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Abstract: Thermally-induced distortion and residual stresses in parts fabricated by the additive manufac-
turing (AM) process can lead to part rejection and failure. Still, the understanding of thermo–mechanical
behavior induced due to the process physics in AM process is a complex task that depends upon process
and material parameters. In this work, a 3D thermo-elasto-plastic model is proposed to predict the
thermo–mechanical behavior (thermal and distortion field) in the laser-directed energy deposition (LDED)
process using the finite element method (FEM). The predicted thermo–mechanical responses are compared
to stainless steel 316L (SS 316L) deposition, with single and double bead 42-layer wall samples subject to
different inter-layer dwell times, which govern the thermal response of deposited parts in LDED. In this
work, the inter-layer dwell times used in experiments vary from 0 to 10 s. Based on past research into the
LDED process, it is assumed that fusion and thermal cycle-induced annealing leads to stress relaxation in
the material, and is accounted for in the model by instantaneously removing stresses beyond an inversely
calibrated relaxation temperature. The model predicts that, for SS 316L, an increase in dwell time leads to
a decrease in in situ and post-process distortion values. Moreover, increasing the number of beads leads to
an increase in in situ and post-process distortion values. The calibrated numerical model’s predictions are
accurate when compared with in situ and post-process experimental measurements. Finally, an elongated
ellipsoid heat source model is proposed to speed up the simulation.

Keywords: additive manufacturing (AM); directed energy deposition (DED); distortion prediction;
numerical modeling; finite element analysis (FEA); stress relaxation; COMSOL Multiphysics

1. Introduction

Over the last two decades, the laser-directed energy deposition (LDED) additive
manufacturing (AM) process has grown tremendously due to its possibility of fabricating
large complex parts, repairing damaged components, and adding corrosion resistant
coatings. However, due to the physics of the LDED process, the generation of thermal
stresses and distortion in the workpiece is unavoidable. The accumulation of distortion
during and after the fabrication process adversely affects the part’s dimensional accuracy,
sometimes leading to its rejection. This is a critical problem that is hindering the possibility
of large-parts fabrication employing the LDED process. Therefore, it is important to
understand the evolution of residual stress and distortion that depends upon process
parameters and material. In an effort to understand these complex phenomena, researchers
have employed in situ monitoring techniques to study the effects of process parameters
and analyze distortion in LDED-fabricated workpieces. Denlinger et al. [1] used a laser
displacement sensor (LDS) at the free end of a cantilever substrate to measure and analyze
the in situ distortion for Ti-6Al-4V and Inconel 625 deposition for different inter-layer dwell
times. They concluded that longer dwell times result in an increase in distortion values
for Inconel 625, and present a contrary trend for Ti-6Al-4V. Heigel et al. [2] also employed
LDS at the free end of a substrate to measure and analyze the in situ distortion for Inconel
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625 for different laser power, laser scan speed and deposition pattern. They concluded
that distortion accumulation in LDED is more complex, as compared to a similar welding
technology. With regard to measurement of in situ distortion at the deposited layers, digital
image correlation (DIC) systems were used. Ocelik et al. [3] used DIC systems to analyze in
situ strain field on the back side of a specimen for laser cladding. They observed that the
longitudinal strain at the bottom surface of the substrate decreases with an increase in the
laser scanning speed. Xie et al. [4] observed in situ full-field strain via the DIC method for
the fabrication of Ti-6Al-4V walls, and discovered that the vertical strain was significantly
higher than the longitudinal strain of the material just below the current deposited layer.

However, this experimental trial and error approach is time- and resource-consuming,
which reduces the competitive edge of LDED. On the contrary, numerical modeling of the
LDED process can be a better approach to understand and predict the thermo–mechanical
behavior, as well as to fabricate parts as quickly as possible. A lot of research effort has
been conducted for the development of a thermo–mechanical model for the LDED process.
Denlinger et al. [5,6] validated the thermo–mechanical model for Ti-6Al-4V and Inconel
625 with experimental in situ LDS results at the substrate. They demonstrated the model
effectiveness by accurately capturing the effects of inter-layer dwell times for both Inconel
625 and Ti-6Al-4V. Lu et al. [7] demonstrated a thermo–mechanical model for Ti-6Al-4V
complex geometries, and validated the model with in situ LDS results at the substrate. They
found that the complex geometry (S-shape) yielded an asymmetrical stress distribution.
Xie et al. [8] developed and validated an experiment-based stress relaxation thermo–mechanical
model for Ti-6Al-4V with experiment in situ LDS results at the substrate. They concluded that
the thermo–mechanical model combined with the stress–relaxation model yielded more accurate
results, as compared to a conventional thermo–mechanical model for LDED. Biegler et al. [9–11]
validated the thermo–mechanical model for SS 316Lwith in situ DIC results at the deposited
part (simple walls and curved shape). They demonstrated an approach to accurately predict
distortions for industrial-scale LDED parts. Xie et al. [12] also validated the thermo–mechanical
model for Ti-6Al-4V walls with in situ DIC results at the deposited wall. They found that the
strain magnitude was sensitive to the location of a thin wall.

The effect of phase transformation due to solid-state phase transformation in steel,
Ti-6Al-4V, and other materials leading to stress relaxation (SR) in LDED is well studied [6].
Furthermore, liquefaction of the material (feedstock) contributes to stress relaxation in
LDED [9]. Finally, due to the process physics governing LDED, a fabricated component
experiences multiple thermal heating and cooling cycles for a considerable amount of time,
leading to annealing-induced stress relaxation, and has been extensively studied [13,14].
Hence, it is convenient to consider the stress relaxation in LDED that alters the mechanical
behavior of the material during the fabrication.

Denlinger et al. [5] proposed an instantaneous stress–relaxation model for Ti-6Al-4V
using electron beam DED to account for transformation strain and stress relaxation. The
model works by setting both plastic strain and stress to zero if the computed temperature
goes beyond the inversely calibrated prescribed relaxation temperature. Moreover, Den-
linger et al. [6] demonstrated that an instantaneous stress–relaxation model for Ti-6Al-4V
predicts the correct distortion accumulation, the result of which is also consistent with
the experiment results for LDED technology. Some other researchers have also used the
same methodology of using an instantaneous stress–relaxation model for Ti-6Al-4V in
the LDED process [15,16]. However, in the LDED or AM process, the actual relaxation
behavior is a time-transient temperature-dependent gradual process [17]. Xie et al. [8]
developed an experiment-based stress–relaxation model for Ti-6Al-4V for use in LDED.
Experiment-based methodology is coherent to the physical stress relaxation behavior of the
material that is dependent on time and temperature in LDED.

Griffith et al. [18] concluded that, during the deposition of H13 tool steel in the LDED
process, a sufficiently high temperature is reached to cause the material to anneal, thereby
leading to stress relaxation. Kim et al. [19] experimentally and numerically investigated
that, during the deposition of stainless steel 316L (SS 316L) in powder bed fusion (PBF) AM
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technology, there is a significant stress relaxation due to thermal cycles which are induced
from a subsequent deposition of layers. Biegler et al. [9] proposed to reset the material’s
plastic and stress history above solidus temperature to account for stress relaxation due to
the liquefication of the SS 316L deposition in LDED.

Currently, modeling techniques (thermo–mechanical models) based on finite element
method (FEM) are mostly adopted to perform thermo–mechanical analysis, with the aim
of accurately predicting the thermo–mechanical response (temperature, distortion, and
residual stresses) of the deposited metal during the LDED process. To date, to the best of the
authors’ knowledge, few researchers have developed and validated a thermo–mechanical
model based on the FEM with stress relaxation for SS 316L which presents in situ and
post-process distortion experimental results in LDED technology. Currently, the use of
numerical simulation for LDED is limited, due to the impractical computational times
for large parts, the lack of validated thermo–mechanical material properties, and issues
pertaining to the in situ measurements that are then used to calibrate and validate the
numerical model.

Therefore, in the present work, the main objective is to develop a thermo–mechanical
model with an instantaneous stress relaxation temperature model that also accounts for
the liquefaction of the material and thermal cycle-induced stress relaxation for SS 316L
in the LDED process. The prescribed stress relaxation temperature is calibrated by per-
forming an inverse calculation, and comparing it with in situ distortion results. At first,
the numerical model’s heat source parameters, boundary heat losses, and instantaneous
stress relaxation temperature values were calibrated with one set of experiment results.
Then, the calibrated thermo–mechanical model was verified with different experiment
results, obtained through a set of experiments with varying inter-layer dwell times and
numbers of beads. The thermo–mechanical model was validated with in situ temperature
and distortion experiment data obtained during the fabrication of a 42-layer-high, single-
and double-beaded wall on a cantilever substrate with inter-layer dwell times of 0, 5, and
10 s. The thermo–mechanical model is further validated through post-process distortion
results. Furthermore, Nain et al. [20] have demonstrated that thermal modeling with an
elongated ellipsoid (EE) heat source works efficiently by considerably reducing the compu-
tation time required for a pure thermal model. Therefore, in the present work studying a
thermo–mechanical model, the effectiveness of this approach (the EE heat source) is also
demonstrated by efficiently predicting temperature and distortion history with a drastic
reduction in computation time.

2. LDED Modeling Approach

The proposed thermo–mechanical model focuses primarily on thermal and mechan-
ical fields. The geometry of the different layers of the deposited wall is supposed to be
known from the experiments previously conducted. The numerical model discretizes
the continuous physical process of material deposition in a combination of successive
simulation steps, in which laser travel is considered as a sequential step-by-step process.
The numerical simulations of the LDED process are performed sequentially: firstly, a 3D
transient thermal analysis is performed to obtain the temperature field, assuming a weak
thermal–mechanical coupling. Then, thermal results are applied as a thermal load to a
3D quasi-static mechanical analysis to simulate the mechanical response. The thermo–
mechanical model for LDED can be considered as weakly coupled (one-way coupling) due
to the fact that the laser energy source in thermal analysis is much higher than the plastic
strain energy in mechanical analysis [21]. On the contrary, the fully coupled (two-way
coupling) thermo–mechanical model performs a transient thermo–mechanical analysis at
each time step, thereby drastically increasing the computation cost.

The entire model is built on COMSOL Multiphysics 5.6 software, with the successive
steps shown in Figure 1.
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Figure 1. Flowchart of the proposed thermo–mechanical model.

2.1. Thermal Analysis

At any point located by r in a Lagrangian domain Ω, the temperature, T, as a function
of time, t, is obtained by solving the governing differential equation for transient heat
transfer analysis, expressed as:

ρ(T)CP(T)
∂T(r, t)

∂t
= −∇·q(r, t) + Q(r, t), r ∈ Ω (1)

where ρ(T) is the temperature-dependent material density, CP is the temperature-dependent
specific heat capacity, Q is the volumetric heat source, and q is the heat flux vector, given as:

q = −k(T)∇T (2)

Here, k(T) represents the temperature-dependent thermal conductivity of the material
which is assumed to isotropic in the model. To represent laser energy, numerical heat input
is expressed by a moving volumetric double ellipsoid (DE) model [22] heat source:

Q =
6
√

3APff,r

af,rbcπ
√
π

exp

(
−3(x + vst)2

af,r
2 − 3y2

b2 −
3z2

c2

)
(3)

where P is the laser power, A is the absorption efficiency that is calibrated with the experi-
ment results, and f is a weighting fraction that governs the energy division between the
front and rear ellipsoid. The parameters a, b, and c represent the melt-pool’s longitudinal,
transverse, and depth dimensions of the ellipsoid, respectively. The DE model moves at vs
velocity, and its origin is centered where the heat source reaches its maximum intensity.

To account for convective and radiative heat losses in the model, the following bound-
ary conditions (Figure 1: depicted in flowchart) are applied on all surfaces, using Newton’s
and the Stefan–Boltzmann laws:

qloss = h(Ts − Tamb) + εσ
(

T4
s − T4

amb

)
(4)

where h is the convective heat transfer coefficient in (W/m2K), Ts is the surface temper-
ature, Tamb is the ambient temperature i.e., 20 ◦C, ε is the surface emissivity, and σ is the
Stefan–Boltzmann constant.

The effect of the melt-pool flow is modeled using an enhanced thermal conductivity
factor of 2.5 if the calculated temperature exceeds the fusion temperature of the material, as
specified in the literature [20]. Moreover, the effect of latent heat from fusion is accounted
for by modifying the specific heat, as specified in the literature [20]. It was verified that
this value provided a similar melt pool length between the model and the measurement
obtained by the infrared camera.

Temperature-dependent material properties for SS 316L are employed in the model,
which was taken from the literature, and are presented in Table 1 [11].
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Table 1. Temperature-dependent material properties of stainless steel 316L [11].

T (◦C) k (W·m−1·K−1) Cp (J·kg−1·K−1) E (GPa) α (10−5·K−1) σY (MPa)

20 14 450 192 1.4 275
100 15.1 490 186 1.5 238
200 16.4 522 178 1.6 198
300 17.8 545 170 1.7 172
400 19.1 555 161 1.7 157
500 20.5 566 153 1.8 151
600 21.8 583 145 1.8 145
700 23.2 600 137 1.8 136
800 24 614 110 1.9 127
900 25.9 629 63 1.9 115

1000 27 643 37 1.9 78
1100 28.6 657 16 1.9 38
1200 29.9 671 11 2 24
1300 31.3 686 8 1.8 20
1400 32.6 700 8 1.8 16

2.2. Mechanical Analysis

The governing mechanical stress equilibrium equation can be given as:

∇·σ = 0 (5)

The mechanical constitutive law where the stress–strain relationship of the material is
described using Hooke’s law of linear elastic material:

σ = Cεe (6)

where C is the fourth order elasticity tensor with a temperature-dependent Young’s Mod-
ulus, E, as given in Table 1, and Poisson’s ratio ν is taken as 0.3 [11]. The total strain
ε, considering small deformation theory and thermo–elasto–plasticity, is decomposed
additively in elastic εe and inelastic part εin:

ε = εe + εin (7)

Inelastic strain includes thermal εth and plastic strain εpl in the numerical model.

εin = εth + εpl (8)

Thermal strain is computed using the temperature-dependent coefficient of thermal
expansion α:

εth = α (T− Tref) (9)

where Tref is the reference temperature. The plastic strain is calculated by employing the
von Mises yield criterion and the isotropic non-linear hardening model:

F = σvm − σy
(
εeq, T

)
≤ 0 (10)

where F is the yield function, σvm is the von Mises stress, σy is yield stress, and εeq is the
equivalent plastic strain.

σy
(
εeq, T

)
= σy0(T) + σsat

(
1− e−βεeq

)
(11)

Voce’s hardening law was used to model non-linear isotropic hardening, as presented
in Equation (11), where σy0 is the temperature-dependent initial yield stress, and σsat and
β are saturation flow stress and saturation exponent, respectively. The values of these two
parameters were extracted from stress–strain data presented in the literature [9].
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In the numerical model, the effect of phase transformation is neglected, since the SS
316L remains austenitic at all temperatures [23]. However, to account for the effects of
liquefication and annealing-induced stress relaxation (SR) in the SS 316L, in the numerical
model, the instantaneous stress relaxation (SR) model is proposed. It is implemented by
re-setting the equivalent plastic strain εeq to zero, thereby making it lose its hardening
history, provided that the norm of the temperatures at all nodes of an element is higher than
the relaxation temperature Trelax. The stress relaxation (SR) temperature is set to 1000 ◦C
after performing the reverse calibrations, as advised in the literature [5]. In addition, to
account for liquefication’s effect in the melt-pool, the effect of thermal strain is negated
by resetting the value of α to zero if the calculated temperature of an element exceeds the
fusion temperature of SS 316L (1450 ◦C).

3. Experiment Set-Up

The numerical modeling approach explained in the previous section was applied to
simulate the thermo–mechanical responses during the deposition of SS 316L. A detailed
explanation of the experiment set-up and process parameters is provided in this section.
Single- and double-adjacent beads thin wall structures of SS 316L were deposited on a
substrate measuring 100 mm long, 50 mm wide, and 3 mm thick of the same material as
the wall built through the LDED process. An in-house-developed machine named MAGIC
was used for the LDED system, equipped with a 2 kW diode laser through the IPG laser
system. To achieve the process stability, the laser and powder were co-focused on the top
surface of the substrate. The laser (measured by a beam analyzer) and the incoming powder
(measured by the weight measurement method) had top-hat and gaussian distributions,
respectively.

All of the experiments were performed with a scanning speed of 1 m/min and a
zig-zag deposition strategy. A powder deposition rate of 13 g/min for SS 316L powder
feedstock (Oerlikon, grain size 45–106 µm) was chosen. The diameter of the laser beam
spot size was 2.2 mm in diameter at the top-surface of the substrate. Figure 2a shows the
schematic of the substrate’s dimensions, along with clamping conditions and the planned
wall build for experiment case 1. Figure 2b shows the in situ measurement locations for the
thermocouple and laser displacement sensor on the bottom face of the substrate. Figure 2c
shows the tooling with the substrate fixed to a clamp and a laser displacement sensor
attached to the tooling. Figure 2d shows the wall build obtained for experiment case 1,
along with a schematic of the deposition direction. Each wall build was 42 layers high,
with a longitudinal zig-zag deposition strategy.
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The effect of the waiting time (dwell time) between successive layers was analyzed,
keeping laser power 800 W and laser scan speed 1 m/min fixed. Dwell times of 0, 5, and
10 s were taken between the deposition of successive layers to expose the workpiece to
different cooling times. The effect of dwell time was studied on two different wall builds,
both a single- and double-bead wall. Experiment cases with different process parameters
are summarized in Table 2.

Table 2. Description of the experiment cases with process parameters.

Case No. of Beads Dwell Time (s) Wall Length (mm) Wall Width (mm) Wall Height (mm)

1 1 0 50 2.1 18
2 1 5 50 2.1 18.1
3 1 10 50 2.1 18.2
4 2 0 50 3.4 23.2
5 2 5 50 3.4 23.5
6 2 10 50 3.4 23.6

3.1. Temperature Measurement

Omega GG-K-30 type K thermocouples measuring 250 µm in diameter were employed
to measure the in situ temperature. For this, two different locations were chosen at the
bottom face of the substrate to record the temperature evolution, as shown in Figure 2b,
so that they would fall under the deposition path of the laser on the top surface of the
substrate. The thermocouples employed in the experiments had a measurement uncertainty
of ±0.75%. The National Instruments module 9213 was used to read the thermocouple
signals. The module recorded data at a sampling rate of 200 Hz. The recorded data were
acquired through SignalExpress 2013 software, and analyzed in Igor Pro 8 software.

3.2. In Situ Distortion Measurement

The experimental set-up and tooling were designed to clamp the substrate from one
end, and to let it distort at the free end during and after the deposition process, as shown in
Figure 2c. A Micro-Epsilon 1420 laser displacement sensor (LDS) with a linear accuracy of
±8 µm was attached to the tooling to record the in situ deflection of the substrate in the
build direction i.e., z-direction. The exact measurement location of the LDS sensor is shown
in Figure 2b. The LDS optical signals were read and converted through a RS422/USB
converter into a USB data packet. The Micro-Epsilon sensorTOOL V1.7.1 software recorded
data at a sampling rate of 250 Hz.

3.3. Post-Process Line Distortion Measurement

After the deposition process was finished and the workpiece had cooled down, the
workpiece was scanned with a Faro 3D Laser Scan Arm V3 Optical scanner, equipped
with a scanning accuracy of 65 µm. Once the laser scanning had finished, Geomagic
Control software as used to process the data obtained from the laser scanning. Then, the
scanned data was compared with the workpiece CAD file that acted as a reference design
in Geomagic Control. Then, the distribution was measured and analyzed experimentally
at the line of the bottom surface of the substrate. The comparison of laser scanned data
pertaining to the deposited wall and the workpiece’s CAD is shown in Figure 3a. Distortion
was analyzed and measured at the center line of the bottom face of the substrate, as shown
in Figure 3b.
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Materials 2022, 15, 4093 8 of 19

4. Numerical Implementation
4.1. FEA Solver

The COMSOL Multiphysics-based solver (PARDISO) was employed to perform the
FEM analysis. To reduce the computation time, the adaptive time stepping method was
used, rather than a strict formulation. The computation time step of R/vs was taken during
the material deposition period, and 3R/vs during the dwell time period. This feature of
adaptive time stepping should be noted when performing a comparison with experimental
results in the coming section. All simulations were performed on a workstation equipped
with 16 cores, 128 GB RAM, and an Intel Xeon W-2275 processor.

4.2. FEM Mesh

Figure 4 presents three-dimensional finite element meshes of both single- and double-
bead walls, generated in COMSOL Multiphysics. The same mesh was used for the ther-
mal model as well as the mechanical model. The mesh for a single-bead wall contained
48,370 Hex-8 elements and 60,480 nodes. Furthermore, the mesh for a double-bead wall
contained 78,708 Hex-8 elements and 91,854 nodes. The mesh elements for the wall builds
were taken as 2 per laser radius (0.525 mm and 0.425 mm for the single- and double-beads
experiments, respectively), and 1 per layer thickness (0.428–0.561 mm, depending upon the
experiment cases). The mesh element size in the deposited part (vertical wall) remained
constant. However, a coarse mesh was used for the substrate, as the heat source moves
along the center of the substrate, and hence requires a fine mesh size (high thermal gra-
dient). Nevertheless, regions which are far away from the wall builds experience little of
the thermal gradient; therefore, a coarse mesh was employed in those regions of substrate,
thereby also contributing to a reduction in the computational cost.
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4.3. Material Deposition Modeling

The deposition of material during the LDED process was simulated using the “quiet”
element activation method [24]. The elements that represented the wall builds and substrate,
as shown in Figure 4, were a part of the computation domain from the beginning of the
analysis. However, dummy material properties (close to zero value of conductivity, specific
heat, and Young’s Modulus) were assigned to the quiet elements so as to not affect the
numerical results. For instance, the values of thermal conductivity k and specific heat CP
for quiet elements are rescaled as follows:

kquiet = skk (12)

CPquiet = sCP CP (13)

where kquiet and CPquiet represent heat conductivity and specific heat, respectively, for the
quiet elements; sk and sCP are the scaling factors chosen, here equal to 10−4, as suggested
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in the literature [24], for both sk and sCP . Moreover, in the mechanical analysis, the material
properties, such as stiffness or Young’s Modulus, are scaled in the same way. The change of
material properties from “quiet” to “active” is complete when the following expression is
satisfied (Equation (14)):

exp

(
−3(x + vst)2

af,r
2 − 3y2

b2 −
3z2

c2

)
≥ 5% (14)

This means that if the DE heat source intensity at any node exceeds 5% of the peak
intensity, as specified in the literature [24], the element is switched from the quiet to the
active state. The existing quiet element is activated to become an active element in a state
of zero stress; the temperature of quiet elements never exceeded 100 ◦C during the analysis
due to the scaling factor sk.

4.4. Model Calibrations and Boundary Conditions

To simplify the layer geometry, the deposited wall build is assumed to be parallelepipeds
of constant height and width dimensions for all layers. However, this is contrary to the ex-
perimental trend, since the layer height is not uniform in the first few layers, as the process
is not stable. As discussed in the previous sections, some input parameters need to be cali-
brated in order to develop an accurate thermo–mechanical model. For the DE heat source, a
calibrated value of 0.4 is chosen for laser absorption efficiency (A) in order to obtain the best
agreement between the calculated temperature and the experimental data recorded by thermo-
couple, as suggested in [5]. In the published literature employing the same process parameters,
the authors have demonstrated the DE heat source parameters calibration techniques using
experimentally measured melt-pool dimensions, obtained via thermal imaging camera and
macrography [20]. The DE heat source dimensions parameters are chosen in such a way that
they represent the same experimental melt-pool dimensions that lead to the front ellipsoid
length af = R and ar = 2af, b = R and c = 1.3× Layer Height for each experiment [20]. As
is widely reported in the literature [25], a constant emissivity (ε) value of 0.6 is chosen. For the
same reason, a constant convective heat transfer coefficient (h) is taken at the substrate, with
h = 5 (W·m−2·K−1). At the wall builds, a greater value of convective heat transfer coefficient
with h = 45 (W·m−2·K−1) is taken after reverse calibration, based on the literature that frequently
reports values in the range of h = 20–60 (W·m−2·K−1) [6]. This large value aims to account for
the effect of the powder-carrying gas that increases the heat losses around the melt pool surface.
Heat losses are also present at the surfaces in contact with metallic fixtures clamps, as shown
in Figure 2c. These losses are modeled with a formulation similar to the Newton’s law, using a
value of 60 (W·m−2·K−1) for the convective heat transfer coefficient at the contact surfaces, as
suggested in [7].

5. Results and Discussion
5.1. Thermal History

The thermal model predicts the thermal response of the workpiece, which is compared
to the experimental measurements for all cases. Figure 5 shows the experimental results,
as measured by thermocouple 1 (TC1), compared to the numerical results at the nodes
corresponding to the thermocouple locations for all experiment cases. In order to highlight
the deposition process, all of the graphs have a double scale X axis. As explained in
the previous section (Experiment Set-up), indeed, thermocouples 1 and 2 are at different
locations on the bottom face of the substrate; however, they are located along the deposition
line. Hence, they record almost the same temperature evolution, but with a different time
offset. Therefore, for this reason, only the thermocouple 1 results are presented in the
graphs. The temperature analysis of the initial two layers is subsequently presented in
Figure 6. The deposition pattern is also highlighted in Figure 6 (a,b).
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Figure 6. Comparison of temperature evolution between single- and double-bead wall at TC1 location
during the deposition of the first two layers.

A shorter dwell time (tDW) results in higher peak temperatures exceeding 550 ◦C
(Case 1) and 600 ◦C (Case 4) for single- and double-bead walls, respectively. An increase in
tDW results in a lower peak temperature exceeding 250 ◦C (Case 3) and 450 ◦C (Case 6) for
both single- and double-bead walls, respectively, since the already deposited material has
more time to cool down before switching the laser on again. An increase in the number of
beads in wall builds leads to higher deposited volume, which also plays a significant role in
the thermal evolution in the workpiece. An increase in the number of beads results in higher
peak temperatures for all tDW cases. Single-bead walls experience peak temperatures of
550, 390, and 270 ◦C for 0, 5, and 10 s, respectively. However, double-bead walls experience
higher peak temperatures of 600, 500, and 420 ◦C for 0, 5, and 10 s, respectively. For
double-bead walls, there is no dwell time between the first and second bead deposition,
thereby depositing the second bead beside the first bead without allowing it to cool down.
The single wall also experiences the same phenomenon where layer 1 (1 bead) does not
have the same cooling time as layer 2 (1 bead), which starts to deposit above layer 1 without
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allowing it to cool. However, double-bead walls deposit more volume as compared to a
single-bead wall, leading to a different thermal evolution in the workpiece. This can be
observed in Figure 6, which shows the comparison of the temperature evolution at the TC1
location during the deposition of the first two layers for single- and double-bead walls. The
temperature obtained at the end of the second layer is much higher for the double-bead
wall, as compared to a single-bead wall. This trend is also followed for the deposition of
the complete wall.

The thermal results of the transient heat transfer analysis are in close agreement
with the experimental results of the thermocouple presented in Figure 5. The average
deviation between the experiment and simulation results are calculated by comparing the
computation instances in time. This is why the experiment results are linearly re-sampled
over time.

Average deviation =
∑n

i=1
∣∣(Texp

)
i − (Tsim)i

∣∣
n

(15)

where n is the total number of simulation time increments between the start and end of the
computation analysis that depends upon the dwell time, number of beads etc. (n range from
2151–4138 for Case 1–6), i is the current time increment, Texp is the measured temperature,
and Tsim is the simulated temperature. The largest average deviation at thermocouple 1 is
found to be 13.2 ◦C for Case 3. Table 3 shows the computation time and average deviation
at thermocouple 1 for all experiment cases.

Table 3. Experiment cases examined for thermal model validation via thermocouple.

Case No. of Beads Dwell Time (s) Computation Time Average Deviation (◦C)

1 1 0 4 h 42 min 4.2
2 1 5 5 h 41 min 5.2
3 1 10 7 h 22 min 13.2
4 2 0 8 h 36 min 5
5 2 5 9 h 5 min 6.4
6 2 10 10 h 20 min 6.6

5.2. Mechanical History

The workpiece experiences repeated thermal expansion and shrinkage behavior due to
the repeated thermal cycle of heating and cooling, respectively. This leads to the continuous
accumulation of distortion throughout the process. Figure 7 shows the final calculated
deformed configuration for a single-bead wall with no dwell time (Case 1).
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5.2.1. In Situ Distortion

The mechanical response of the workpiece is calculated by the mechanical model,
and is then compared to the experimental measurements for all cases. Figure 8 shows the
experimental results of in situ distortion at the free end of the substrate measured by LDS,
compared to the numerical results at the node corresponding to the LDS location for all
experiment cases.
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bead wall.

The laser and powder are co-focused on the substrate’s top face, and their interac-
tion leads to material fusion with a high melt-pool temperature. Due to the high thermal
diffusivity of SS 316L, the bottom face of the substrate also experiences an increase in
temperature, as shown in Figure 5, that presents thermal evolution at the thermocouple
location, but much lower than the fusion temperature. This causes a larger thermal expan-
sion at the top surface relative to the bottom surface of the substrate, causing the substrate
to deflect downwards. The downward deflection of substrate is recorded by LDS as a
decrease in distortion values, as shown in Figure 8. Once the layer deposition is finished,
the melt-pool and substrate begin to cool, leading to contraction, causing the free end of
the substrate to deflect upwards. The upward deflection of substrate is recorded by LDS as
an increase in distortion values, as shown in Figure 8.

For all experiment cases, independent of dwell time and the number of beads, it
is observed that the distortion trend and accumulation are consistent throughout the
deposition process. However, the distortion magnitude accounting for each layer starts
to decrease after the deposition of 20–22 layers, as the heat source keeps moving up from
the substrate. For SS 316L with cantilever tooling, an increase in dwell time results in a
decrease of distortion for both single- and double-bead walls. However, increasing the
number of beads results in an increase of distortion values for all dwell time cases. Figure 8
shows the numerical distortion results (SIM) both with and without stress relaxation (SR)
compared with experimental results (EXP). Table 4 shows the computation time, average
deviation (averaged over all LDS measured values), and final error (last measurement
recorded by LDS) at the LDS location for all experiment cases. Both models correctly capture
the distortion trend throughout the deposition correctly. However, the numerical model
without stress relaxation does not capture the distortion magnitude correctly, as it predicts
significantly higher levels of distortion, as compared with experiment data for all cases
(error > 50%). It captures the distortion magnitude correctly for the first few layers, but
then starts to overpredict for the subsequent layer’s deposition, suggesting that the effect of
annealing and liquefaction induced stress relaxation in LDED. Unlike the numerical model
without stress relaxation, the numerical model with stress relaxation correctly captures
both the distortion trend and magnitude for the complete deposition process (error < 10%).
This justifies the need for including the effect of liquefaction and annealing-induced stress
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relaxation in the workpiece. The numerical model with stress relaxation captures the
thermal expansion and shrinkage trends correctly, in close agreement with the experiment
results for all cases.

Table 4. Experiment cases examined for mechanical model validation via LDS.

Case No. of Beads Dwell Time (s) Computation Time
Average Deviation (mm) Error (%)

No SR With SR No SR With SR

1 1 0 10 h 45 min 0.185 0.029 52.9 3.9
2 1 5 16 h 7 min 0.25 0.06 85.3 4.9
3 1 10 18 h 37 min 0.17 0.042 57.8 9.4
4 2 0 24 h 19 min 0.12 0.069 34.7 1.8
5 2 5 28 h 41 min 0.27 0.049 57.5 5.8
6 2 10 29 h 55 min 0.313 0.041 58.9 0.3

5.2.2. Post-Process Line Distortion

The mechanical model’s calculated distortions (Figure 7) on a part scale show good
agreement with the experiment post-process distortions measured by the optical scanner,
as shown in Figure 3a, for all experiment cases.

The numerical model with stress relaxation correctly captures the post-process dis-
tortion shape and magnitude for all cases, as shown in Figure 9 (error < 15%), with the
exception of experiment Case 1 (error: 32%). One of the possible reasons for this discrep-
ancy can be attributed to the release of residual stresses during unclamping that contributes
to distortion. Perhaps this effect is not captured by the model accurately, leading to er-
ror. However, globally, the numerical model with stress relaxation performs well with
a maximum error of 15% in cases 2–4. For Cases 5–6, computation error is less than 5%.
The numerical model without stress relaxation significantly over-predicts the distortion
magnitude for all cases (error 40%). The computation error ranges from 42% (Case 3) to 93%
(Case 1), thereby justifying the need to include stress relaxation in the numerical model.
As was observed with the in situ distortion, post-process distortion also follows the same
trend—an increase in dwell time results in a decrease in post-process distortion for both
single- and double-bead walls. Furthermore, an increase in the number of beads results in
an increase in post-process distortion values for all dwell time cases. These trends are well
captured by the numerical model, and thereby shows its versatility. The final measurement
recorded by the LDS sensor before the workpiece was unclamped is marked on Figure 9.
This comparison highlights the fact that the LDS sensor and the optical 3D scanner provide
consistent values of distortion.
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6. Simulation Speed-Up

Due to the feature of the big track size in LDED, combined with the specified com-
putational time increment of R/vs, this leads to a high computation time, as given in
Tables 3 and 4. Therefore, to reduce the computation time, an elongated ellipsoid (EE) line
heat input model is employed that averages the heat source over its deposition path [26]:

QEE =
6
√

3AP
âbcπ

√
π

exp

−3(x + vs
(
t + 1

2 ∆t
)
)

2

â2 − 3y2

b2 −
3z2

c2

 (16)

where the length of each EE sub-track or segment â is [26]:

â =
vs∆t

2

√
3

log 2
(17)

Instead of taking hundreds of computational time steps employing the DE heat source,
with the EE model, large computational time steps are possible in the analysis. However,
employing such large computational time increments also leads to large computation
average deviation [26]. Therefore, it is recommended to divide the deposition scan (track
length) into multiple successive linear scans (sub-tracks) along the deposition path. For
each individual linear scan, the EE source is applied in one computational time increment.
Hence, different track sizes (sub-track) are chosen and investigated for the EE source,
as suggested in the literature [20]. Material activation from the quiet to active state is
completed with the same procedure as described in Section 4.3. Finally, a dimensionless
number KE is introduced [20] in order to compare different elongated lengths (sub-track).

KE =
vs∆t

a
(18)

Goldak’s double ellipsoid, or any other heat source model, requires KE ≤ 1 to simulate
the continuous motion of the heat source without skipping over some elements. Table 5
presents different elongated lengths and parameters used in the present work.

Table 5. Elongated ellipsoid (EE) heat source model parameters used in the present work.

KE
Computation Time Step

FEM (∆t) (s)
EE Length (â) (mm)

No. of Sub-Tracks per Layer (Wall Length/â)

1 Bead Wall 2 Bead Wall

4 0.528 9.15 6 12
8 1.056 18.3 3 6

12 1.584 27.46 2 4

With an increase of KE, the length of elongated ellipsoid (â) increases lead to a reduc-
tion in computational time steps. However, this also leads to an averaging of laser energy
over larger domains, thereby reducing the peak intensity of the elongated ellipsoid heat
source, leading to an increase in computation average deviation. For all cases with different
KE values, the numerical model can capture the trends of temperature evolution; however,
the mean and peak temperature values have been reduced to be proportional to KE, as
shown in Figure 10.

It can be noted that, with an increase in KE, the computation average thermal deviation
at the thermocouple location (global level) starts to increase, as shown in Figure 10. This
trend of increasing computation average thermal deviation with an increase in KE also
happens at the melt-pool level. However, with the introduction of KE, the computation
time is drastically reduced up to a factor of 5–10, as presented in Figure 11. A comparison of
computation time for thermal analysis is performed between the double ellipsoid (DE) and
elongated ellipsoid (EE) with different KE values. With an increase in KE, the computation
time starts to decrease for all experiment cases. Considering all experiment cases, KE = 4,
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8 appears to give better thermal results, with a maximum average thermal deviation of
100 ◦C with KE = 8. For all experiment cases, the average deviation for in situ temperature
results at the thermocouple location was less than 100 ◦C, using the elongated ellipsoid for
KE = 4, 8 values.
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Figure 11. Comparison of computation time for thermal analysis between DE and EE heat sources
with different elongated length.

For the mechanical analysis, as explained in the previous section, the layer deposi-
tion/fusion leads to a lowering of the substrate. This movement is recorded as a decrease
in the distortion values, as explained in the previous section. Due to the elongated ellipsoid
length (KE), the peak temperatures obtained during the layer deposition are significantly
reduced. This leads to a reduction in the phenomenon of the lowering of the substrate,
accounting for a decrease in distortion. Moreover, the cooling phenomenon is altered due
to the lower temperature field obtained with different KE values. For all cases, as shown in
Figure 12, with different KE values, the numerical model can capture the in situ distortion
evolution; however, the magnitude of the distortion values changes with respect to KE.
Considering all experiment cases, KE = 4, 8 appears to provide acceptable distortion results
(errors < 15%), with an exception in Case 4 (error: 33.5%), resulting in a maximum average
distortion deviation of 0.56 mm with KE = 8. For all other cases, the average deviation
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for in situ distortion is less than 0.25 mm (errors < 15%) using an elongated ellipsoid for
KE = 4, 8 values.
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However, with the introduction of the elongated ellipsoid, the reduction in computation
time follows the same trend as thermal analysis. As shown in Figure 13, for the mechanical
analysis, the computation time is reduced up to a factor of 5–10 with KE = 4, 8 values.
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Figure 13. Comparison of computation time for mechanical analysis between DE and EE heat sources
with different elongated length.

The above-mentioned numerical results (Figure 12) for in situ distortion obtained
via the elongated ellipsoid heat source show acceptable levels of accuracy, but with dras-
tically reduced computation times (Figure 13). These results are also verified with as
post-process line distortion results, as shown in Figure 14. Here, the numerical model with
KE = 4.8 values, for all experiment cases, also predicts the substrate line deformation, which
is in good agreement with the experiment results. Therefore, a thermo–mechanical model
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with a calibrated elongated ellipsoid heat source can be helpful in predicting the workpiece
deformation in a practical computation time.
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7. Conclusions

In the present work, a 3D thermo-elasto-plastic FE model is developed to analyze the in
situ and post-process distortion accumulated in the LDED process. The effect of inter-layer
dwell time and the number of beads is studied. The thermo–mechanical model is validated
for different inter-layer dwell times and the number of beads. The main conclusions of this
work are the following:

1. The computed temperature history predicted by the thermal model is in good agree-
ment. The maximum average deviation at the thermocouple location is 13.2 ◦C, in
comparison with the experiment measurements (Case 3).

2. The mechanical model with stress relaxation is in good agreement with in situ and
post-process distortion measurements. The maximum average deviation of in situ
distortion at the LDS location without the stress–relaxation model is 0.313 mm, while
with the stress–relaxation model, it is 0.041 mm, in comparison with the experiment
measurements (Case 6), with the computation average deviation reduced to a factor
of 8. The model without SR over-predicted the distortion by 35–85%, and the model
with SR yielded much higher computational accuracy (maximum error of 9.4% in
Case 3).

3. The computed distortion without stress relaxation is significantly over-estimated, as
it does not include the effects of liquefaction and process-induced annealing behavior
in LDED. However, by using the stress–relaxation model, the computed distortion is
in good agreement with the experiment results.

4. For the cantilever tooling with the SS 316L material, with an increase in the inter-
layer dwell time, distortion decreases, and with an increase in the number of beads,
distortion increases. The numerical model demonstrated its versatility by capturing
these trends with good accuracy.

5. The computation time can be reduced drastically by a factor of 10 using the EE heat
source model. Without considering the exception (Case 4 with KE = 8), the EE model
with KE = 4 and 8 values results in a maximum average deviation of 0.25 mm. The
EE model with KE = 4 and 8 values yields computation errors (LDS) of less than
15% (with the exception of Case 4). The local accuracy of the model (temperature,
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distortion) may be affected, but the global values of temperature and distortion are in
agreement with the experiment measurements.

6. Large-part simulation can be performed with a reasonable computation time when
the EE heat source model is employed.
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