hand, it can be written as the sum of the within-cluster variances weighted,

W (P |x) = K k=1 N k d j=1 1 N k xi∈P k (x ij -x kj ) 2
(the kth within-cluster sample variance of Xj )

(the total variance of feature vector X in the kth cluster)

(the sum of the within-cluster variances weighted)

= K k=1 N k S 2 k ,
where

S 2 k ≡ d j=1 1 N k xi∈P k (x ij -x kj ) 2 = 1 N k d j=1 xi∈P k (x ij -x kj ) 2
is the total variance of feature vector X T = (X 1 , . . . , X d ) in the kth cluster, for k ∈ {1, . . . , K}. Thus, the criterion W (P |x) is also known as the within-cluster variances weighted or simply the variance criterion (see, [START_REF] Celeux | A classification em algorithm for clustering and two stochastic versions[END_REF]). From a practical point of view, K-means is still the most used clustering criterion. This criterion has been used in many important developments in clustering.

It much resembles the variance criterion employed in statistical discipline of the multivariate analysis of variance (MANOVA). It should be noted that, in cluster analysis, the classes are to be found, while they are pre-given in MANOVA.

Feature selection as a model selection problem

Feature selection is more often used in the context of supervised classification with class labels. A method of simultaneous feature selection and clustering, under the framework of finite mixture models, was proposed in [START_REF] Law | Simultaneous feature selection and clustering using mixture models[END_REF]. Such an approach allows us to apply to semi-supervised learning by using the mixture models. Law et al. considered the GMMs and assumed that the features are conditionally independent given the (hidden) component label, that is,

p(x|θ) = K k=1 π k p(x|θ k ) = K k=1 π k p j=1
p j (x j |θ kj ), (2.35) where p j (x j |θ kj ) is the pdf of the jth feature in the kth component. In case of GMMs, this condition is equivalent to adopting diagonal covariance matrices. In addition, for the role of each feature, they suggest that the jth feature is irrelevant if its distribution is independent of the class label, i.e., if it follows a common density, denoted by q(x j |λ j ). So if we denote Ψ = (ψ 1 , . . . , ψ p ) be the set of binary variables, such that ψ j = 1 if feature jth is relevant and ψ j = 0 otherwise, then the mixture density in (2.35) can be rewritten as

p(x|Ψ, θ) = K k=1 π k p j=1 [p j (x j |θ kj )] ψj [q(x j |λ j )] 1-ψj . (2.36)
Hence, the joint density of (x, Ψ) is

p(x, Ψ; θ) = p(x|Ψ; θ)p(Ψ; {ρ j }) = K k=1 π k p j=1 [p j (x j |θ kj )] ψj [q(x j |λ j )] 1-ψj p j=1 ρ ψj j (1 -ρ j ) 1-ψj = K k=1 π k p j=1 [ρ j p j (x j |θ kj )] ψj [(1 -ρ j )q(x j |λ j )] 1-ψj ,
where ρ j = P(ψ j = 1). Therefore, the marginal density of x is given by

p(x|θ) = Ψ p(x, Ψ; θ) = K k=1 π k Ψ p j=1 [ρ j p j (x j |θ kj )] ψj [(1 -ρ j )q(x j |λ j )] 1-ψj = K k=1 π k p j=1 [ρ j p j (x j |θ kj ) + (1 -ρ j )q(x j |λ j )], (2.37) 
with θ = {{π k }, {θ kj }, {λ j }, {ρ j }} is the set of all parameters of the model. The parameter estimation is done via the EM algorithm by treating Z (the latent class labels) and Ψ are latent variables.

However, assuming that the irrelevant variables are independent on both the clustering variables and the relevant variable seem to be unrealistic. To tackle these limitations, Maugis et al. (2009a) based on [START_REF] Raftery | Variable selection for model-based clustering[END_REF] to split the variables into two different sets: S and S c , where S denotes the set of relevant variables and S c is the set of irrelevant variables. In the proposed model, they assumed that the subset S c of irrelevant variables can be explained by a linear regression from a subset R of the clustering variables S. The model selection problem can be achieved by maximizing the quantity crit( K, m, Ŝ, R) = arg max

(K,m,S,R) BIC clust (x S |K, m) + BIC reg (x S c |x R ) , (2.38) 
where

BIC clust (x S |K, m) = 2 log{p clust (x S |K, m, θ)} -λ S (K,m) log n, (2.39) 22 CHAPTER 2. MODEL-BASED CLUSTERING with p clust (x S |K, m, θ) = K k=1 π k N(x S ; µ k , Σ k(m) ), θ = (π 1 , . . . , π K , µ 1 , . . . , µ K , Σ 1 , . . . , Σ K ) is the parameter vector, λ S (K,m)
is the number of free parameters of the (K, m) mixture model with card(S) variables. The BIC reg is given by

BIC reg (x S c |x R ) = 2 log{f reg (x S c |x R , B, Ω)} -ν (S,R) log n, (2.40) 
( B, Ω) are the maximum likelihood estimate of the regression parameters and

ν (S,R) = (card(R) + 1)card(S c ) + card(S c )(card(S c ) + 1) 2 
is the number of parameters for the regression model (in general case).

Later, [START_REF] Maugis | Variable selection in modelbased clustering: A general variable role modeling[END_REF] proposed a general variable role modeling. They split the features into three separated subsets of variable: the relevant variables (S), the irrelevant variables (U) which depend on a subset R of the relevant ones through a linear relationship and an other part (W) are independent of other variables. The data density can be decomposed into three parts as follows

p(x|K, m, r, l, V, θ) = K k=1 π k N(x S ; µ k , Σ k(m) ) ×N(x U ; a + x R B, Ω (r) ) × N(x W ; γ, Γ (l) ),
where θ is the full parameter vector and V = (S, R, U, W). The form of the regression covariance matrix Ω is denoted by r, which can be either spherical, diagonal or general. The form of the covariance matrix Γ of the independent variables W is denoted by l and can be spherical or diagonal. Thus, the model selection problem is solved by maximizing the following criterion (see also [START_REF] Maugis | Variable selection in modelbased clustering: A general variable role modeling[END_REF]

, Section 3)) crit(K, m, r, l, V ) = BIC clust (x S |K, m) + BIC reg (x U |x R , r) + BIC indep (x W |l), (2.41) 
where BIC clust , BIC reg are given in (2.39) and (2.40). BIC indep represents the BIC criterion of the Gaussian model with the variables W.

For the identifiability of the SRUW model and the consistency of the variable selection, reader can refer to (Maugis et al., 2009b, Section 4). A procedure using embedded stepwise variable selection algorithms is used to identify the SRUW sets. Unfortunately, these procedures are limited as the number of variables is of the order of a few tens. Thus, it is not appropriate for large scale data.

Recently, [START_REF] Celeux | Variable selection in model-based clustering and discriminant analysis with a regularization approach[END_REF] proposed an alternative regularization approach of variable selection to overcome the drawback of the SRUW model. First, the variables are ranked with a Lasso-like procedure in order to avoid painfully slow stepwise algorithms. The variable roles are then determined using the stepwise procedures as in the SRUW model. In the next section, we will consider another way to combine variable selection and clustering by likelihood penalization which including the Lasso method used by [START_REF] Celeux | Variable selection in model-based clustering and discriminant analysis with a regularization approach[END_REF].

Variable selection by likelihood penalization

We take a survey on the penalized likelihood methods. These approaches aim at penalizing the clustering criteria in order to yield sparsity in the features. A general form for the penalized log-likelihood function is as follows P L p (θ) = L(θ) -p λ (θ), (2.42) where L(θ) is the log-likelihood function and p λ (θ) is the penalty function. Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]), which will be described in the following, is one of the most widely used regularization method in literature.

In GMM context, [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] proposed the Lasso-type penalized log-likelihood to yield the sparsity of the mean vectors

P L(θ) = n i=1 log K k=1 π k N(x i ; µ k , Σ k ) -λ K k=1 µ k 1 , (2.43) 
where

Σ k = Σ = diag(σ 2 1 , . . . , σ 2 
p ) for all k ∈ {1, . . . , K} and λ is tuning parameter which decides the level of sparsity. Note that, the observations are standardized to have zero mean and unit variance for each variable j. If µ 1j = • • • = µ Kj = 0, then the variable jth cannot differentiate the components, hence deemed as noninformative and automatically excluded from clustering.

In a similar approach, Xie et al. (2008a) proposed a method dealing with the case of clustering specific diagonal covariance matrices leading to the following penalty function

p λ (θ) = λ 1 K k=1 µ k 1 + λ 2 K k=1 p j=1 |σ 2 kj -1|, (2.44) 
with Σ k = diag(σ 2 k1 , . . . , σ 2 kp ) be the covariance matrix of the kth group. In this case, a second penalty term is used to force an estimate of σ 2 kj that is close to 1 to be exactly 1. Finally, [START_REF] Zhou | Penalized model-based clustering with unconstrained covariance matrices[END_REF] considered a general covariance matrix Σ by relaxing the diagonal covariance matrix assumption. To facilitate estimating large and sparse covariance matrices, they employed the following penalty function

p λ (θ) = λ 1 K k=1 µ k 1 + λ 2 p j=1 p h=1 |Σ -1 jh |. (2.45)
This penalty function is then modified to permit varying cluster volumes and orientations

p λ (θ) = λ 1 K k=1 µ k 1 + λ 2 K k=1 j,h |Σ -1 k;jh |, (2.46)
where Σ k is the covariance matrix of the kth cluster. Note that, the penalty on the mean parameter is mainly for variable selection, while that for the covariance matrices is necessary for high-dimensional data. However, this leads to a difficult problem in estimating the covariance matrices, which are said to be positive-definite.

In the same spirit, [START_REF] Xie | Penalized mixtures of factor analyzers with application to clustering high-dimensional microarray data[END_REF] proposed a penalized MFA approach from the model introduced by [START_REF] Ghahramani | The EM algorithm for mixtures of factor analyzers[END_REF], where the noise covariance matrix is diagonal and common to all factor. By standardizing each variable to have variance at 1, one can treat these variables in a similar scale and thus penalize their mean parameters together by an 1 penalty. In addition, a variable j is irrelevant to all clusters if all µ jk , k = 1, . . . , K are 0 and all b kj. = (b k;j1 , . . . , b k;jq ), k = 1, . . . , K are required to be 0, where b k;jl is the value of the loading matrix Λ k at row jth and column lth. Hence, to realize more effective variable selection, it is natural to treat b k;j1 , . . . , b k;jq as a group of parameters, constructing a penalty that encourages all of them to be exactly 0. Therefore, the authors regularized the log-likelihood function of a GMM with the following penalty function

p ( λ, γ)(θ) = λp 1 (µ) + γp 2 (Λ) = λ K k=1 µ k 1 + γ K k=1 p j=1 b kj. 2 ,
(2.47) where b kj. 2 = q l=1 b 2 k;jl . The 1 norm p 1 (µ), as in [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF], is use to shrink a small estimate µ kj to be exactly 0, while p 2 (Λ), serving as a grouped variable penalty as in [START_REF] Xie | Variable selection in penalized model-based clustering via regularization on grouped parameters[END_REF] is used to shrink an estimate of factor loading vector b kj. that is close to 0 to be exactly 0.

As general, the tuning parameters of all these regularization methods are selected through a modified BIC criterion, which takes into account the level of sparsity in the model complexity term. However, the selection of the sparsity parameters is still an open issue. Among the related works, we refer the works of [START_REF] Witten | A framework for feature selection in clustering[END_REF] and [START_REF] Wang | Variable selection for model-based high-dimensional clustering and its application to microarray data[END_REF]. For the first approach, Witten and Tibshirani proposed a framework for sparse clustering based on a Lasso-type penalty to select the features. The method is then used to develop sparse K-means and sparse hierarchical clustering methods. For the remaining, Wang and Zhu suggested two regularization methods. The first one replaces the 1 -norm in [START_REF] Pan | Penalized model-based clustering with application to variable selection[END_REF] with the ∞ -norm to shrink the mean vectors and obtain a sparsity model 

p λ (θ) = λ p j=1 (µ 1j , . . . , µ Kj ) ∞ , ( 2 
µ kj = γ j η kj , k = 1, . . . , K; j = 1, . . . , p, (2.49) 
where γ j ≥ 0. Secondly, they considered the following hierarchically penalized GMM

P L(θ) = L(θ) -λ γ p j=1 γ j -λ η K k=1 p j=1 |η kj |, (2.50) 
subject to γ j ≥ 0. If γ j is reduced to zero then all µ kj for the jth variable will be equal to zero. Otherwise, some of θ kj hence some of the µ kj , k = 1, . . . , K, still have the possibility of being zero; in this sense, the hierarchical penalty keeps the flexibility of the 1 -norm penalty. 

Introduction

With the development of WiFi technology and smartphone, Indoor Positioning System (IPS) has paid more attention. Many IPS applications have been studied and achieved [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF][START_REF] Gu | A survey of indoor positioning systems for wireless personal networks[END_REF]. Global Positioning System (GPS) [START_REF] Kaplan | Understanding GPS/GNSS: principles and applications[END_REF] issued in out door environments and it has well position in practice. The GPS technology mainly relies on signal propagation in the air. As it encounters the buildings with complex architecture (such as supermarkets, commercial centers, hospitals, airports, etc.), it will interfere with signal propagation. For indoor positioning, wireless communication technology such as WiFi is paid more attention. It can built on mobile phones [START_REF] Campos | Wi-fi multi-floor indoor positioning considering architectural aspects and controlled computational complexity[END_REF]. Meanwhile, WiFi access points (APs) can be seen everywhere in indoor environments and the smartphones can be used to receive WiFi signals.

We briefly describe the following case study of building an indoor positioning system.

A Case Study in Data Science: Building fingerprinting database for IPS

We design the experiment as follows: the size of the room is 9.0m × 6.5m. To implement the positioning application in the room, there are fixed 5 APs as AP1 (Franky, Mercury), AP2 (Gold, TP-Link), AP3

(Mamasita, Mercury), AP4 (Gogosala, TPLink), AP5 (Hussein, Mercury) at 5 different locations with height from 1.1m to 1.6m. The prototype system of Wireless LAN for IPS in the room contains two parts such as the Server and the Smartphone Client. The Server is responsible for processing, storing information of all reference points (RPs) to create a Fingerprinting database. In addition, the indoor positioning result for User/Smartphone is obtained in the Server. The Smartphone Client is responsible for collecting the received signal strength indication (RSSI) values in the room and sends all these values to the Server. Moreover, the Smartphone Client receives indoor positioning result from the Server and displays this result on the 2D map (physical map) of the room. For the Server, the configuration of the devices includes Dell Latitude E6420, Intel(R) Core(TM) i7-2620M 2.70 GHz Dual-core processor with Hyper-Threading technology and 8 GB DRR3 SDRAM. For the Smartphone Client, it consists of Samsung Galaxy Note 3 SM-N900T, 32 GB and BlackBerry (T-Mobile) Smartphone.

To build an IPS requires a reference the fingerprinting database set where the signal strength between a hand-held device such as a cellular phone or laptop and fixed APs are measured at known locations throughout the building. With these training data, we can build a model for the location of a device as a function of the strength of the signals between the device and each access point. Then we use this model to predict the location of a new unknown device based on the detected signals for the device. The indoor locations are divided into a mesh network of RPs with even spacing, includes all 205 RPs; the distance between RPs in the room is 0.5m (see Figure 3.1). Table 3.1 shows the parameters for collecting RSSI values from 5 APs for 205 RPs in the room. It includes two parameters related to RPs as the distance between two RPs and the number of RPs in the room, a parameter about the frequency of communication between Smartphone and 5 APs to collects RSSI values, and one parameter about the time interval to Smartphone collects 1 new RSSI value from 5 APs in the room. We collect 100 RSSI values for each RP k location with different indoor noise conditions such as the number of people working; number of computers and laptops operating; and measure signal strength at 4 orientations -90 degree intervals from 0 to 270 etc., in the room (see [START_REF] Ninh | An effective random statistical method for indoor positioning system using wifi fingerprinting[END_REF], for more detail). 

EXPLORATORY DATA ANALYSIS AND VISUALIZATION

Exploratory data analysis and visualization

Join us in: "Exploring The thing through data experiences."

"Visualization is a great way to allow a set of data to tell a narrative story about itself."

We are now ready to start Exploratory Data Analysis (EDA).

Analysing to explore the position of the Hand-Held Device

We begin by visualizing all positions of the floor plan and by adding the counts as text at their respective locations. Figure 3.3 shows all locations that were exploratively analyzed and referenced by the labels RP j (j = 0, . . . , 204) in our floor plan, on the basis of the training data. To determine the number of observations recorded at each location in our offline database, we can visualize all 205 locations by adding the counts of signals detected from all access points at their respective locations. We see in Figure 3.4 that there are the same number of signals detected at each location. Namely, for each location, 100 signals were measured for each of 5 access points. So there are all 102500 signals detected, and included in 20500 recordings in our offline database.

Analysing to explore signal strength

Using visualization and statistical summaries we now turn to investigating the response variable, signal strength. We want to learn more about how the signals behave before designing a model for IPS. The following questions guide us in our investigations. • Signal strength has been measured to an access point multiple times at each location and orientation. So, how do these signal strengths behave? What is the distribution of the repeated measurements at each location and orientation? Does signal strength behave the same at all of the locations? Or, is this a case of location, orientation, and access points having an effect on the distribution? What is the global distribution of signal strength of all access points included in our floor plan?

• In perfect conditions (lab setting), signal strength decays linearly with log distance and a simple triangulation using the signal strength from three access points can give an accurate pinpoint to the location of a device. The physical characteristics of a building and the activity in it can add a large amount of noise to signal strength measurements. Our questions become how do we describe the relationship between the signal strength and the distance from the device to the access point? How does orientation affect this relationship. Finally, is this relationship the same for all access points?

The impact of location on signal strength Does signal strength behave the same at all of the locations? To answer this, we will fix a location on the floor plan to see the impact of that location and signal strength. Using descriptive statistics, we can calculate summary statistics on each of locations from our offline database, e.g., consider the location at RP4 and the recorded signal strengths from access points AP1, AP3 with respect to that location. We have -45.00 -43.00 -42.00 -41.76 -41.00 -39.00 Notice that the values for signal strength in dBm (Decibel-milliwatts). We can see from the summary statistics that signal strengths are measured in negative integer values, The small values, such as -64, are weaker signals, while the larger values, such as -39, are the stronger signals. It can be seen in Figure 3.5 that the signal strength does vary with the location for both close and distant access points. When other locations are examined we also see a similar dependence of signal strength on position.

If we want to examine the impact of location on signal strength for all 5 access points, then we make 5 boxplots at the same time, as shown in Figure 3.6. We can see the underlying distributions of signals are normal or skewed, and this depends on position of RP4 is near or far from each of access points. The boxplots show that RP4 is located closest to the AP1 access point.

To see more clearly the dependence of signal strength on location, we can use density curves (frequency curves) of signal strength from the access points for this fixed location. We note from Figure 3.7 that, for a fixed location (RP4), the density curve of signal from the AP1 access point looks roughly normal (right plot) while the other (from the AP3) looks skewed left (left plot). We compare the density curves of signal strength from all access points for a fixed location on the floor plan, and these also give a similar dependence of signal strength on position, as can be seen, for the RP4 location, from 

The relationship between standard deviation and mean signal strength

We proceed to find out whether the standard deviation varies with the mean signal strength or not. To check for this, we can examine summary statistics such as the mean and standard deviation (SD) of signal strength for all access point-location combinations (AP-RP combinations). For each combination, we have 100 observations and calculate summary statistics for these various combinations. For instance, some of summary statistics for standard deviation (named variable: sdSignal) and average signal strength (named variable: meanSignal) for AP-RP combinations as follows.

-View some of rows of the summary statistics for standard deviation and average signal strength: We can make SD for subgroups of the average signal strength by turning the average signal strength into a categorical variable. Namely, we divide the average signal strength into intervals: Now we take a visual look at the measures of spread with boxplots. We see in Figure 3.9 that, on the basis of our floor plan, the weakest signals have small standard deviations and it appears that the SD has a spread that increases with the average signal strength.

The relationship between signal strength and distance

To consider the impact of signal strength from access points to locations in our floor plan, we can use visualizing the surface by smoothing signal strength over the region where it is measured and create a contour plot. This is similar to what you see in a topographical map; that part of the floor plan where there is strong signal strength corresponds to the higher elevated areas in the contour map. We can make a topographical map using color, just like a heatmap.

Figure 3.10 is the heat map that it provides a smooth topographical representation of signal strength from the AP5 access point. We see that the dark red region, at the top of the hill (near the top left of the figure), corresponds to the AP5 access point in the original floor plan. The black dots in the heat map represent the locations (RPs) marked on the floor plan. Furthermore, we can also detect a corridor effect. The signal is greater relative to the distance along the corridors where the signals are not blocked by walls.

In Figure 3.11, it shows the four heat maps that provide a smooth topographic representation of the signal strength relative to the remaining access points in the original floor plan. The two upper heat maps are for the AP1 access point (left) and AP2 (right). The lower two maps represent the signal strength for the AP3 (left) and AP4 (right).

We know that the position of each access point is based on the floor plan of the building. To FINGERPRINTING examine the variation of the recorded signal strength at each of the access points relative to the distance to locations on the floor plan, we need to compute the distance from each of the access points to the locations on the floor plan. For each i ∈ {1, . . . , 5}, and k ∈ {0, 1, . . . , 204}, let x T AP i ≡ (x

(1)

AP i ; x (2) 
AP i ) and

x T RP k ≡ (x (1) 
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RP k ) be coordinates for the APi access point and the RPk location, respectively; and let Signal AP i (RP k) be the average signal strength from the APi access point for the RPk location. Now we can calculate the Euclidean distance between the location and the access point, x AP i -x RP k (i = 1, . . . , 5; k = 0, 1, . . . , 204), and make the scatter plots for each access point as follows: for each i ∈ {1, . . . , 5}, plot the pairs of points

x AP i -x RP k ; Signal AP i (RP k) |0 ≤ k ≤ 204 .
The relationship between signal strength from a fixed access point (AP1) and distance to locations, on the floor plan, is shown by the scatter plot in Figure 3.12. Similar to the observations obtained from the heat maps above, we can again see that the signal strength is strong or weak depending on how near or far the distance from the locations to the access point. Figure 3.13 shows 5 scatter plots for the relationship between the signal strength and the distance to the access point for each of the 5 access points. We also find that, in general, signal strength decays with distance long.

Analysing to explore the distribution of signal strength vector

Note that, in the previous subsection, analysing to explore the influence of signal strength on the locations of our floor plan is purely local. We now need a more principled approach to solving a natural question 

f (x|θ) = 5 k=1 π k N(x|θ k ), (3.1) 
where x is the value of signal vector in a 5-dimensional (5D) signal strength space, and the parameters π 1 , . . . , π 5 are referred to as mixing proportions, and θ is the vector containing all the parameters in π = {π 1 , . . . , π 4 }, µ = {µ 1 , . . . , µ 5 }, Σ = {Σ 1 , . . . , Σ 5 } that represents this mixture model.

Using the Gaussian mixture distribution as above allows we have a topographic ordering in the sense that any two points x A and x B which are close in signal strength space will map to points, denoted by RP -1 (x A ) and RP -1 (x B ) which are "close" in our floor plan.

Our goal is to discover groups of similar examples within the data (i.e. clustering) based on the distribution global for the signal strength by using the semi-parametric methods of statistical learning theory, and then project the data from a high-dimensional space down to two or three dimensions for the purpose of visualization. From these it can provide users with a clearer and more visual picture of the data of interest as well as embodies extant knowledge about Wi-Fi signals and physical constraints implied by the target floor plan. Our data visualization scenarios consist of two main parts as follows:

• Part 1: Include the following two procedures.

-The first procedure consists of two steps: P.1.1. Execute to clustering via the classification maximum likelihood (CEM) algorithm for fitting the mixture distribution and data classification based on our training data in terms of the 5-dimensional signal strength vector (see Subsection 2.2.2 in Chapter 2).

P.1.2. Visualize (soft-allocation) clustering by projecting onto 2D signal strength space of each pair of access points (AP i, AP j) (i, j ∈ {1, . . . , 5} and i = j).

-The second procedure also consists of two steps: P.2.1. Executing a projection from the 5-dimensional training data space of signal strength vector onto a 2D signal strength space for each pair of access points (AP i, AP j) (i, j ∈ {1, . . . , 5} and i = j), and then perform to clustering via the CEM algorithm as above.

P.2.2. Visualize the clustering for this pair (AP i, AP j) (i, j ∈ {1, . . . , 5} and i = j).

• Part 2: Also includes the same two procedures as in Part 1, except that we replace the CEM algorithm with the K-Means of the CEM type (so, it is a hard-allocation clustering version , see Subsection 2.2.4, Chapter 2).

We summarize the following results for the data visualization procedures to learn about the intrinsic correlations of recorded signal strength from 5 access points to 205 locations on our floor plan, based on the fitted distribution from the training dataset.

Results of the visualization scenario Part 1

Throughout this visualization, to keep a brief presentation, the projections are made on the 2D signal strength space of access point pair (AP1, AP5). We use the CEM algorithm for fitting the mixture density function of the 5-dimensional signal strength vector AP T ≡ (AP 1, AP 2, AP 3, AP 4, AP 5), with the Model [VVV] (i.e., all clusters are ellipsoids of different sizes and orientations, see Table 2.2).

Figure 3.14 shows the scatter plot of 20500 clustered access point pairs (AP1, AP5) of the 5D signal strength vector when projected onto 2D signal space. The average signal strength (or the center) of vector AP corresponding to each cluster are given in Table 3

.2.
Here, the number of points in each cluster is shown in Table 3.3 90398 -41.43579 -54.00102 -45.56283 -42.27459 3 -49.36685 -43.92824 -62.46775 -47.64570 -46.45665 4 -59.22552 -46.88148 -58.40274 -48.03358 -42.61480 5 -59.32122 -45.93389 -51.39886 -43.04694 -43.64656 and the average signal strength of access point pair (AP1, AP5) at each location in its respective cluster is given in Table 3.4.

Next, we execute a projection from the 5-dimensional training data space of signal strength vector AP onto a 2D signal strength space for the access point pair (AP 1, AP 5) and then perform to clustering via the CEM algorithm as above. The visualisation for these results of clustering is shown in Figure 3 Table 3.5 shows the average signal strength of vector (AP1, AP5) corresponding to each cluster. The number of allocated points in each cluster for this situation is given in In the Part 2, our data visualization scenario is made to illustrate for clustering by a hard-allocation, using the K-Means of the CEM type with respect to K = 5. We use this algorithm for fitting the mixture density function of 5-dimensional signal strength vector AP , combined with clustering (see Subsection 2.2.4). Notice that, the mixture density function of vector AP in 5-dimensional signal strength space then takes the form On the basis of our training dataset, then using the hard-allocation algorithm by 5-means of CEM type for fitting mixture distribution and clustering. The results are summarized as follows: Figure 3.16 shows the scatter plot of 20500 clustered values of 5D signal strength vector AP when projected onto 2D signal space of (AP1, AP5). The average signal strength of vector AP corresponding to each cluster is given in Table 3.8. The number of points in each class from clustering by this hard-allocation is indicated in Table 3.9. Furthermore, we were able to combine the density curve (or frequency curve) plots of the signal strength in each cluster of AP1 and AP5, respectively, along with a scatterplot of 20500 clustered values of the AP 's 5-dimension signal strength when projected onto the 2D signal space (AP1, AP5). This is illustrated in Figure 3.17 -56.43058 -46.51452 -54.99955 -47.99955 -38.89746 2 -62.42186 -48.15373 -46.94280 -45.24155 -46.72868 3 -55.22877 -38.84361 -55.26986 -45.03447 -43.12648 4 -62.80332 -46.74086 -60.25858 -44.11536 -46.88154 5 -47.83763 -45.01013 -62.90680 -47.84515 -46.53343 Table 3.9: Number of points in each cluster by hard-allocation To make it easier to see the distribution of signal strength projected on (AP1, AP5) from the above clustering, we can hide all information related to clusters other than AP1 and AP5. Figure 3.18 illustrates such an implementation.

If we project the 5-dimensional training data space of signal strength vector AP onto a 2D signal FINGERPRINTING Figure 3.18: The scatter plot of the 2D signal strength vector and its distribution projected on (AP1, AP5) from the above clustering. All information related to clusters other than AP1 and AP5 are hidden.

strength space for the access point pair (AP 1, AP 5) and then perform to clustering via the 5-Means of CEM type as above, then the visualisation for these results of clustering is shown in Figure 3.19

The average signal strength of vector (AP1, AP5) corresponding to each cluster is given in Table 3.10. Similarly, the number of points in each class from clustering by this hard-allocation is indicated in Table 3.11. Figure 3.20 illustrates the distribution of signal strength projected on (AP1, AP5) from the above clustering when we hide all information related to clusters other than AP1 and AP5.

To our knowledge, using the multidimensional mixed models as mentioned above for the IPS problems have never been tried in real-world clustering problems. It can be seen that, if we know the signal strength distribution of all the access points which present on our floor design, then we can approach to solve the indoor hand-held device positioning problem based on this distribution. We leave this issue as a subject for further investigation.

Data Modeling

There are many different statistical techniques that can be used to estimate the location of a hand-held device from the strength of the signal detected between the device and access points. For this analysis we are going to use a common and intuitive approach called K-nearest neighbors (K-NN) based on the Euclidean distance (or metric) in 5 dimensions. Figure 3.20: The scatter plot of the 2D signal strength vector and its distribution projected on (AP1, AP5) from the above clustering. All information related to clusters other than AP1 and AP5 are hidden.

Predict Location by K-Nearest Neighbor Methods

We begin by using the K-nearest neighbors method. Roughly speaking, the idea of this method is as follows: use our training data where the signal strength is measured from 5 access points to known locations in a floor plan; when we get a new observation, namely, a new set of signal strengths for this unknown location, we find the K nearest points (by the Euclidean metric of signal strength domain) in our training data and estimate the new observation's position by an aggregate of the positions of these K training points.

Preparation of test data

Our test dataset (online data) consists of 60 RPs, randomly selected locations on the floor plan; Each location is measured signal strength from 5 access points with a different number of times. The coordinates of the locations are recorded where these test measurements were taken, so that we can assess the accuracy of our predictions.

It may be helpful to organize the online data in a different structure than we have used for the offline data. For instance, the average signal strength (assigned to variable name: APi (i = 1, . . . , 5)) as follows:

-View some of rows of the summary statistics for standard deviation and average signal strength: -49.58025 -42.44595 -67.05556 -48.64474 -45.57895 Here, e.g., at the reference location with coordinates (0.5; 0.0), the average signal strength calculated from the AP1 access point to this location is -57.00000.

-View some of number of times where RSSI values are measured posX-posY Number of times the RSSI values is measured 0.5 -0.0 77 0.5 -1.0 80 0.5 -2.0 76 0.5 -3.5 78 0.5 -5.5 78 1.0 -1.0 81

The K-Nearest Neighbor Rule

We now can use our training data set to predict the location of new point. We want to look at the distance in terms of signal strengths from all observations in the training set to the new point. To do that, we will need to calculate the Euclidean distance from our new point to all reference points (in signal strength space). The average signal vector of a new point (which consists of 5 new average signal strengths) is denoted by AP new ≡ (AP 1 new , AP 2 new , AP 3 new , AP 4 new , AP 5 new ) T , while the training observation's average signal vectors are written as AP k = (AP 1 k , AP 2 k , AP 3 k , AP 4 k , AP 5 k ) T (k = 0, 1, . . . , 204), and then we calculate the Euclidean distance from our new point to all reference points on the floor plan

AP new -AP k ≡ 5 i=1 (AP i new -AP i k ) 2 1/2 (k = 0, 1, . . . , 204).
Next, we sort the calculated distances in non-decreasing order, and with some fixed value K of nearest neighbors, we take the first K locations of the training observations in order of closeness to the new observations signal strength. Finally, we can simply average the first K locations as an estimate for the location of the new point. For example, the predicted locations by the 3-nearest neighbors method for the above 6 new point locations in our test dataset as follows: posX posY 0.5000000 0.0000000 1.1666667 1.3333333 0.6666667 0.8333333 1.0000000 3.3333333 0.6666667 4.5000000 0.8333333 1.3333333 What does a list of numbers like above tell us? Well, not much from the numbers that show up like that. We need to visualize the information to get any intelligence out of our model. If we look at the plots in Figure 3.22. We can see that our 3-NN method (right plot) gave us some tighter looking clusters than our 2-NN did (left plot). There is an important question from this and that is whether another value of K nearest neighbors may yield better results or not.

Model diagnostics: In the context of a model selection problem

In this subsection, we consider the fit of K-NN models in predicting the positions of new observations based on the test dataset. Note that, as mentioned above, choosing the number K that includes the nearest neighbors to estimate the position of a new observation is a problem of model selection. Firstly, we introduce the following measures of the size of the error.

Measures of error by fitting the predictive models

Let m be the number of new observations of our test dataset, and for each i ∈ {1, . . . , m}, we set

x R.i ≡ (x (1) R.i ; x (2) R.i ) and xi ≡ (x (1) i ;
x(2) i ) as the coordinates of the actual and predicted locations of the new points, respectively. We use the following measures of error to evaluate the fit of the predictive models.

• A commonly used measure is the sum of squared errors (or the prediction sum of squares) The blue line segments connect the test point's locations (red dots) to their predicted point's locations (asterisks).

E 1 (K) ≡ m i=1 xi -x R.i 2 = m i=1 2 j=1 x(j) i -x ( 
• the total prediction error (i.e. the sum of all distances between the predicted and actual locations)

E 2 (K) ≡ m i=1 xi -x R.i = m i=1 2 j=1 x(j) i -x (j) i 2 1/2 ;
• the mean squared error (or the average residual squared error (see, [START_REF] Bibliography Efron | An introduction to the bootstrap[END_REF], Chapter 17)

E 3 (K) ≡ 1 m m i=1 xi -x R.i 2 = 1 m m i=1 2 j=1
x(j) i -x (j) i 2 ;

• and the average prediction error

E 4 (K) ≡ 1 m m i=1 xi -x R.i = 1 m m i=1 2 j=1 x(j) i -x (j) i 2 1/2 .
For example, we obtain the error of fitting by 3-NN model for predicting the position of all 60 new points in our test database as follows (see Figure 3.21): (with m = 60 and K = 3) We now begin with an intuitive description of the technique to determine the number K by the method of L-fold cross-validation (see, e.g., [START_REF] Bibliography Efron | An introduction to the bootstrap[END_REF]; [START_REF] James | An introduction to statistical learning[END_REF]). It is a most commonly used resampling method, and is often used for model selection, because often additional data are not available, for reasons of logistics or cost, etc. The cross-validation is sensible to choose a model that has the lowest prediction error among a set of candidates. Ideally, we want to choose the value of K independent of our test dataset so that we do not overfit our model to the training data. To do that, we divide our training data into L non-overlapping folds (or groups) of approximately equal size. Then for each fold, we build models with the data that are in the remaining (L -1) folds and we assess the predictive ability of the model using the fold that was left out. This procedure is repeated L times; each time, a different fold of observations is treated as a validation set. In our nearest neighbor scenario, we use all 5 access points with each location. This means that we cross-validate on the 205 locations.

E 1 (3) E 2 (3) E 3 (3) E 4 ( 
The L-fold cross-validation procedure for finding the number K of neighbors is summarized below. It uses the following formulae, as we mentioned above, for calculating the prediction error.

• Type 1 (of the error): For each i ∈ {1, . . . , L}, a most common error-measure of the fit of k-NN model (with some natural number k) using the ith fold is the average cross-validation sum of squares (see, [START_REF] Bibliography Efron | An introduction to the bootstrap[END_REF], Chapter 17) as follows

e i (k) ≡ 1 m E (i) 3 (k),
where

E (i)
3 (k) is the mean squared error (see E 3 (•) above) and is computed on the observations in the ith fold, and m (with the same value) is the number of observations in each fold.

• Type 2 (of the error): We propose using the prediction error on each of the folds as follows

e i (k) ≡ 1 m E (i) 4 (k),
where E For each i ∈ {1, . . . , L} do Begin 4.

Set the F i fold as a validation set and train the k-NN model with the data that are in the (L -1) remaining folds; 5.

Calculate the prediction error of the fitted model: e i (k) End;

6.

Calculate the L-fold average cross-validation sum of squares:

Err[k] ≡ 1 L L i=1
e i (k) End; 7. The number K of nearest neighbors is chosen to be

K ≡ arg min 1≤k≤M Err[k].
For instance, if we split the training data (i.e. the offline data from our floor plan) into 10 folds (L = 10) and take M = 20, then we obtain the result of determining the number K by the method of L-fold cross-validation from the above procedure, for choosing Type 1 of the error, as follows:

[1] 1.8141 1.5694 1.5162 1.5281 1.5312 1.5194 1.5201 1.5342 1.5238 1.5461 [11] 1.5711 1.5903 1.6035 1.6129 1.6232 1.6449 1.6587 1.6638 1.6764 1.6920

In this case, the number K of nearest neighbors that gives the lowest cross-validated prediction error is K = 3. Figure 3.23 shows the L-fold average cross-validation sum of squares as a function of k. We see that the errors decrease quite a lot at first, e.g., for k =1, 2, and 3; and after that, the errors begin to increase slowly. The choice of K = 2 (or K = 3) may not be the minimizing value for our test dataset (i.e. online dataset) because this value was chosen without reference to the online dataset. This is the reason we use cross-validation, i.e., we do not use the online dataset in both the selection of K and the assessment of the prediction errors. Although the cross-validation can control the phenomenon of over-fitting for complex models with many parameters, it should be noted that, limiting the number K of nearest neighbors in order to avoid over-fittting has sometimes the side effect of limiting the flexibility of the model to capture interesting and important trends in the data. Figure 3.25 shows the phenomenon of over-fitting when using the k-NN models to predict the location of the new points based on test dataset. We can see that the 3-NN model (left plot) gave us a tighter looking clusters than our 15-NN did (right plot). Thus, taking a large value of K may not give better results.

The overall prediction errors of fitting by 3-NN and 15-NN models for predicting the position of all 60 new points in our test database as follows: (see Figure 3.25)

Conclusions and future directions

In this work, we reviewed FMMs used for modeling, clustering heterogeneous data. We also consider the EM and CEM algorithms with are widely used to estimate the parameters of these models.

In cluster analysis, the classification approach of mixtures is an effective way which reveals some of the statistical aspects of many classical clustering criteria. We can see that most of the standard clustering criteria can be viewed as particular CML criteria. Following [START_REF] Bryant | Large-sample results for optimization-based clustering methods[END_REF], the CML criterion (2.12) can refer to as the penalized CML with a penalty term k N k log π k . At this point, we would like to discuss in more detail, as it can be seen from the CEM algorithm that the fitted partition is obtained from the iterative process for updating the clusters based on the MAP criterion in which the MLEs have been calculated using the previous cluster-update data.

This might seem like a strange clustering because, from what we know about the nature of any clustering method that the primary thrust of clustering is to arrange a collection of data (patterns, entities, or units of certain objects) into small clusters so that the elements that are similar become allocated to the same cluster, it would seem more natural to optimize the objective function related to the closeness (or similarity) between the data objects. In this context, naturally a question arises:"What is the relationship between the MAP criteria and the closeness of data objects?". We provide an answer for this question in Chapter 2. Another aspect is that the computational task of manipulating and inverting large covariance matrices can become prohibitive. In order to address these problems, it is common to use more parsimonious-restricted forms of the structure of the covariance matrices in the model-based clustering. One way to do this is via the reparameterization of the covariance matrices Σ k (1 ≤ k ≤ K) in terms of their spectral decomposition. The natural results of this are the formation of a family of mixture models when various constraints are imposed upon the eigenvalue-decomposed component covariance matrices. We therefore can answer the question such as: "What about the criteria that are equivalent to the CML criterion function for the mixture sampling scheme?" Finally, in Chapter 3 we apply these methods on a case study: Indoor Positioning System using WiFi fingerprinting in order to find out the global distribution of signal strength of all access points included in our floor plan. To our knowledge, using the multidimensional mixed models as mentioned above for the IPS problems have never been tried in real-world clustering problems. It can be seen that, if we know the signal strength distribution of all the access points which present on our floor design, then we can approach to solve the indoor held-hand device positioning problem based on this distribution. In additions, we have used the method of cross-validation to select the number of neighbors, but we have another parameter that we have not investigated: the number of angles to include in the training data. This parameter can be selected via cross-validation as well. In fact, the two can be selected jointly via cross-validation. We leave these issues as subjects for further investigation. 
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  the (weighted) geometric mean of the K corresponding generalized variances from the component densities. This geometric mean serves as a descriptive summary for the central tendency of the generalized variances |Σ 1 |, . . . , |Σ K |. In general, however, different correlation structures of the covariance matrices

Table 2 . 2 :

 22 MLEs of the covariance matrices Σ k for the four models, respectively.

	2.2. FINITE MIXTURE DENSITY-BASED CLUSTERING
	Identifier code Models	MLEs for Σ k

Table 3 . 1 :

 31 WiFi signals collecting parameters for RPs in the room.

	Parameters	Value Comments
	Distance between RPs	0.5m The average distance of each normal adult footsteps
	Time to collect 1 RSSI value	5s	Determined by actual demands
	Frequency to collect RSSI values 10Hz Determined by the mobile device
	Number of RPs collected	205	Determined by room size

Table 3 . 2 :

 32 CENTER IN EACH OF THE 5 CLUSTERS

	Cluster	AP1	AP2	AP3	AP4	AP5
	1	-63.49097 -48.28461 -48.88472 -44.64005 -47.55575
	2	-55.				

Table 3 . 3 :

 33 Number of points in each cluster

	Cluster	1	2	3	4	5
	Number of points 3463 5119 3954 4915 3049

Table 3 .

 3 .15. CHAPTER 3. A CASE STUDY: INDOOR POSITIONING SYSTEM USING WIFI FINGERPRINTING 4: The average signal of (AP1, AP5) at each location in its cluster

	Ordered. Num.	AP1	AP5	Cluster
	1	-58.85635 -43.48362	5
	2	-62.27170 -34.43146	4
	3	-55.95215 -47.55201	4
	4	-43.08847 -51.15134	3
	5	-56.62167 -42.73709	5
	...	...	...	...
	329	-60.17345 -41.70991	1
	330	-59.89013 -46.99226	4
	331	-68.91892 -50.64967	1
	332	-59.29521 -40.74655	5
	333	-57.96334 -45.86336	4
	...	...	...	...

[ reached 'max' / getOption("max.print") -omitted 20167 rows ]
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	6,

Table 3 .

 3 5: CENTER IN EACH OF THE 5 CLUSTERS (For (AP1, AP5), using soft-allocation to clustering) the average signal of access point pair (AP1, AP5) at each location in its respective cluster is presented in Table3.7 as follows:

	Cluster	AP1		AP5		
	1	-63.62545 -48.59463		
	2	-48.32799 -44.23077		
	3	-62.21555 -42.16858		
	4	-54.03495 -40.94360		
	5	-57.89541 -44.92655		
	Table 3.6: Soft-allocation by 2D: Number of points in each cluster
	Cluster	1	2	3	4	5
	Number of points 4554 3737 3277 4651 4281

and

Table 3 . 7 :

 37 The average signal of (AP1, AP5) at each location by 2D soft-allocation clustering

	Ordered. Num.	AP1	AP5	Cluster
	1	-58.58071 -39.99473	3
	2	-70.23335 -55.05783	1
	3	-62.10970 -43.71803	1
	4	-61.03695 -52.84798	5
	5	-65.91745 -40.46324	3
	...	...	...	...
	329	-51.57792 -45.21945	2
	330	-71.12386 -46.72981	1
	331	-50.70027 -45.70401	2
	332	-65.53657 -43.78825	3
	333	-61.73798 -37.59919	1
	...	...	...	...
	[ reached 'max' / getOption("max.print") -omitted 20167 rows ]
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 3 8: CENTER IN EACH OF THE 5 CLUSTERS BY HARD-ALLOCATION

	Cluster	AP1	AP2	AP3	AP4	AP5
	1					

Table 3 .

 3 

	10: CENTER IN EACH OF THE 5 CLUSTERS (For (AP1, AP5), using hard-allocation
	to clustering)		
	Cluster	AP1	AP5
	1	-66.86564 -50.25477
	2	-46.15181 -46.12138
	3	-53.66660 -39.18719
	4	-56.97074 -47.47729
	5	-62.03100 -41.54462

Table 3 .

 3 11: Number of points in each cluster by hard-allocation

	Cluster	1	2	3	4	5
	Number of points 2899 4580 4876 5385 2760

For choosing the type 2 of error, and also takes the values of L and M as above, we obtain the following values for the L-fold average cross-validation sum of squares of fitting by k-NN models:

In Figure 3.26 we show two plots of the results of fitting by k-NN models for K = 2 and K = 10, respectively. We are also observed that the phenomenon of over-fitting occurs with increasing the value of K in this case. We have used the method of cross-validation to select the number of neighbors, but we have another parameter that we have not investigated: the number of angles to include in the training data. This parameter can be selected via cross-validation as well. In fact, the two can be selected jointly via crossvalidation. We leave this issue as a subject for further investigation.
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