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Repetitive control for Lur’e-type systems:
application to mechanical ventilation

Joey Reinders, Mattia Giaccagli, Student Member, IEEE, Bram Hunnekens, Daniele Astolfi, Tom Oomen, Senior
Member, IEEE, Nathan van de Wouw, Fellow, IEEE.

Abstract—Repetitive control (RC) has shown to achieve supe-
rior rejection of periodic disturbances. Many nonlinear systems
are subject to repeating disturbances. The aim of this paper is
to develop a continuous-time RC design with stability guarantees
for nonlinear Lur’e-type systems. Approximate output tracking
is achieved by combining an internal model, consisting of a finite
number of linear oscillators with frequencies at the reference
frequency and at its multiples, with a stabilizer that guarantees
a convergence property of the closed-loop system. The developed
RC approach is applied to a nonlinear mechanical ventilation
system for Intensive Care Units (ICUs), which can be modeled
as a Lur’e-type system. The experimental study confirms that the
repetitive control scheme is able to successfully follow the desired
target pressure profile to properly support the ventilation needs
of an adult patient.

Index Terms—Mechanical ventilation, medical applications,
Repetitive control, Lur’e-type system, circle criterion, nonlinear
output regulation, convergent systems, harmonic regulation.

I. INTRODUCTION

Repetitive Control (RC) schemes are particularly suitable
to achieve robust tracking of a periodic reference signal,
see [1], [12], [18], [20]. Tracking of periodic signals is a
common control problem in many relevant application fields,
for example in healthcare. In this paper, the proposed analysis
and controller design are motivated by the application of
mechanical ventilation of patients on Intensive Care Units
(ICUs). Mechanical ventilation is used to support the breathing
of patients by providing the correct oxygen support and
elimination of carbon dioxide [40]. In ventilation, tracking of
a periodic signal, i.e., pressure target, is desired.

Several studies in literature have focused on achieving accu-
rate tracking performance for mechanical ventilation, e.g., [7],
[34], [31], and [17]. Particularly promising is the application
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of discrete-time frequency domain RC in [32] and [29]. In
this work, a significant reduction of the pressure tracking
error is achieved. However, this is achieved under a linearity
assumption of the considered ventilation system dynamics,
whereas a mechanical ventilation system contains nonlinear
system dynamics, see [30].

The considered ventilation system is a nonlinear dynamical
system, which can be modeled as a Lur’e-type system. Lur’e-
type systems consist of the interconnection of linear time-
invariant dynamics with a static nonlinearity in the feedback
loop. These systems form a practically relevant sub-class of
nonlinear systems, also for other application domains. To
achieve robust tracking of the periodic pressure target of the
ventilation system, a generically applicable RC scheme for
Lur’e-type systems is developed.

The structural idea of RC is based on the internal model
principle, namely on the fact that when a periodic signal with
known period T must be tracked, a copy of the disturbance
model generating such a signal must be included in the regu-
lator [5]. This is generally done through a universal generator
of a T -periodic signal. Such a generator is implemented using
a memory loop with a delay of length T . This memory loop
places an infinite number of poles on the imaginary axes at
the fundamental frequency 2π/T and its multiples, see, e.g.,
[12], [14]. Then, the extended system composed by the plant
and such memory loop is stabilized with feedback control.

Because a delay is easily implemented in discrete-time,
significant research efforts have been devoted to the develop-
ment of discrete-time implementations of RC. In this approach,
mostly linear systems are addressed from the theoretical point
of view and good tracking performance is achieved in these
systems, see, e.g., [6], [10], [21], [32], [35], [36]. Unfor-
tunately, the developed frequency analysis tools cannot be
directly employed in the presence of nonlinearities. Therefore,
typically no formal stability proofs are provided for repetitive
control applied to nonlinear systems.

In existing literature, several studies have considered output
tracking problems for continuous-time nonlinear systems. For
instance, in [1], [3], [8], [19] the problem of output tracking for
nonlinear systems that can be written in the canonical normal
form is considered. In [22], incremental passivity concepts are
used for the design of global regulators and in [25] output
regulation of Lur’e-type systems using convergent system
properties is considered. However, a constructive design of
the stabilizer and guaranteed harmonic regulation properties
are not presented. The design in [2], [3], [12] relies on state-
feedback approaches, and the domain of attraction of the
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periodic solution is only local in the size of the reference [2],
[3] or not discussed [12]. In [13], contractive feedback laws
in tracking problems are developed for constant references,
but not for periodic references. Finally, in [39], [38], and [37]
a learning control approach has been developed to achieve
tracking in nonlinear systems with repetitive disturbances.
These methods show a significant improvement in tracking
performance. In the scope of the challenge taken on in the
current paper, a drawback of the work in [37]–[39] is that
these algorithms do not apply straightforwardly to Lur’e-type
systems with (uncertain) output nonlinearities.

Although significant progress on output regulation for non-
linear systems has been made, an intuitive RC-scheme for
nonlinear Lur’e-type systems with a formal stability guarantee
is not yet available. To achieve this, a finite-dimensional
realization of the exact RC-scheme in [1], [9] is used. The
reason to consider a finite-dimensional realization is the diffi-
culty to analyze the interconnection of an infinite-dimensional
system, i.e., the internal model, with nonlinear plant dynamics
with nonlinear outputs. In this paper, we follow an approach
that relies on the harmonic representation of the delay, see,
e.g., [2], [3], [12], [20]. The RC-scheme is implemented
by including a finite number no of linear oscillators in the
control loop. This results in no poles on the imaginary axes
at the frequency of the periodic reference and its multiples.
Therewith, if the resulting closed-loop trajectories converge
to a periodic solution, harmonic regulation of the tracking
error is guaranteed. More precisely, the Fourier coefficients of
the error signal corresponding to the frequencies embedded
in the linear oscillators are zero, and the L2-norm of the
error signal is sufficiently small if no is large enough [2], [3],
[12]. To guarantee the existence of globally asymptotically
stable periodic solutions, the theory of convergent systems
is exploited, see, e.g., [23], [24], [26], [27]. To this end,
we suppose that the static nonlinearity in the Lur’e-type
system satisfies an incremental sector bound condition. Then,
using the strictly positive real lemma, sufficient conditions
for a stabilizing output-feedback law are established. From
a practical point of view, such an approach is interesting
because the conditions can be checked by visual inspection
of the Nyquist plot and linear analysis tools (potentially using
measured data only).

Eventually, this proposed repetitive controller design is
applied to the practical problem of mechanical ventilation. Ex-
isting literature, e.g., [32] and [29], has shown that frequency-
domain RC can significantly improve the tracking performance
in ventilation systems. However, because these ventilation sys-
tems are nonlinear, formal stability guarantees for the closed-
loop system with repetitive control are missing. Therefore, the
control approach developed in this paper is applied to this
Lur’e-type ventilation system to improve its performance with
formal stability guarantees.

Summarizing, the main contributions of this paper are:
• the development of an RC strategy for nonlinear Lur’e-

type systems including a formal stability analysis, and
• the implementation and analysis of this RC scheme on the

practical use-case of a nonlinear mechanical ventilator,
including experimental validation.

This paper is organized as follows. In Section II, the
problem statement is formalized. In Section III, the main
results concerning the RC controller design are presented.
Then, in Section IV, the RC paradigm is applied to the
mechanical ventilation use-case. Finally, the main conclusions
and recommendations for future work are presented in Section
V.

Notations. Throughout this paper, s represents the Laplace
variable. Given an n×n symmetric matrix P , we write P � 0
(≺ 0) if P is strictly positive (negative) definite. Given a n×n
matrix P , the operator blkdiag

(
P . . . P

)
represents a

block-diagonal matrix with P as block-diagonal elements, the
dimensions are specified case-wise. Furthermore, ẋ represents
the continuous-time derivative of x. Finally, we define PT (r̃)
as the set of C1 T -periodic functions with bounded infinity
norm and bounded infinity norm of its derivative. In particular,
we say that r(t) ∈ PT (r̃) if r is C1, T -periodic, and satisfies
sup
t∈[0,T ]

|r(t)| ≤ r̃ and sup
t∈[0,T ]

|ṙ(t)| ≤ r̃ for some non-negative

real number r̃.

II. PROBLEM STATEMENT

In the introduction, a gap in existing literature has been
identified in the application of repetitive control to mechanical
ventilation systems. More specifically, the commonly used
frequency-domain RC does not provide formal stability guar-
antees when it is applied to Lur’e-type nonlinear ventilation
systems. Therefore, in this section a formal problem statement
is formulated to develop RC for Lur’e-type systems.

Consider a Single-Input Single-Output (SISO) Lur’e-type
system of the form

ẋ = Ax+Bu+ Ew

y = Mx+Nw

w = −ϕ(y)

v = Cx+Dw,

(1)

where x ∈ Rn is the state, u ∈ R is the control in-
put, w, y are in R, v ∈ R is the measured output, and
A,B,E,M,N,C, and D are real matrices of appropriate
dimensions. The static nonlinearity ϕ : R 7→ R satisfies
ϕ(0) = 0, and the following incremental sector bound con-
dition:

¯
ϕ ≤ ϕ(y1)− ϕ(y2)

y1 − y2
≤ ϕ̄ ∀ y1 6= y2, (2)

for some known non-negative constants 0 ≤
¯
ϕ ≤ ϕ̄. The

control objective is to regulate the output v of the system (1)
to a T -periodic bounded reference r ∈ PT (r̃). Hence, the
output regulation error is defined as

e(t) := r(t)− v(t) . (3)

With the mechanical ventilation application in mind, where the
full-state x is not available for feedback, we aim to design a
dynamic output feedback controller for system (1), processing
only the regulated output error e, such that harmonic regula-
tion is achieved in the following sense.
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Problem 1 (Harmonic regulation of order no). Consider
system (1) with regulation error (3) and assume that the
nonlinearity ϕ satisfies the incremental sector bound condition
(2). Given any r̃ > 0, no > 0, determine a dynamic output
feedback controller of the form

ż = ξ(z, e)

u = ζ(z, e),
(4)

such that for any reference r ∈ PT (r̃) and any initial condition
xcl(0) := [xT (0), zT (0)]T ∈ Rnx , the corresponding steady-
state trajectory x̄cl := [x̄T , z̄T ]T of the closed-loop (1), (3), (4)
is bounded, T -periodic, exponentially stable1, and the steady-
state output error ē has no harmonic content at frequencies
ω = k 2π

T , k = 0, 1, . . . , no.

The repetitive control approach in [2], [3], [12] is followed
to achieve the harmonic regulation objective stated in Problem
1. The main idea is to include linear oscillators at the periodic
reference frequency and its multiples in the regulator dynamics
(4). This approach achieves, if the closed-loop stead-state
trajectories are bounded and periodic, structural zeros at the
frequencies kω with the blocking property of zeroing the
Fourier coefficients of the output e corresponding to these
frequencies. As a consequence, the strategy that we propose
in this work is to:

1) design of the function ξ in (4) to include the linear
oscillators;

2) design the feedback ζ in (4) to ensure the desired stability
properties for the resulting closed-loop system; and

3) analyze the resulting trajectories and show that the har-
monic content is zero at the desired frequencies. As a
byproduct, we verify that if the number of oscillators
included in the regulator are large enough, the asymptotic
`2-norm of the output e can be regulated to an arbitrarily
small value.

III. REPETITIVE CONTROL OF LUR’E-TYPE SYSTEMS

In this section, the repetitive controller design for Lur’e-
type systems is presented. First, in Section III-A, the repetitive
controller design is presented, the closed-loop dynamics are
obtained, and a loop transformation is applied that allows the
use of known results on exponentially convergent Lur’e-type
systems. In Section III-B, known results on convergent Lur’e-
type systems are presented as a stepping stone to the stability
analysis. Finally, in Section III-C, it is shown that the proposed
controller design solves Problem 1.

A. Controller design

To provide a solution to Problem 1, the repetitive control
approach in [12] is adopted by including no linear oscillators
in the control loop, at the reference frequency and its multiples,
that process the output e to be regulated, as in standard output

1a time-varying solution x̄(t) is called exponentially stable if ‖x(x(0), t)−
x̄(x̄(0), t)‖ ≤ α‖x(0)− x̄(0)‖e−λt for some α, λ > 0.

regulation problems, see, e.g., [2], [3], [27]. To this end, the
control structure in (4) is defined as:

ż = ξ(z, e) := Φz + Γe (5)
u = ζ(z, e) := Kz (6)

where z =
[
z0 zT1 . . . zTno

]T ∈ R(2no+1)×1 with z0 ∈ R
and zk ∈ R2×1 for k = 1, . . . , no, and where the matrices Φ ∈
R(2no+1)×(2no+1), Γ ∈ R(2no+1)×1, and K ∈ R1×(2no+1)

are defined as
Φ := blkdiag(0 φ1 . . . φno),

Γ :=
[
γ0 γ

T
1 . . . γTno

]T
,

K := [κ0 κ1 . . . κno ] ,

(7)

where

φk := k

 0
2π

T

−
2π

T
0

 , k = 1, . . . , no, (8)

with γ0 6= 0 the integrator gain such that z0 embeds an
integrator, and the matrix γk ∈ R2×1 is chosen such that
the pair (φk, γk) is controllable for any k = 1, . . . , no. By
construction, the pair (Φ,Γ) is therefore controllable. In this
control structure, the z-dynamics represent the state-space
representation of no linear oscillators at the periodic reference
frequency and its multiples. The number of oscillators no
represents a degree of freedom of the controller design as it
defines the dimension of the chosen internal model and allows
to suppress the first no-harmonics of the steady-state trajectory
which is formalized later.

Next, the closed-loop system consisting of the plant (1), (3)
and the repetitive controller (5), (6) is written as a Lur’e-type
system

ẋcl = Aclxcl + Eclwcl + d(t)

ycl = Mclxcl +Nclwcl

wcl = −ϕ(ycl)

(9)

where

Acl :=

[
A BK
−ΓC Φ

]
, Ecl :=

[
E
−ΓD

]
, Qcl :=

[
0
Γ

]
,

Mcl :=
[
M 0

]
, Ncl := N,

(10)

where xcl := [xT , zT ]T ∈ Rnx , wcl := w, ycl := y, and
d(t) := Qclr(t), is a periodic, with period time T , time-
varying piece-wise continuous disturbance (induced by the
periodic reference).

Next, a loop-transformation as described in [16, Chap-
ter 7] is applied to the closed-loop dynamics. This loop-
transformation gives an equivalent Lur’e-type system where
the transformed nonlinearity ϕ̃(ylt) satisfies the incremental
sector bound in (2) with

¯
ϕ̃ = 0 and ¯̃ϕ =∞. This enables direct

application of the known results on exponentially convergent
Lur’e-type systems in Section III-B. This loop-transformation
gives the following loop-transformed Lur’e-type system:

ẋlt = Altxlt + Eltwlt + d(t)

ylt = Mltxlt +Nltwlt

wlt = −ϕ̃(ylt)

(11)



4

where

Alt := Acl − (Ecl
¯
ϕ(Mcl +Ncl(1 +

¯
ϕNcl)

−1

¯
ϕMcl)),

Elt := Ecl(1−
¯
ϕDcl(1 +

¯
ϕNcl)

−1),

Mlt := φMcl − φNcl(1 +
¯
ϕNcl)

−1

¯
ϕMcl,

Nlt := 1 + φNcl(1 +
¯
ϕNcl)

−1

(12)

where xlt ∈ Rnx , ylt ∈ R, wlt ∈ R, φ = ϕ̄ −
¯
ϕ, and ϕ̃(ylt)

satisfies the incremental sector bound in (2) with
¯
ϕ̃ = 0

and ¯̃ϕ = ∞. Furthermore, is assumed that the controller is
designed such that Assumption 1 holds.

Assumption 1. The pair (Alt, Elt) is controllable and the
pair (Alt,Mlt) in (11) is observable.

Next, to solve Problem 1 it must be shown that the closed-
loop system exhibits a globally exponentially stable steady-
state trajectory that is well-defined, bounded, T -periodic, and
that the associated output error ē has no harmonic content at
the frequencies included in the internal model. To show this,
known results on exponentially convergent Lur’e-type systems
are used. These results are provided next.

B. Exponentially convergent Lur’e-type systems

First, we provide the following definition of convergent
systems, see, e.g., [23], [24], [33], applicable to the Lur’e-
type systems of the form (11), with D a set of piece-wise
continuous, bounded disturbances.

Definition 1. Given d(t) ∈ D, the system (11) is said to be
globally exponentially convergent if
• there exists a solution x̄lt,d(t) defined and bounded for

all t ∈ R;
• the solution x̄lt,d(t) is globally exponentially stable.

System (11) is called convergent for d ∈ D if it is
convergent for any d(t) ∈ D see [27, Definition 2.16]. Note
that for an exponentially convergent system, the steady-state
solution is unique, see [27, Property 2.15]. Moreover, if the
input d(t) is T -periodic, then, for exponentially convergent
systems, x̄lt,d(t) is also T -periodic, as recalled in the next
property, see, e.g., [23], [24], [27].

Property 1. Consider system (11) and suppose it is exponen-
tially convergent. If d is a periodic signal with period T > 0,
i.e., d(t) = d(t+ T ) for all t, then the corresponding steady-
state solution x̄lt,d(t) is also periodic with period T .

To show that the closed-loop Lur’e-type system of the form
(11) is a globally exponentially convergent system, let

H(s) = Mlt(sI −Alt)−1Elt +Nlt. (13)

Then, results from [41] and [27, Chapter 5] can be used. By
combining the definition of a Strictly Positive Real (SPR)
transfer function and the incremental sector bound condition
(2), Lemma 1 is obtained that expresses sufficient conditions
that guarantee that the system (11) is globally exponentially
convergent, which is proved in [16, Chapter 7].

Lemma 1. Let Assumption 1 hold. If (2) holds and the transfer
function H(s) is Strictly Positive Real (SPR), then the system
(11) is globally exponentially convergent.

Using Lemma 1, global exponential convergence of the
closed-loop Lur’e-type system in (11) can be guaranteed by
showing that H(s) is SPR. The transfer function H(s) is SPR
if and only if the following conditions hold, see [23], [41]:

1) H(s) is Hurwitz;
2) Re{H(jω)} > 0 ∀ω ∈ R; and
3) H(∞) > 0 or H(∞) = 0 and limω→∞ ω2H(jω) > 0.

Note that the SPR conditions on H(s) can be visually verified
with the Nyquist plot, see [16, Chapter 7]. This makes these
conditions particularly useful to verify in practical applica-
tions, see Section IV. Next, these results are used to design
the feedback gain K in the feedback law (6), such that Problem
1 is solved.

C. Harmonic regulation of Lur’e-type systems

The results of Lemma 1 enable the main theoretical result
of this paper, which solves Problem 1. More specifically,
it is shown that the presented repetitive controller achieves
the desired harmonic regulation properties and convergence
properties of the closed-loop system if the feedback gain K
is designed properly.

If we can design the feedback law (6) such that the closed-
loop (1), (3), (5), (6) is globally exponentially convergent
for any d(t), then by virtue of Definition 1 and Property 1,
for every initial condition the solutions of (9) exponentially
converge to a unique, bounded, and well-defined steady-state
solution, which is T -periodic if the reference r(t) is T -
periodic. Then, using Lemma 2 below [2], [12], it is shown that
the Fourier coefficients, of the associated steady-state solution
ē of the error e, corresponding to the no frequencies embedded
in the internal model (5), must be zero. Hence, harmonic
regulation is achieved.

Lemma 2. Let the steady-state solution (x̄, z̄) be a bounded
trajectory of the cascade (1), (3), and (5), with corresponding
steady-state output error ē(t). Suppose that ē(t + T ) = ē(t)
for all t ≥ 0. Then, necessarily∫ T

0

cos(k 2π
T t)ē(t)dt =

∫ T

0

sin(k 2π
T t)ē(t)dt = 0 , (14)

for all k ∈ [0, 1, . . . , no]. Moreover, for any compact set Cx ⊂
Rn, for any r̃ > 0, ū > 0, and ε > 0 such that x̄(t) ∈ Cx,
r ∈ PT (r̃), and |ū(t)| ≤ ū for all t ≥ 0, there exists n∗o ≥ 1
such that the following holds:

‖ē(t)‖L2 :=

(∫ T

0

|ē(t)|2dt

) 1
2

≤ ε , ∀ no ≥ n∗o . (15)

Note that a bound for ε can be computed following the proof
of Proposition 3 in [2]. This bound depends on the Lipschitz
constant of the nonlinearity.

Then, combining these harmonic regulation properties and
the convergent system properties of the loop-transformed
closed-loop system solves Problem 1, which brings us to the
result in Theorem 1.



5

Theorem 1. Consider the Lur’e-type system (1), (3), with the
nonlinearity ϕ(·) satisfying the incremental sector condition in
(2), in closed loop with a dynamical controller (5), (6). Given
an arbitrary integer no > 0 and suppose that the matrix K
is chosen such that the transfer function H(s) in Lemma 1,
with the matrices Alt, Elt,Mlt, Nlt defined in (10), satisfies
Assumption 1 and the SPR conditions in Lemma 1. Then,
Problem 1 is solved, namely harmonic regulation of order no,
as defined by (14), is achieved.

Proof. Consider system (1), (3) in closed-loop with (5), (6),
which can be written in the form of (9) and (10). Then,
the loop-transformation can be applied to obtain (11) and
(12). Since the conditions of Lemma 1 are satisfied and the
loop-transformed system is equivalent to the original closed-
loop system, the closed-loop system is globally exponentially
convergent. Hence by Property 1, if r(t) is periodic with period
T > 0, there exists a bounded, globally exponentially stable
solution x̄(t), z̄(t)) which is T -periodic. As a consequence,
the resulting output steady-state trajectory ē is also bounded
and T -periodic. By direct application of Lemma 2 it satisfies
(14). This concludes the proof.

The statement of Theorem 1 establishes a set of sufficient
conditions for the design of the regulator in (5) and (6). In
particular, the matrices K and Γ should be designed such that
the desired SPR conditions on H(s) are satisfied to ensure the
satisfaction of the conditions in Lemma 1. The SPR conditions
at the end of Section III-B can be supported by graphical
checks in a Nyquist plot, similar to frequency-domain design
techniques for linear controller design.

In case the system in (9) is a minimum-phase system with
unitary relative degree2, a systematic design of the gain K
can be done by following [3]. The system in (9) can be put
in this form, for instance when CB 6= 0 and D = 0. In such
case, it can be put in the canonical normal form following [15,
Chapter 4]. Then, additional properties can be established. In
particular, by selecting K such that the bound

KΓΓTKT ≤ a (16)

holds with a a positive and bounded scalar which is indepen-
dent of no, it can be proved that the asymptotic L2-norm of
ē can be made arbitrarily small by increasing the number of
oscillators. More specifically, in such case ε in (15) can be
made arbitrarily small by increasing the number of oscillators
no. For instance, one can match the condition (16) by selecting
the gains γk in (7) as γk = k−(1+ε)γ̄k with γ̄k so that |γ̄k| ≤ γ̄
for any k = 1, . . . , no, for some γ̄ > 0, and by selecting κk
in (7) such that |κk| ≤ κ̄ for any k = 1, . . . , no, for some
κ̄ > 0. Note that the condition (16) essentially establishes
that the regulator (5), (6) has an L2-gain between the input
e and the output u which does not depend on the number of
oscillators no. The complete proof of this property is given in
[3, Lemma 3]. Intuitively, the main idea behind such a choice
is to put decreasing weights on higher harmonics in order to

2In this case, we refer to a system in normal form with stable zero-
dynamics. See for instance, (5) and Assumption 2 in [1]. Necessary and
sufficient conditions under which a system of the form (9) can be written
in canonical normal form are well known in the literature, see, e.g., [15].
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Fig. 1. Schematic representation of the blower-hose-patient system, with the
corresponding resistances, lung compliance, pressures, and flows.

obtain a bounded gain when summing up the contribution of
the L2-gain of all oscillators.

This design philosophy will be pursued in the mechanical
ventilation application to experimentally show the desired
approximate L2 output regulation objective (15).

IV. APPLICATION TO MECHANICAL VENTILATION

In this section, the RC strategy is applied to a nonlinear
mechanical ventilation system, i.e., this section describes the
second contribution of this paper. First, in Section IV-A, an
overview of the considered ventilation system and the control
goal for ventilation are described. Thereafter, the mathematical
ventilation model and the actual mechanical ventilation setup
are presented in Section IV-B. Then, repetitive controllers for
mechanical ventilation are designed and stability of the closed-
loop system is analyzed in Section IV-C. Then, in Section
IV-D, the experimental results are presented and analyzed.
Thereafter, another ventilation use-case is briefly considered
to analyze the conservatism of Theorem 1 in Section IV-E.
Finally, a remark on RC design is made based on observations
from the experimental case study.

A. Ventilation system overview and control goal

Mechanical ventilators are essential equipment in Intensive
Care Units (ICUs) to assist patients who cannot breathe on
their own or need support to breathe sufficiently. The goal
of mechanical ventilation is to ensure adequate oxygenation
and carbon dioxide elimination [40], and thereby sustaining
the patient’s life. Next, the considered ventilation system and
corresponding control goal are described.

1) Ventilation system overview: A schematic overview of
the considered ventilation system is depicted in Fig. 1. The
main components of this system are the blower, the hose-
filter system, and the patient. A centrifugal blower compresses
ambient air to achieve the desired blower outlet pressure pout.
The difference between pout and the airway pressure paw
results in the outlet flow Qout through the hose. This hose
is modeled using a nonlinear hose model. The flow through
the hose, i.e., the outlet flow Qout, is divided into a patient
flow Qpat and a leak flow Qleak. The intended leak near the
patient is used to flush CO2-rich air from the system. Finally,
the patient’s lungs are inflated and deflated by the patient flow.

2) Control goal: In this experimental use-case, Pressure
Controlled Ventilation (PCV) is considered. A schematic ex-
ample of PCV is depicted in Fig. 2. In PCV, the pressure
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Fig. 2. Typical airway pressure for two breathing cycles of pressure controlled
ventilation, showing the set-point ( ) and the typical response ( ).

near the patient’s mouth, the airway pressure paw, should
track a desired pressure target ptarget, i.e., r := ptarget. On
a preset periodic interval, of length T , the pressure level is
increased to the Inspiratory Positive Airway Pressure (IPAP),
and consequently lowered to the Positive End-Expiratory Pres-
sure (PEEP). These varying pressure levels ensure the desired
airflow in and out of the patient’s lungs. The total breath length
T consists of the inspiration time Ti and expiration time Te,
i.e., T = Ti + Te.

The control goal for PCV is to achieve a small tracking error
e := r−paw = r−v, where the reference r(t) is a time-varying
signal that is perfectly periodic with an interval length T , i.e.,
r(t) = r(t+T ) for a known T > 0 and all t ≥ 0. Because of
this periodicity property and the nonlinear nature of the hose
model, the Repetitive Control (RC) strategy developed in this
paper is particularly suitable for this application.

B. Mathematical model and experimental ventilation system

For controller design and the stability analysis, a mathe-
matical Lur’e-type system model is derived. The ventilation
model is based on [30]. Thereafter, the actual experimental
ventilation setup is presented.

1) Mathematical model of the ventilation system: In this
section, first the separate models for the plant components
are derived, i.e., blower model Gb, hose model Rhose, and
patient-leak model Gp. Thereafter, these models are combined
to obtain the open-loop Lur’e-type ventilation system model
for the controller design and associated stability analysis.
The complete plant and the considered control strategy are
visualized in the blockdiagram in Fig. 4.

The blower model Gb is obtained by means of a sixth-
order fit of a Frequency Response Measurement (FRF) of
the actual blower dynamics [28]. This state-space model
accurately describes the input-output relation of the blower,
i.e., from the control signal pc to the blower output pout.
The measured FRF and the blower model Gb are depicted
in Fig. 3, showing that Gb is an accurate representation of
the FRF measurement of the actual blower. The blower Gb is
modeled as the following state-space system:

ẋb = Abxb +Bbpc

pout = Cbxb,
(17)

with xb ∈ R6, pc ∈ R, pout ∈ R, and system matrices of
appropriate dimensions.

Fig. 3. Frequency response measurement ( ) and 6th order identified
parametric model ( ) of the blower, i.e., from pc to pout.

The hose is modeled by the nonlinear hose resistance Rhose,
as presented in [30], which describes the relation between the
flow through the hose Qout and the pressure drop over the
hose ∆p := pout − paw. From experiments it is concluded
that the hose can be modeled as follows:

Qout : = Rhose(∆p)

= sign(∆p)
−R1 +

√
R2

1 + 4R2|∆p|
2R2

,
(18)

where R1 and R2 are the hose-resistance parameters.
Next, the combined patient-leak model Gp describes the

relation between the outlet flow Qout and the system output
y = paw. This patient model is described by the follow-
ing first-order state-space model, based on the linear one-
compartmental lung model in [4]:

ṗlung = applung + bpQout

paw = cpplung + dpQout
(19)

with

ap = − 1

Clung(Rleak +Rlung)
,

bp =
Rleak

Clung(Rleak +Rlung)
,

cp =
Rleak

Rleak +Rlung
, dp =

RleakRlung
Rleak +Rlung

.

(20)

Finally, these separate models are combined to obtain the
open-loop plant model, as depicted inside the dashed box in
Fig. 4. Note that an additional term η∆p is added to the
nonlinear hose-resistance, i.e., ϕ(∆p) := Rhose(∆p) + η∆p,
and subtracted in the parallel path; this is included to ensure
that the linear dynamics of the open-loop plant in Lur’e-
type form are controllable and observable. The total system’s
dynamics, i.e., the full Lur’e-type ventilation system, are
independent of the choice of η ∈ R.

To obtain the open-loop plant model, the blower, hose, and
patient model are combined. This gives the open-loop model
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Gb Gp
pout ∆p+

−

Qout pawptarget C+

−
e Q̂out

−η
open-loop plant

pc ϕ(∆p)

Fig. 4. Block diagram of the full ventilation system, with Gb the blower
dynamics, C an arbitrary feedback controller, Gp the patient-leak dynamics,
and ϕ(∆p) = Rhose(∆p) + η∆p the nonlinear hose model.

from pc to paw in the form of (1). The open-loop ventilation
system is defined by (1) with the system matrices

A =

[
Ab 0

−(1− ηdp)−1ηCbbp ap + ηcp(1− ηdp)−1bp

]
,

B =

[
Bb
0

]
, E =

[
0

−bp(1− ηdp)−1

]
,

M =

[
Cb + dp(1− ηdp)−1ηCb
−cp − dp(1− ηdp)−1ηcp

]T
,

N = dp(1− ηdp)−1, Do = −dp(1− ηdp)−1,

C =
[
−dp(1− ηdp)−1ηCb cp + dp(1− ηdp)−1ηcp

]
,
(21)

and the nonlinearity

ϕ(y) := Rhose(y) + ηy. (22)

These open-loop system matrices and the nonlinearity in
combination with the RC that is designed in Section IV-C
are used to retrieve the closed-loop ventilation system and to
guarantee that it solves Problem 1 using Theorem 1.

2) Experimental ventilation setup: The main components
of the experimental setup used in this case study are de-
picted in Fig. 5. The figure shows the Macawi blower-driven
mechanical ventilation module [11]. The dSPACE system
(dSPACE GmbH, Paderborn, Germany) is used to implement
the controls in MATLAB Simulink (MathWorks, Natick, MA).
Furthermore, the ASL 5000TM Breathing Simulator (IngMar
Medical, Pittsburgh, PA) represents the patient. This lung
simulator can be used to emulate a wide variety of patients
with a linear resistance and compliance. Furthermore, a typical
ventilation hose with leak is used to attach the ventilation
module to the lung simulator. The system parameters that are
used for the stability analysis are shown in Table I. The leak
and hose parameters are obtained by a calibration and the
patient parameters are the settings used on the mechanic lung
simulator, i.e., patient emulator in Fig. 5.

The analysis in the following section is done using a
continuous-time representation of the controller and plant
model. However, the controller is implemented in dSPACE
using a discrete-time representation of the continuous-time
control strategy. The discrete-time controllers are obtained
using the zero-order hold discretization scheme at a sampling
frequency of 500 Hz. This sampling frequency is significantly
higher than the relevant system dynamics, e.g., the blower
shows strong roll-off at frequencies above 10 Hz. Furthermore,
500 Hz is significantly higher that the frequency content of
the reference signal. Therefore, the continuous-time controller

Respiratory

module

Ventilation

hose
Sensor

tube

Power supply

dSpace

Patient

emulator

Fig. 5. The experimental setup with the mechanic patient simulator, the
respiratory module, ventilation hose, and dSPACE module.

TABLE I
THE RELEVANT SYSTEM AND EXPERIMENT PARAMETER FOR THE

STABILITY ANALYSIS.

Parameter Value Unit
Rleak 24 mbar s/L
R1 2.8 mbar s/L
R2 1.6 mbar s2/L2

Rlung 5 mbar s/L
Clung 50 mL/mbar
η −0.1 mL/s/mbar

design and stability analysis is deemed relevant for this appli-
cation.

C. Controller design for mechanical ventilation

Next, the RC controller design for mechanical ventilation
is described and it is shown that it solves Problem 1 for this
ventilation use-case.

1) Controller design: For the design of the feedback con-
troller C in Fig. 4, the control strategy in (5), (7), and (8) with
feedback law (6) is followed. This means that the feedback
controller C consists of an integrator and no oscillators from
the first up until the ntho harmonic of the breathing frequency
ωb = 2π/T rad/s. Besides this feedback controller, a unity
feedforward controller as depicted in Fig. 4 is used. The
unity feedforward term is included to improve the overall
regulation accuracy. Note that it does not affect stability since
it is included in the closed-loop ventilation system through the
disturbance term d in (9). The stability analysis is independent
of this disturbance in view of the convergence properties of
the closed-loop dynamics.

For the final RC design, different controllers are designed
to analyze the effect of the number of oscillators, i.e., no ∈
{0, 1, 5, 15, 20}. We select the integrator gain as γ0 =
2π, and oscillator gains as γk =

[
1 1

]
2

k1+ε with ε = 0.4,
for k = 1, 2, . . . , no. The feedback law is chosen as K ∈
R1×(2no+1) with all entries 1. Note that the design of the gains
Γ,K satisfies the condition (16). Next, the stability properties
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Fig. 6. Visualization of the nonlinearity ϕ(∆p) ( ), and its sector bounds

¯
ϕ∆p ( ) and ϕ̄∆p ( ), showing that the incremental sector condition
holds for [

¯
ϕ, ϕ̄] = [80, 1

R1
+ η].

of the closed-loop ventilation system with the RC controller
are analyzed.

2) Stability analysis: To guarantee exponential convergence
of the closed-loop ventilation system, and therewith showing
that Problem 1 is solved, Theorem 1 is verified. First of
all, the controlled system is written in the closed-loop form
of (9), and the upper ϕ̄ and lower

¯
ϕ sector bounds of the

nonlinearity ϕ(y) in (22) are computed. Using these bounds,
the loop-transformation is applied to obtain the system in (11).
Thereafter, Lemma 1 is verified, which ensures that Theorem
1 holds.

The upper sector bound ϕ̄ is defined by taking the derivative
of ϕ(∆p) at the origin, where the slope of ϕ is the largest, see
Fig. 6, which gives ϕ̄ = 1

R1
+ η. The lower sector bound

¯
ϕ is

obtained from visual inspection, such that it holds on a finite
domain of ∆p ∈ [−20, 20] mbar; this domain is sufficient for
the practical application of ventilation. This leads to the sector
ϕ ∈ [

¯
ϕ, ϕ̄] = [80, 1

R1
+ η] for the nonlinearity in (22). The

nonlinearity and these sector bounds are visualized in Fig. 6.

Using these sector bounds, the loop-transformation is per-
formed to obtain the system in (11), and it is verified that
the pair (Alt, Elt) is controllable and the pair (Alt,Mlt) is
observable for every no, i.e., Assumption 1 holds. Thereafter,
H(s) is constructed using the matrices of the loop-transformed
system.

Then, it is guarantee that H(s) is SPR, it is first verified that
for all no ∈ {0, 1, 5, 15, 20} the transfer function H(s) is
Hurwitz, which is verified by computing the poles and check-
ing that they reside in the open left-half plane. Thereafter, it
is graphically validated that Re(H(jω)) > 0 ∀ω ∈ [−∞, ∞].
This is validated in Fig. 7; it is clearly shown that for all
considered values of no the real part of H(jω) is strictly
positive. Finally, it is verified that H(∞) > 0. This is also
the case for all no ∈ {0, 1, 5, 15, 20}.

From these results, Lemma 1, and Theorem 1, it is con-
cluded that the nonlinear closed-loop ventilation system is

Fig. 7. Nyquist plot of H(s) for no = 0 ( ), no = 1 ( ), no =
5 ( ), no = 15 ( ), and no = 20 ( ). The figure shows that
Re(H(jω)) > 0∀ω ∈ [−∞, ∞].

exponentially convergent on a compact domain3 in state space
for which ∆p ∈ [−20, 20] mbar and that this controller solves
the repetitive control problem. Next, the performance of the
different controllers is analyzed by means of experiments.

Remark 1. To ensure stability of systems with slowly varying
parameters (which is typically the case for this mechanical
ventilation case) an approach similar to [32] could be fol-
lowed. One could design a single controller for a nominal
parametric setting and prove the stability property for a variety
of (slowly, i.e., quasi-constant) varying parameters. This can
be achieved by ensuring the SPR property for the linear
dynamics of the Lur’e-type system for a set of parameters,
e.g., lung compliances.

D. Experimental results for mechanical ventilation

The main experimental results are shown in Fig. 8 and 9.
The time-domain results of the 20th breath with the integrator
only, i.e., no = 0, and the repetitive controller with 20
oscillators, i.e., no = 20, are visualized in Fig. 8. The top plot
shows the reference and the measured outputs and the bottom
plot shows the tracking error for both controllers. The figure
clearly shows that the tracking error is significantly reduced
by the repetitive controller. The overshoot is eliminated and
the rise-time is significantly shorter. Note that the residual
error with repetitive control contains oscillatory behavior,
especially during the expiration at PEEP level, i.e., between 82
and 84 seconds. These oscillations contain mostly frequency
content higher than 20 times the breathing frequency, i.e.,
above 5 Hz. It is observed that the tracking error’s frequency
content at frequency above the ntho harmonic is increased. In
Section IV-F, a remark and analysis of this phenomenon is
included, since this phenomenon could potentially deteriorate
the system’s tracking performance.

3Such domain can be explicitly formulated using a quadratic Lyapunov
function following from the Kalman-Yakubovich-Lemma for the SPR transfer
function H(s).
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Fig. 8. The time domain results upon convergence for no = 0 ( ) and
no = 20 ( ), and the target pressure ( ). The figure shows that the
error is significantly reduced by the repetitive controllers.

Fig. 9. The `2-norm of the error for every breath for no = 0 ( ), no =
1 ( ), no = 5 ( ), no = 15 ( ), and no = 20 ( ). The
figure shows that more oscillators results in a smaller error and the controllers
converge in approximately 10 breaths.

The `2-norm of the error per breath for every controller
is shown in Fig. 9. The `2-norm of the error of a particular

breath j is defined as ‖e‖2 =
(∑jρ

k=1+(j−1)ρ |e(k)|2
) 1

2

with

ρ = T
∆T and ∆T the sampling time. The figure clearly shows

that increasing the number of oscillators reduces the `2-norm
of the error upon convergence. Including 20 oscillators in the
loop reduces the `2-norm of the error by more than a factor 3
compared to integral action only. Furthermore, it is observed
that the convergence time is longer for an increasing number
of oscillators and the controller with 20 oscillators converges
in approximately 15 breaths.

Concluding, all controllers show convergent behavior in the
experiments, as expected by the analysis. Furthermore, the
tracking error is reduced significantly, by more than a factor 3,
by including repetitive control. The Fourier coefficients of the
steady-state output error ē(t) are suppressed at the frequencies
w = k 2π

T , k = 0, 1, . . . , no.

Fig. 10. Nyquist plot of H(s) for no = 20 ( ) for the baby use-case.
The figure shows that Re(H(jω)) > 0∀ω ∈ [−∞, ∞] does not hold, hence,
convergence is not guaranteed.

E. Analysis of conservatism

To analyze how conservative the convergence properties of
Theorem 1 are, an experimental use-case is presented where
the SPR properties are violated. This is achieved by consider-
ing a ventilation use-case with lung parameters that represent
a baby patient, i.e., Clung = 3 mL/mbar and Rlung = 50
mbar s/L. The same hose and blower system as for the adult
use-case are used, hence, the same sector conditions for the
linearity can be used. Furthermore, the same RC design as
for the adult use-case is followed for no = 20. The transfer
function H(s) is computed for this system and visualized in
Fig. 10. This figure clearly shows that the second condition
for SPR transfer functions is violated for no = 20. Therefore,
the desired convergence properties of the system cannot be
guaranteed for this controller design with no = 20 oscillators.

The resulting `2-norm of the error per breath is shown in
Fig. 11. This figure clearly shows that the system behaves
unstable for no = 20. Concluding, this use-case shows that the
sufficient conditions in Theorem 1 have limited conservatism,
which is a desirable property for practical controller design
because it allows more design freedom.

F. Remark on repetitive controller design

In the experimental analysis, especially in the baby use-
case, it is observed that the remaining error consists of
oscillations at frequencies above the harmonics of the ntho
oscillator. These oscillations in the error are increasing for an
increasing number of oscillators, limiting the overall tracking
performance. Especially in other use-cases it is observed that
increasing the number of oscillators can significantly deteri-
orate the system performance. This effect can be explained
by analyzing the sensitivity Sre, i.e., transfer function from
the reference r to the tracking error e, of a linearization of
the closed-loop ventilation system. This linearized closed-loop
system is obtained by replacing the nonlinearity in Fig. 4 by
a linear resistance, i.e., Rhose(∆p) is replaced by ∆p

Rlin
with

Rlin = 2

¯
ϕ+ϕ̄ , and η = 0. The resulting Bode magnitude plot

of Sre is shown in Fig. 12. This Bode magnitude plot clearly
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Fig. 11. The `2-norm of the error for every breath for no = 0 ( ), and
no = 20 ( ) for the baby use-case. The figure shows unstable behavior
for that the closed-loop system with no = 20.

Fig. 12. Bode magnitude plot of the sensitivity Sre for the linearization of
the closed-loop system with no = 0 ( ), no = 1 ( ), no = 5 ( ),
no = 15 ( ), and no = 20 ( ). The figure shows a magnitude increase
at frequencies around 8 Hz, causing oscillations at these frequencies.

shows that the tracking error is zero at the harmonics of the
breathing frequencies. However, it also shows an increase in
magnitude at frequency above the oscillator frequencies. The
magnitude at these frequencies is increasing for an increasing
number of oscillators. This increase in magnitude causes the
oscillations at these frequencies as shown in the experiments.
Therefore, in future work, it should be analyzed how this
increase in magnitude at these specific frequencies can be
eliminated.

V. CONCLUSION AND FUTURE WORK

In this paper, a Repetitive Control (RC) scheme that
achieves robust tracking for nonlinear Lur’e-type systems with
stability guarantees is presented. The RC scheme is composed
of a dynamical system consisting of no linear oscillators
at the reference’s period and its multiples, which represents
the internal model, processing the tracking error, and a pure
integral controller guaranteeing the closed-loop system to be
convergent. This convergence property ensures that the steady-
state trajectory is periodic and therefore harmonic regulation
is achieved at the frequencies included in the internal model.

This RC scheme is successfully implemented in a mechan-
ical ventilation system for Intensive Care Units, a medical
application to support the breathing of patients. Through a
stability analysis based on the Nyquist plot it is shown that
this closed-loop ventilation system is convergent and hence
the designed controller solves the repetitive control problem

at hand. Additionally, it is also shown experimentally that
by increasing the number of oscillators the asymptotic L2-
norm of the regulated output is reduced. Furthermore, exper-
iments show that the presented controller design is able to
significantly improve pressure tracking when compared to pure
integral action.
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