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Repetitive control (RC) has shown to achieve superior rejection of periodic disturbances. Many nonlinear systems are subject to repeating disturbances. The aim of this paper is to develop a continuous-time RC design with stability guarantees for nonlinear Lur'e-type systems. Approximate output tracking is achieved by combining an internal model, consisting of a finite number of linear oscillators with frequencies at the reference frequency and at its multiples, with a stabilizer that guarantees a convergence property of the closed-loop system. The developed RC approach is applied to a nonlinear mechanical ventilation system for Intensive Care Units (ICUs), which can be modeled as a Lur'e-type system. The experimental study confirms that the repetitive control scheme is able to successfully follow the desired target pressure profile to properly support the ventilation needs of an adult patient.

I. INTRODUCTION

Repetitive Control (RC) schemes are particularly suitable to achieve robust tracking of a periodic reference signal, see [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Longman | On the theory and design of linear repetitive control systems[END_REF], [START_REF] Mattavelli | Repetitive-based control for selective harmonic compensation in active power filters[END_REF]. Tracking of periodic signals is a common control problem in many relevant application fields, for example in healthcare. In this paper, the proposed analysis and controller design are motivated by the application of mechanical ventilation of patients on Intensive Care Units (ICUs). Mechanical ventilation is used to support the breathing of patients by providing the correct oxygen support and elimination of carbon dioxide [START_REF] Warner | Mechanical ventilation[END_REF]. In ventilation, tracking of a periodic signal, i.e., pressure target, is desired.

Several studies in literature have focused on achieving accurate tracking performance for mechanical ventilation, e.g., [START_REF] Borrello | Modeling and control of systems for critical care ventilation[END_REF], [START_REF] Scheel | Iterative learning control: An example for mechanical ventilated patients[END_REF], [START_REF] Reinders | Adaptive control for mechanical ventilation for improved pressure support[END_REF], and [START_REF] Li | Model predictive control for a multicompartment respiratory system[END_REF]. Particularly promising is the application of discrete-time frequency domain RC in [START_REF] Reinders | Improving mechanical ventilation for patient care through repetitive control[END_REF] and [START_REF] Reinders | Triggered repetitive control: application to mechanically ventilated patients[END_REF]. In this work, a significant reduction of the pressure tracking error is achieved. However, this is achieved under a linearity assumption of the considered ventilation system dynamics, whereas a mechanical ventilation system contains nonlinear system dynamics, see [START_REF] Reinders | Accurate pressure tracking to support mechanically ventilated patients using an estimated nonlinear hose model and delay compensation[END_REF].

The considered ventilation system is a nonlinear dynamical system, which can be modeled as a Lur'e-type system. Lur'etype systems consist of the interconnection of linear timeinvariant dynamics with a static nonlinearity in the feedback loop. These systems form a practically relevant sub-class of nonlinear systems, also for other application domains. To achieve robust tracking of the periodic pressure target of the ventilation system, a generically applicable RC scheme for Lur'e-type systems is developed.

The structural idea of RC is based on the internal model principle, namely on the fact that when a periodic signal with known period T must be tracked, a copy of the disturbance model generating such a signal must be included in the regulator [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF]. This is generally done through a universal generator of a T -periodic signal. Such a generator is implemented using a memory loop with a delay of length T . This memory loop places an infinite number of poles on the imaginary axes at the fundamental frequency 2π/T and its multiples, see, e.g., [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Hara | Repetitive control system: a new type servo system for periodic exogenous signals[END_REF]. Then, the extended system composed by the plant and such memory loop is stabilized with feedback control.

Because a delay is easily implemented in discrete-time, significant research efforts have been devoted to the development of discrete-time implementations of RC. In this approach, mostly linear systems are addressed from the theoretical point of view and good tracking performance is achieved in these systems, see, e.g., [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF], [START_REF] Costa-Castelló | A repetitive controller for discrete-time passive systems[END_REF], [START_REF] Onuki | Compensation for repeatable tracking errors in hard drives using discrete-time repetitive controllers[END_REF], [START_REF] Reinders | Improving mechanical ventilation for patient care through repetitive control[END_REF], [START_REF] Tomizuka | Discrete-time domain analysis and synthesis of repetitive controllers[END_REF], [START_REF] Tomizuka | Analysis and synthesis of discrete-time repetitive controllers[END_REF]. Unfortunately, the developed frequency analysis tools cannot be directly employed in the presence of nonlinearities. Therefore, typically no formal stability proofs are provided for repetitive control applied to nonlinear systems.

In existing literature, several studies have considered output tracking problems for continuous-time nonlinear systems. For instance, in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Byrnes | Nonlinear internal models for output regulation[END_REF], [START_REF] Marconi | Output stabilization via nonlinear luenberger observers[END_REF] the problem of output tracking for nonlinear systems that can be written in the canonical normal form is considered. In [START_REF] Pavlov | Incremental passivity and output regulation[END_REF], incremental passivity concepts are used for the design of global regulators and in [START_REF] Pavlov | Global nonlinear output regulation: Convergence-based controller design[END_REF] output regulation of Lur'e-type systems using convergent system properties is considered. However, a constructive design of the stabilizer and guaranteed harmonic regulation properties are not presented. The design in [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF] relies on statefeedback approaches, and the domain of attraction of the periodic solution is only local in the size of the reference [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF] or not discussed [START_REF] Ghosh | Nonlinear repetitive control[END_REF]. In [START_REF] Giaccagli | Sufficient conditions for global integral action via incremental forwarding for inputaffine nonlinear systems[END_REF], contractive feedback laws in tracking problems are developed for constant references, but not for periodic references. Finally, in [START_REF] Verrelli | Linear repetitive learning controls for robotic manipulators by padé approximants[END_REF], [START_REF] Verrelli | PI-generalizing saturated repetitive learning control for a class of nonlinear uncertain systems: Robustness w.r.t. relative degree zero or one[END_REF], and [START_REF] Verrelli | Adaptive learning control design for robotic manipulators driven by permanent magnet synchronous motors[END_REF] a learning control approach has been developed to achieve tracking in nonlinear systems with repetitive disturbances. These methods show a significant improvement in tracking performance. In the scope of the challenge taken on in the current paper, a drawback of the work in [START_REF] Verrelli | Adaptive learning control design for robotic manipulators driven by permanent magnet synchronous motors[END_REF]- [START_REF] Verrelli | Linear repetitive learning controls for robotic manipulators by padé approximants[END_REF] is that these algorithms do not apply straightforwardly to Lur'e-type systems with (uncertain) output nonlinearities.

Although significant progress on output regulation for nonlinear systems has been made, an intuitive RC-scheme for nonlinear Lur'e-type systems with a formal stability guarantee is not yet available. To achieve this, a finite-dimensional realization of the exact RC-scheme in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], [START_REF] Califano | Stability analysis of nonlinear repetitive control schemes[END_REF] is used. The reason to consider a finite-dimensional realization is the difficulty to analyze the interconnection of an infinite-dimensional system, i.e., the internal model, with nonlinear plant dynamics with nonlinear outputs. In this paper, we follow an approach that relies on the harmonic representation of the delay, see, e.g., [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Mattavelli | Repetitive-based control for selective harmonic compensation in active power filters[END_REF]. The RC-scheme is implemented by including a finite number n o of linear oscillators in the control loop. This results in n o poles on the imaginary axes at the frequency of the periodic reference and its multiples. Therewith, if the resulting closed-loop trajectories converge to a periodic solution, harmonic regulation of the tracking error is guaranteed. More precisely, the Fourier coefficients of the error signal corresponding to the frequencies embedded in the linear oscillators are zero, and the L 2 -norm of the error signal is sufficiently small if n o is large enough [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF]. To guarantee the existence of globally asymptotically stable periodic solutions, the theory of convergent systems is exploited, see, e.g., [START_REF] Pavlov | Convergent systems: nonlinear simplicity[END_REF], [START_REF] Pavlov | Frequency response functions for nonlinear convergent systems[END_REF], [START_REF] Pavlov | Convergent systems: analysis and synthesis[END_REF], [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF]. To this end, we suppose that the static nonlinearity in the Lur'e-type system satisfies an incremental sector bound condition. Then, using the strictly positive real lemma, sufficient conditions for a stabilizing output-feedback law are established. From a practical point of view, such an approach is interesting because the conditions can be checked by visual inspection of the Nyquist plot and linear analysis tools (potentially using measured data only).

Eventually, this proposed repetitive controller design is applied to the practical problem of mechanical ventilation. Existing literature, e.g., [START_REF] Reinders | Improving mechanical ventilation for patient care through repetitive control[END_REF] and [START_REF] Reinders | Triggered repetitive control: application to mechanically ventilated patients[END_REF], has shown that frequencydomain RC can significantly improve the tracking performance in ventilation systems. However, because these ventilation systems are nonlinear, formal stability guarantees for the closedloop system with repetitive control are missing. Therefore, the control approach developed in this paper is applied to this Lur'e-type ventilation system to improve its performance with formal stability guarantees.

Summarizing, the main contributions of this paper are:

• the development of an RC strategy for nonlinear Lur'etype systems including a formal stability analysis, and • the implementation and analysis of this RC scheme on the practical use-case of a nonlinear mechanical ventilator, including experimental validation.

This paper is organized as follows. In Section II, the problem statement is formalized. In Section III, the main results concerning the RC controller design are presented. Then, in Section IV, the RC paradigm is applied to the mechanical ventilation use-case. Finally, the main conclusions and recommendations for future work are presented in Section V.

Notations. Throughout this paper, s represents the Laplace variable. Given an n×n symmetric matrix P , we write P 0 (≺ 0) if P is strictly positive (negative) definite. Given a n×n matrix P , the operator blkdiag P . . . P represents a block-diagonal matrix with P as block-diagonal elements, the dimensions are specified case-wise. Furthermore, ẋ represents the continuous-time derivative of x. Finally, we define P T (r) as the set of C 1 T -periodic functions with bounded infinity norm and bounded infinity norm of its derivative. In particular, we say that r(t) | ṙ(t)| ≤ r for some non-negative real number r.

∈ P T (r) if r is C 1 , T -periodic,

II. PROBLEM STATEMENT

In the introduction, a gap in existing literature has been identified in the application of repetitive control to mechanical ventilation systems. More specifically, the commonly used frequency-domain RC does not provide formal stability guarantees when it is applied to Lur'e-type nonlinear ventilation systems. Therefore, in this section a formal problem statement is formulated to develop RC for Lur'e-type systems.

Consider a Single-Input Single-Output (SISO) Lur'e-type system of the form

ẋ = Ax + Bu + Ew y = M x + N w w = -ϕ(y) v = Cx + Dw, (1) 
where x ∈ R n is the state, u ∈ R is the control input, w, y are in R, v ∈ R is the measured output, and A, B, E, M, N, C, and D are real matrices of appropriate dimensions. The static nonlinearity ϕ : R → R satisfies ϕ(0) = 0, and the following incremental sector bound condition:

φ ≤ ϕ(y 1 ) -ϕ(y 2 ) y 1 -y 2 ≤ φ ∀ y 1 = y 2 , (2) 
for some known non-negative constants 0 ≤ φ ≤ φ. The control objective is to regulate the output v of the system (1) to a T -periodic bounded reference r ∈ P T (r). Hence, the output regulation error is defined as e(t) := r(t) -v(t) .

(

) 3 
With the mechanical ventilation application in mind, where the full-state x is not available for feedback, we aim to design a dynamic output feedback controller for system (1), processing only the regulated output error e, such that harmonic regulation is achieved in the following sense.

Problem 1 (Harmonic regulation of order n o ). Consider system (1) with regulation error (3) and assume that the nonlinearity ϕ satisfies the incremental sector bound condition (2). Given any r > 0, n o > 0, determine a dynamic output feedback controller of the form

ż = ξ(z, e) u = ζ(z, e), (4) 
such that for any reference r ∈ P T (r) and any initial condition x cl (0) := [x T (0), z T (0)] T ∈ R nx , the corresponding steadystate trajectory xcl := [x T , zT ] T of the closed-loop (1), ( 3), ( 4) is bounded, T -periodic, exponentially stable 1 , and the steadystate output error ē has no harmonic content at frequencies ω = k 2π T , k = 0, 1, . . . , n o . The repetitive control approach in [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF] is followed to achieve the harmonic regulation objective stated in Problem 1. The main idea is to include linear oscillators at the periodic reference frequency and its multiples in the regulator dynamics (4). This approach achieves, if the closed-loop stead-state trajectories are bounded and periodic, structural zeros at the frequencies kω with the blocking property of zeroing the Fourier coefficients of the output e corresponding to these frequencies. As a consequence, the strategy that we propose in this work is to: 1) design of the function ξ in (4) to include the linear oscillators; 2) design the feedback ζ in (4) to ensure the desired stability properties for the resulting closed-loop system; and 3) analyze the resulting trajectories and show that the harmonic content is zero at the desired frequencies. As a byproduct, we verify that if the number of oscillators included in the regulator are large enough, the asymptotic 2 -norm of the output e can be regulated to an arbitrarily small value.

III. REPETITIVE CONTROL OF LUR'E-TYPE SYSTEMS

In this section, the repetitive controller design for Lur'etype systems is presented. First, in Section III-A, the repetitive controller design is presented, the closed-loop dynamics are obtained, and a loop transformation is applied that allows the use of known results on exponentially convergent Lur'e-type systems. In Section III-B, known results on convergent Lur'etype systems are presented as a stepping stone to the stability analysis. Finally, in Section III-C, it is shown that the proposed controller design solves Problem 1.

A. Controller design

To provide a solution to Problem 1, the repetitive control approach in [START_REF] Ghosh | Nonlinear repetitive control[END_REF] is adopted by including n o linear oscillators in the control loop, at the reference frequency and its multiples, that process the output e to be regulated, as in standard output

1 a time-varying solution x(t) is called exponentially stable if x(x(0), t)- x(x(0), t) ≤ α x(0) -x(0) e -λt for some α, λ > 0.
regulation problems, see, e.g., [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF]. To this end, the control structure in ( 4) is defined as:

ż = ξ(z, e) := Φz + Γe (5) u = ζ(z, e) := Kz (6)
where

z = z 0 z T 1 . . . z T no T ∈ R (2no+1)×1 with z 0 ∈ R and z k ∈ R 2×1 for k = 1, . . . , n o
, and where the matrices

Φ ∈ R (2no+1)×(2no+1) , Γ ∈ R (2no+1)×1 , and K ∈ R 1×(2no+1)
are defined as

Φ := blkdiag(0 φ 1 . . . φ no ), Γ := γ 0 γ T 1 . . . γ T no T , K := [κ 0 κ 1 . . . κ no ] , (7) 
where

φ k := k    0 2π T - 2π T 0    , k = 1, . . . , n o , (8) 
with γ 0 = 0 the integrator gain such that z 0 embeds an integrator, and the matrix γ k ∈ R 2×1 is chosen such that the pair (φ k , γ k ) is controllable for any k = 1, . . . , n o . By construction, the pair (Φ, Γ) is therefore controllable. In this control structure, the z-dynamics represent the state-space representation of n o linear oscillators at the periodic reference frequency and its multiples. The number of oscillators n o represents a degree of freedom of the controller design as it defines the dimension of the chosen internal model and allows to suppress the first n o -harmonics of the steady-state trajectory which is formalized later.

Next, the closed-loop system consisting of the plant (1), (3) and the repetitive controller ( 5), ( 6) is written as a Lur'e-type system

ẋcl = A cl x cl + E cl w cl + d(t) y cl = M cl x cl + N cl w cl w cl = -ϕ(y cl ) (9) 
where

A cl := A BK -ΓC Φ , E cl := E -ΓD , Q cl := 0 Γ , M cl := M 0 , N cl := N, (10) 
where

x cl := [x T , z T ] T ∈ R nx , w cl := w, y cl := y, and 
d(t) := Q cl r(t)
, is a periodic, with period time T , timevarying piece-wise continuous disturbance (induced by the periodic reference).

Next, a loop-transformation as described in [16, Chapter 7] is applied to the closed-loop dynamics. This looptransformation gives an equivalent Lur'e-type system where the transformed nonlinearity φ(y lt ) satisfies the incremental sector bound in (2) with φ = 0 and φ = ∞. This enables direct application of the known results on exponentially convergent Lur'e-type systems in Section III-B. This loop-transformation gives the following loop-transformed Lur'e-type system:

ẋlt = A lt x lt + E lt w lt + d(t) y lt = M lt x lt + N lt w lt w lt = -φ(y lt ) (11)
where

A lt := A cl -(E cl φ(M cl + N cl (1 + φN cl ) -1 φM cl )), E lt := E cl (1 - φD cl (1 + φN cl ) -1 ), M lt := φM cl -φN cl (1 + φN cl ) -1 φM cl , N lt := 1 + φN cl (1 + φN cl ) -1 (12) 
where

x lt ∈ R nx , y lt ∈ R, w lt ∈ R, φ = φ - φ,
and φ(y lt ) satisfies the incremental sector bound in (2) with φ = 0 and φ = ∞. Furthermore, is assumed that the controller is designed such that Assumption 1 holds.

Assumption 1. The pair (A lt , E lt ) is controllable and the pair (A lt , M lt ) in (11) is observable.

Next, to solve Problem 1 it must be shown that the closedloop system exhibits a globally exponentially stable steadystate trajectory that is well-defined, bounded, T -periodic, and that the associated output error ē has no harmonic content at the frequencies included in the internal model. To show this, known results on exponentially convergent Lur'e-type systems are used. These results are provided next.

B. Exponentially convergent Lur'e-type systems

First, we provide the following definition of convergent systems, see, e.g., [START_REF] Pavlov | Convergent systems: nonlinear simplicity[END_REF], [START_REF] Pavlov | Frequency response functions for nonlinear convergent systems[END_REF], [START_REF] Rüffer | Convergent systems vs. incremental stability[END_REF], applicable to the Lur'etype systems of the form [START_REF]DEMCON macawi respiratory systems[END_REF] [START_REF] Pavlov | Convergent systems: nonlinear simplicity[END_REF], [START_REF] Pavlov | Frequency response functions for nonlinear convergent systems[END_REF], [START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF].

Property 1. Consider system [START_REF]DEMCON macawi respiratory systems[END_REF] and suppose it is exponentially convergent. If d is a periodic signal with period T > 0, i.e., d(t) = d(t + T ) for all t, then the corresponding steadystate solution xlt,d (t) is also periodic with period T .

To show that the closed-loop Lur'e-type system of the form (11) is a globally exponentially convergent system, let

H(s) = M lt (sI -A lt ) -1 E lt + N lt . (13) 
Then, results from [START_REF] Va Yakubovich | Matrix inequalities method in stability theory for nonlinear control systems: I. absolute stability of forced vibrations[END_REF] [START_REF] Pavlov | Convergent systems: nonlinear simplicity[END_REF], [START_REF] Va Yakubovich | Matrix inequalities method in stability theory for nonlinear control systems: I. absolute stability of forced vibrations[END_REF]:

1) H(s) is Hurwitz; 2) Re{H(jω)} > 0 ∀ω ∈ R; and 3) H(∞) > 0 or H(∞) = 0 and lim ω→∞ ω 2 H(jω) > 0. Note that the SPR conditions on H(s) can be visually verified with the Nyquist plot, see [START_REF] Khalil | Nonlinear systems[END_REF]Chapter 7]. This makes these conditions particularly useful to verify in practical applications, see Section IV. Next, these results are used to design the feedback gain K in the feedback law [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF], such that Problem 1 is solved.

C. Harmonic regulation of Lur'e-type systems

The results of Lemma 1 enable the main theoretical result of this paper, which solves Problem 1. More specifically, it is shown that the presented repetitive controller achieves the desired harmonic regulation properties and convergence properties of the closed-loop system if the feedback gain K is designed properly.

If we can design the feedback law ( 6) such that the closedloop (1), ( 3), ( 5), ( 6) is globally exponentially convergent for any d(t), then by virtue of Definition 1 and Property 1, for every initial condition the solutions of ( 9) exponentially converge to a unique, bounded, and well-defined steady-state solution, which is T -periodic if the reference r(t) is Tperiodic. Then, using Lemma 2 below [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF], [START_REF] Ghosh | Nonlinear repetitive control[END_REF], it is shown that the Fourier coefficients, of the associated steady-state solution ē of the error e, corresponding to the n o frequencies embedded in the internal model [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF], must be zero. Hence, harmonic regulation is achieved. Lemma 2. Let the steady-state solution (x, z) be a bounded trajectory of the cascade (1), (3), and (5), with corresponding steady-state output error ē(t). Suppose that ē(t + T ) = ē(t) for all t ≥ 0. Then, necessarily

T 0 cos(k 2π T t)ē(t)dt = T 0 sin(k 2π T t)ē(t)dt = 0 , (14) 
for all k ∈ [0, 1, . . . , n o ]. Moreover, for any compact set C x ⊂ R n , for any r > 0, ū > 0, and ε > 0 such that x(t) ∈ C x , r ∈ P T (r), and |ū(t)| ≤ ū for all t ≥ 0, there exists n * o ≥ 1 such that the following holds:

ē(t) L 2 := T 0 |ē(t)| 2 dt 1 2 ≤ ε , ∀ n o ≥ n * o . ( 15 
)
Note that a bound for ε can be computed following the proof of Proposition 3 in [START_REF] Astolfi | Approximate regulation for nonlinear systems in presence of periodic disturbances[END_REF]. This bound depends on the Lipschitz constant of the nonlinearity.

Then, combining these harmonic regulation properties and the convergent system properties of the loop-transformed closed-loop system solves Problem 1, which brings us to the result in Theorem 1.

Theorem 1. Consider the Lur'e-type system (1), [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], with the nonlinearity ϕ(•) satisfying the incremental sector condition in (2), in closed loop with a dynamical controller (5), [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF]. Given an arbitrary integer n o > 0 and suppose that the matrix K is chosen such that the transfer function H(s) in Lemma 1, with the matrices A lt , E lt , M lt , N lt defined in [START_REF] Costa-Castelló | A repetitive controller for discrete-time passive systems[END_REF], satisfies Assumption 1 and the SPR conditions in Lemma 1. Then, Problem 1 is solved, namely harmonic regulation of order n o , as defined by [START_REF] Hara | Repetitive control system: a new type servo system for periodic exogenous signals[END_REF], is achieved. Proof. Consider system (1), (3) in closed-loop with ( 5), [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF], which can be written in the form of ( 9) and [START_REF] Costa-Castelló | A repetitive controller for discrete-time passive systems[END_REF]. Then, the loop-transformation can be applied to obtain [START_REF]DEMCON macawi respiratory systems[END_REF] and [START_REF] Ghosh | Nonlinear repetitive control[END_REF]. Since the conditions of Lemma 1 are satisfied and the loop-transformed system is equivalent to the original closedloop system, the closed-loop system is globally exponentially convergent. Hence by Property 1, if r(t) is periodic with period T > 0, there exists a bounded, globally exponentially stable solution x(t), z(t)) which is T -periodic. As a consequence, the resulting output steady-state trajectory ē is also bounded and T -periodic. By direct application of Lemma 2 it satisfies [START_REF] Hara | Repetitive control system: a new type servo system for periodic exogenous signals[END_REF]. This concludes the proof.

The statement of Theorem 1 establishes a set of sufficient conditions for the design of the regulator in ( 5) and [START_REF] Blanken | Multivariable repetitive control: Decentralized designs with application to continuous media flow printing[END_REF]. In particular, the matrices K and Γ should be designed such that the desired SPR conditions on H(s) are satisfied to ensure the satisfaction of the conditions in Lemma 1. The SPR conditions at the end of Section III-B can be supported by graphical checks in a Nyquist plot, similar to frequency-domain design techniques for linear controller design.

In case the system in ( 9) is a minimum-phase system with unitary relative degree 2 , a systematic design of the gain K can be done by following [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF]. The system in (9) can be put in this form, for instance when CB = 0 and D = 0. In such case, it can be put in the canonical normal form following [START_REF] Isidori | Nonlinear control systems[END_REF]Chapter 4]. Then, additional properties can be established. In particular, by selecting K such that the bound

KΓΓ T K T ≤ a (16) 
holds with a a positive and bounded scalar which is independent of n o , it can be proved that the asymptotic L 2 -norm of ē can be made arbitrarily small by increasing the number of oscillators. More specifically, in such case in [START_REF] Isidori | Nonlinear control systems[END_REF] can be made arbitrarily small by increasing the number of oscillators n o . For instance, one can match the condition ( 16) by selecting the gains γ k in [START_REF] Borrello | Modeling and control of systems for critical care ventilation[END_REF] as γ k = k -(1+ ) γk with γk so that |γ k | ≤ γ for any k = 1, . . . , n o , for some γ > 0, and by selecting κ k in [START_REF] Borrello | Modeling and control of systems for critical care ventilation[END_REF] such that |κ k | ≤ κ for any k = 1, . . . , n o , for some κ > 0. Note that the condition [START_REF] Khalil | Nonlinear systems[END_REF] essentially establishes that the regulator (5), ( 6) has an L 2 -gain between the input e and the output u which does not depend on the number of oscillators n o . The complete proof of this property is given in [3, Lemma 3]. Intuitively, the main idea behind such a choice is to put decreasing weights on higher harmonics in order to 2 In this case, we refer to a system in normal form with stable zerodynamics. See for instance, (5) and Assumption 2 in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]. Necessary and sufficient conditions under which a system of the form ( 9) can be written in canonical normal form are well known in the literature, see, e.g., [START_REF] Isidori | Nonlinear control systems[END_REF]. obtain a bounded gain when summing up the contribution of the L 2 -gain of all oscillators. This design philosophy will be pursued in the mechanical ventilation application to experimentally show the desired approximate L 2 output regulation objective [START_REF] Isidori | Nonlinear control systems[END_REF].

p out p aw p lung Q leak Q pat Q out p aw pilot line R hose R lung

IV. APPLICATION TO MECHANICAL VENTILATION

In this section, the RC strategy is applied to a nonlinear mechanical ventilation system, i.e., this section describes the second contribution of this paper. First, in Section IV-A, an overview of the considered ventilation system and the control goal for ventilation are described. Thereafter, the mathematical ventilation model and the actual mechanical ventilation setup are presented in Section IV-B. Then, repetitive controllers for mechanical ventilation are designed and stability of the closedloop system is analyzed in Section IV-C. Then, in Section IV-D, the experimental results are presented and analyzed. Thereafter, another ventilation use-case is briefly considered to analyze the conservatism of Theorem 1 in Section IV-E. Finally, a remark on RC design is made based on observations from the experimental case study.

A. Ventilation system overview and control goal

Mechanical ventilators are essential equipment in Intensive Care Units (ICUs) to assist patients who cannot breathe on their own or need support to breathe sufficiently. The goal of mechanical ventilation is to ensure adequate oxygenation and carbon dioxide elimination [START_REF] Warner | Mechanical ventilation[END_REF], and thereby sustaining the patient's life. Next, the considered ventilation system and corresponding control goal are described. 1) Ventilation system overview: A schematic overview of the considered ventilation system is depicted in Fig. 1. The main components of this system are the blower, the hosefilter system, and the patient. A centrifugal blower compresses ambient air to achieve the desired blower outlet pressure p out . The difference between p out and the airway pressure p aw results in the outlet flow Q out through the hose. This hose is modeled using a nonlinear hose model. The flow through the hose, i.e., the outlet flow Q out , is divided into a patient flow Q pat and a leak flow Q leak . The intended leak near the patient is used to flush CO 2 -rich air from the system. Finally, the patient's lungs are inflated and deflated by the patient flow.

2) Control goal: In this experimental use-case, Pressure Controlled Ventilation (PCV) is considered. A schematic example of PCV is depicted in Fig. 2. In PCV, the pressure near the patient's mouth, the airway pressure p aw , should track a desired pressure target p target , i.e., r := p target . On a preset periodic interval, of length T , the pressure level is increased to the Inspiratory Positive Airway Pressure (IPAP), and consequently lowered to the Positive End-Expiratory Pressure (PEEP). These varying pressure levels ensure the desired airflow in and out of the patient's lungs. The total breath length T consists of the inspiration time T i and expiration time T e , i.e., T = T i + T e . The control goal for PCV is to achieve a small tracking error e := r-p aw = r-v, where the reference r(t) is a time-varying signal that is perfectly periodic with an interval length T , i.e., r(t) = r(t + T ) for a known T > 0 and all t ≥ 0. Because of this periodicity property and the nonlinear nature of the hose model, the Repetitive Control (RC) strategy developed in this paper is particularly suitable for this application.

B. Mathematical model and experimental ventilation system

For controller design and the stability analysis, a mathematical Lur'e-type system model is derived. The ventilation model is based on [START_REF] Reinders | Accurate pressure tracking to support mechanically ventilated patients using an estimated nonlinear hose model and delay compensation[END_REF]. Thereafter, the actual experimental ventilation setup is presented.

1) Mathematical model of the ventilation system: In this section, first the separate models for the plant components are derived, i.e., blower model G b , hose model R hose , and patient-leak model G p . Thereafter, these models are combined to obtain the open-loop Lur'e-type ventilation system model for the controller design and associated stability analysis. The complete plant and the considered control strategy are visualized in the blockdiagram in Fig. 4.

The blower model G b is obtained by means of a sixthorder fit of a Frequency Response Measurement (FRF) of the actual blower dynamics [START_REF] Pintelon | System Identification: a frequency domain approach[END_REF]. This state-space model accurately describes the input-output relation of the blower, i.e., from the control signal p c to the blower output p out . The measured FRF and the blower model G b are depicted in Fig. 3, showing that G b is an accurate representation of the FRF measurement of the actual blower. The blower G b is modeled as the following state-space system:

ẋb = A b x b + B b p c p out = C b x b , (17) 
with x b ∈ R 6 , p c ∈ R, p out ∈ R, and system matrices of appropriate dimensions. The hose is modeled by the nonlinear hose resistance R hose , as presented in [START_REF] Reinders | Accurate pressure tracking to support mechanically ventilated patients using an estimated nonlinear hose model and delay compensation[END_REF], which describes the relation between the flow through the hose Q out and the pressure drop over the hose ∆p := p out -p aw . From experiments it is concluded that the hose can be modeled as follows:

Q out : = R hose (∆p) = sign(∆p) -R 1 + R 2 1 + 4R 2 |∆p| 2R 2 , (18) 
where R 1 and R 2 are the hose-resistance parameters.

Next, the combined patient-leak model G p describes the relation between the outlet flow Q out and the system output y = p aw . This patient model is described by the following first-order state-space model, based on the linear onecompartmental lung model in [START_REF] Bates | Lung Mechanics[END_REF]:

ṗlung = a p p lung + b p Q out p aw = c p p lung + d p Q out ( 19 
)
with

a p = - 1 C lung (R leak + R lung ) , b p = R leak C lung (R leak + R lung ) , c p = R leak R leak + R lung , d p = R leak R lung R leak + R lung . ( 20 
)
Finally, these separate models are combined to obtain the open-loop plant model, as depicted inside the dashed box in Fig. 4. Note that an additional term η∆p is added to the nonlinear hose-resistance, i.e., ϕ(∆p) := R hose (∆p) + η∆p, and subtracted in the parallel path; this is included to ensure that the linear dynamics of the open-loop plant in Lur'etype form are controllable and observable. The total system's dynamics, i.e., the full Lur'e-type ventilation system, are independent of the choice of η ∈ R.

To obtain the open-loop plant model, the blower, hose, and patient model are combined. This gives the open-loop model from p c to p aw in the form of ( 1). The open-loop ventilation system is defined by (1) with the system matrices

A = A b 0 -(1 -ηd p ) -1 ηC b b p a p + ηc p (1 -ηd p ) -1 b p , B = B b 0 , E = 0 -b p (1 -ηd p ) -1 , M = C b + d p (1 -ηd p ) -1 ηC b -c p -d p (1 -ηd p ) -1 ηc p T , N = d p (1 -ηd p ) -1 , D o = -d p (1 -ηd p ) -1 , C = -d p (1 -ηd p ) -1 ηC b c p + d p (1 -ηd p ) -1 ηc p , (21) 
and the nonlinearity ϕ(y) := R hose (y) + ηy.

These open-loop system matrices and the nonlinearity in combination with the RC that is designed in Section IV-C are used to retrieve the closed-loop ventilation system and to guarantee that it solves Problem 1 using Theorem 1.

2) Experimental ventilation setup:

The main components of the experimental setup used in this case study are depicted in Fig. 5. The figure shows the Macawi blower-driven mechanical ventilation module [START_REF]DEMCON macawi respiratory systems[END_REF]. The dSPACE system (dSPACE GmbH, Paderborn, Germany) is used to implement the controls in MATLAB Simulink (MathWorks, Natick, MA). Furthermore, the ASL 5000 TM Breathing Simulator (IngMar Medical, Pittsburgh, PA) represents the patient. This lung simulator can be used to emulate a wide variety of patients with a linear resistance and compliance. Furthermore, a typical ventilation hose with leak is used to attach the ventilation module to the lung simulator. The system parameters that are used for the stability analysis are shown in Table I. The leak and hose parameters are obtained by a calibration and the patient parameters are the settings used on the mechanic lung simulator, i.e., patient emulator in Fig. 5.

The analysis in the following section is done using a continuous-time representation of the controller and plant model. However, the controller is implemented in dSPACE using a discrete-time representation of the continuous-time control strategy. The discrete-time controllers are obtained using the zero-order hold discretization scheme at a sampling frequency of 500 Hz. This sampling frequency is significantly higher than the relevant system dynamics, e.g., the blower shows strong roll-off at frequencies above 10 Hz. Furthermore, 500 Hz is significantly higher that the frequency content of the reference signal. Therefore, the continuous-time controller 

C. Controller design for mechanical ventilation

Next, the RC controller design for mechanical ventilation is described and it is shown that it solves Problem 1 for this ventilation use-case.

1) Controller design: For the design of the feedback controller C in Fig. 4, the control strategy in ( 5), [START_REF] Borrello | Modeling and control of systems for critical care ventilation[END_REF], and (8) with feedback law (6) is followed. This means that the feedback controller C consists of an integrator and n o oscillators from the first up until the n th o harmonic of the breathing frequency ω b = 2π/T rad/s. Besides this feedback controller, a unity feedforward controller as depicted in Fig. 4 is used. The unity feedforward term is included to improve the overall regulation accuracy. Note that it does not affect stability since it is included in the closed-loop ventilation system through the disturbance term d in [START_REF] Califano | Stability analysis of nonlinear repetitive control schemes[END_REF]. The stability analysis is independent of this disturbance in view of the convergence properties of the closed-loop dynamics.

For the final RC design, different controllers are designed to analyze the effect of the number of oscillators, i.e., n o ∈ {0, 1, 5, 15, 20}. We select the integrator gain as γ 0 = 2π, and oscillator gains as γ k = 1 1 2 k 1+ with = 0.4, for k = 1, 2, . . . , n o . The feedback law is chosen as K ∈ R 1×(2no+1) with all entries 1. Note that the design of the gains Γ, K satisfies the condition [START_REF] Khalil | Nonlinear systems[END_REF]. Next, the stability properties of the closed-loop ventilation system with the RC controller are analyzed.

2) Stability analysis: To guarantee exponential convergence of the closed-loop ventilation system, and therewith showing that Problem 1 is solved, Theorem 1 is verified. First of all, the controlled system is written in the closed-loop form of ( 9), and the upper φ and lower φ sector bounds of the nonlinearity ϕ(y) in ( 22) are computed. Using these bounds, the loop-transformation is applied to obtain the system in [START_REF]DEMCON macawi respiratory systems[END_REF]. Thereafter, Lemma 1 is verified, which ensures that Theorem 1 holds.

The upper sector bound φ is defined by taking the derivative of ϕ(∆p) at the origin, where the slope of ϕ is the largest, see Fig. 6, which gives φ = 1 R1 + η. The lower sector bound φ is obtained from visual inspection, such that it holds on a finite domain of ∆p ∈ [-20, 20] mbar; this domain is sufficient for the practical application of ventilation. This leads to the sector ϕ ∈ [ φ, φ] = [80, 1 R1 + η] for the nonlinearity in [START_REF] Pavlov | Incremental passivity and output regulation[END_REF]. The nonlinearity and these sector bounds are visualized in Fig. 6.

Using these sector bounds, the loop-transformation is performed to obtain the system in [START_REF]DEMCON macawi respiratory systems[END_REF], and it is verified that the pair (A lt , E lt ) is controllable and the pair (A lt , M lt ) is observable for every n o , i.e., Assumption 1 holds. Thereafter, H(s) is constructed using the matrices of the loop-transformed system.

Then, it is guarantee that H(s) is SPR, it is first verified that for all n o ∈ {0, 1, 5, 15, 20} the transfer function H(s) is Hurwitz, which is verified by computing the poles and checking that they reside in the open left-half plane. Thereafter, it is graphically validated that Re(H(jω)) > 0 ∀ω ∈ [-∞, ∞]. This is validated in Fig. 7; it is clearly shown that for all considered values of n o the real part of H(jω) is strictly positive. Finally, it is verified that H(∞) > 0. This is also the case for all n o ∈ {0, 1, 5, 15, 20}.

From these results, Lemma 1, and Theorem 1, it is concluded that the nonlinear closed-loop ventilation system is exponentially convergent on a compact domain3 in state space for which ∆p ∈ [-20, 20] mbar and that this controller solves the repetitive control problem. Next, the performance of the different controllers is analyzed by means of experiments.

Remark 1. To ensure stability of systems with slowly varying parameters (which is typically the case for this mechanical ventilation case) an approach similar to [START_REF] Reinders | Improving mechanical ventilation for patient care through repetitive control[END_REF] could be followed. One could design a single controller for a nominal parametric setting and prove the stability property for a variety of (slowly, i.e., quasi-constant) varying parameters. This can be achieved by ensuring the SPR property for the linear dynamics of the Lur'e-type system for a set of parameters, e.g., lung compliances.

D. Experimental results for mechanical ventilation

The main experimental results are shown in Fig. 8 and9. The time-domain results of the 20 th breath with the integrator only, i.e., n o = 0, and the repetitive controller with 20 oscillators, i.e., n o = 20, are visualized in Fig. 8. The top plot shows the reference and the measured outputs and the bottom plot shows the tracking error for both controllers. The figure clearly shows that the tracking error is significantly reduced by the repetitive controller. The overshoot is eliminated and the rise-time is significantly shorter. Note that the residual error with repetitive control contains oscillatory behavior, especially during the expiration at PEEP level, i.e., between 82 and 84 seconds. These oscillations contain mostly frequency content higher than 20 times the breathing frequency, i.e., above 5 Hz. It is observed that the tracking error's frequency content at frequency above the n th o harmonic is increased. In Section IV-F, a remark and analysis of this phenomenon is included, since this phenomenon could potentially deteriorate the system's tracking performance. Concluding, all controllers show convergent behavior in the experiments, as expected by the analysis. Furthermore, the tracking error is reduced significantly, by more than a factor 3, by including repetitive control. The Fourier coefficients of the steady-state output error ē(t) are suppressed at the frequencies w = k 2π

T , k = 0, 1, . . . , n o . 

E. Analysis of conservatism

To analyze how conservative the convergence properties of Theorem 1 are, an experimental use-case is presented where the SPR properties are violated. This is achieved by considering a ventilation use-case with lung parameters that represent a baby patient, i.e., C lung = 3 mL/mbar and R lung = 50 mbar s/L. The same hose and blower system as for the adult use-case are used, hence, the same sector conditions for the linearity can be used. Furthermore, the same RC design as for the adult use-case is followed for n o = 20. The transfer function H(s) is computed for this system and visualized in Fig. 10. This figure clearly shows that the second condition for SPR transfer functions is violated for n o = 20. Therefore, the desired convergence properties of the system cannot be guaranteed for this controller design with n o = 20 oscillators.

The resulting 2 -norm of the error per breath is shown in Fig. 11. This figure clearly shows that the system behaves unstable for n o = 20. Concluding, this use-case shows that the sufficient conditions in Theorem 1 have limited conservatism, which is a desirable property for practical controller design because it allows more design freedom.

F. Remark on repetitive controller design

In the experimental analysis, especially in the baby usecase, it is observed that the remaining error consists of oscillations at frequencies above the harmonics of the n th o oscillator. These oscillations in the error are increasing for an increasing number of oscillators, limiting the overall tracking performance. Especially in other use-cases it is observed that increasing the number of oscillators can significantly deteriorate the system performance. This effect can be explained by analyzing the sensitivity S re , i.e., transfer function from the reference r to the tracking error e, of a linearization of the closed-loop ventilation system. This linearized closed-loop system is obtained by replacing the nonlinearity in Fig. 4 by a linear resistance, i.e., R hose (∆p) is replaced by ∆p R lin with R lin = 2 φ+ φ , and η = 0. The resulting Bode magnitude plot of S re is shown in Fig. 12. This Bode magnitude plot clearly shows that the tracking error is zero at the harmonics of the breathing frequencies. However, it also shows an increase in magnitude at frequency above the oscillator frequencies. The magnitude at these frequencies is increasing for an increasing number of oscillators. This increase in magnitude causes the oscillations at these frequencies as shown in the experiments. Therefore, in future work, it should be analyzed how this increase in magnitude at these specific frequencies can be eliminated.

V. CONCLUSION AND FUTURE WORK

In this paper, a Repetitive Control (RC) scheme that achieves robust tracking for nonlinear Lur'e-type systems with stability guarantees is presented. The RC scheme is composed of a dynamical system consisting of n o linear oscillators at the reference's period and its multiples, which represents the internal model, processing the tracking error, and a pure integral controller guaranteeing the closed-loop system to be convergent. This convergence property ensures that the steadystate trajectory is periodic and therefore harmonic regulation is achieved at the frequencies included in the internal model. This RC scheme is successfully implemented in a mechanical ventilation system for Intensive Care Units, a medical application to support the breathing of patients. Through a stability analysis based on the Nyquist plot it is shown that this closed-loop ventilation system is convergent and hence the designed controller solves the repetitive control problem at hand. Additionally, it is also shown experimentally that by increasing the number of oscillators the asymptotic L 2norm of the regulated output is reduced. Furthermore, experiments show that the presented controller design is able to significantly improve pressure tracking when compared to pure integral action.
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 1 Fig. 1. Schematic representation of the blower-hose-patient system, with the corresponding resistances, lung compliance, pressures, and flows.

Fig. 2 .

 2 Fig. 2. Typical airway pressure for two breathing cycles of pressure controlled ventilation, showing the set-point () and the typical response ( ).

Fig. 3 .

 3 Fig. 3. Frequency response measurement () and 6 th order identified parametric model ( ) of the blower, i.e., from pc to pout.

Fig. 4 .

 4 Fig. 4. Block diagram of the full ventilation system, with G b the blower dynamics, C an arbitrary feedback controller, Gp the patient-leak dynamics, and ϕ(∆p) = R hose (∆p) + η∆p the nonlinear hose model.
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 5 Fig. 5. The experimental setup with the mechanic patient simulator, the respiratory module, ventilation hose, and dSPACE module.
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 611 Fig. 6. Visualization of the nonlinearity ϕ(∆p) ( ), and its sector bounds φ∆p ( ) and φ∆p ( ), showing that the incremental sector condition holds for [ φ, φ] = [80, 1 R 1 + η].
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 7 Fig. 7. Nyquist plot of H(s) for no = 0 ( ), no = 1 ( ), no = 5 ( ), no = 15 ( ), and no = 20 ( ). The figure shows that Re(H(jω)) > 0∀ω ∈ [-∞, ∞].
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 8 Fig. 8. The time domain results upon convergence for no = 0 () and no = 20 ( ), and the target pressure ( ). The figure shows that the error is significantly reduced by the repetitive controllers.
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 92 Fig. 9. The 2 -norm of the error for every breath for no = 0 ( ), no = 1 ( ), no = 5 ( ), no = 15 ( ), and no = 20 ( ). The figure shows that more oscillators results in a smaller error and the controllers converge in approximately 10 breaths.
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 10 Fig. 10. Nyquist plot of H(s) for no = 20 ( ) for the baby use-case. The figure shows that Re(H(jω)) > 0∀ω ∈ [-∞, ∞] does not hold, hence, convergence is not guaranteed.
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 11 Fig. 11. The 2 -norm of the error for every breath for no = 0 ( ), and no = 20 ( ) for the baby use-case. The figure shows unstable behavior for that the closed-loop system with no = 20.
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 12 Fig. 12. Bode magnitude plot of the sensitivity Sre for the linearization of the closed-loop system with no = 0 ( ), no = 1 ( ), no = 5 ( ), no = 15 (), and no = 20 ( ). The figure shows a magnitude increase at frequencies around 8 Hz, causing oscillations at these frequencies.

  , with D a set of piece-wise continuous, bounded disturbances. System (11) is called convergent for d ∈ D if it is convergent for any d(t) ∈ D see [27, Definition 2.16]. Note that for an exponentially convergent system, the steady-state solution is unique, see [27, Property 2.15]. Moreover, if the input d(t) is T -periodic, then, for exponentially convergent systems, xlt,d (t) is also T -periodic, as recalled in the next property, see, e.g.,

	Definition 1. Given d(t) ∈ D, the system (11) is said to be
	globally exponentially convergent if

• there exists a solution xlt,d (t) defined and bounded for all t ∈ R; • the solution xlt,d (t) is globally exponentially stable.

  Let Assumption 1 hold. If (2) holds and the transfer function H(s) is Strictly Positive Real (SPR), then the system (11) is globally exponentially convergent. Using Lemma 1, global exponential convergence of the closed-loop Lur'e-type system in (11) can be guaranteed by showing that H(s) is SPR. The transfer function H(s) is SPR if and only if the following conditions hold, see

and

[START_REF] Pavlov | Uniform output regulation of nonlinear systems: a convergent dynamics approach[END_REF] Chapter 5

] can be used. By combining the definition of a Strictly Positive Real (SPR) transfer function and the incremental sector bound condition (2), Lemma 1 is obtained that expresses sufficient conditions that guarantee that the system (11) is globally exponentially convergent, which is proved in

[START_REF] Khalil | Nonlinear systems[END_REF] Chapter 7]

.

Lemma 1.

TABLE I THE

 I RELEVANT SYSTEM AND EXPERIMENT PARAMETER FOR THE STABILITY ANALYSIS.

	Parameter Value Unit
	R leak	24	mbar s/L
	R 1	2.8	mbar s/L
	R 2	1.6	mbar s 2 /L 2
	R lung	5	mbar s/L
	C lung	50	mL/mbar
	η	-0.1	mL/s/mbar
	design and stability analysis is deemed relevant for this appli-
	cation.		

Such domain can be explicitly formulated using a quadratic Lyapunov function following from the Kalman-Yakubovich-Lemma for the SPR transfer function H(s).