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Direct Kinematic Singularities and Stability
Analysis of Planar Sagging Cable-driven Parallel

Robots
Sébastien Briot1 and Jean-Pierre Merlet2

I. INTRODUCTION

This technical report is associated with the paper [1]. It aims
at giving the equations for the computation of the geometrico–
static model equations of planar CDPRs based on the Irvine’s
model, as well as the equations for their stability analysis. It
ends with a case study.

II. GEOMETRICO-STATIC MODEL OF PLANAR SAGGING
CDPRS, AND STABILITY ANALYSIS.

In this section, we provide the geometrico-static model of
planar sagging CDPRs, and we derive their stability condi-
tions.

A. Formalization of the problem

Let us consider a planar CDPR with sagging cables moving
in a plane (O, y0, z0) (Fig. 1). The robot is made of n cables
connected to a rigid platform. The cable i (i = 1, . . . , n) is
connected at point Bi on the platform by a passive revolute
joint and at point Ai on the base, a fixed point which is the
output point of the winch system1. The state vector of the
cable i can be defined as:

xi(pi) =
[
yi(pi) zi(pi)

]T ∈ R2 (1)

where pi ∈ [0 ℓi], pi is the curvilinear abscissa along the cable,
ℓi is the cable length of the undeformed cable, yi(pi) is the
location of a point of the cable at the abscissa pi along the y0
axis, and zi(pi) is the location of a point of the cable at the
abscissa pi along the z0 axis. Moreover, the vector xi(pi =
0) = xi0 represents the coordinates of point Ai in the world
frame. The state vector derivative, with respect to the initial
curvilinear abscissa pi, is given by:

∂xi

∂pi
(pi) =

[
∂yi(pi)/∂pi
∂zi(pi)/∂pi

]
= f i(xi,ui, pi) (2)

*This work was partially supported by the French ANR project COSSE-
ROOTS (ANR-20-CE33-0001).

1 S. Briot is with the Laboratoire des Sciences du Numérique (LS2N) at
the Centre National de la Recherche Scientifique (CNRS), 44321, Nantes,
France. Sebastien.Briot@ls2n.fr

2 J.-P. Merlet is with the Centre de Recherche Inria Sophia Antipolis, 06902
Sophia Antipolis, France. Jean-Pierre.Merlet@inria.fr

1For reasons of brevity, we do not consider here and in the other sections
any pulley model. We assume that the point Ai is fixed on the base. The
following results could be extended to include pulleys.
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Fig. 1. Schematic representation of a sagging planar CDPR.

In what follows, it will be necessary to replace again the
variable pi ∈ [0 ℓi] associated with the cable i by a normalized
variable s ∈ [0 1] defined by s = pi/ℓi. Therefore we have

x′
i(s) = ℓi

∂xi

∂pi
= ℓi f i(xi,ui, s) (3)

The platform state vector is given by xp = [yp zp φp]
T ∈

R3, where yp is the platform center of mass (COM, denoted as
point P ) position along y0, zp is the platform COM position
along z0 and φp is the angle characterizing the rotation of the
platform local frame around x0. The location of points Bi in
the platform frame Fp are given by the constant vector p−−→PBi

2.
As a result, 0−−→PBi = Rp

p−−→PBi where

Rp =

[
cosφp − sinφp

sinφp cosφp

]
(4)

Finally, the geometric loop-closure constraints of the robot
can be written under the form β = [βT

1 . . .βT
n ]

T = 0 where

βi(xp,xif ) =

[
yp
zp

]
+Rp

p−−→PBi −
[
yif
zif

]
= 0 (5)

Let us assume that all cables are extensible and, for reasons
of brevity, that they have all the same cross-section area A
and that they are made with the same material having a linear
density ρ and a Young’s modulus E (assuming a Hookean

2In what follows, an index “p” will denote a vector in the platform frame
while an index “0” will be for the world frame.
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deformation law). Moreover, we consider that the CDPR is
subject to a gravity field g = −g z0 (g > 0), and that a planar
conservative (constant) wrench wp = [Fy Fz Mx]

T ∈ R3 is
applied at point P (wp includes the gravity force on the
platform). Note that, as we are in statics, wp can however
take any value. The total potential energy of the CDPR is
given by the functional:

U =

n∑
i=1

ℓi

∫ 1

0

(
EA

2
(ϵix − 1)2 + gρzi(s)

)
ds−wT

p xp (6)

where
ϵix = ∥ui(s)∥ (= ℓi∥x′

i(s)∥) (7)

is the strain in the cable i. The term −wT
p xp in the energy U

corresponds to the potential energy of the planar wrench wp.
It should be mentioned that, in this integrand,

Uei = ℓi
EA

2

∫ 1

0

(ϵix − 1)2ds (8)

is the (elastic) deformation energy of cable i,

Ugi = ℓi

∫ 1

0

gρzi(s) ds (9)

is the potential energy due to gravity on cable i, and

Uw = −wT
p xp (10)

is the potential energy due to the constant wrench applied on
the platform.

The static (stable) configuration of the CDPR must be
a local minimum of the potential energy U . As a result,
the following fixed-time Bolza optimization problem must be
solved:

min
u(s)

U

subject to xi
′ = ℓi f i(xi,ui, s) for i = 1, . . . , n

xi(s0) = xi0

βi(xp,xif ) = 0
(11)

where u = [uT
1 . . .uT

n ]
T .

B. First-order conditions of optimality

For solving the problem (11), let us define the augmented
cost function:

U ′ = G(xp,x1f , . . . ,xnf )

+

n∑
i=1

∫ 1

0

(
Hi(xi,ui,λi, s) + λT

i x
′
i

)
ds (12)

where

G = −wT
p xp + βTν = −wT

p xp +

n∑
i=1

βT
i νi (13)

with β = [βT
1 . . .βT

n ]
T ∈ R2n, ν = [νT

1 . . .νT
n ]

T ∈ R2n, and

Hi = ℓi

(
EA

2
(∥ui∥ − 1)2 + gρzi − λT

i f i

)
(14)

Taking the first variation of U ′ leads to:

δU ′ = Gxp
δxp +

n∑
i=1

Gxif
δxif + βT δν

+

n∑
i=1

∫ 1

0

(Hixi
δxi +Hiui

δui

+ (Hiλi
+ x′T

i )δλi + λT
i δx

′
i

)
ds (15)

The last term in the integrand can be integrated by parts to
obtain:

δU ′ = Gxp
δxp +

n∑
i=1

(Gxif
+ λT

if )δxif + βT δν

+

n∑
i=1

∫ 1

0

(
(Hixi

− λ′T
i )δxi +Hiui

δui

+ (Hiλi + x′T
i )δλi

)
ds (16)

The necessary condition for local optimality which involves
that δU ′ = 0 are now expressed by [2], for i = 1, . . . , n:

x′
i = ℓi f i(xi,ui, s) (17)

λ′
i = HT

ixi
(18)

Hiui
= 0 (19)

λif = −GT
xif

(20)

Gxp
= 0 (21)

β = 0 (22)

Equations (17) to (19) are the ODEs of the Irvine’s model [3],
leading to the fact that λi = τ i the tension in the cable i
(see also [1]). Equation (22) is the vector of the geometry
loop-closure constraint equations for the CDPR. Moreover,
from (20) and (21), we get:

Gxif
= −νT

i ⇒ λif = τBi = νi (23)

τBi
being the tension in the cable i at point Bi, and

Gxp
= −wp +

n∑
i=1

[
∂βi

∂xp

]T
νi

= −wp +

n∑
i=1

[
∂βi

∂xp

]T
τBi

= 0

(24)

where
∂βi

∂xp
=

[
I2 (E 0−−→PBi)

]
∈ R2×3 (25)

in which I2 is the identity matrix of dimension 2 and

E =

[
0 −1
1 0

]
(26)

Note that the equation (24) is nothing else than the equation
of the static equilibrium on the platform.
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Summarizing the results, the geometrico-static model of the
planar CDPR is governed by the equations:

[
x′
i

τ ′
i

]
= hi = ℓi


ϵix(s) cos θi(s)
ϵix(s) sin θi(s)

0
gρ

 for s ∈ [0 1] (27)

with xi(0) = xi0, τ i(0) = τ i0, i = 1, . . . , n

θi(s) = tan−1(τi2(s)/τi1(s))

ϵix(s) =
∥τ i(s)∥
EA

+ 1 (28)

and b =

[
β

−wp +
∑n

i=1

[
∂βi

∂xp

]T
τBi

]
= 0 (29)

The vector b = b(xp,xf , τB) ∈ R2n+3, where xf =
[xT

1f , . . . ,x
T
nf ]

T and τB = [τT
B1

, . . . , τT
Bn

]T , is the vector
of the boundary conditions for the system of Differential
Algebraic Equations (DAEs). The part β = 0 of b represents
the geometric constraints on the locations of the extremities
Bi of the cables. The second part of b is the mechanical
equilibrium condition. Obviously, when solving (27), we get
the explicit solution of the Irvine’s model for a single cable
provided by:

yi(s) =yi0 +
Fiyℓis

EA
+

|Fiy|
ρg

{
sinh−1

[
Fiz − ρgℓi(1− s)

Fiy

]
− sinh−1

[
Fiz − ρgℓi

Fiy

]}
(30)

zi(s) =zi0 +
Fizℓis

EA
+

ρgℓ2i s

EA

(s
2
− 1

)
+

1

ρg

{√
F 2
iy + [Fiz − ρgℓi(1− s)]

2

−
√

F 2
iy + [Fiz − ρgℓi]

2

}
(31)

as well as the expressions of the tension τ i(s) =
[τi1(s) τi2(s)]

T all along the cable:

τi1(s) =Fiy (32)
τi2(s) =Fiz − ρgℓi(1− s) (33)

Based on this explicit relationships and the boundary con-
ditions b = 0, the geometric model can be solved by
using a numerical solver. In such a case, the unknown to be
found would be either the cable lengths are rest ℓi and the
cable tensions τBi (i = 1, . . . , n) for the inverse geometric
model [4], or the platform pose xp and the tensions τBi

for the
forward geometric model [5]. Note that these problems may
have both multiple solutions, and finding all their solutions is
a rather complicated task.

C. Second-order conditions of optimality

Here, we study the stability conditions of the planar sagging
CDPR.

1) Legendre-Clebsch conditions: We need to check the
positive-definiteness of the block-diagonal matrix Huu whose
expression is:

Huu =

Hu1u1 . . . 0
...

. . .
...

0 . . . Hunun

 (34)

where

Huiui = 2

 ϵ3ix−u2
i2

ϵ3ix

ui1ui2

ϵ3ix
ui1ui2

ϵ3ix

ϵ3ix−u2
i1

ϵ3ix

 (35)

with uij the jth component of ui (j = 1, 2, i = 1, . . . , n).
n eigenvalues of Huu are equal to 2 while the n others are
equal to:

σi = 2
ϵix − 1

ϵix
for i = 1, . . . , n (36)

From Equation (28), ϵix > 1, except if the cable tension τ (t)
is null, which is unfeasible in practice on Earth, as long as
we are not in the water. Therefore, we always have Huu ≻ 0.

2) Jacobi conditions: Let us now compute the matrix
necessary for assessing the existence of conjugate points. For
verifying it, let us express the variation δb:

δb = 0 = bxpδxp + bx(s)δx(s) + bτ (s)δτ (s) (37)

where δx(s) = [δx1(s)
T . . . δxn(s)

T ]T ∈ R2n,
δτ (s) = [δτ 1(s)

T . . . δτn(s)
T ]T ∈ R2n, bxp ∈ R(2n+3)×3,

bx(s) ∈ R(2n+3)×2n and bτ (s) ∈ R(2n+3)×2n. The expression
of bτ (s) (also equal to bλ(s)) is detailed hereafter, as well
as the expression of bxp

. The expression of bx(s) has no
importance in what follows; therefore its calculation is
skipped.

Computation of the matrix bτ (s): In order to compute
the matrix bτ (s), three different types of functions must be
calculated, as shown in [1]: ∂b

∂xf
, ∂b
∂τB

and the transition matrix
Φ(s, sf = 1) of the DAE (27), which relates δxf and δτB to
δx(s) and δτ (s) such that [2]:[

δx(s)
δτ (s)

]
= Φ(s, sf = 1)

[
δxf

δτB

]
(38)

where

Φ(s, sf = 1) =

[
∂x(s)
∂xf

∂x(s)
∂τB

∂τ (s)
∂xf

∂τ (s)
∂τB

]
(39)

and xf = x(s = 1) and τB = τ (s = 1). The expression
of the vector b being an explicit function of xf and τB , it
directly comes that:

bxf
=

∂b

∂xf
=

[
−I2n
03×2n

]
(40)

bτB
=

∂b

∂τB
= −

 02n×2n[[
∂β1

∂xp

]T
. . .

[
∂βn

∂xp

]T] (41)

where I2n is the identity matrix of dimension 2n and the
matrix ∂βi/∂xp is defined in (25).
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From [1], [2], the matrix Φ(s, sf = 1) is nothing else than:

Φ(s, sf ) =

[
∂x/∂xf ∂x/∂τB

∂τ/∂xf ∂τ/∂τB

]
(42)

Noticing that, by expressing (30) and (31) at s = 1, it comes
that ∂xf/∂x0 = I2n, then the blocks of the matrix Φ(s, sf =
1) can be obtained by differentiating the equations (30)–(33)
by xf and τB :

∂x

∂xf
=

∂x

∂x0
= I2n,

∂τ

∂xf
= 0,

∂τ

∂τB
= I2n (43)

Moreover, ∂x/∂τB is a block-diagonal matrix whose expres-
sion is detailed in Appendix A.

Finally, from [1], we know that:

bτ (s) = bxf

(
Φ−1

)
12

+ bτB

(
Φ−1

)
22

(44)

where the matrices
(
Φ−1

)
12

∈ R2n×2n and(
Φ−1

)
22

∈ R2n×2n are the upper right and lower right
blocks of the matrix Φ−1(s, sf ), respectively.

Computation of the matrix bxp : When differentiating the
matrix bxp

with respect to xp, its expression takes the form:

bxp =


∂β1

∂xp

...
∂βn

∂xp[
03×2 −

∑n
i=1(

0−−→PBi)
T τBi

]

 (45)

Computation of the Jacobi conditions: Finally, let us find
the expression of the matrix S̄(s) which allows checking the
presence of conjugate points. For this, let us first define the
matrix Z which spans the nullspace of the matrix bT

xp
, i.e.

bT
xp
Z = 0 (46)

Assuming that bxp
is of full rank, which is true as long as

all points Bi are not all superposed3, then Z ∈ R(2n+3)×2n.
Left-multiplying (37) by ZT , we get

0 = ZTbx(s)δx(s) + ZTbτ (s)δτ (s) (47)

where ZTbx(s) ∈ R2n×2n and ZTbτ (s) ∈ R2n×2n. We then
deduce that

δτ (s) = −
(
ZTbτ (s)

)−1 (
ZTbx(s)

)
δx(s) (48)

and that, from [1], [2]

S̄(s) = −
(
ZTbτ (s)

)−1 (
ZTbx(s)

)
(49)

As a result, assuming that ZTbx(s) is never rank deficient
(which is true under mild conditions detailed in [1], [2],
S̄−1(s) becomes rank deficient if the matrix ZTbτ (s) is
singular on the interval s ∈ [0 1[. The rank deficiency of
the matrix ZTbτ (s) on the interval s ∈ [0 1[ is the condition
for the appearance of the conjugate points.

Let us now deal with the general case: the spatial sagging
CDPRs.

3In this case, the platform is no more a solid, but is restricted to a point
(i.e. the end-effector has only two degrees of freedom). As a result, there is
no singularity of bxp at all.

A
1

A
2O, A

3

B
1

B
2

B
3

P (y, z)

y
0

z
0

ϕ
p

Fig. 2. Schematic representation of the planar three-cable CDPR under study
(to scale).

III. CASE STUDY

In this section, we analyze the stability of a planar three-
cable CDPR (Fig. 2). The cable properties are: Young’s
modulus E = 210 GPa, cable cross-section radius r = 1 mm,
material density ρ/A = 7800 kg/m3. The platform mass is
equal to mp = 0.25 kg. There is no external force except
gravity applied on the platform.

The anchor point positions on the base are: x10 =
[−1 0]T m, x20 = [1 0]T m, x30 = [0 0]T m. The platform
anchor points in the platform frame are parameterized by:
p−−→PB1 = [−0.1 0]T m, p−−→PB2 = [0.1 0]T m, p−−→PB3 =
[0 0.1]T m.

In order to analyze the stability of this robot, we first
compute the end-effector configuration space at a given ori-
entation φp = −2.5 rad. For this, we consider the poses
xg
p located at the nodes of a regular grid in the yz-plane

and an initial configuration Sinit = (ℓinit,xp init, τB init).
Using a continuation process [6], we are able to calculate the
configurations (ℓg,xg

p, τ
g
B) which are connected to Sinit for

each pose xg
p of the grid.

For every configurations of the computed configuration
space (for a platform orientation φp = −2.5 rad), the inverse
condition numbers κ−1

ℓ and κ−1
p of matrices

[
bℓ bτ0

]
and[

bxp
bτ0

]
, respectively, are calculated. For a better display

by color in Fig. 3, instead of showing directly κ−1
ℓ and

κ−1
p , we provide their value at a given power: κ−1.25

ℓ and
κ−0.6
p . Dark blue zones are zones with bad inverse condition

numbers. It should be mentioned that these condition numbers
are computed using matrices with components which have
non-homogeneous units. This is valid because we want to
analyze the degeneracy of the studied matrices, and not to
characterize the physical performance of the robot [7].

The results show that:
• The matrix

[
bℓ bτ0

]
loses its rank, i.e. the inverse

condition number κ−1
ℓ drops down to zero, near the end-

effector configuration space boundaries (see the examples
of configurations corresponding to these different zones
in points Q4, Q5, Q6 and Q7 in Figs. 4 and 5). In
these configurations, a variation of the cable length cannot
bring any motion of the platform. Three main scenarii
appear: either (a) some cables are too slack, (b) all cables
are totally tensed, and (c) a cable has almost a null length.
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(a) Inverse condition number of
[
bℓ bτ0

]
at the power

1.25

(b) Inverse condition number of
[
bxp bτ0

]
at the

power 0.6

Fig. 3. Inverse condition numbers for the matrices
[
bℓ bτ0

]
and[

bxp bτ0

]
for the planar three-cable CDPR in its end-effector configu-

ration space, for a platform orientation φp = −2.5 rad.

• The matrix
[
bxp bτ0

]
loses its rank, i.e. the inverse

condition number κ−1
p drops down to zero, inside the

end-effector configuration space (Fig. 3(b)). Singularities
of

[
bxp

bτ0

]
are suspected here.

In Figure 4, we show the robot end-effector configuration
space, for the platform orientation φp = −2.5 rad. In this
picture, both previously computed condition numbers are used
to provide an overview of the kinemato-static model singu-
larities in the end-effector configuration space: In particular,
we highlight in red the areas where the inverse condition
number of

[
bxp

bτ0

]
is lower than 5 · 10−4, i.e. near which

singularities of
[
bxp bτ0

]
are foreseen to be present. These

red zones separate the end-effector configuration space into
two connected components. For assessing the presence of
singularities in the red zones, we define a path between points
Q1 = (0.78, − 0.14) m and Q3 = (0.48, − 0.22) m
(Fig. 4) along which the stability criterion defined previously

Fig. 4. Stable and unstable end-effector configuration spaces of the planar
three-cable CDPR, for a platform orientation φp = −2.5 rad. In green, the
areas where the inverse condition number of

[
bℓ bτ0

]
is lower than 5 ·

10−4; in red, the areas where the inverse condition number of
[
bxp bτ0

]
is lower than 5 · 10−4.

will be computed. Along this path, 100 points are defined.
From Figs. 6(a) to 6(f), we observe the following things:

• From point Q1 to point Q2 (excluded) on the singularity
loci of matrix

[
bxp bτ0

]
, there is no conjugate point

• At point Q2, a conjugate point appears on the integration
interval at s = 0, meaning that there is a singularity of
the matrix

[
bxp

bτ0

]
.

• From point Q2 to point Q3, a conjugate point exists on
the interval s ∈ [0 1[, meaning that the robot is unstable
along this path.

Note that, in Fig. 6, the robot platform configurations have
been voluntary zoomed in order to show that it is impossible
to understand by a direct visualization of the robot if its
configuration is stable or not.

The red areas computed using the continuation algorithm
provide only an indication of the presence of singularity
curves for

[
bxp

bτ0

]
. However, the change in the number of

conjugate points actually proves the presence of these curves.
Moreover, the existence of these singularity curves and the
presence of no or 1 conjugate point allow also to conclude
that:

• Zone A is the zone of the stable configurations,
• Zone B is the zone of the unstable configurations.
Because there is no possibility to check the stability of

the solutions of the Irvine’s model itself except applying the
theory presented in this paper, in order to definitely validate
these results on the stability prediction, we developed a static
lumped model of our robot [8]. Each cable is now discretized
with N elements. The robot potential energy becomes then
an analytic function of the finite element variables plus the
platform configuration variables, instead of a functional. As
a result, checking the stability of the lumped model config-
uration remains to checking the positive-definiteness of the
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(a) Configuration at point Q4: a
cable is slack. κ−1

ℓ = 0.0003 and
κ−1
p = 0.0018.
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(b) Configuration at point Q5: all
cables are tensed. κ−1

ℓ = 9.28 ·
10−5 and κ−1

p = 3.78 · 10−7.
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(c) Configuration at point Q6: a ca-
ble has almost a zero length. κ−1

ℓ =

0.0008 and κ−1
p = 0.001.
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Fig. 5. Robot configurations corresponding to points Q4, Q5, Q6 and Q7.
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ℓ =

0.023 and κ−1
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p = 8.29 · 10−6.
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ℓ = 0.028 and κ−1

p = 0.005.

0 0.4 0.6 0.8 1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0 ×10-4

0.2

d
et
(Z

T
 b
τ(

s)
)

s

(d) det(ZTbτ(s)) at point Q1

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0 ×10-5

0 0.4 0.6 0.8 10.2

d
et
(Z

T
 b
τ(

s)
)

s

conjugate
point

(e) det(ZTbτ(s)) at point Q2

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.4 0.6 0.8 1

×10-4

0.2

d
et
(Z

T
 b
τ(

s)
)

s

conjugate
point

(f) det(ZTbτ(s)) at point Q3

Fig. 6. Study of the determinant of the matrix ZTbτ(s) all along the path between points Q1 and Q3.

reduced Hessian of the energy, as it has been done in [9] for
assessing the stability of continuum parallel robots, or in [10]
for checking the stability of the straight-cable underactuated
CDPRs.

First, in order to assert the lumped model validity, we check
its configuration prediction accuracy. For doing this, we first
compute the length of the cables based of the Irvine’s model
for each of the 100 configurations along the path between
points Q1 and Q3. Then, we reperform the same computation,
but with the lumped model. Results for the maximal cable
length estimation error are summuarized in Tab. I for several
values of numbers of elements used per cables in the lumped
model. We see that, with more than 30 elements per cable, this
error is lower than 1.5 · 10−5 m (all cables measuring more
than dozens of centimeters). This error of prediction between
the two models is negligible, and 30 elements per cables are

TABLE I
MAXIMAL ERROR OF MODELLING FOR THE LUMPED CABLE MODEL WITH
RESPECT TO THE IRVINE’S MODEL, AS A FUNCTION OF THE NUMBER N

OF ELEMENTS USED PER CABLE.

Err. N = 2 N = 5 N = 10 N = 15 N = 30 N = 60
[mm] 3.789 0.601 0.149 0.065 0.015 0.003

used in the remaining of this section.
Then, we compute the smallest eigenvalue σ1 of the reduced

Hessian of the lumped model’s potential energy and we check
its positiveness all along the path between configurations Q1

and Q3 (Fig. 7). Recall that a negative value for σ1 corresponds
to an unstable configuration of the model, while a positive
value indicates a stable configuration [9]. We compare this
value at each robot configuration with the maximal value of
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Fig. 7. Comparison at each configuration all along the path of the stability
prediction based on the Jacobi condition computed on the Irvine’s model
(computation of max(det(ZTbτ(s))) on the integration interval s ∈ [0 1[)
with a stability prediction based on a lumped model (computation of the
smallest eigenvalue σ1 of the Hessian of the potential energy).

det(ZTbτ (s)) on the interval s ∈ [0, 1[. We see that, up
to the configuration 76 (point Q2), the smallest eigenvalue
σ1 is positive, indicating the configurations are stable, which
is confirmed by the fact there is no conjugate points for the
Irvine’s model (Fig. 6(d)). In point Q2, σ1 is null, which
corresponds to the appearance of the conjugate point at s = 0
(Fig. 6(e)). Between Q2 and Q3, σ1 is negative, showing that
the robot modelled with the lumped cables is unstable, as it
was also detected thanks to the Jacobi criterion on the Irvine’s
model (Fig. 6(f)).

Note that the Matlab code for computing the stability of the
robot configuration is provided as an external material.

APPENDIX

A. Computation of the matrix ∂x/∂τB for the planar sagging
CDPRs

The matrix ∂x/∂τB is a block-diagonal matrix whose ith
block is given by the expression:

∂xi

∂τBi

=

[
ϕ
(1)
i12 ϕ

(2)
i12

ϕ
(3)
i12 ϕ

(4)
i12

]
(50)

where

ϕ
(1)
i12 =

ℓis

EA
+

sign(Fiy)

ρg

 (Fiz − ρgℓi)√
(Fiz − ρgℓi)2 + F 2

iy

−

Fiz − ρgℓi(1− s)√
(Fiz − ρgℓi(1− s))2 + F 2

iy

+

sign(Fiy)

ρg

(
sinh−1

[
Fiz − ρgℓi(1− s)

Fiy

]
−

sinh−1

[
Fiz − ρgℓi

Fiy

])
(51)

ϕ
(2)
i12 =

sign(Fiy)

ρg

 1√
(Fiz − ρgℓi(1− s))2 + F 2

iy

−

1√
(Fiz − ρgℓi)2 + F 2

iy

 (52)

ϕ
(3)
i12 =

Fiy

ρg

 1√
(Fiz − ρgℓi(1− s))2 + F 2

iy

−

1√
(Fiz − ρgℓi)2 + F 2

iy

 (53)

ϕ
(4)
i12 =

ℓis

EA
+

Fiy

ρg

 Fiz − ρgℓi(1− s)√
(Fiz − ρgℓi(1− s))2 + F 2

iy

−

Fiz − ρgℓi√
(Fiz − ρgℓi)2 + F 2

iy

 (54)

where τBi
= [Fiy Fiz]

T and the function sign(x) takes the
value 1 if x > 0, −1 if x < 0 and 0 if x = 0.

————————
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