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ABSTRACT
We aim to derive a simple analytic model to understand the essential properties of vertically
settling growing dust grains in laminar protoplanetary discs. Separating the vertical dynamics
from the motion in the disc mid-plane, we integrate the equations of motion for both a linear
and an exponential grain growth rate. Numerical integrations are performed for more complex
growth models. We find that the settling efficiency depends on the value of the dimensionless
parameter γ , which characterizes the relative efficiency of grain growth with respect to the
gas drag. Since γ is expected to be of the same order as the initial dust-to-gas ratio in the disc
(�10−2), grain growth enhances the energy dissipation of the dust particles and improves the
settling efficiency in protoplanetary discs. This behaviour is mostly independent of the growth
model considered as well as of the radial drift of the particles.

Key words: hydrodynamics – methods: analytical – planets and satellites: formation –
protoplanetary discs.

1 IN T RO D U C T I O N

In this series of papers, we study the dynamics of growing dust
grains in protoplanetary discs. In the two previous papers (Laibe
et al. 2013a,b, hereafter Paper I and Paper II, respectively), we
have shown how grain growth interplays with the radial drift of
the grains and can lead to situations where the dust particles are
accreted on to the central star (the so-called radial-drift barrier) or
survive in the disc. These studies assumed that the radial and the
vertical motion of grains can be decoupled since they occur on very
different time-scales. Grains radial drift was therefore derived as if
the grains motion occurred only in the disc mid-plane.

However, in addition to their radial evolution, grains experience
a vertical motion that results from the balance between the ver-
tical component of the central star’s gravity and of the gas drag.
Dust particles settle more or less efficiently to the mid-plane of
the disc depending on their size. This motion is therefore called
vertical settling. By definition, vertical settling consists of the dust
motion in a laminar flow. When the disc is turbulent, the particles
are stirred out of the disc mid-plane in a process called vertical
stirring. However, turbulence is not a purely diffusive noise since
turbulent fluctuations are correlated. Studying laminar flows is
therefore important, as it provides the limit at infinitely large corre-
lation times.

� E-mail: guillaume.laibe@gmail.com

The vertical settling of grains with constant sizes has been studied
theoretically in various papers (see e.g. Garaud, Barrière-Fouchet
& Lin 2004; Barrière-Fouchet et al. 2005). Vertical dust evolution
depends essentially on the s/sopt ratio (sopt being the optimal size of
migration introduced in Paper I) but weakly on the ratio φ between
the scaleheight H and radius r, since φ is in a range of 10−2−10−1 for
cold protoplanetary discs. The dynamics of large grains is driven
by two time-scales: a typical settling time equal to the stopping
time ts, which characterizes the response time of a grain to the
gas drag, and a pseudo-period of oscillations about the mid-plane
which is of order tk, the Keplerian time-scale. Mid-sized grains
have a typical settling time of tk � ts (thus, the settling occurs in
approximately one orbit). Two time-scales can also be distinguished
for the vertical motion of small grains: the stopping time ts and the
typical settling time t2

k /ts, which increases for decreasing grain
sizes. Fastest sedimentation occurs for the critical regime, i.e. for
tk � ts. This regime corresponds to a typical grain size of 1 m at
1 au in the theoretical minimum mass solar nebula model and 1 cm
at 50 au in observed classical T-Tauri star discs.

The vertical settling of dust is strongly affected by grain growth.
In this paper, we aim to quantify the efficiency of the vertical settling
of growing dust grains. Although the study is instructive and sim-
ple in comparison to the one on the radial evolution, we have not
found any analytic results on the topic in the literature. We first
recall the main properties of the settling of non-growing grains in
Section 2. We then generalize the harmonic oscillator approxima-
tion for non-growing grains, which we integrate analytically for
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both a linear and an exponential growth model, as well as numer-
ically for other physical growth models. The results are shown to
be mainly independent of the growth model considered. Moreover,
the studies of both the radial and vertical motion of growing grains
performed, respectively, in Papers I, II and in this paper are based
on the assumptions that the motions in the disc mid-plane and in
the vertical direction are decoupled. We test the validity of this
assumption in Section 4 and present our conclusions in Section 5.

2 V E RT I C A L S E T T L I N G O F N O N - G ROW I N G
G R A I N S

The disc is a thin, non-magnetic, non-self-graviting, inviscid per-
fect gas disc which is vertically isothermal. Its radial surface density
and temperature are described by power-law profiles. The flow is
laminar and in stationary equilibrium. Consequently, the gas veloc-
ity and density are described by well-known relations, which we
presented in Paper I. Notations are described in Appendix A. The
equation of motion for dust grains in protoplanetary discs are given
by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dṽr

dT
− ṽ2

θ

R
+ ṽr

S0
R

−
(

p+ 3
2

)
e

− Z2

2R3−q + R

(R2+φ0Z2)3/2 = 0

dṽθ

dT
+ ṽθ ṽr

R
+

ṽθ −
vuut 1

R −η0R−q−q

(
1
R − 1√

R2+φ0Z2

)

S0

× R
−

(
p+ 3

2

)
e

− Z2

2R3−q = 0

d2Z
dT 2 + 1

S0

dZ
dT

R
−

(
p+ 3

2

)
e

− Z2

2R3−q + Z

(R2+φ0Z2)3/2 = 0.

(1)

These equations depend on five control parameters (η0, S0, φ0, p, q)
which are the initial dimensionless accelerations due to the pressure
gradient, initial dimensionless grain size, initial disc aspect ratio and
exponents of surface density and temperature profiles, respectively.

Here we derive approximate solutions for the vertical motion
of dust grains. This motion depends on the radial distance from
the central star and is thus coupled to the grains radial evolution.
However, its general behaviour is well reproduced by separating
both radial and vertical motions (i.e. all quantities are taken at
r = r0, i.e. R = 1, see below for the justification). The equation
of grain dynamics on the ez axis is given by the following Lienard
equation:

Z̈ + e− Z2
2

S0
Ż + Z(

1 + φ0Z2
)3/2 = 0. (2)

To O(φ2
0 ) (for a thin disc) and O(Z2) (for particles close to the disc

mid-plane), or equivalently, performing a linear expansion of this
equation near its fixed point (Ż = 0, Z̈ = 0) this becomes

Z̈ + 1

S0
Ż + Z = 0, (3)

which implies that near this fixed point, grain dynamics are equiva-
lent to the damped harmonic oscillator. Fig. 1 compares the vertical
motion of the dust particles given the harmonic oscillator approxi-
mation (equation 3) and the general case (equation 2), and show that
the harmonic oscillator approximation is justified. Moreover, given
the sizes S0 of the dust particles, the three characteristic regimes
of the damped harmonic oscillator can then be distinguished as
follows:

Figure 1. Vertical motion of a non-growing dust particle starting at Z0 = 1
with S0 = 10−2 (top), S0 = 1 (centre) and S0 = 102 (bottom) obtained
by numerical integration. The solid lines represent the damped harmonic
oscillator motion (equation 3) and dashed lines the general case (equation 2)
for φ0 = 0.01. Note the different time-scale in the centre plot.

(i) S0 > 1/2: underdamped oscillator⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(T ) = e
− 1

2S0
T [A cos(λT ) + B sin(λT )]

λ =
√

1 −
(

1
2S0

)2

A = Z(0)

B = 1
λ

(
1

2S0
Z (0) + Ż (0)

)
.

(4)

(ii) S0 = 1/2: critical regime

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Z (T ) = (A + BT ) e−T

A = Z (0)

B = Z (0) + Ż (0) .

(5)

(iii) S0 < 1/2: overdamped oscillator

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z (T ) = Aeλ+T + Beλ−T

λ± = − 1
2S0

±
√(

1
2S0

)2
− 1

A = Z (0) + λ+Z(0)−Ż(0)
λ−−λ+

B = − λ+Z(0)−Ż(0)
λ−−λ+ .

(6)

The vertical settling of a grain occurs on a dimensionless time-
scale that is shorter than the migration time-scale. From equa-
tion (6) (respectively, equation 4), for small (respectively, large)
grains, the dimensionless settling time is 1/S (respectively, S). The
fastest sedimentation occurs for the critical regime, i.e. for S = 1/2
(equation 5). A good approximation for the typical settling time Tset

is therefore

Tset � 1 + S2

S
. (7)
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The typical migration time is obtained from equation 16 of Laibe,
Gonzalez & Maddison (2012) estimating R/ dR

dT
at R = 1, providing

Tmig � 1 + S2

η0S
, (8)

Tset/Tmig = O(η0) � 10−2, settling is almost a hundred times faster
than migration and both the vertical and the radial motion are de-
coupled (Garaud et al. 2004).

3 V E RT I C A L S E T T L I N G O F G ROW I N G
G R A I N S

3.1 Growth models

In the case of growing grains, the ratio ts
tk

of the drag ad the Keplerian
time-scales evolves, changing the vertical evolution of the particles.
Following the same format as in Papers I and II and the notations
in Appendix A, we have

St(T ) = ts

tk
= s

ρgcs

ρd	k

= s

sopt
= S(T )Rpe

Z2

2R3−q , (9)

where 	k is the Keplerian frequency and cs, ρg, ρd the gas sound
speed, the gas density and the dust density, respectively. As with
the settling of non-growing grains, we assume first that the vertical
motion occurs much faster than the radial motion, implying that
R = 1 during the grain’s settling and secondly, we assume that the
oscillations are sufficiently close to the disc mid-plane (Z � 1)
during the evolution. For non-growing grains, we have seen that
these assumptions have a negligible impact on the vertical evolution.
Thus, equation (9) reduces to

St(T ) = S(T ). (10)

Substituting S0 by S in equation 3 provides the differential equation
which governs the vertical motion of the grains:

Z̈ + 1

S (T )
Ż + Z = 0. (11)

The evolution of S(T) is governed by the growth rate of the particles.
Several models of grain growth have been introduced and studied
in Paper II. Importantly, it is explained that for a cold disc at Z � 1
the growth rate of the particles is of the form

dS

dT
= γ f (S), (12)

where f is a function of the grain size which depends on the models
for the relative turbulent velocities between the particles and the
scaleheight of the dust layer considered. As discussed in Paper II,
γ is of order ε0, the initial dust-to-gas ratio of the disc, which is
� 10−2 in protoplanetary discs. With the most recent models of dust
and gas turbulence modelling (see Paper II for a discussion), f is of
the form

f (S) = S

1 + S
� Syg , (13)

with yg = 1 for S � 1 and yg = 0 for S � 1. f often reduces to a
simple power law of exponent yg when treating the small and the
large grains separately. In this case, as discussed in Paper II, yg can
take values of order unity in the case of realistic growth rates and
differs from the case S � 1 to the case S � 1. The size evolution is
thus given by

S(T ) =
(

(−yg + 1)γ T + S
−yg+1
0

) 1
−yg+1

, (14)

if yg �= 1 and

S(T ) = S0eγ T, (15)

if yg = 1. The case yg = 0 (linear growth, equation 19 of Paper I)
corresponds to the limit of the large grains in equation (13) and the
case yg = 1 to the limit of the small grains. It is also straightforward
to derive the general expression of the size evolution to the power-
law toy model (equation 23) used in Paper I.

3.2 Linear growth model

We investigate the coupling between the growth and the settling
using the simplest linear growth model from equation (14) with
yg = 0 giving

Z̈ + 1

S0 + γ T
Ż + Z = 0. (16)

To solve this differential equation, we introduce the auxiliary func-
tion ς (T) such that

Z (T ) = ς (T ) × e
− 1

2

∫ T
0

dτ
S0+γ τ = ς (T ) ×

(
1 + γ T

S0

)− 1
2γ

.

(17)

Hence, Z(T) is the product of two functions: (1 + γ T

S0
)−

1
2γ and a

function ς which satisfies

ς̈ + I (T ) ς = 0, (18)

with

I (T ) = 1 − 1

4

1 − 2γ

(S0 + γ T )2 . (19)

The general solution of equation (18) with (19) is

ς (T ) = C1

√
S0 + γ T J 1

2
γ−1
γ

(
S0 + γ T

γ

)

+ C2

√
S0 + γ T Y 1

2
γ−1
γ

(
S0 + γ T

γ

)
, (20)

where Jν and Yν are the Bessel functions of first and second kind
of order ν, and C1, C2 are constants determined by the initial con-
ditions. Therefore, the solution of equation (16) is

Z (T ) =
(

1 + γ T

S0

)− 1
2γ

[
C1

√
S0 + γ T J 1

2
γ−1
γ

(
S0 + γ T

γ

)

+ C2

√
S0 + γ T Y 1

2
γ−1
γ

(
S0 + γ T

γ

)]
. (21)

If Z(T = 0) = Z0 and Ż(T = 0) = 0, the constants C1 and C2 are
given by

C1 = − Z0

S
3/2
0

(γ − 1)Y γ−1
2γ

(
S0
γ

)
− S0Y 3γ−1

2γ

(
S0
γ

)
Y 3γ−1

2γ

(
S0
γ

)
J γ−1

2γ

(
S0
γ

)
− Y γ−1

2γ

(
S0
γ

)
J 3γ−1

2γ

(
S0
γ

)
(22)

and

C2 = Z0

S
3/2
0

(γ − 1)J γ−1
2γ

(
S0
γ

)
− S0J 3γ−1

2γ

(
S0
γ

)
Y 3γ−1

2γ

(
S0
γ

)
J γ−1

2γ

(
S0
γ

)
− Y γ−1

2γ

(
S0
γ

)
J 3γ−1

2γ

(
S0
2γ

) .

(23)

The sign of the function I(T), for which we have dI/dT = 1
2 γ (1 −

2γ )/(S0 + γ T )3, provides information on the oscillating behaviour
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of the solution. Thus, three cases can be distinguished, separated by
the critical value for settling γc,s = 1

2 :

(i) 0 < γ < γc,s = 1
2 and dI/dT > 0. I increases from its initial

value I(T = 0) < 1 and lim
T →+∞

I = 1. If S0 > 1
2

√
1 − 2γ , then

I(T = 0) > 0 and I is positive at all times: the solution is always
pseudo-oscillating. The dust particle is always decoupled from the
gas as the size can only increase and the dust evolution follows
the large grain regime. This is of minor interest in the context of
growing grains. We therefore consider the interesting case S0 <
1
2

√
1 − 2γ , for which I(T = 0) < 0 and I becomes positive for

T >
1
2
√

1−2γ−S0

γ
: the solution transitions from a monotonic decay to

a pseudo-oscillating regime, indicating that particles decouple from
the gas.

(ii) γ = γc,s = 1
2 and dI/dT = 0. In this limiting case, I(T) = 1

for all time. Phase lag due to damped oscillations is exactly coun-
terbalanced by the decrease of the drag caused by grain growth.

(iii) γ > γc,s = 1
2 and dI/dT < 0. I decreases from its initial

value I(T = 0) > 1 and lim
T →+∞

I = 1. Since I is always greater than

1, the solution is pseudo-oscillating at a frequency larger than the
Keplerian frequency.

The envelope of the solution, which determines the damping of

the dust’s vertical motion, is given by the product of (1 + γ T

S0
)−

1
2γ ,√

S0 + γ T and the envelope of the Bessel functions. While not
transparent, it is qualitatively interpretable. The dust behaviour for
different values of γ are shown in Fig. 2 for S0 = 10−2. We focus on
initially small grains (S0 � 1) because they correspond to the grains
which originate in the interstellar medium and are involved in planet
formation. In the case of the slow growth regime (γ < 1/2), the
vertical dust motion is damped efficiently: particles settle to the mid-
plane of the disc before they have time to grow and decouple from
the gas. However, as grains decouple slowly from the gas as they
settle, drag becomes weaker. Thus, dust settling occurs faster than
for non-growing grains and the settling rate increases for increasing
values of γ . On the contrary, in the fast growth regime (γ > 1/2),
dust particles grow fast enough to decouple from the gas before they
feel the gas drag and their settling time-scale becomes much longer.
In this case, the settling time of the grain increases dramatically
with γ since an asymptotic expansion of equation (21) for γ � 1

Figure 2. Vertical motion of a growing dust particle with time T starting at
Z0 = 1 with S0 = 10−2 and γ = 5 × 10−3, 5 × 10−2, 0.5, 2 and 20. The
most efficient settling is obtained for γ = 1/2.

Figure 3. Evolution of the total energy for dust particles starting at Z0 = 1
with S0 = 10−2 and γ = 0 (no growth), 5 × 10−3, 5 × 10−2, 1/2, 2 and
20. The most efficient dissipation corresponds to the most efficient settling
obtained for γ = 1/2.

provides Tsett = O(eγ /γ ). In the intermediate case (γ = 1/2), dust
particles grow in the same time-scale as they settle to the mid-plane
where they decouple from the gas. This corresponds to the most
efficient regime of settling.

Additionally, Fig. 3 shows the evolution of the total energy E
given by

E = 1

2

(
Ż2 + Z2

) = E(T = 0) −
∫ T

0

Ż2

S(T ′)
dT ′, (24)

for different values of the growth parameter γ . Even small values of
γ (e.g. 5 × 10−3 or 5 × 10−2 which correspond to real protoplanetary
discs) provide a dissipation which is more efficient than for the case
without any growth. The most efficient dissipation corresponds to
the most efficient settling obtained for γ = 1/2. Increasing again
the value of γ leads to a less efficient dissipation process. In the
limit of large values of γ , the particles decouple so quickly from
the gas that the dissipation is even less efficient than for the case
without any growth.

3.3 Other growth models

We can also integrate the vertical motion of the grains for several
growth models: specifically power laws with yg = 1, −0.5, 0.5
and growth rate given by the function f of equation (13). For the
exponential growth rate model (yg = 1), we derive analytically the
evolution of the dimensionless vertical coordinate, which is given
by

Z (T ) =
[
B1e

π
γ

(
γ S0e

γ t
) i

γ M
(
− i

γ
, −2i+γ

γ
, e−γ t

γ S0

)
+ B2e

−π
γ

(
γ S0e

γ t
)− i

γ M
(

i
γ
, 2i+γ

γ
, e−γ t

γ S0

))
,

(25)

where i2 = −1, B1,2 are constants which are determined by the
initial conditions, and M(a, b, z) is the M-Kummer confluent hy-
pergeometric function of indices a and b with respect to z.

For the other growth models, we did not manage to derive the
evolution analytically and therefore we must integrate the equations
numerically.

Fig. 4 shows the vertical behaviour of the particle with
γ = 5 × 10−2 (similar plots with γ = 0.5 and γ = 5 are shown in
Appendix B).
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Figure 4. Vertical motion of a growing dust particle starting at Z0 = 1 with
S0 = 10−2 and γ = 5 × 10−2 for different growth models.

Smaller values of yg provide a more efficient settling of the par-
ticles because small grains grow faster. Moreover, the exponential
growth provides a good approximation of the function f in the case
of small values of γ (particles settle having mainly S < 1), whereas
the linear growth provides a good approximation of the function
f in the case of large values of γ (particles settle having mainly
S > 1). However, overall, the nature of settling for the different
growth models is very similar. In particular, for γ = 5 × 10−2, the
grains settle much faster than in the case without any growth. There-
fore, the conclusion that grain growth enhances vertical settling’s
efficiency in protoplanetary discs hold whatever the growth model
considered.

4 C O M B I N I N G T H E R A D I A L A N D T H E
V E RT I C A L M OT I O N

In the studies performed in Papers I, II and in this paper, we found
two interesting values of the growth rate γ : γ = η0 (giving � = 1)
and γ = 1/2, corresponding, respectively, to the optimal values of
γ for the migration and the vertical settling process. The parameter
space can therefore be divided in three regions as shown in Fig. 5:
γ < η0 (region 1), η0 < γ < 1/2 (region 2) and γ > 1/2 (region 3),
noting that O(η0) < 1/2 for real discs. In each of these regions, the

Figure 5. Illustration of the relative efficiency of the vertical and radial
behaviour of growing dust grains for different values of the growth rate γ ,
all the other parameters being fixed. The parameter space is divided in three
regions delimited by the white zones indicating an optimal dynamics for the
vertical and the radial motion.

Figure 6. Trajectories in the (R, Z) plane of dust grains starting at (R = 1,
Z = 0.1) after a time T = 240 (thick lines) and 628 (thin lines) with S0 = 10−3,
η0 = 10−2, p = 3/2, q = 3/4, n = 1 and γ = 10−4, 10−3, 5 × 10−2, 1/2,
10, 102 (from top to bottom).

efficiency of the vertical (respectively, radial) motion is represented
by the brightness of the top (respectively, bottom) colour bar. Impor-
tantly, this plot provides an indication of the relative efficiencies of
the migration and settling processes, all the other parameters being
fixed. It does not, however, predict the grains final state (decoupling
at a finite radius, pile-up or accretion on to the star) but support
the hypothesis of the decoupling between the radial and the vertical
motions.

Until now, we have assumed that the grains radial and verti-
cal motion are decoupled. We test this hypothesis by numerically
integrating the combined vertical and radial equations of motion
(equation 1) in three dimensions, substituting S0 by S(T). The re-
sulting trajectories in the RZ plane for γ = 10−4, 10−3, 5 × 10−2,
1/2, 10 and 100 are shown in Fig. 6. We studied the case of η0 = 10−2

with p = 3/2, q = 3/4, n = 1 and S0 = 10−3. We find that the most
efficient value of γ to reach Rf = 0.01 is γ c,m = 0.050, which
corresponds to a time Tf = 240.

In region 1 of Fig. 5, particles with small growth rates (γ < γ c,m)
settle to the mid-plane and then migrate towards the central star.
Growth is not efficient enough to make the particles decouple from
the gas before they reach the inner region of the disc. The migration
efficiency is optimal for γ = γ c,m. In region 2 of Fig. 5, grains with
intermediate growth rates (γ c,m < γ < γ c,s = 1/2) grow as they
settle to the mid-plane, radially migrate, but they decouple from
the gas before reaching the central star and therefore experience
an extremely slow migration motion. When γ = γ c,s = 1/2 (the
border of regions 2 and 3 of Fig. 5), the growth is optimal and
particles decouple from the gas just as they reach the mid-plane.
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Figure 7. Radial grain size distribution obtained with our SPH code after
105 yr for γ = 10−4, 10−2, 1/2 and 10. Dark blue: gas. Light blue: dust.
Thinner disc distributions are obtained when the ratio between the growth
time-scale is the same as the optimal settling time-scale (γ = 1/2).

Thus, particles migrate slightly while efficiently settling to the mid-
plane (the envelope of vertical oscillations decreases very quickly).
In region 3 of Fig. 5, the larger growth rates (γ > γ c,s = 1/2)
ensure that particles grow very efficiently and rapidly decouple
from the gas. They do not settle to the mid-plane (as there is no
gas damping once they decouple from the gas phase) and they
experience a very small migration motion. In all cases, the vertical
motion occurs much faster than the radial motion and the predictions
done assuming that both motions are decoupled hold.

To pedagogically illustrate the effect of the linear growth rate dis-
cussed in Section 3.2 on the resulting dust distribution in protoplan-
etary discs, we also run simple simulations with the 3D two-phase
(gas and dust) smoothed particle hydrodynamics (SPH) code de-
scribed in Barrière-Fouchet et al. (2005) with an initial setup similar
to the one described in Laibe et al. (2008). We start with a uniform
grain size s0 = 10 µm (which corresponds to S0 = 10−3 at 50 au) in
a disc where η0 = 10−2 at 5 au. The different evolutionary regimes
predicted by the constant growth rate model and summarized in
Fig. 5 are seen in the radial dust distribution in edge-on views of
the disc shown in Fig. 7. For γ = 10−4, particles experience only
weak vertical settling which is characteristic of small grains. Their
migration rate is also slow and thus they remain radially extended
throughout the disc. For γ = 10−2, both the vertical settling and the
radial migration are very efficient. The particles close to the inner
disc edge are rapidly accreted. However, for particles far from the
inner edge, the pile-up is efficient enough to strongly retard the in-
ward motion. For γ = 1/2, particles settle very efficiently to the disc
mid-plane (minimum disc thickness). The less efficient migration
also provides a larger disc. Grains which are not near the disc inner
edge experience a slow migration regime and are not depleted. For
γ > 1/2, growth occurs very rapidly: grains decouple from the gas
in a fraction of an orbit and effectively remain on fixed Keplerian
orbits and hence are distributed over the entire disc.

These different dust behaviours can also be illustrated by using
the Lagrangian property of the SPH formalism and plotting tra-

Figure 8. Trajectories in the (r, z) plane of individual SPH dust particles
for γ = 10−2, 1/2 and 10. Top: the migration is highly efficient (the growth
time-scale is of order the migration time-scale), contrary to the settling.
Centre: the settling efficiency is optimal (the growth time-scale of order
the optimal settling time-scale), but the migration is no longer efficient.
Bottom: particles are almost instantaneously decoupled from the gas and
are Keplerian orbits.

jectories of SPH dust particles for different values of γ in the RZ
plane (see Fig. 8). For γ = 10−2, we see the particles fall to the
mid-plane and migrate radially. When γ = 1

2 , the vertical settling
is very efficient, but the migration is not and the values of p and
q cause the dust to pile up radially. When γ > 1

2 , the migration is
completely inefficient for the grains to reach the inner discs regions.
When γ = 10, particles rapidly decouple from the gas and remain
on inclined elliptical Keplarian orbits and can be seen oscillating
about the disc mid-plane.

We also plot the dust size distribution obtained after approxi-
mately 105 yr in Fig. 9. With our initial choice of (p, q) = ( 3

2 , 3
4 )

this ensures that −p + q + 1
2 < 0 and thus grains remain in the

disc. Note however that the SPH disc is truncated at rin = 20 au
for reasons of computational efficiency. Thus, grains can be lost
from the simulation if the time taken to reach rin is smaller than the
simulation duration. For γ = 10−4, particles close to the inner edge
are lost, whereas for γ = 10−2 the grains pile-up in the inner disc re-
gions, staying beyond ∼25 au. For the largest values of γ , particles
decouple very quickly from the gas and remain distributed through-
out the disc. The thickness of the size distribution corresponds to
the dependency of sopt with respect to z due to the vertical density
profile. This is smallest for γ = γ c,s = 1/2, for which vertical set-
tling is most efficient and the dust disc is thinnest. As a conclusion,
we find that the assumption of decoupling the radial and the vertical
motion of the grain is verified both in our direct integration of the
equations of motion (see Fig. 6) and in our SPH simulations (see
Fig. 8).

5 C O N C L U S I O N S A N D P E R S P E C T I V E S

In this paper, we have studied the vertical settling of growing dust
grains in protoplanetary discs, using different rates for the grain
growth and integrating the equations of evolution both analytically
and numerically. The main results of the study are as follows.

(i) The vertical motion of growing dust grains is governed by the
value of the dimensionless parameter which represents the relative
efficiency between the growth and the drag, which we denote by γ .
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Figure 9. Radial grain size distribution obtained with our SPH code after
105 yr for γ = 10−4, 10−2, 1/2 and 10. Distinct shapes are seen in the
grains size distributions, with the thickness of the profile related to the
vertical spreading of the grains. For γ = 10−4, particles near the inner edge
are accreted. For γ = 10−2, the migration is more efficient and particles
that were initially far from the inner edge are piling up. For γ = 1/2, the
settling is optimal (hence the thin profile) but migration is not efficient. For
γ = 10, particles decouple almost instantaneously and follow the initial gas
distribution.

In protoplanetary discs, γ is of the same order as the initial dust-
to-gas ratio of the disc ε0, which is of order 10−2. This implies that
the growth is not too efficient (the effective γ being much smaller
than the critical value of 1/2) enabling particles to settle towards
the disc mid-plane where they concentrate.

(ii) All the growth models we have tested give essentially the
same behaviour as the linear growth model. We therefore suggest
that the results of this study are generalizable and that the solution
we derive provides a good analytic prescription for the vertical
evolution of the particles.

(iii) Simultaneously integrating both the radial and the vertical
motion of the particles shows that the vertical settling of the particles
occurs much faster than the radial drift of the particles, justifying the
assumption of separating the radial drift and the vertical settling.
This is a standard and well-known result for non-growing grains
(see e.g. Garaud et al. 2004), we have shown that it also holds for
growing grains.

(iv) Combining the results for the radial drift with the study of the
vertical settling of dust grains, we distinguish three major regimes
for growing grains: γ < η0, η0 < γ < 1/2, 1/2 < γ , the first
two being the most relevant for the context of planet formation.
Initially, small grains grow as they settle to the mid-plane, the
settling motion being faster than for non-growing grains. Varying
γ results in distinct profiles for the grain size distribution as well as
their spatial distributions.

Importantly, dust concentration of growing grains in the disc
mid-plane has been proven to occur when the disc is laminar. If not,
turbulent fluctuations from the gas may spread the dust particles out
of the disc mid-plane. This vertical stirring is widely supposed to
prevent grains to concentrate in the disc mid-plane and form planet

by gravitational instability for non-growing grains. This issue will
be addressed in the case of growing dust grains in a forthcoming
paper.
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A P P E N D I X A : N OTAT I O N S

The notations and conventions used throughout this paper are sum-
marized in Table A1.

Table A1. Notations used in the paper.

Symbol Meaning

M Mass of the central star
g Gravity field of the central star
r0 Initial distance to the central star
ρg Gas density
ρ̄g(r) ρg(r, z = 0)
cs Gas sound speed
c̄s(r) cs(r, z = 0)
cs0 Gas sound speed at r0

T Dimensionless time
T Gas temperature (T0: value at r0)
�0 Gas surface density at r0

p Radial surface density exponent
q Radial temperature exponent
P Gas pressure
vk Keplerian velocity at r
vk0 Keplerian velocity at r0

H0 Gas scaleheight at r0

φ0 Square of the aspect ratio H0/r0 at r0

η0 Sub-Keplerian parameter at r0

s Grain size
S Dimensionless grain size
S0 Initial dimensionless grain size
y Grain size exponent in the drag force
vg Gas velocity
v Grain velocity
ρd Dust intrinsic density
md Mass of a dust grain
ts Drag stopping time
ts0 Drag stopping time at r0
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APPENDIX B: SETTLING WITH DIFFERENT
G ROW T H M O D E L S

Figs B1 and B2 show the vertical evolution of particles for different
growth models. No significant differences are found between the
models.

Figure B1. Vertical motion of a growing dust particle starting at Z0 = 1
with S0 = 10−2 and γ = 1/2 for different growth models. No significant
differences are found between the different models.

Figure B2. Vertical motion of a growing dust particle starting at Z0 = 1
with S0 = 10−2 and γ = 5 for different growth models. No significant
differences are found between the different models.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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