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Infinite-dimensional internal models
for nonlinear robust output regulation

Daniele Astolfi

Abstract— We consider the problem of robust asymptotic out-
put regulation of nonlinear systems in the presence of generic
unstructured nonlinear model uncertainties. Inspired by recent
results establishing that this problem cannot be solved by a finite
dimensional smooth regulator, we propose a new paradigm based
on the use of linear infinite-dimensional internal models. As a
special case, we consider the problem of output regulation in the
presence of quasi-periodic signals, e.g. signals composed by a
sum of periodic signals with incommensurable periods.

Index Terms— Output regulation, nonlinear systems, infinite-
dimensional regulators, repetitive control.

I. INTRODUCTION

The problem of robust output regulation consists in designing a
dynamical regulator able to reject disturbances while tracking desired
references, despite the presence of model uncertainties. For linear
systems, such a problem has been solved in the 70’s in the seminal
works [1], [2] with the introduction of the internal model principle,
claiming that the asymptotic regulation property can be robust only
if the regulator contains a copy of the dynamical system generating
the disturbances or references. Such a property is verified for linear
systems and parametric uncertainties in the plant. In the recent set
of contributions [3], [4] it is however shown that smooth finite
dimensional regulators are generically not robust to unstructured
(nonlinear) model uncertainties. This result is a change of paradigm
in the theory of robust nonlinear output regulation that modifies the
perspectives of internal-model based regulators and the asymptotic
properties that they can achieve. From a practical point of view,
the set of works [3], [4] push towards the designs of regulators
able to guarantee robust practical/approximate output regulation.
However, at the same time, they leave the door open to the more
theoretical question whether asymptotic regulation can be achieved
with regulators that fall out of the class of smooth finite dimensional
systems. As a consequence, either one investigates the use of non-
smooth regulators, such as sliding-mode controllers (see, e.g., [5]
and references therein), or the use of infinite-dimensional regulators,
such as repetitive-control approaches (see, e.g. [6], [7] and references
therein).

In this note, we follow this second idea and we try to develop a
general framework for the use of linear infinite-dimensional internal
models for the problem of robust output regulation. We focus in this
work on strongly minimum-phase nonlinear systems. We describe the
internal-model with the linear operator theory over Hilbert spaces
[8] providing very generic conditions for the design of asymptotic
regulators. Such conditions are inspired by the seminal works [9],
[10] in which the steady-state control input is supposed to satisfy a
nonlinear regression law allowing for a finite-dimensional high-gain
observer based nonlinear regulator. We generalize such an idea by
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supposing that the steady-state control input can be generated by a
skew-adjoint linear operator [11, Chapter 3.7], i.e. an operator with
a spectrum lying on the imaginary axes. In other words, the operator
is conservative and it is able to generate a large variety of signals
comprising C1 periodic and quasi-periodic signals. As a side result,
we recover and extend in this work the recent results [6], [12] derived
in the specific context of repetitive control.

We highlight that one of the motivations of studying the use of
infinite-dimensional regulators is the possibility of obtaining finite-
dimensional smooth regulators with approximate regulation proper-
ties which are robust with respect to generic model uncertainties.
For instance, in the context of periodic signals, it is known that
approximating the exact infinite-dimensional operator with a Fourier
truncation (i.e. implementing a finite number of linear oscillators)
allows to obtain practical regulation with asymptotic properties on
the L2 norm of the output [13]–[15]. In particular, by increasing
the dimension of the regulator (i.e. by taking a model which is
more and more close to the exact infinite-dimensional one), the L2

norm is reduced and and harmonic cancellation is guaranteed [14,
Theorem 1]. In contrast, it is not easy to derive similar properties
for the approximation of non-smooth regulators which presents also
less flexibility in terms of system structures compared to smooth
regulators. For instance, with linear internal models, very generic
classes of input-affine systems can be handled, e.g. [15], [16].

The rest of the paper is organized as follows. In Section II we
present some preliminary notions on Hilbert spaces, the problem
statement and the main result of this paper. In Section III we provide
an explicit design of an infinite dimensional internal model regulator
in the case of quasi-periodic signals. The proof of the main result
is given in Section IV. In Section V, we drawn the conclusions and
perspectives of this work.

Notation. Set R≥0 = [0,∞). For any n ∈ N, we denote by | · |
the Euclidean norm in Rn. A function α : R≥0 → R≥0 is said
to be of class K∞ if α is continuous, increasing, α(0) = 0 and
limx→+∞ α(x) = +∞. We compactly denote α ∈ K∞. For a
function w : (t, x) ∈ R≥0 × [0, 1] 7→ w(t, x) ∈ Rn, the notation
wt (resp. wx) denotes the partial derivative of w with respect to the
variable t (resp. with respect to the variable x). We keep the notation
for the weak and the strong definition of partial derivatives. When a
function w depends only on the variable of the time t (resp. space x),
we denote its derivative ẇ (resp. w′). The functional space L2(0, 1)

denotes the set of function f such that
∫ 1
0 f(x)

2dx < +∞. We
denote with Ck(X,Y ) the set of Ck functions from X to Y .

II. MAIN RESULT

A. Preliminaries on Linear Operators

Given a Hilbert space H, we denote with ⟨·, ·, ⟩H the inner product
on H and with ∥ · ∥H its induced norm. Given two Hilbert spaces
H1 and H2, the space L(H1,H2) denotes the space of bounded
linear operators from H1 to H2, and L(H1) = L(H1,H1). Given
an operator A we denote with D(A) its domain. We denote with A∗
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the adjoint operator of A. We recall now the following definitions
that will be used throughout the paper.

Definition 1 A family T = (Tt)t≥0 of operators in L(H) is a
strongly continuous semigroup on H if T0 = I , Tt+τ = TtTτ

for every t, τ ≥ 0, and limt→0+ Ttv = v for all v ∈ H.

Definition 2 Let A : D(A) → H be densely defined in H. A is
called a skew-adjoint operator if ⟨Aw, v⟩ = −⟨w,Av⟩ for all w, v ∈
D(A).

Definition 3 Let H and Y be two real Hilbert spaces, A : D(A) ⊂
H → H be the generator of a strongly continuous semigroup
(T(t))t≥0 and C ∈ L(H,Y). Let ψ ∈ L(D(A), L2([0,∞);Y)) be
defined by (ψ v0)(t) = CT(t)v0 for all v0 ∈ D(S) and all t ≥ 0.
Then, the pair (A, C) is approximately observable in infinite-time if
and only if Kerψ = {0}.

We refer to Definition 2.1.1, Definition 2.2.1, Section 3.7 and
Definition 6.1.1 in [11] for the definitions of strongly C0 semigroup,
bounded operators, skew-symmetric operators and approximate ob-
servability in infinite-time. Furthermore, we recall that skew-adjoint
operators are generator of a C0 semi-groups, see, e.g., [11, Theorem
3.8.6].

B. Problem Statement
In this article we consider the global robust output regulation

problem (see, e.g. [17]) for systems that can be rewritten, under
suitable change of coordinates, in the form

ż = f(w, z, e)
ė = q(w, z, e) + u

in which z ∈ Rn is the state of the zero-dynamics, e ∈ R is the
measured output to be regulated to zero and u ∈ R is the control
input. The signal w ∈ Rnx represents references to be tracked or
disturbances to be rejected. We refer for instance to [6], [9], [10], [14],
[17]–[19] and references therein for examples of control problems
that can be recast in such a form. Note that in this article we suppose
that the system has unitary relative-degree between the input u and
the regulated output e. The case of higher relative degree can be
easily dealt with by adopting a high-gain observer as in [12], [14],
[20]. In typical output regulation problems, see, e.g. [9], [10], [17],
the exosignal w is supposed to be generated by an autonomous system
of the form

ẇ = s(w)

with s being a neutrally stable dynamics. However, as remarked
in [4], when dealing with robustness to model uncertainties, such
a representation is not very useful since model uncertainties don’t
allow to correctly characterize the properties of the overall steady-
state behaviour and distinguish between the structural properties of
f, q and s. As a consequence, in what follows, we replace the signal
w by a generic function of time t, i.e. we consider time-varying
systems of the form

ż = f(t, z, e) (1a)

ė = q(t, z, e) + u . (1b)

We suppose that the functions f, q are globally Lipschitz with a
Lipschitz constant which is uniform in t. Furthermore, we stress that
the function q is non-zero when e = 0. As anticipated above, we are
interested in this work in the design of a dynamical smooth feedback
controller regulating e to zero with a global domain of attraction. To
this end, we suppose that the zero-dynamics of system (1) is globally

convergent (see, e.g. [21]). Although such an assumption may seem
rather strong it allows to simplify the derivations in the proof of the
main result in which an interconnection between a nonlinear ODE and
a linear PDE is addressed. We conjecture that is should be possible
to relax such assumptions by restricting the attention to a semi-
global framework in which solutions starts from a known compact set.
However, this would require mathematical developments that would
unnecessarily over-complicate the exposition of the developments
of this work. To this end, we prefer to state the following strong
assumption not to blur up the main message of this work.

Assumption 1 The zero-dynamics (1a) is (uniformly in time) con-
vergent and ISS with respect to e. In particular, there exist a unique
bounded solution z̄ ∈ C(R;Rn) satisfying for all t ∈ R

˙̄z = f(t, z̄, 0),

a positive definite function V : R × Rn × Rn → R≥0, functions
α, ᾱ ∈ K∞ and real numbers α, γ > 0 satisfying

α(|z − z̄|) ≤ V (t, z, z̄) ≤ ᾱ(|z − z̄|),

V̇ :=
∂V

∂t
+
∂V

∂z
f(t, z, e) +

∂V

∂z̄
f(t, z̄, 0) ≤ −α|z − z̄|2 + γ|e|2

for any (t, z, e) ∈ R× Rn × R.

We remark that Assumption 1 can be verified for instance under
the well-known Demidovich condition (see, e.g., [20], [22])

P
∂f

∂z
(t, z, e) +

∂f

∂z
(t, z, e)⊤P ≤ −Q.

It follows from previous assumption that the steady-state that we aim
at stabilizing is (z̄, 0). This steady-state can be made invariant if the
control input is able to generate the corresponding friend, i.e. the
signal φ(t) = −q(t, z̄(t), 0) that makes the origin of the e-dynamics
invariant. In the context of output regulation, it is typically supposed
that φ satisfies a (possibly nonlinear) regression law [9], [10] or a
mild detectability condition [18]. Both assumptions allow to design
a finite-dimensional nonlinear internal-model based regulator of the
form

η̇ = ϕ(η, e), u = −κe+ ψ(η)

which is however shown not to be robust in the presence of un-
structured C1 model uncertainties [3], [4]. Indeed, combining the
set of works [3], [4] it can be shown that in the context of smooth
regulators, only infinite-dimensional linear systems can be generically
robust w.r.t. unstructured C1 model uncertainties in f, q and provide
asymptotic regulation. In the context of periodic functions f, q, a
solution based on a repetitive control approach was given in [6]. In
this work, we generalize this idea by supposing that the friend φ can
be generated by an infinite-dimensional skew-adjoint operator. As
detailed later in Section III, such an assumption allows, for instance,
to consider the class of signals that are periodic or quasi-periodic.

Assumption 2 There exist a skew-adjoint operator S : D(S) ⊂
H → H, with D(S) dense in H and a (possibly unbounded) operator
E ∈ L(D(S),R) and for any initial time t0 ∈ R there exist an initial
condition v0 ∈ D(S) such that the function φ(t) := −q(t, z̄(t), 0)
satisfies for all t ≥ t0

v̇(t) = Sv(t), v(0) = v0,

Ev(t) = φ(t).
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C. Feedback Design
Based on previous assumptions, we consider now the following

linear infinite-dimensional regulator

η̇ = Sη + Ge
u = −κe+ µM∗(η −Me)

(2)

where the S : D(S) ⊂ H → H is defined as in Assumption 2, G :
L(R,H) is a bounded operator to be chosen so that the pair (S∗,G∗)
is approximately observable in infinite time (see Definition 3) and
M : R → H is a bounded linear operator selected as the solution to
the (infinite-dimensional) Sylvester equation

−κM = SM+ G, (3)

and M∗ : H → R is its adjoint operator. Note that since S is
a skew-symmetric operator, for any κ > 0 the spectrum of −κ
and S are disjoint and therefore the solution to (3) is unique, see,
e.g. [23, Lemma 22]. Also, M takes values in H as remarked in
[24]. The design of the regulator (2) is inspired by the forwarding
technique developed for the stabilization of cascade systems and
successfully used in many contexts, e.g. [6], [14]–[16], [24]–[26].
See, in particular, [24], [25] for the relevant case of ODE-PDE
interconnections. We can state therefore the main result of this work.

Theorem 1 Consider system (1) and suppose Assumptions 1-2 hold.
Consider the internal-model based regulator (2) and suppose that the
pair (S∗,G∗) is approximately observable according to Definition 3.
Then, there exists a κ⋆ > 0 such that, for any κ > κ⋆ and any
µ > 0, the following statements hold.

• For any initial condition (t0, z0, e0, η0) ∈ R×Rn×R×D(S)
the closed-loop system (1), (2) admits a unique strong1 solution
(z, e, η) in C1([t0,+∞);Rn ×R×H) ∪ C0([t0,+∞);Rn ×
R×D(S)), which is bounded for all t ≥ t0, namely there exists
δ > 0 such that |z(t)|+ |e(t)|+∥η(t)∥D(S) ≤ δ for all t ≥ t0.

• For any initial condition (t0, z0, e0, η0) ∈ R × Rn × R ×
D(S), solutions of the closed-loop system (1), (2) satisfy
limt→∞ e(t) = 0.

Proof: See Section IV.

Previous theorem establishes that the regulator (2) solves the global
output reglation problem for systems of the form (1). Once the
class of signals to be generated is fixed, i.e. once the operator S in
Assumption 2 is selected, the regulator (2) is only parametrized by the
high-gain parameter κ that has to be selected large enough in order
to guarantee incremental stability properties of the (z, e)-dynamics
in (1). In Assumptions 2 we immerse the signal φ characterizing
the friend into an infinite-dimensional generator, but the explicit
knowledge of the functions f, q is not needed. As a consequence,
the design is robust to any variations of such functions as long as
f, q are varied within this class of signals that can be generated by the
exosystem S. For instance, in the case of periodic functions f, q, only
the knowledge of the period is required [6]. This situation can occur,
for instance, when considering functions f(w, z, e), q(w, z, e) of a
T -periodic exosignal w. In this case, only the Lipschitz constants of
f, q and the period T are needed in order to design the regulator (2).
Note that with the proposed framework, we also recover the case of
signals generated by linear exosystems and polynomial nonlinearities,
e.g. [17].

In the next section we investigate Assumption 2 in the context of
quasi-periodic signals providing an explicit design for the operators
S,G,M in (2).

1Actually one can also prove existence of weak solutions when asking
η0 ∈ H. Since the PDE is part of the regulator, we focus in this case only
to initial conditions guaranteeing existence of strong solutions.

III. INTERNAL MODELS FOR QUASI-PERIODIC SIGNALS

Suppose that the signal φ in Assumption 2 is quasi-periodic and
can be written as

φ(t) =

N∑
i=1

φi(t), φi(t+ Ti) = φi(t), ∀t ≥ 0, (4)

namely as a sum of N signals in which each φi is Ti-periodic.
Moreover, we suppose that the periods Ti are incommensurable real
numbers, namely Ti

Tj
is an irrational number for any pair of i, j, i ̸= j.

For N = 1, we fall in the context of repetitive control, e.g. [6], [7].
We recall that a generator of τ -periodic signals can be obtained by
using a transport equation [6, Section 2.1] as follows:

∂tϕ(t, x) = − 1
τ ∂xϕ(t, x), ∀ (t, x) ∈ R× [0, 1],

ϕ(t, 1) = ϕ(t, 0), ∀ t ∈ R.

As a consequence, Assumption 2 is verified in the context of quasi-
periodic signals by selecting the operators S, E as

Sv := −Λ∂xv, Ev := 1v(t, 1), (5)

with D(S) = {v ∈ H : v(0) = v(1)} with H := L2([0, 1];RN ),

Λ := diag

(
1

T1
, . . .

1

TN

)
(6)

and with 1 being a row vector in which any element is equal to 1,
namely 1 := (1, . . . , 1). In other words, for any continuous function
φ in (4) and any t0 ∈ R, there exists an initial condition v(t0) = v0
to (5) such that φ(t) = Ev(t) for all t ≥ t0. Note that in this case
E is an unbounded operator.

Then, the operators S,G and M of internal model unit (2) can be
taken as

Sη := −Λ∂xη, Ge := B(x)e, Me :=

∫ 1

0
M(x)e dx. (7)

with Λ defined in (6), B : [0, 1] → RN defined as

B(x) := col(β1 exp(T1x), . . . , βN exp(TNx)),

and M : [0, 1] → RN defined as the solution of the following two-
boundary value problem

ΛM ′(x) = κM(x) +B(x),

M(0) =M(1),

corresponding to the Sylvester equation (3). Note that M is a column
vector and its i-th component can be explicitly computed as

Mi(x) =

{
exp(κTix)M i + βi

exp(Tix)−exp(κTix)
Ti(1−κ)

, κ ̸= 1,

exp(κTix)M i + xβi exp(κTix), κ = 1,

M i =


βi

Ti(1− κ)

exp(Ti)− exp(κTi)

1− exp(κTi)
, κ ̸= 1,

exp(κTi)
1−exp(κTi)

βi, κ = 1.

(8)
Moreover, the adjoint M∗ of M is defined as

M∗η =

∫ 1

0
M(x)⊤η(t, x)dx.

With this notation, the internal-model regulator (2) takes the more
explicit form

∂tη(t, x) = −Λ∂xη(t, x) +B(x)e(t)

η(t, 1) = η(t, 0)

u(t) = −κe(t) + µ

∫ 1

0
M(x)⊤(η(t, x)−M(x)e(t))dx,

(9)
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defined on (t, x) ∈ R× [0, 1], and with state variable η taking initial
condition in L2([0, 1];RN ). We remark that the operator G so defined
(7) is bounded, allowing to guarantee ISS properties with respect to
e. With such a choice, one can deal with systems possessing a relative
degree larger than one and add a high-gain observer (estimating the
derivatives of the output e) so that to obtain a pure output feedback
design, similarly to [12]. This is not the case if one consider an
internal-model unit of the form

∂tη(t, x) = −Λ∂xη(t, x)

η(t, 1) = η(t, 0) + 1⊤e(t)

as done instead in [6] in the context of repetitive control.
In the next lemma, we show that the pair S,G so defined satisfies

the conditions of Theorem 1.

Lemma 1 Let βi ̸= 0 for all i ∈ [1, . . . , N ] and let (T1, . . . , TN ),
with Ti ̸= 0 for all i ∈ [1, . . . , N ] be a set of incommensu-
rable scalars, namely Ti

Tj
is an irrational number for any pair of

i, j ∈ [1, . . . , N ], i ̸= j. Then, the pair (S∗,G∗) defined in (7) is
approximately observable in infinite time.

Proof: In order to prove the desired result it suffices to check
that the adjoint system of (9), namely the system

∂tξ(t, x) + Λ∂xξ(t, x) = 0
ξ(t, 0) = ξ(t, 1)

y(t) =
∫ 1
0 B

⊤(x)ξ(t, x)dx

(10)

is approximately observable from the output y. To this end, we adapt
similar arguments used in [25, Theorem 2]. In particular, we suppose
that y is constantly equal to zero. If we are able to show that the
only initial solution satisfying such a property is ξ(0, x) = 0 then
the statement holds. By using the dynamics of ξ and its boundary
conditions defined in (10), the output is computed, by doing an
integration by parts, as

y(t) =

∫ 1

0
B⊤(x)ξ(t, x)dx =

∫ 1

0

N∑
i=1

βie
Tixξi(t, x)dx

=

N∑
i=1

βi
Ti

[
eTixξi(t, x)

]1
0
−

N∑
i=1

βi
Ti

∫ 1

0
eTix∂xξi(t, x)dx

=

N∑
i=1

βi
Ti

(eTi − 1)ξi(t, 0) +
d

dt

N∑
i=1

∫ 1

0
βie

Tixξi(t, x)dx

=

N∑
i=1

ciξi(t, 0) +
d

dt
y(t)

with ci =
βi
Ti

(eTi − 1). Since y(t) = 0 for all t ∈ R we have also

ẏ(t) = 0 for all t ∈ R. This implies that
∑N

i=1 ciξi(t, 0) = 0 for all
t ∈ R. Using the fact that each component ξi generates a periodic
signal of period Ti and that all the periods Ti are incommensurable,
and moreover ci ̸= 0 for all i = 1, . . . , N , we conclude that
necessarily the previous condition implies ξi(t, 0) = 0 for all t ∈ R,
see [27, Theorem 2]. Then ξ satisfies for all t ∈ R.

∂tξ(t, x) + Λ∂xξ(t, x) = 0
ξ(t, 0) = ξ(t, 1) = 0.

Now let us define

E1 =

∫ 1

0
ξ(t, x)⊤ξ(t, x)dx, E2 =

∫ 1

0
e−xξ(t, x)⊤ξ(t, x)dx,

which are candidate Lyapunov functions equivalent to the usual norm
in L2(0, 1). On the one hand, the derivative of E1 along solutions

satisfies

Ė1 = −2

N∑
i=1

∫ 1

0

1
Ti
ξi(t, x)∂xξi(t, x)dx

= −2

N∑
i=1

1
Ti

[
ξi(t, x)

2
]1
0
= 0 ,

which implies E1(ξ(t, x)) = E1(ξ(0, x)), namely the energy is
constant. On the other hand, the derivative of E2 satisfies

Ė2 = −2

N∑
i=1

∫ 1

0

1

Ti
e−xξi(t, x)∂xξi(t, x)dx

= 2

N∑
i=1

1

Ti

[
e−xξi(t, x)

2
]1
0
−

∫ 1

0

1

Ti
e−xξi(t, x)

2dx

≤ −ε
∫ 1

0
e−xξ(t, x)⊤ξ(t, x)dx = −εE2

for some ε > 0, implying E2(ξ(t, x)) ≤ e−ε(t−t0)E2(ξ(0, x)).
Combining E1 and E2 we obtain that the energy is both preserved
and also converging to zero. This can happen only if ξ(0, x) = 0 in
L2(0, 1), concluding the proof.

We remark that a possible manner to implement the regulator (9) is
to use a spectral decomposition and implement a finite-dimensional
regulator

η̇ = Sη +Ge (11)

with S being a matrix containing only imaginary eigenvalues at
frequencies 2π

Ti
and a desired number of higher harmonics k 2π

Ti
, and

(S,G) and controllable pair. In this case, practical robust regulation
can be achieved, as shown in [3, Theorem 3]. In the simple context of
periodic signals (i.e. N = 1), remarkable results have been obtained
see, e.g. [6], [13]–[15] In particular, one can show that once the
high-gain parameter κ is fixed, one can reduce the L2 norm of the
asymptotic steady-state regulation error by increasing the dimension
of the regulator (11) and in particular by augmenting the number
of linear oscillators included in the matrix S. In other words, by
improving the approximation of the finite-dimensional realization
(11) with respect to the infinite-dimensional exact regulator (7), see,
[14].

IV. PROOF OF MAIN RESULTS

A. Preliminaries lemmas
In this section we state a certain number of preliminary results

which are needed in order to prove Theorem 1.

Lemma 2 Suppose the the pair (S∗,G∗) is approximately observ-
able in infinite time. Then, the pair (S,M∗) defined in (3) is also
approximately observable in infinite time.

Proof: The proof follows by direct application of Proposition 1
of [24] since the all conditions of such a proposition are satisfied.
In particular, because the pair (S∗,G∗) is approximately observable,
the operator S is skew-adjoint, and the matrix(

−κ+ λ 1
1 0

)
is full rank for any λ in the spectrum of S, lying on the imaginary
axes.

Lemma 3 Suppose the pair (S∗,G∗) is approximately observable in
infinite time. Then, for any µ > 0, the operator

F =

(
−κ− µM∗M M∗

G S

)
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generates a strongly stable C0 semigroup.

Proof: The proof is a direct application of Theorems 1, 2 and
Proposition 1 in [24] and it is therefore just sketched. First, consider
the system {

ė = −κe+ µM∗(η −Me)
η̇ = Sη + Ge

and apply the following change of coordinates

η 7→ η̃ := η −Me

with M defined by the Sylvester equation (14), to obtain a system
in the triangular form

χ̇ = F̃χ, F̃ :=

(
−κ µM∗

0 (S − µMM∗)

)
,

where χ := (e, η̃). Note that since the operator S is skew-adjoint,
the operator (S−µMM∗) is dissipative and moreover it generates a
C0 semigroup of contraction since MM∗ is a bounded operator, see
[11, Theorem 2.11.2]. Furthermore, in view of the previous lemma,
the pair (S,M∗) is approximately observable. As a consequence,
using LaSalle’s Invariance Principle for infinite-dimensional systems
(see, e.g., Theorem 3.1 in [28]) and the lower triangular structure of
F̃ , one can conclude that the origin of χ is globally asymptotically
stable, i.e., the operator F̃ generates a strongly stable semigroup. As
the change of coordinates is linear and globally defined, we conclude
that also F generates a strongly stable semigroup. Technical details
follow from [24].

Lemma 4 Suppose the pair (S∗,G∗) is approximately observable in
infinite time. Then, for any µ ̸= 0 and for any t0 ∈ R there exists
η̄0 ∈ D(S) such that, for all t ≥ t0 the following holds

η̇(t) = Sη(t), η(0) = η̄0,

µM∗η(t) = φ(t) .
(12)

Proof: With in mind Assumption 2, consider the following
system 

v̇ = Sv
ė = −κe− Ev + µM∗(η −Me)
η̇ = Sη + Ge

(13)

and let us study the existence of a solution Πe,Πη to the correspond-
ing infinite-dimensional Sylvester equation

ΠeS = −(κ+ µM∗M)Πe + µM∗Πη − E
ΠηS = SΠη + GΠe

(14)

characterizing the steady-state of (13). Since the operator F defined
in Lemma 3 generates a strongly stable semigroup, the Sylvester
equation (14) is well defined and the existence of a solution Πe,Πη is
ensured, see, e.g. [29, Lemma 1]. Furthermore, it is possible to verify
that the conditions of Theorem 6 in [29] are verified. Therefore, by
Theorem 5 in [29], one can conclude from the second equation of (14)
that Πe = 0, and from the first equation of (14) that M∗Πη−E = 0.
Selecting η̄0 = Πηv0 with v0 given by Assumption 2 yields the
desired result since µM∗Πηv(t) = Ev(t) = φ(t) for all t ≥ t0.

B. Proof of Theorem 1
Consider the closed-loop system (1), (2). Since S is a skew-adjoint

operator, then it is a generator of a C0 semi-group T, see, e.g.,
[11, Theorem 3.8.6]. As a consequence, the solution to (2) can be
explicitly denoted as

u(t) = −(κ+ µM∗M)e(t) + µ

∫ t

t0

M∗Tt−sGe(s)ds

for any t ≥ t0 and the closed-loop system (1), (2) can be written as
an integro-differential nonlinear equation

ż(t) = f(t, z, e)

ė(t) = q(t, z, e)− (κ+M∗M)e(t) + µ

∫ t

t0

M∗Tt−sGe(s)ds

(15)
for all t ≥ t0. Since M∗,G are bounded operators, the closed-loop
operator M∗Tt−sG takes value from R to R. As a consequence,
since all the functions are Lipschitz, we can use standard existence
of solution theorems of integro-differential equations (see, e.g. [30,
Theorem 1.1.1]) to show that system (15) and therefore equivalently
system (1), (2) admits the existence of a unique solution for a non-
empty interval of time [t0, τ), with τ its maximal time of definition.
In the following, since the two representations are equivalent, we keep
the original one (1), (2) to show the desired convergence/stability
properties.

Now, given any initial time t0 ∈ R, consider the solution
(z̄(t), 0, η̄(t)) with η̄ being the solution to (12) initialized at η̄0 such
that µM∗η̄(t) ≡ φ(t) for all t ≥ t0 given by Assumption 2. It can
be verified that the solution (z̄(t), 0, η̄(t)) so defined is a fixed point
of the closed-loop system (1), (2). To ease the computation in the
following, consider the change of coordinates η → η̃ := η − η̄. The
closed-loop system (1), (2) reads

ż = f(t, z, e)

ė = ∆(t, z, e)− κe+ µM∗(η̃ −Me)

˙̃η = Sη̃ + Ge
(16)

with ∆(t, z, e) = q(t, z, e) − q(t, z̄, 0). Then, define the following
Lyapunov functional

W (t, z, e, η) := cV (t, z, z̄) + e2 + µ∥η̃ −Me∥2H , (17)

with ∥ · ∥H being the standard induced norm in H and η̄ Then,
recalling Assumption 1, we compute

Ẇ ≤− cα|z − z̄|2 + cγ|e|2 + 2e(∆− κe) + 2µeM∗(η̃ −Me)

+ µ⟨η̃ −Me, (S − µMM∗)(η̃ −Me)−M∆⟩H
+ µ⟨(S − µMM∗)(η̃ −Mẽ)−M∆, η̃ −Mẽ⟩H

where we used the Sylvester equation (14). Since S is a skew
symmetric operator, we have ⟨η̃,Sη̃⟩H + ⟨Sη̃, η̃⟩H = 0. Therefore,

µ⟨η̃ −Me, (S − µMM∗)(η̃ −Me)⟩H
+ µ⟨(S − µMM∗)(η̃ −Me), η̃ −Me⟩H

≤ −2µ2|M∗(η̃ −Me)|2.

Furthermore,

µ⟨−M∆, η̃ −Me⟩H + µ⟨η̃ −Me,−M∆⟩H
≤ 2|∆|2 + 1

2µ
2|M∗(η̃ −Me)|2.

Since q is globally Lipschitz (uniformly in time) in its arguments, so
is ∆. We denote with L its Lipschitz constant obtaining

2|e∆| ≤ 2|e|L(|e|+ |z − z̄|) ≤ 3L|e|2 + L|z − z̄|2,
2|∆|2 ≤ 4L2|e|2 + 4L2|z − z̄|2.

Combining together all previous inequalities we obtain

Ẇ ≤− (cα− 4L2 − L)|z − z̄|2 − (2κ− cγ − 4L2 − 3L− 1)|e|2

− 1
2µ

2|M∗(η̃ −Me)|2

showing that the closed-loop system is globally dissipative selecting
κ > κ∗ with

c = 1
α (4L

2 + L) + ε, κ∗ = 1
2

(
cγ + 4L2 + 3L+ 1

)
,
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for some arbitrarily small ε > 0. In particular, from the previous
inequality we obtain

Ẇ ≤ −ε(|z − z̄|2 + |e|2 + |M∗(η − η̄ −Me)|2) ≤ −ε|e|2

for some ε > 0. Standard arguments can be used to show that the
maximal time of existence of solutions is τ = ∞ and uniformly
bounded. Details are omitted for space reasons but one can follow
the same lines in the proof of [14, Proposition 4]. Hence, by
integrating on [t0,+∞), we obtain

∫+∞
t0

|e(t)|2dt < +∞. Since
all functions are globally Lipschitz, we obtain that the functions t 7→
e(t) is also globally Lipschitz and therefore uniformly continuous.
As a consequence, by applying Barbalat’s lemma, we obtain that
limt→+∞ |e(t)| = 0 concluding the proof. Note that one can also
show, following the arguments described in the Appendix of [6], that
the solution (z̄, 0, η̄) is uniformly (in time) asymptotically stable.

V. CONCLUSIONS

Built on recent results claiming that finite-dimensional smooth
regulators cannot guarantee asymptotic regulation robustly to model
uncertainties [3], [4], we investigate the use of infinite-dimensional
regulators under a mild assumption on the class of signals to be
compensated in steady-state. These include asymptotic regulation
problems in the presence of quasi-periodic signals containing an
infinite number of spectral components.

Although the proposed regulators are not implementable because
of their infinite-dimensional nature, they represent a starting point for
the design of large scale regulators able to achieve practical regulation
in a non-high-gain feedback paradigm. In other words, we believe that
the practical objective of approximate regulation can be obtained not
by increasing a high-gain parameter but by appropriately discretizing
(spatially and or temporally) the infinite-dimensional regulator and by
tuning its dimension. For instance, in the context of periodic signals,
it is shown that a spectral decomposition based on Fourier series
allows to reduce the asymptotic L2 norm of the regulated output
without need of increasing the high-gain parameter [14], but by
increasing the numbers of eigenvalues on the imaginary axe, namely
the dimension of the internal-model regulator. A detailed study will be
also dedicated to the case of quasi-periodic signals to better detail the
preliminary results obtained in [3, Theorem 3] so that to characterize
the dimension of the resulting finite-dimensional regulator needed to
guarantee desired asymptotic bounds on the regulated output.

Finally, as a future works, we would like also to study the use of
infinite-dimensional systems for systems possessing a more general
form, such as input-affine nonlinear systems [16], [26].
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