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Direct Kinematic Singularities and Stability
Analysis of Sagging Cable-driven Parallel Robots

Sébastien Briot1 and Jean-Pierre Merlet2

Abstract—Sagging cable-driven parallel robots (CDPRs) are
often modelled by using the Irvine’s model. We will show
that their configurations may be unstable, and moreover, that
assessing the stability of the robot with the Irvine’s model cannot
be done by checking the spectrum of a stiffness matrix associated
with the platform motions.

In the present paper, we show that the static configurations of
the sagging CDPRs are local extrema of the functional describing
the robot potential energy. For assessing the stability, it is then
necessary to check two conditions: The Legendre-Clebsch and the
Jacobi conditions, both well known in optimal control theory. We
will also (i) prove that there is a link between some singularities
of the CDPRs and the limits of stability and (ii) show that
singularities of the platform wrench system are not singularities
of the geometric model of the sagging CDPRs, contrary to what
happens in rigid-link parallel robotics.

The stability prediction results are validated in simulation by
cross-validating them by using a lumped model, for which the
stability can be assessed by analyzing the spectrum of a reduced
Hessian matrix of the potential energy.

Index Terms—Cable-driven parallel robots, Sagging cables,
Stability, Singularity, Optimal control

I. INTRODUCTION

Cable-driven parallel robots (CDPR) are parallel robots
whose legs are constituted by cables with lengths that can be
changed by an actuation system. CDPRs have been proposed
in the seminal papers of Landberger [1] and Albus [2] and
have been investigated either because of their large workspace
and lifting capacity or because of their possible very high
speed [3]. Numerous CDPR prototypes have been devel-
oped [4]–[8].

CDPR analysis heavily relies on a cable model, i.e. the
relationships between cable tension and shape that are depen-
dent upon the physical characteristics of the cable material.
Many works rely on the straight cable model in which the
cable shape is the line between the two attachment points, the
cable has no mass and no elasticity. This model is clearly
not realistic for large CDPRs. Moreover with this model,
whatever the CDPR size is, the geometry may impose to have
a slack cable which does not play a role thereby leading to
manage different sets of kinematic equations. Hence, more
realistic models, able to tackle with the cable deformations or
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slackness, are slowly appearing in the literature [9]–[14] and
currently the model that is the most used for CDPRs is the
one proposed in the Irvine textbook [15], a planar model that
relates the cable shape, the tension applied at its extremity and
its length at rest (the model will be fully described in a later
section) using the Young modulus E and linear density ρ of
the cable material. This model has been experimentally shown
to be realistic for CDPRs [16] and cables following Irvine’s
model are named sagging cables.

Regarding geometry and kinematics and without going into
the details, introducing Irvine’s model for a n cable spatial
(planar, resp.) CDPR leads to a system of 3n+6 (2n+3,
resp.) equations with 3n (2n, resp.) unknowns for the inverse
kinematics (IK) (i.e. finding the cable lengths for a given pose
of the platform) and hence a square system is obtained only
if n = 6 (n = 3, resp.). Regarding the direct kinematics (DK)
(i.e. finding the platform pose for given cable lengths), we
have the same number of equations and variables, therefore
fixing the cable lengths allows to find the platform pose.
Solving the IK and DK for CDPR with sagging cables is not
a trivial task and may be based on continuation [17], [18]
or interval analysis [19] although none of these approaches
may guarantee to find all solutions (at least in a reasonable
computation time). Note that in the following of the paper,
we will not use the terminology IK/DK which is improper
due to the fact that the model equations use both geometric
constraints and static equilibrium equations. Therefore we will
rather use the terms inverse/direct geometrico-static models
which better describe the physics behind the equations.

Sagging CDPRs are by essence underactuated mechanisms,
due to the deformable nature of their cables. The geometrico-
static equations of these robots involve the mechanical equi-
librium of the system and, like any underactuated mechanical
systems, computed solutions of the static equilibrium may be
stable or unstable (e.g. consider the free-oscillating pendulum).
A mechanical equilibrium is well-known to be stable if and
only if it corresponds to a minimum of the potential energy of
the mechanical system. Otherwise, the computed equilibrium
is said to be unstable and it corresponds either to a maximum
or a saddle point of the potential energy function. As a result,
any small perturbation will move the system towards a more
stable configuration.

The stability for CDPR has been analyzed for CDPRs with
straight-cables (SC). For instance, in [20], the stability of
the underconstrained SC-CDPRs is assessed by checking the
positiveness of the reduced Hessian matrix of the potential
energy. An approach based on the study of the cable tension
and stiffness is proposed in [21] for any SC-CDPRs. In the
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work [22], the authors checked the stiffness matrix spectrum
of sagging CDPRs for assessing stability, modelled with the
Irvine’s equations. This stiffness matrix relates the variation
of wrenches on the platform (only) to its variation of pose,
but any other wrench variations anywhere on the cables, that
would destabilize the system, cannot be taken into account.
Furthermore, the Irvine’s model is the solution of a system of
Ordinary Differential Equations (ODEs). Indeed, it is little, if
at all, known in the Robotics community that this solution
is an extremum of a functional (a function of functions)
characterizing the total potential energy of the system. Hence,
the indices proposed in [22] are not appropriate for assessing
the stability of the extrema of a functional. To the best of our
knowledge, the stability of sagging CDPRs has not yet been
properly investigated.

Indeed, as it was shown in [23] in the case of continuum
parallel robots (i.e. parallel robots for which the rigid bodies
are replaced by flexible rods which can be modelled thanks to
ODEs named the Cosserat equations), proving that the robot
configuration is stable can only be done by studying two types
conditions which can be found by solving an optimal control
problem [24]: the Legendre-Clebsch conditions coupled with
the Jacobi conditions.

In this paper, based on the optimal control framework,
we provide the mathematical proof that the geometrico-static
equations of the sagging CDPRs based in the Irvine’s model
are the extrema of a functional representing the robot po-
tential energy. Indeed the relation between potential energy
and stability appears to be intuitive and has been shown for
CDPR with straight cables [20]. However, to the best of our
knowledge, there is no proof of it in the literature in the case
of the sagging CDPRs. Then, we provide the conditions that
are necessary for checking the robot configuration stability,
namely the Legendre-Clebsch conditions coupled with the
Jacobi conditions. We explain how they may be derived for the
sagging CDPR equations. We also prove that there is a link
between some singularities of the CDPRs [25] and the limits
of the stable configuration domain. Finally, we will show on
simulation that singularities of the platform wrench system
are not singularities of the geometrico-static models of the
sagging CDPRs, contrary to what happens in rigid-link parallel
robotics.

The paper is written as follows. In the next section, basics
but necessary recalls on optimal control theory are made. In
Section III, we show that the Irvine’s model is an extremum of
the cable potential energy. In Section IV, based on a similar
optimal control framework, we derive the equations of the
spatial sagging CDPRs and we provide the conditions for
stability. In Section V, we show that there is a link between the
singularities of the direct kinemato-static model1 and the Ja-
cobi stability conditions. All the results are confirmed through
simulations in Section VI. In the last section, conclusions are
drawn.

1Following [26], we prefer to replace the word kinetostatic by the word
kinemato-static: Indeed, the former is an assembly of the words kinetics and
statics, and is not related with our present interest in kinematics, i.e. with the
study of the motion.

II. RECALLS ON CALCULUS OF VARIATIONS AND OPTIMAL
CONTROL THEORY

Let us make here some necessary recalls on the calculus
of variations and the optimal control frameworks that will be
used in this paper in order to both compute the equations of
the geometric model of the sagging CDPRs and to assess the
stability of the computed robot configurations.

A. General problem statement

As we will show in the following of this paper, solving the
geometric model of a sagging CDPR is equivalent to solving
a so-called fixed-time Bolza problem in optimal control [24].
Such type of problem takes the generic form:

min
u(t)

U = ϕ(xf ) +

∫ tf

t0

L(x,u, t)dt

subject to ẋ = f(x,u, t)
x(t0) = x0

β(xf ) = 0
(1)

where U is a functional, x ∈ Rn is the state vector, ẋ is
its derivative with respect to the “time-variable” t, u ∈ Rm

is the vector of the “control” inputs, β : Rn → Rp is the
vector of the general terminal constraints, ϕ(xf ) : Rn → R is
the terminal cost, L : Rn × Rm × R → R is the Lagrangian
function2, f : Rn×Rm×R → Rn is the state derivative which
depends on the state x itself, but also of the control u and the
time t, xf is the final state. Note that a subscript 0 denotes
the initial value of a variable throughout the article, while a
subscript f is for its final value.

B. First-order necessary conditions

Computing the solutions to the problem (1) is equivalent to
finding its first-order necessary conditions of optimality. For
this, let us form an augmented cost function U ′ defined by:

U ′ = ϕ(xf ) + νTβ(xf ) +

∫ tf

t0

(
L+ λT (ẋ− f)

)
dt (2)

where λ(t) ∈ Rn and ν ∈ Rp are two Lagrange multiplier
vectors that enforce the differential and terminal constraints. It
should be mentioned that λ is also called the co-state vector.
In this expression and the following ones, some of the func-
tion notations have been omitted for reasons of convenience.
Expression (2) can be rewritten as:

U ′ = G+

∫ tf

t0

(
H + λT ẋ

)
dt (3)

where H is an Hamiltonian function3 defined by:

H(x,u,λ, t) = L(x,u, t)− λT f(x,u, t) (4)

2We use here the terminology of the control community: This Lagrangian
is not necessary the Lagrangian function computed as the difference between
the kinetic and potential energies, but a more generic function defining a cost
density.

3Here also, we use here the terminology of the control community: This
Hamiltonian is not the mechanical Hamiltonian function.
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and G is an augmented terminal cost function which takes the
form:

G(xf ,ν) = ϕ(xf ) + νTβ(xf ) (5)

From the calculus of variations, we know that a minimum of
the functional (2) appears when its variation is null, i.e. when
δU ′ = 0. From optimal control theory [24], the necessary
conditions for local optimality leading to the vanishing of δU ′

are given by:

ẋ = f(x,u, t)
λ̇ = HT

x

Hu = 0 (6)
x(t0) = x0, λ(t0) = λ0

b(xf ,λf ) =

[
β(xf )

λf +GT
xf

]
= 0

where the notation Fq denotes the partial differentiation of
any function F with respect to a variable q, i.e. Fq = ∂F/∂q.
Moreover, b : Rn × Rn → Rn. These equations are known
to be the conventional first-order necessary conditions for
optimality [24]. This system of equations is square, i.e. there
is always the same number of equation as the number of
variables/functions x(t), λ(t) and ν to be found.

Under the hypothesis that Hu = 0 can be solved for u,
which is always true in the following of the paper, the system
of equations (6) becomes a two-point boundary value problem
taking the form of a system of Differential Algebraic Equa-
tions (DAEs). A solution to these equations is not necessary
a local minimizer: in general, it is only an extremum (i.e. it
could be a minimum, but also a saddle point or a maximum).
For knowing if the solution is a minimizer to the problem (1)
(in other word, if the found function is a stable solution), the
second-order optimality conditions must be checked.

C. Second-order sufficient conditions

In order to establish the fact that the solution to (1) is a
local minimum, two conditions must be checked [24]:

• The strong Legendre-Clebsch condition which states that
Huu must be always positive definite (strictly), i.e.

Huu ≻ 0 ∀t ∈ [t0 tf ] (7)

• The Jacobi condition, which establishes that the solution
is unstable if there is a so-called conjugate point at the
time tcp, tcp ∈ [t0 tf [ (tf being necessarily out of the
integration interval).

The existence of conjugate points can be determined by
analyzing along the interval [t0 tf [ certain properties of the
matrix S̄(t) relating the variation δx(t) of the state x at the
time t to the variation δλ(t) of the Lagrange multipliers λ(t)
at the same time, such that [24]:

δλ(t) = S̄(t)δx(t) (8)

There is a conjugate point at t = tcp, tcp ∈ [t0 tf [, if and only
if the inverse of the matrix S̄(t) is rank deficient at t = tcp.
The way to compute the matrix S̄(t) will be detailed in the
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Fig. 1. A sagging cable fixed at one extremity A, subject to an external force
at the other extremity B and to the gravity field. θ(p) is the tangent to the
cable at the abscissa p, τ (p) is the tension in the cable at p, and τB the
tenson at B.

following of the paper. The reader could also refer to [24]
which presents several techniques for its computation.

In what follows, we will apply this theoretical framework
to the stability analysis of the sagging CDPRs.

III. DEFORMATION EQUATIONS OF A SINGLE SAGGING
CABLE

In this section, we show that the Irvine’s model [15] can be
found by applying the theory defined in the previous section.

A. Formalization of the problem

Let us consider a single sagging cable in a plane (O, y0, z0)
(Fig. 1). The cable state vector can be defined as:

x(p) =
[
y(p) z(p)

]T ∈ R2 (9)

where p ∈ [0 ℓ], p is the curvilinear abscissa along the cable,
ℓ is the cable length before deformation, y(p) is the location
of a point of the cable at the abscissa p along the y0 axis, and
z(p) is the location of a point of the cable at the abscissa p
along the z0 axis. Moreover, x(p = 0) = [y0 z0]

T and x(p =
ℓ) = [yf zf ]

T . The state vector derivative (with respect to the
initial curvilinear abscissa prior to any stretching p) is

∂x(p)

∂p
=

[
∂y(p)/∂p
∂z(p)/∂p

]
(10)

We assume here for the moment, that the vector ∂x(p)/∂p
is a function of the state x, a control vector u that we will
define below, and of the curvilinear abcissa p, i.e. ∂x(p)/∂p =
f(x,u, p).

In what follows, let us replace the variable p ∈ [0 ℓ] by a
normalized curvilinear abscissa s ∈ [0 1] defined by s = p/ℓ.
As a result, we have:

x′
i(s) = ℓ

∂x

∂p
= ℓ f(x,u, s) (11)

where the symbol “ ′ ” denotes the partial derivative with
respect to the curvilinear abscissa s, i.e. (.)′ = ∂(.)/∂s.

Let us assume that the cable is extensible, with a cross-
section area A and made with a material having a linear density
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ρ and a Young’s modulus E (assuming a Hookean deformation
law). As a result, its deformation energy Ue is provided by the
functional [27]:

Ue = ℓ

∫ 1

0

(
EA

2
(ϵx(s)− 1)

2

)
ds (12)

where ϵx(s) = ∥∂x/∂p∥ = ∥x′∥/ℓ is the elongation strain.
In order to fit with the optimal control framework presented
in the Section II, let us assume here that the control vector
u(s) = [u1(s) u2(s)]

T is equal to ∂x(p)/∂p such that u1 =
∂y/∂p = ℓy′ and u2 = ∂z/∂p = ℓz′, or also u = ℓx′ = ℓf .
As a result:

ϵx(s) = ∥u(s)∥ =
√
u21(s) + u22(s) (13)

and

Ue = ℓ

∫ 1

0

(
EA

2
(∥u(s)∥ − 1)

2

)
ds (14)

Let us also consider that the cable is subject to a gravity
field g = −g z0 (g > 0), and that a force τB ∈ R2 is applied
at p = ℓ, i.e. at the location xf . We assume here that τB

is a conservative (constant) force in the world frame. Note
that, as we are in statics, τB can however take any value. The
potential energy Uw due to these external effects is given by:

Uw = −τT
Bxf + ℓ

∫ 1

0

gρz(s) ds (15)

As a result, the total potential energy U = Ue + Uw is
provided by the functional:

U = −τT
Bxf + ℓ

∫ 1

0

(
EA

2
(∥u(s)∥ − 1)

2
+ gρz(s)

)
ds

(16)
The static configuration of the cable must minimize the

potential energy U . As a result, the following optimization
problem must be solved:

min
u(s)

U

subject to x′ = f(x,u, s)
x(s0) = x0

(17)

This problem is nothing else than a fixed-time Bolza problem.

B. First-order conditions of optimality

Applying straightforwardly the equations (6) to the prob-
lem (17), and noticing that

H = ℓ

(
EA

2
(∥u(s)∥ − 1)2 + gρz(s)− λT f

)
(18)

we get:
x′(s) = ℓ f(x,u, s) (19)

λ′ = HT
x ⇔ λ′ = ℓ

[
0
gρ

]
(20)

Hu = 0 ⇔ λ = EA
ϵx − 1

ϵx
u (21)

λf = τB (22)

From these equations, and making a parallelism with the
Irvine’s model [15], we see that:

• From (20) and (22), λ is nothing else than the tension τ
all along the cable, λ = τ .

• From (21), and recalling that ϵx = ∥u(s)∥, we can prove
that

∥λ∥ = ∥τ∥ = EA(ϵx − 1) (23)
λ2
λ1

=
τ2
τ1

=
u2
u1

(24)

where λi (τi, resp.) (i = 1, 2) is the ith component of λ
(τ , resp.). Equation (23) is the Hooke’s law used in the
Irvine’s model while combining Eqs. (23) and (24) we
get

u = ϵx

[
cos θ
sin θ

]
(25)

with θ(s) = tan−1(τ2(s)/τ1(s)) being the angle of the
vector tangent to the cable defined as it in the Irvine’s
model (Fig. 1).

So, in order to summarize, the first-order optimality condi-
tions can be written as:[

x′(s)
τ ′(s)

]
= ℓ


ϵx(s) cos θ(s)
ϵx(s) sin θ(s)

0
gρ

 for s ∈ [0 1] (26)

b(τ f ) = τ f − τB = 0 (27)

for x(0) = x0, τ (0) = τ 0, with

θ(s) = tan−1(τ2(s)/τ1(s)) (28)

ϵx(s) =
∥τ (s)∥
EA

+ 1 (29)

These equations are nothing else than the well known differ-
ential equations defining the Irvine’s model [15].

Solving expressions (26) to (29), and assuming that the
force vector τB takes the form τB = [Fy Fz]

T , we can
obtain the well known expressions defining the sagging cable
configuration x(s) = [y(s) z(s)]T :

y(s) =y0 +
Fyℓs

EA
+

|Fy|
ρg

{
sinh−1

[
Fz − ρgℓ(1− s)

Fy

]
− sinh−1

[
Fz − ρgℓ

Fy

]}
(30)

z(s) =z0 +
Fzℓs

EA
+
ρgℓ2s

EA

(s
2
− 1

)
+

1

ρg

{√
F 2
y + [Fz − ρgℓ(1− s)]

2

−
√
F 2
y + [Fz − ρgℓ]

2

}
(31)

as well as the expressions of the tension τ (s) = [τ1(s) τ2(s)]
T

all along the cable:

τ1(s) =Fy (32)
τ2(s) =Fz − ρgℓ(1− s) (33)

As a result, the optimal control framework allows proving
that the Irvine’s model is nothing more than an extremum
of the cable potential energy.

After having shown this result, let us deal with the mod-
elling and stability analysis of sagging CDPRs.
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Fig. 2. Schematic representation of a sagging spatial CDPR.

IV. GEOMETRICO-STATIC EQUATIONS AND STABILITY
ANALYSIS OF SAGGING CDPRS

In this section, we show that the solutions of the geometrico-
static model of sagging CDPRs are the extrema of its potential
energy, and we derive their stability conditions. We provide the
equations for the general spatial case, and discuss how they
could be simplified in order to model planar robots.

A. Formalization of the problem
We consider here the general case of a spatial CDPR with

sagging cables moving in the space (O, x0, y0, z0) (Fig. 2).
The robot is made of n cables connected to a rigid platform.
The cable i (i = 1, . . . , n) is connected at point Bi on the
platform by a passive spherical joint and at point Ai on the
base, a fixed point which is the output point of the winch
system4. The state vector of the cable i can be defined as:

xi(pi) =
[
xi(pi) yi(pi) zi(pi)

]T ∈ R3 (34)

where pi is the curvilinear abscissa along the cable, pi ∈ [0 ℓi],
and ℓi is the cable length of the undeformed cable. xi(pi)
(yi(pi), zi(pi), resp.) is the location of a point of the cable at
the abscissa pi along the x0 (y0, z0, resp) axis. Moreover,
the vectors xi(pi = 0) = xi0 and xi(pi = ℓi) = xif

represent the coordinates of points Ai and Bi in the world
frame, respectively. The state vector derivative, with respect
to the initial curvilinear abscissa pi, is given by:

∂xi

∂pi
(pi) =

∂xi(pi)/∂pi∂yi(pi)/∂pi
∂zi(pi)/∂pi

 (35)

We assume again for the moment, that the vector ∂xi(pi)/∂pi
is a function of the state xi, a control vector ui that we
will define below, and of the curvilinear abcissa pi, i.e.
∂xi(pi)/∂pi = f i(xi,ui, pi).

In what follows, it will be necessary to replace again the
variable pi ∈ [0 ℓi] associated with the cable i by a normalized
variable s ∈ [0 1] defined by s = pi/ℓi. Therefore we have

x′
i(s) = ℓi

∂xi

∂pi
= ℓi f i(xi,ui, s) (36)

4For reasons of brevity, we do not consider in the paper any pulley model.
We assume that the point Ai is fixed on the base. The following results could
be extended to include pulleys.

The platform state is parameterized by the group gp =
(Rp,pp) ∈ SE(3), where pp is vector parameterizing the
position of the platform COM P in space and Rp is the
rotation matrix characterizing the rotation of the platform
local frame with respect to the world frame. As a result,
gp usually takes the form of an homogeneous transformation
matrix characterizing the transformation from the base frame
F0 to the platform frame Fp. In what follows, we use the Lie
group parameterization gp instead of a more classical repre-
sentation of the platform orientation with angles as it leads to
a more natural derivation of the robot mechanical equilibrium
equations than any other set of vectorial coordinates, as it
will shown further. The location of points Bi in the platform
frame are given by the constant vector p−−→PBi, while in the
world frame, 0−−→PBi = Rp

p−−→PBi
5.

Finally, the geometric loop-closure constraints of the robot
can be written under the form β = [βT

1 . . .β
T
n ]

T = 0 where

βi(gp,xif ) = pp +Rp
p−−→PBi − xif = 0 (37)

Again, let us assume that all cables are extensible and, for
reasons of brevity, that they have all the same cross-section
area A and that they are made with the same material having
a linear density ρ and a Young’s modulus E (assuming a
Hookean deformation law). Moreover, we consider that the
CDPR is subject to a gravity field g = −g z0 (g > 0). Finally,
a pure constant force τ p in the world frame is applied at the
platform COM (τ p includes the gravity force on the platform);
We disregard the case of external moments applied on the
platform, as moments in the spatial case are non conservative
and cannot lead to the definition of a potential energy [28].
Stability analysis with nonconservative loadings requires a
different framework and definition of stability in terms of
dynamics [29], which is left as a future work. The total
potential energy of the CDPR is thus given by the functional:

U =

n∑
i=1

ℓi

∫ 1

0

(
EA

2
(ϵix − 1)2 + gρzi(s)

)
ds − τT

p pp

(38)

where
ϵix = ∥ui(s)∥ (= ℓi∥x′

i(s)∥) (39)

is the strain in the cable i.
The static (stable) configuration of the spatial CDPR must

locally minimize the potential energy U , leading to the fol-
lowing optimization problem:

min
u(s)

U

subject to xi
′ = ℓi f i(xi,ui, s) for i = 1, . . . , n

xi(s0) = xi0

βi(gp,xif ) = 0
(40)

where u = [uT
1 . . .u

T
n ]

T . Problems (6) and (40) look similar,
but they differ by the fact that the CDPR platform configu-
ration is defined by a group in the spatial case, no more by
a vector field. As a result, the computation of the solution

5In what follows, a superscript “p” will denote a vector in the platform
frame while a superscript “0” will be for the world frame.
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slightly differs by its expression. We detail the resolution of
the problem (40) below.

B. First-order conditions of optimality

For solving the problem (40), we now define the augmented
cost function:

U ′ = G(gp,x1f , . . . ,xnf )

+

n∑
i=1

∫ 1

0

(
Hi(xi,ui,λi, s) + λT

i x
′
i

)
ds (41)

where

G = −τT
p pp + βTν = −τT

p pp +

n∑
i=1

βT
i νi (42)

and β = [βT
1 . . .β

T
n ]

T ∈ R3n. In these equations, λi ∈ R3 and
ν = [νT

1 . . .ν
T
n ]

T ∈ R3n are two set of Lagrange multipliers.
Moreover,

Hi = ℓi

(
EA

2
(∥ui∥ − 1)2 + gρzi − λT

i f i

)
(43)

Taking the first variation of U ′ leads to [30]:

δU ′ = tr
(
GT

gp
δgp

)
+

n∑
i=1

Gxif
δxif + βT δν

+

n∑
i=1

∫ 1

0

(Hixiδxi +Hiuiδui

+ (Hiλi + x′T
i )δλi + λT

i δx
′
i

)
ds (44)

where the term tr
(
GT

gp
δgp

)
, in which tr(.) is the matrix trace

operator, corresponds to the variation of the function U ′ with
respect to a variation on the group (see example 3.74 in [30]).
The term tr

(
GT

gp
δgp

)
is also called the trace pairing operator,

which provides the proper expression for our scalar variation.
Moreover, for any matrix M ∈ Ra×b and any scalar function
F , the partial derivative FM is given by:

FM =
∂F

∂M
=

FM11
. . . FM1b

...
. . .

...
FMa1

. . . FMab

 (45)

Mjk being the component on the jth row and kth column of
M.

Let us now define the variation δΣp as δΣp =(
g−1
p δgp

)∨ ∈ se(3) ≃ R6, or also δgp = gpδ̂Σ, where the
symbols ∨ and ∧ are Lie group notations that are recalled
in the Appendix A for reasons of clarity. δΣp must be seen
as space-twist characterizing the variation of the platform
configuration in its mobile frame.

From Section 7.2 in [30], we know that

tr
(
GT

gp
δgp

)
= CpδΣp (46)

where

Cp =

[
GT

pp
Rp

(
RT

pGRp
−GT

Rp
Rp

)∨T
]
∈ R1×6 (47)

As a result, by introducing (46) into (44), and by integrating
by parts the last term in the integrand, we get:

δU ′ = CpδΣp +

n∑
i=1

(Gxif
+ λT

if )δxif + βT δν

+

n∑
i=1

∫ 1

0

(
(Hixi

− λ′T
i )δxi +Hiui

δui

+ (Hiλi
+ x′T

i )δλi

)
ds (48)

from which the first-order conditions of optimality can be
found [24], for i = 1, . . . , n:

x′
i = ℓi f i(xi,ui, s) (49)

λ′
i = HT

ixi
(50)

Hiui
= 0 (51)

λif = −GT
xif

(52)

CT
p = 0 (53)

β = 0 (54)

Here again, it appears that λi = τ i (the tension in cable i)
and that λif = τBi the tension in cable i at Bi. Equation (52)
leads also to λif = τBi

= νi, while, after simplifications,
Eq. (53) gives

0 = −
[
τ p

0

]
+

n∑
i=1

[
I3

[0
−−→
PBi]

∧

]
τBi

(55)

which describes the static equilibrium on the platform. More-
over, expanding (51), we have

τ i = EA
ϵix − 1

ϵix
ui (56)

leading to

{
∥τ i∥ = EA(ϵix − 1)

τij/τik = λij/λik = uij/uik for j, k = 1, 2, 3
(57)

where λiα (τiα, resp.) (α = j, k) is the αth component of λi

(τ i, resp.).
The first line of Eq. (57) is again the Hooke’s law while the

second line allows to define two angles θi and γi such that:

γi(s) = tan−1

(
τi2(s)

τi1(s)

)
θi(s) = tan−1

(
τi3(s)

τi1(s) cos γi(s) + τi2(s) sin γi(s)

)
(58)

By combining Eqs. (57) and (58), and we can find that:

ui(s) = ϵix(s)

cos θi(s) cos γi(s)cos θi(s) sin γi(s)
− sin θi(s)

 (59)
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So, in order to summarize, the first-order optimality condi-
tions can be written as:

[
x′
i(s)

τ ′
i(s)

]
= ℓi


ϵix(s) cos θi(s) cos γi(s)
ϵix(s) cos θi(s) sin γi(s)

−ϵix(s) sin θi(s)
0
0
gρ

 for s ∈ [0 1]

with xi(0) = xi0, τ i(0) = τ i0, i = 1, . . . , n (60)

and b =

 β

−
[
τ p

0

]
+
∑n

i=1

[
I3

[0
−−→
PBi]

∧

]
τBi

 = 0 (61)

with b = b(gp,xf , τB) ∈ R3n+6, ϵix defined by

ϵix(s) =
∥τ i(s)∥
EA

+ 1 (62)

and the angles θi and γi defined in (58). Here, b is a
vector stacking both the geometric loop-closure constraints on
the locations of the points Bi and the platform mechanical
equilibrium. It should be noted that the solution to (60) is no
more given by (31) but by:

xi(s) =xi0 + di(s) cos γi (63)
yi(s) =yi0 + di(s) sin γi (64)

zi(s) =zi0 +
Fizℓis

EA
+
ρgℓ2i s

EA

(s
2
− 1

)
+

1

ρg

{√
F 2
ixy + [Fiz − ρgℓi(1− s)]

2

−
√
F 2
ixy + [Fiz − ρgℓi]

2

}
(65)

with

γi(s) = tan−1

(
Fiy

Fix

)
= const (66)

Fixy = Fix cos γi + Fiy sin γi = const (67)

di(s) =
|Fixy|
ρg

{
sinh−1

[
Fiz − ρgℓi(1− s)

Fixy

]
− sinh−1

[
Fiz − ρgℓi
Fixy

]}
+
Fixyℓis

EA
(68)

and

τi1(s) =Fix (69)
τi2(s) =Fiy (70)
τi3(s) =Fiz − ρgℓi(1− s) (71)

where τBi
= [Fix Fiy Fiz]

T and τ i = [τi1 τi2 τi3]
T . It should

be mentioned that, by projecting the equations (63) to (71) in a
frame attached to the vertical plane passing through the points
Ai and Bi, we will found again the equations (26) to (29) of
the planar cable.

Based on the explicit relationships (63) to (71) and the
boundary conditions b = 0 in (61), the geometrico-static
model can be solved by using a numerical solver. In such
a case, the unknown to be found would be either the cable
lengths are rest ℓi and the cable tensions τBi (i = 1, . . . , n)
for the inverse geometrico-static model [31], or the platform

pose gp and the tensions τBi
for the forward geometrico-static

model [32]. Note that these problems may have both multiple
solutions, and finding all their solutions is a rather complicated
task.

C. Second-order conditions of optimality

Here, we study the stability conditions of the sagging
CDPR.

1) Legendre-Clebsch conditions: We need to check the
positive-definiteness of the block-diagonal matrix Huu whose
expression is:

Huu =

Hu1u1
. . . 0

...
. . .

...
0 . . . Hunun

 (72)

where

Huiui = AEℓi


ϵ3ix−u2

i2−u2
i3

ϵ3ix

ui1ui2

ϵ3ix

ui1ui3

ϵ3ix
ui1ui2

ϵ3ix

ϵ3ix−u2
i1−u2

i3

ϵ3ix

ui2ui3

ϵ3ix
ui1ui3

ϵ3ix

ui2ui3

ϵ3ix

ϵ3ix−u2
i1−u2

i2

ϵ3ix


(73)

with uij the jth component of ui (j = 1, 2, 3, i = 1, . . . , n).
As a result, the eigenvalues of Huu are identical to the eigen-
values of all matrices Huiui

(i = 1, . . . , n). An eigenvalue
of Huiui is equal to the constant value AEℓi while the two
others are both equal to:

σi = AEℓi
ϵix − 1

ϵix
for i = 1, . . . , n (74)

From Equation (29), ϵix > 1, except if the cable tension τ (t)
is null, which is unfeasible in practice on Earth (in statics),
as long as we are not in the water. Therefore, we always have
Huu ≻ 0.

2) Jacobi conditions: In order to compute the Jacobi con-
ditions and to verify the presence or not of conjugate points,
it is necessary to compute the relation between the variations
δτ (s) and δx(s), as explained in Section II-C. For obtaining
it, by taking into account that the vector b of the geometrical
and equilibrium constraints is an explicit function gp, xf and
τB only, let us express its variation δb as:

δb = 0 =


tr
(
bT1 gp

δgp

)
...

tr
(
bT3n+6 gp

δgp

)
+ bxf

δxf + bτB
δτB (75)

where bk (k = 1, . . . , 3n + 6) is the kth component of the
vector b, and bk gp

the derivative of bk with respect to gp, and
δxf = [δxT

1f . . . δx
T
nf ]

T ∈ R3n, δτB = [δτT
B1
. . . δτT

Bn
]T ∈

R3n,

bxf
=

[
−13n

06×3n

]
∈ R(3n+6)×3n (76)

bτB
=

 03n×3n[
13 . . . 13

[0
−−→
PB1]

∧ . . . [0
−−→
PBn]

∧

] ∈ R(3n+6)×3n (77)
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where 13 (13n, resp.) is the identity matrix of dimension 3
(3n, resp.) and 06×3n the zero matrix of dimension (6× 3n).

Then, noticing from [30] that

tr
(
bk gp

δgp

)
= CkδΣp (78)

where

Ck =

[
bTk pp

Rp

(
RT

p bkRp
− bTkRp

Rp

)∨T
]
∈ R1×6 (79)

we finally get:

δb = 0 = JpδΣp + bxf
δxf + bτB

δτB (80)

where

Jp =

 C1

...
C3n+6

 ∈ R(3n+6)×6 (81)

Simplifying (81), it can be proven that:

Jp =


Rp −[0

−−→
PB1]

∧Rp

...
...

Rp −[0
−−→
PBn]

∧Rp

03×3 03×3

03×3

∑n
i=1(

0−−→PBiτ
T
Bi

− (0
−−→
PBi

T τBi
)13)Rp


(82)

Relating δxf and δτB to δx(s) and δτ (s): Let us now
calculate the so-called “transition matrix” Φ(t, tf ) of the
DAE (60) which relates δxf and δτB to δx(s) and δτ (s)
such that [24]:[

δx(s)
δτ (s)

]
= Φ(s, sf = 1)

[
δxf

δτB

]
(83)

where

Φ(s, sf = 1) =

[
∂x(s)
∂xf

∂x(s)
∂τB

∂τ (s)
∂xf

∂τ (s)
∂τB

]
(84)

In general, the transition matrix Φ(s, sf = 1) ∈ R6n×6n can
be only obtained using a numerical procedure, that will not
be detailed here. The interesting reader could refer to [24] for
further information on it. In our study, an analytical form of
Φ(t, tf ) can be obtained as follows.

Analyzing Equations (63) to (71), we see that the vectors
x(s) and τ (s) are explicit functions of x0 and τB and that

∂x(s)

∂x0
= 13n,

∂τ (s)

∂x0
= 0,

∂τ (s)

∂τB
= 13n (85)

Moreover, expressing Equations (63) to (65) at s = 1, it comes
that

∂xf

∂x0
= 13n ⇒ ∂x(s)

∂xf
= 13n and

∂τ (s)

∂xf
= 0 (86)

Finally, the last component ∂x(s)
∂τB

of Φ(s, sf = 1) can be
obtained by a direct differentiation of the equations (63) to (65)
with respect to the vector τB . Its expression is rather long
and will not be displayed for reasons of brevity, but it can be

obtained in a straightforward manner following the previous
comment.

Introducing (83) into (80), we then get:

δb = 0 = JpδΣp + bx(s)δx(s) + bτ (s)δτ (s) (87)

where
bx(s) = bxf

(
Φ−1

)
11

+ bτB

(
Φ−1

)
21

(88)

and
bτ (s) = bxf

(
Φ−1

)
12

+ bτB

(
Φ−1

)
22

(89)

where the matrices
(
Φ−1

)
11

∈ R3n×3n and(
Φ−1

)
21

∈ R3n×3n (
(
Φ−1

)
12

∈ R3n×3n and(
Φ−1

)
22

∈ R3n×3n, resp.) are the upper left and lower
left blocks (the upper right and lower right blocks, resp.) of
the matrix Φ−1(s, sf ), respectively.

Computation of the Jacobi conditions: Finally, let us find
the expression of the matrix S̄(s) for checking the presence
of conjugate points. For this, let us first define the matrix Z
which spans the nullspace of the matrix JT

p , i.e.

JT
p Z = 0 (90)

Assuming that Jp is of full rank, which is true as long as
all points Bi are not all aligned, then Z ∈ R(3n+6)×3n. Left-
multiplying (87) by ZT , we get

0 = ZTbx(s)δx(s) + ZTbτ (s)δτ (s) (91)

where here ZTbx(s) ∈ R3n×3n and ZTbτ (s) ∈ R3n×3n. Then
it comes that:

δτ (s) = −
(
ZTbτ (s)

)−1 (
ZTbx(s)

)
δx(s) (92)

and, by identification with (8):

S̄(t) = −
(
ZTbτ (s)

)−1 (
ZTbx(s)

)
(93)

This expression results in the fact that there is a conjugate
point at s = scp only if the matrix ZTbτ (s) is singular at
s = scp, as long as ZTbx(s) is finite (which is true under the
mild and verifiable assumption that ∂b

∂xf
and ∂b

∂τB
are finite

when evaluated at xf [24]).
Note that, as shown in [24], by construction det(ZTbτB

) =
0, thus ZTbτ (s) → 0 when s → sf = 1, but this is a not a
condition of existence of a conjugate point.

D. Application of the results to planar CDPRs

Planar CDPRs are usually considered as a degenerated case
of the spatial general CDPRs. Accordingly, all previous math-
ematical derivations still apply, with several simplifications of
the mathematical expressions, and even slight changes in the
hypotheses that can be taken into account.

First, taking into account that the hypothesis of planar
motions is totally true, i.e. that the full robot (including
platform and cables) is entirely constrained to move into a
plane, then the platform displacement group degenerates to
SE(2) which can be entirely parameterized by a vectorial
space without any issue of representation singularities. This
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simplifies the computation of the variations in Sections IV-B
and IV-C.

Additionally, in the planar case, constant moments around
the normal of the plane are conservative. Therefore, we may
add a potential energy function related to these constant
moments that must be taken into account when derivating
the geometrico-, kinemato-static, and stability equations. For
reasons of brevity, those equations are not provided in this
paper, but they are given in the technical report [33].

It must be however mentioned that the hypothesis of planar
motions is an extremely strong hypothesis, hard to achieve in
reality. Indeed, it could be very difficult, and even impossible
in reality, to impose that, even under small out-of-the-plane
perturbations, the cables strictly stays into the plane of
motion. If this hypothesis cannot be totally true, i.e. if cables
can have out-of-the-plane motions under small perturbations,
the planar motion hypothesis cannot be considered anymore
for stability analysis purpose, and the equations given in
Sections IV-B and IV-C must be used instead of those given
in the technical report [33].

In the next section, we identify the link between stability
and some of the singularities of CDPRs.

V. STABILITY AND SINGULARITY

For identifying the robot singularities, let us first establish
the equations of the kinemato-static model of the CDPR. In
what follows, we show them for the general case of the spatial
CDPR, but they can obviously be reduced to the planar case.

A. Kinemato-static model of the CDPR

In order to compute the kinemato-static model of the robot,
let us take the variation of the vector b in (61) with respect
to the unknowns of the geometrico-statics, that are: gp, τB

and ℓ = [ℓ1 . . . ℓn]
T (x0 being a fixed vector by mechanical

design, its variation is null). We then get

δb = 0 =


tr
(
bT1 gp

δgp

)
...

tr
(
bT3n+6 gp

δgp

)
+ bℓδℓ+ bτB

δτB (94)

where bτB
∈ R(3n+6)×3n and bℓ ∈ R(3n+6)×n, the expres-

sion of bℓ could be obtained by applying the methodology
given in Section IV-C. Moreover, by using the results of the
Eqs. (78) to (81), Eq. (94) can be modified as:

0 = JpδΣp + bℓδℓ+ bτB
δτB (95)

Equation (95) is the implicit kinemato-static model which
relates a variation of the platform configuration δΣp to a
variation of the cable lengths δℓ and a variation of the cable
tensions δτB .

We also have:

bτB
=

∂b

∂τB
=

∂b

∂τ 0

∂τ 0

∂τB
+

∂b

∂x0

∂x0

∂τB
(96)

where τ 0 = τ (s = 0). It can be easily checked that
∂x0/∂τB = 0. Moreover, as shown in Section IV-C, we also
have ∂τ 0/∂τB = 13n. Therefore,

bτB
=

∂b

∂τB
=

∂b

∂τ 0
= bτ0 (97)

As a result, Eq. (95) becomes

0 = JpδΣp + bℓδℓ+ bτ0δτB (98)

which is the well-known implicit kinemato-static model of the
robot [25].

From this equation, the direct kinemato-static model of the
CDPR can be established:[

δΣp

δτB

]
= −

[
Jp bτ0

]−1
bℓδℓ (99)

This expression is true as long as
[
Jp bτ0

]
∈

R(3n+6)×(3n+6) is regular, as long as no singularity of the
direct model appear. In what follows, we show that the
singularities of the matrix

[
Jp bτ0

]
, which is up to a non

singular matrix the Jacobian matrix of the direct kinemato-
static equations, can be related to limits of stability.

It should be noted that, in case there is the same number
of cables as degrees of freedom for the platform, the inverse
kinemato-static model of the CDPR takes the form:[

δℓ
δτB

]
= −

[
bℓ bτ0

]−1
Jp δΣp (100)

where
[
bℓ bτ0

]
∈ R(3n+6)×(3n+6) is regular, as long as

there is no singularities of the inverse model.

B. Link between stability and singularities of the matrix[
Jp bτ0

]
When the matrix

[
Jp bτ0

]
is singular, there exist small

non null motions δΣp that belong to its kernel, for which δℓ
is equal to 0.

These singularities correspond to robot configurations for
which the end-effector cannot anymore resist to wrenches
applied along given directions. These singularities can be
related to the criterion of stability presented in Section (IV-C),
as we will show here.

Let us consider the matrix D =

[
ZT

JT
p

]
∈ R(3n+6)×(3n+6)

where Z was defined in Eq. (90) as a matrix spanning the
kernel of JT

p . As a result, the matrix D is square and always
regular. We can thus left-multiply Eq. (98) by D, leading to:

−
[
ZT

JT
p

]
bℓδℓ =

[
ZT

JT
p

] [
Jp bτ0

] [δΣp

δτB

]
(101)

or also, by expanding this expression

−
[
ZT

JT
p

]
bℓδℓ =

[
ZTJp ZTbτ0

JT
p Jp JT

p bτ0

] [
δΣp

δτB

]
(102)

=

[
02n×3 ZTbτ0

JT
p Jp JT

p bτ0

] [
δΣp

δτB

]
(103)

= V

[
δΣp

δτB

]
(104)
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with ZTbτ0
= ZTbτ (s = 0) ∈ R3n×3n, JT

p Jp ∈ R6×6, and
JT
p bτ0

∈ R6×3n. The matrix V being block-triangular with
ZTbτ0

and JT
p Jp square, its determinant is equal to:

det(V) = det(ZTbτ0
) det(JT

p Jp) (105)

Moreover, the matrix Z being regular by construction, the
matrix V has the same singularities as the matrix

[
Jp bτ0

]
.

As a result, the singularities of the matrix
[
Jp bτ0

]
can

appear if and only if at least one of the two following
conditions appear:

• The matrix Jp is singular: It can be proven by using
algebraic tools [34] that this matrix is singular if and only
if all passive spherical joints in points Bi are aligned (in
the spatial case) or superposed (in the planar case). In this
case, the robot is architecturally singular as the rotation
of the platform around this line cannot be controlled.

• The matrix ZTbτ0 is singular: From Section IV-C, this
conditions means the appearance of a conjugate point
at s = 0. A conjugate point at s = 0 is a limit case
of stability, as discussed in [24]: if no conjugate point
appears for s ∈ [0 1[, the robot is stable, and if there is a
conjugate point on this interval, the robot is unstable. If
in a singularity of

[
Jp bτ0

]
, a conjugate point appears

at s = 0, this means that these singularities separate the
sets of stable and unstable configurations.

We highlight the theoretical results in the next section.

VI. CASE STUDY

In this section, we analyze the stability of a spatial six-cable
CDPR (Fig. 3). This robot is made of six cables, each being
connected to the ground at points Ai. The cable extremities
are linked to a rigid moving platform by a second passive
spherical joint (points Bi). This suspended robot having six
motors, we may control the position and orientation of the
platform frame Fp. In what follows, in order to have a more
intuitive reporting of the platform orientation, the orientation is
provided by the Roll, Pitch and Yaw angles (i.e. a 3-2-1 Euler
angle rotation sequence) denoted as φp, θp and ψp respectively,
but all computations are still rigorously made based on the
Lie group differentiation shown in the previous section when
providing the numerical results.

For the studied robot, positions of points Ai in the base
frame F0 are given by:

−−→
OAi = rb [cos γi sin γi 0]

T (i =
1, 2, 3) with rb = 1 m and γ1 = 0, γ2 = 2π/3, and
γ3 = −2π/3. Positions of points Bi are given in the platform
frame Fp by:
−−→
PB1 = [0.2 0 0]T ,

−−→
PB2 = [−0.2 0.2 0]T ,

−−→
PB3 = [−0.2 0 0]T

−−→
PB4 = [0.2 0 0]T ,

−−→
PB5 = [0 0 0.2]T ,

−−→
PB6 = [0 0.2 0.2]T

All point coordinates are in meters. The cable properties are:
Young’s modulus E = 100 GPa, cable cross-section radius
r = 2 mm, material density ρ/A = 1571 kg/m3. The platform
mass is equal to mp = 0.5 kg. There is no external force
except gravity applied on the platform.

In order to analyze the stability of this robot, we first
compute the end-effector configuration space at a given al-
titude zp = −0.746 m and orientation φp = −1.531 rad,

A
1

A
2

A
3

O

P

B
1
, B

4

B
2

B
3

B
5

B
6

y
0x

0

z
0

Fig. 3. Schematics of the spatial six-cable CDPR under study (to scale).

θp = 0.870 rad, ψp = 0.443 rad. For this, we compute sets of
configurations (ℓ, gp, τB) connected to an initial configuration
(ℓinit, gp init, τB init), by using a continuation algorithm [35].

For every configurations of the computed configuration
space, the inverse condition numbers κ−1

ℓ and κ−1
p of matrices[

bℓ bτ0

]
and

[
Jp bτ0

]
, respectively, are calculated. For a

better display by color in Fig. 4, instead of showing directly
κ−1
ℓ and κ−1

p , we provide their value at a given power: κ−2
ℓ and

κ−0.6
p . Dark blue zones are zones with bad inverse condition

numbers. The results show that:
• The matrix

[
bℓ bτ0

]
loses its rank, i.e. the inverse

condition number κ−1
ℓ drops down to zero, near the end-

effector configuration space boundaries.
• The matrix

[
Jp bτ0

]
loses its rank, i.e. the inverse

condition number κ−1
p drops down to zero, inside the

end-effector configuration space (Fig. 4(b)). Singularities
of

[
Jp bτ0

]
are suspected here.

In Figure 5, we show the robot end-effector configuration
space, for the platform altitude zp = −0.746 m and orientation
φp = −1.531 rad, θp = 0.870 rad, ψp = 0.443 rad.
In this picture, in particular, we highlight in red the area
where the inverse condition number of

[
Jp bτ0

]
is lower

than 15 · 10−4, i.e. near which singularities of
[
Jp bτ0

]
are foreseen to be present. This red zone separates the end-
effector configuration space into two connected components.
For assessing the presence of singularities in the red zones, we
define a path between points Q1 = (−0.33, − 0.18) m and
Q3 = (−0.35, − 0.20) m (Fig. 5) along which the stability
criterion defined previously will be computed. Along this path,
100 points are defined. From Figs. 6(a) to 6(f), we observe the
following things:

• In point Q1, the sign of the determinant of the matrix
ZTbτ (s) is always positive on the interval [0 1[: there
is no conjugate point associated with this configuration,
which is stable.

• In point Q3, the sign of the determinant of the matrix
ZTbτ (s) varies. It is negative on the interval [0 0.125] and
positive on [0.125 1[: there is a conjugate point associated
with this configuration, which is then unstable.
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(a) Inverse condition number of
[
bℓ bτ0

]
at the power 2

(b) Inverse condition number of
[
Jp bτ0

]
at the power 0.6

Fig. 4. Inverse condition numbers for the matrices
[
bℓ bτ0

]
and[

Jp bτ0

]
for the spatial six-cable CDPR in its end-effector configuration

space, for a platform altitude zp = −0.746 m and orientation φp =
−1.531 rad, θp = 0.870 rad, ψp = 0.443 rad.

• There is a point Q2 where a conjugate point appears on
the integration interval at s = 0, meaning that there is a
singularity of the matrix

[
Jp bτ0

]
.

The red area computed using the continuation algorithm
provides only an indication of the presence of singularity
curve for

[
Jp bτ0

]
. However, the change in the number of

conjugate points actually proves the presence of this curve.
Furthermore a simple dichotomy process could allow to de-
termine two poses Q2a, Q2b with a distance between these
poses lower than an arbitrary threshold and such that it is
guaranteed to have a congugate point between them. Moreover,
the existence of these singularity curves and the presence of
no or a conjugate point allow also to conclude that:

• Zone A is the zone of the stable configurations,
• Zone B is the zone of the unstable configurations.
Because there is no possibility to check the stability of

the solutions of the Irvine’s model itself except applying the
theory presented in this paper, in order to definitely validate

Fig. 5. Stable and unstable end-effector configuration spaces of the spatial
six-cable CDPR, for a platform altitude zp = −0.646 m and orientation
φp = −2.578 rad, θp = 0.608 rad, ψp = 0.442 rad. In green, the areas
where the inverse condition number of

[
bℓ bτ0

]
is lower than 3 · 10−3;

in red, the areas where the inverse condition number of
[
Jp bτ0

]
is lower

than 15 · 10−4.

TABLE I
MAXIMAL ERROR OF MODELLING FOR THE LUMPED CABLE MODEL WITH
RESPECT TO THE IRVINE’S MODEL, AS A FUNCTION OF THE NUMBER N

OF ELEMENTS USED PER CABLE.

N = 2 N = 5 N = 10 N = 15 N = 30 N = 60
Err. [mm] 54.65 7.31 1.83 0.81 0.20 0.05

these results on the stability prediction, we developed a static
lumped model of our robot [36]. Each cable is now discretized
with N elements. The robot potential energy becomes then
an analytic function of the finite element variables plus the
platform configuration variables, instead of a functional. As
a result, checking the stability of the lumped model config-
uration remains to checking the positive-definiteness of the
reduced Hessian of the energy, as it has been done in [37] for
assessing the stability of continuum parallel robots, or in [20]
for checking the stability of the straight-cable underactuated
CDPRs.

First, in order to assert the lumped model validity, we
check its configuration prediction accuracy. For doing this,
we compute the length of the cables based of the Irvine’s
model for each of the 100 configurations along the chosen
path between points Q1 and Q3. Then, we reperform the
same computation, but with the lumped model. Results for
the maximal cable length estimation error are summuarized in
Tab. I for several values of numbers of elements used per
cables in the lumped model. With 60 elements per cable,
this error is lower than 1 · 10−4 m for all cables (which all
measure several meters). This error of prediction between the
two models is negligible, and 60 elements per cables are used
for the remaining of this work.

Then, we compute the smallest eigenvalue σ1 of the reduced
Hessian of the lumped model’s potential energy and we check
its positiveness all along the path between configurations
Q1 and Q3 (Fig. 7). We compare this value at each robot
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Fig. 6. Study of the determinant of the matrix ZTbτ(s) all along the path between points Q1 and Q3.
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Fig. 7. Comparison at each configuration all along the path of the stability
prediction based on the Jacobi condition computed on the Irvine’s model
(computation of min(det(ZTbτ(s))) on the integration interval s ∈ [0 1[)
with a stability prediction based on a lumped model (computation of the
smallest eigenvalue σ1 of the Hessian of the potential energy).

configuration with the minimal value of det(ZTbτ (s)) on the
interval s ∈ [0, 1[. We see that, up to the configuration 70
(point Q2), the smallest eigenvalue σ1 is positive, indicating
the configurations are stable, which is confirmed by the fact
there is no conjugate points for the Irvine’s model (Fig. 6(d)).
In point Q2, σ1 is null, which corresponds to the appearance
of the conjugate point at s = 0 (Fig. 6(e)). Between Q2 and
Q3, σ1 is negative, showing that the robot modelled with the
lumped cables is unstable, as it was also detected thanks to

the Jacobi criterion on the Irvine’s model (Fig. 6(f)).

We also checked that there are multiple solutions to the
inverse geometrico-static model at the extremities of the tra-
jectories Q1 and Q3 by using interval analysis [19]. Two other
solutions were found for each platform configurations. Two of
them are stable (denoted as Q13 and Q33), the two other are
unstable (denoted as Q12 and Q32): some conjugate points
exist when analyzing these last two configurations (Fig. 8).
In the stable solutions Q13 and Q33, some cable lengths
are much higher than in the previous solution. We tried to
move from the three solutions associated with the platform
configurations Q3 to the three solutions associated with the
platform configurations Q1 by using the direct geometrico-
static model: from Q32 we came back to Q12, from Q33 to
Q13 while the other (initial) solutions to Q1 and Q3 seem
disconnected from the other configurations. As a result, this
tends to say that the unstable (stable, resp.) solutions Q32

and Q12 (Q33 and Q13, resp.) belongs to the same aspect.
However, further investigations on this issue are necessary,
but left as a future work. All these results show the validity
of our approach.

Finally, we wanted to check if the singularities of the
kinemato-static models of the sagging CDPRs had something
in common with the traditional singularities of rigid-link
parallel robots appearing when the system of wrenches applied
on the platform was degenerated [38]. For this, we computed
the inverse condition number κ−1

W of the wrench matrix W
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Fig. 8. Other solutions of the inverse geometrico-static model at Q1 and Q3 and verification of their stability property.

defined as:

W =


τT
B1

([0
−−→
PB1]

∧ τB1
)T

...
...

τT
B6

([0
−−→
PB6]

∧ τB6
)T

 (106)

We compared its inverse condition number with the ones of the
matrices

[
bℓ bτ0

]
and

[
Jp bτ0

]
all along the path between

Q1 and Q3 (first solution). The results are provided in Fig. 9
and they show that there is no coincidence between the loss of
rank of W and the losses of rank of the matrices

[
bℓ bτ0

]
and

[
Jp bτ0

]
. The inverse condition number of

[
Jp bτ0

]
vanishes at the configuration 70, while for

[
bℓ bτ0

]
it never

crosses zero, as expected. For W, inverse condition number is
never null. This means that the singularities of the wrench
system are not singularities of the forward kinemato-static
model of the sagging CDPRs, contrary to what happens
in rigid-link parallel robotics.

Note that the Matlab code for computing the stability of the
robot configuration is provided as an external material, as well
as a Maple code for localizing the neighbourhood of singular
configurations.

VII. CONCLUSION

This paper dealt with the stability analysis of sagging
CDPRs and with its links to robot singularities, using the
Irvine’s cable model. As any underactuated mechanical system
at a given pose the system may be stable or unstable and, with
the Irvine’s cable model which is the solution to an ODE,
assessing the stability of a configuration cannot be done by
checking the eigenvalues of a stiffness matrix associated with
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Fig. 9. Inverse condition numbers κ−1
W , κ−1

ℓ and κ−1
p of the matrices W,[

bℓ bτ0

]
and

[
Jp bτ0

]
, respectively, all along the path between points

Q1 and Q3.

the platform displacement under the application of external
loadings.

In the present paper, to the best of our knowledge, we have
shown for the first time that the geometrico-static equations
of the sagging CDPRs are local extrema of the functional de-
scribing the robot potential energy. For assessing the stability
of the robot configuration, it was then necessary to check two
types of conditions: The Legendre-Clebsch conditions coupled
with the Jacobi conditions, which are well known in optimal
control theory. We shown that, in normal conditions on Earth
(except under water), the Legendre-Clebsch conditions are
always verified. Moreover, we proved that singularities of the
forward geometrico-static model of the CDPRs are limits of
stability.
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In order to validate the theoretical results, we compared
the stability prediction based on the Jacobi criterion with
results coming from a lumped model of the CDPRs. For this
discretized model, the stability can be checked by verifying
the positive-definiteness of a reduced Hessian matrix of the
potential energy. We first checked the accuracy of the lumped
model with respect to the results provided by the Irvine’s
model, and we then verified that the smallest eigenvalues of
the reduced Hessian changed their signs when conjugate points
appeared (Jacobi criterion). We also found that singularities of
the platform wrench system are not singularities of the forward
kinemato-static models of the sagging CDPRs, contrary to
what happens in rigid-link parallel robotics.

Further work will deal with the analysis of the dynamics
of sagging CDPRs, and the better analysis of the phenomena
appearing when singularities of the inverse geometrico-static
model exist. We will also devote some efforts on the analysis
of the connectivity between the workspace aspects, especially
those containing only stable configurations. This would pave
the way to a better calculation of CDPRs workspace which
is crucial for the design phase. Instead of relying only on the
inverse model with its multiple solutions we may check the
connectivity between the workspace aspects having only stable
configurations to establish the reachable workspace.

APPENDIX

A. Recalls on Lie group notations

Some notational conventions of Lie group theory are re-
called here for reasons of convenience. A hat “∧” covering
a vector Υ defines a matrix Υ̂ whose expression depends on
the dimension of Υ. If Υ ∈ R3, then Υ̂ = Υ∧ denotes the
(3×3) skew symmetric matrix defined such that: Υ̂x = Υ×x
for any x ∈ R3. If Υ = [aT bT ]T ∈ R6, with a, b ∈ R3,
then Υ̂ is the (4× 4) matrix defined by:

Υ̂ =

[
b̂ a

01×3 0

]
(107)

Reciprocally, the superscript “∨” is such that Υ̂
∨

= Υ for
any Υ ∈ R3 or R6.

Let us consider that a group g is a function of a variable t,
i.e. g = g(t). Then, we may define the vector t by any of the
following relations

t =

(
g−1 ∂g

∂t

)∨

(108)

or also
g t̂ =

∂g

∂t
(109)

Let us assume that g ∈ SE(3). In this case, t ∈ se(3) ∼= R6

is a vector made of two parts such that t = [ωT vT ]T , where
ω ∈ R3 corresponds to the rate of change of orientation with
respect to the variable t, while v ∈ R3 corresponds to the rate
of change of position with respect to the variable t. Obviously,
if the variable t represents the time, t is a twist, ω a rotational
velocity, and v a translation velocity.

It should be mentioned that, by using the expressions (108)
and (109), t, ω and v are expressed in a local frame.

————————
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Birkhäuser, 1977, ch. 1, p. 30.

[29] E. Gekeler, Mathematical Methods for Mechanics: A Handbook with
MATLAB Experiments. Springer-Verlag Berlin Heidelberg: Springer,
2008.

[30] D. Holm, Geometric Mechanics and Symmetry: From Finite to Infinite-
Dimensions. New York, NY, USA: Oxford Univ. Press, 2009.

[31] J.-P. Merlet and J. di Sandretto, “The forward kinematics of cable-
driven parallel robots with sagging cables,” in Mechanisms and Machine
Science. Springer International Publishing, aug 2014, pp. 3–15.

[32] J.-P. Merlet, “On the inverse kinematics of cable-driven parallel robots
with up to 6 sagging cables,” in 2015 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2015). IEEE, sep 2015.

[33] S. Briot and J.-P. Merlet, “Direct kinematic singularities and stability
analysis of planar sagging cable-driven parallel robots,” Laboratoire
des Sciences du Numérique de Nantes (LS2N), UMR CNRS
6004; Inria Sophia Antipolis, Tech. Rep., 2022. [Online]. Available:
https://hal.science/hal-04007182

[34] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms:
an introduction to computational algebraic geometry and commutative
algebra. Springer Science & Business Media, 2013.

[35] K. G. Eugene L. Allgower, Numerical Continuation Methods.
Springer Berlin Heidelberg, Oct. 2011. [Online]. Avail-
able: https://www.ebook.de/de/product/19302145/eugene l allgower
kurt georg numerical continuation methods.html

[36] T. K. Mamidi and S. Bandyopadhyay, “Forward dynamic analyses of
cable-driven parallel robots with constant input with applications to their
kinetostatic problems,” Mechanism and Machine Theory, vol. 163, p.
104381, 2021.

[37] S. Briot and A. Goldsztejn, “Singularity conditions for continuum
parallel robots,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 507–
525, 2022.

[38] J.-P. Merlet, “Singular configurations of parallel manipulators and Grass-
mann geometry,” The International Journal of Robotics Research, vol. 8,
no. 5, pp. 45–56, 1989.
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