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ABSTRACT

In a series of papers, we present a comprehensive analytic study of the global motion of
growing dust grains in protoplanetary discs, addressing both the radial drift and the vertical
settling of the particles. Here we study how the radial drift of dust particles is affected
by grain growth. In a first step, toy models in which grain growth can either be constant,
accelerate or decelerate are introduced. The equations of motion are analytically integrable
and therefore the grains dynamics is easy to understand. The radial motion of growing grains
is governed by the relative efficiency of the growth and migration processes which is expressed
by the dimensionless parameter A, as well as the exponents for the gas surface density and
temperature profiles, denoted by p and g, respectively. When A is of the order of unity, growth
and migration are strongly coupled, providing the most efficient radial drift. For the toy models
considered, grains pile up when —p + g 4 1/2 < 0. Importantly, we show the existence of a
second process which can help discs to retain their solid materials. For accelerating growth,
grains end up their migration at a finite radius, thus avoiding being accreted on to the central
star.

Key words: hydrodynamics —methods: analytical —planets and satellites: formation—

protoplanetary discs — dust, extinction.

1 INTRODUCTION

Various mechanisms have been suggested to explain the formation
of hundred metre-sized bodies called planetesimals found in proto-
planetary discs. Goldreich & Ward (1973) proposed that planetesi-
mals could form directly by gravitational collapse when dust settles
and concentrates in the midplane. While this leads to rapid plan-
etesimal formation, the process requires a large dust-to-gas ratio,
which is prevented by the Kelvin—Helmholtz instability (Cuzzi, Do-
brovolskis & Champney 1993; Garaud & Lin 2004; Chiang 2008;
Barranco 2009; Lee et al. 2010a,b). Other processes have there-
fore been suggested, such as the streaming instability due to the
collective effects of dust (Goodman & Pindor 2000; Youdin &
Goodman 2005; Bai & Stone 2010a,b; Jacquet, Balbus & Latter
2011), followed by gravitational instability (Johansen et al. 2007)
or turbulent concentration between eddies (Cuzzi, Hogan & Shariff
2008; Shi & Chiang 2013). Whatever the mechanism, planetesi-
mal formation requires the presence of smaller primitive bodies
called pre-planetesimals. The existence of our own Solar system
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and of extrasolar planets, now commonly observed, obviously im-
plies that at least in some protoplanetary discs pre-planetesimals can
form.

Pre-planetesimals are thought to form by grain coagulation:
sub-micron-sized dust particles which originated in the interstel-
lar medium or condensed out of the newly formed nebula collide
and stick under the influence of the Van der Waals interaction (e.g.
Chokshi, Tielens & Hollenbach 1993; Cuzzi et al. 1993; Blum &
Wurm 2008). Recent observations of protoplanetary discs (Testi
et al. 2003; Apai et al. 2005; Lommen et al. 2007; Ricci et al.
2010) confirm the presence of small growing grains which can
reach at least centimetre sizes (e.g. Wilner et al. 2003; Lommen
et al. 2009). It has been difficult, however, to explain how grains
could form bodies larger than a typical size of ten centimetres
without bouncing or fragmenting (Blum & Wurm 2008; Chiang &
Youdin 2010). Recently, a novel scenario which includes a realistic
probability distribution function for the dust velocities overcomes
this issue (Garaud et al. 2013). However, the question of the nature
of the global evolution of grains in protoplanetary discs remains
open.

Although the dynamics of non-growing dust grains in discs has
been well studied (Weidenschilling 1977; Nakagawa, Sekiya &
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Hayashi 1986; Youdin & Shu 2002; Laibe, Gonzalez & Maddison
2012, hereafter W77, NSH86, YS02 and LGM 12, respectively), nu-
merical studies describing the evolution of growing grains are more
recent (Schmitt, Henning & Mucha 1997; Stepinski & Valageas
1997; Suttner, Yorke & Lin 1999; Tanaka, Himeno & Ida 2005;
Dullemond & Dominik 2005; Klahr & Bodenheimer 2006; Garaud
2007; Brauer, Dullemond & Henning 2008; Laibe et al. 2008; Birn-
stiel, Dullemond & Brauer 2009, 2010). Generally, for reasons of
computational cost, a compromise between degrees of refinement
of the disc hydrodynamics and the grain growth treatment is re-
quired: 2D or 3D studies usually have a rather crude growth model
whereas works with a more sophisticated growth treatment are gen-
erally only 1D. The main result of these studies is that grain growth
occurs very quickly (micron-sized particles reach centimetre sizes
in a few 1000 yr). Such behaviour implies that the formation of
millimetre-sized bodies in protoplanetary discs is very easy. Impor-
tantly, Brauer et al. (2008) overturned the commonly held idea that
all the dust particles are accreted on to the central star once they
reach a size for which the radial migration velocity is largest (the
so-called ‘radial-drift barrier’). Indeed, if the growth time-scale is
smaller than the migration time-scale of the grains, the growth is
efficient enough for the grains to decouple from the gas before being
accreted by the central star.

In our recent study (Laibe et al. 2012), we revisited the classical
theory of the so-called ‘radial-drift barrier’, highlighting the role
of both the drag-dominated (or A mode) and the gravity-dominated
(or B mode) migration and showing that the grain pile-up efficiently
prevents accretion of grains on the host star where the disc structure
of observed discs is considered. YS02 already found this result for
the A mode; we generalized it to the B mode, motivated by the
importance of this regime when grains are growing. The results
of this study therefore suggest that the radial-drift barrier may not
be systematic for growing grains as well. However, the existing
analytical derivations of growing grains — e.g. in Garaud (2007),
Brauer et al. (2008) and Laibe et al. (2008) — are not refined enough
to quantitatively constrain which discs are able to retain their grains
and allow planetesimals to grow.

In a series of papers (hereafter Papers I, II, III), we study ana-
lytically the dynamics of growing grains, namely their radial drift
and vertical settling. In this paper (Paper I), we focus on the radial
motion of the grains, starting with toy models of grain growth. The
results and the concepts introduced during this study are indeed of
great help for understanding physical growth models. We introduce
the equations of motion in Section 2 and consider the toy growth
models in Section 3. We derive the radial evolution in the case of lin-
ear grain growth in Section 4 where we explain some fundamental
features of the grain evolution. Finally, we highlight the importance
of accelerating growth rates on the dust radial motion in Section 5,
studying growth as a power law. Paper II extends this study to the
case of realistic growth models and Paper III deals with the vertical
settling of growing grains.

2 RADIAL DRIFT OF NON-GROWING GRAINS

2.1 Equations of motion

Let us first consider some important properties of the dynamics of a
non-growing grain in laminar non-magnetic and non-self-graviting
protoplanetary discs (the study of a turbulent disc is beyond the
scope of this paper). Grain dynamics is dominated by two forces:
the central star’s gravity, which tends to make grains orbit in a
Keplerian manner, and interactions with gas particles, which are

macroscopically represented by a drag force. If a dust grain has a
velocity which is different to that of the gas, it experiences a drag
force which tends to damp this differential velocity. The expression
of the gas drag in the Epstein regime is given by

Fd = HIA Av,
s
s = Las (1)
PeCs ’

where my is the dust grain’s mass, f; the stopping time, p, the gas
density, ¢, the local gas sound speed, pq4 the intrinsic dust density,
s the grain size and Av = vy — v, the differential velocity between
dust and the mean gas motion. In this study, we do not consider the
Stokes drag. Indeed, when solid bodies are large enough to migrate
in this friction regime, they are not expected to grow by hit-and-
stick collisions. However, the mathematical formalism remains the
same and the results can be easily translated from one regime to the
other one as in LGM12.

Seminal studies of dust dynamics were conducted by Whipple
(1972), W77, Weidenschilling (1980) and NSH86, and extended by
others (Takeuchi & Lin 2002; Haghighipour & Boss 2003; Garaud,
Barriére-Fouchet & Lin 2004; Youdin & Chiang 2004). Here we
recall the major points of those studies. The equation of motion of
the grain is given by
%—i—i(vd—vg)—l—gzo. )
We now use the notations and the dimensionless quantities intro-
duced in LGM12 and given in Appendix A. The radial surface
density ¥ and temperature 7 profiles are described by power laws
Y o« R”and 7 o« R™4. The physical relations are written in cylin-
drical coordinates (r, 6, 7). The equation of motion of such grains
is given by (see LGM12)

- =2 - 3 72
dy % ﬁ[((”*f){m +

R —
dT R So (R2+¢022)3/2 -

- 1 _ | 1
S PR F—
@_}_ Vg Ur + J R2+¢OZZ
ar R ) ©)]
(pa3) 2
X R (p+2>e w3-4 = ()

2

3 VA
&2z 1 dz f(pﬁ) -5
azZ 1dp 2R3~
arz T 5, dr e

z
@y =

where T, R, Z, Sy are the dimensionless time, radius, height and ini-
tial grain size, respectively. These equations depend on five parame-
ters (1o, So, Yo, p, g) which are the initial dimensionless acceleration
due to the pressure gradient, initial grain size, initial disc aspect ratio
and exponents of surface density and temperature profiles.

2.2 The Stokes number

The ratio r[T; of the drag and the Keplerian time-scales is a dimen-
sionless parameter of the problem often called the Stokes number
and frequently denoted by St:

1 K K _zr
St=—= = = — = SyRPe2r%1 4)

PgCs
1 S,
k aS opt

where Q is the Keplerian frequency. The size s, which we call
the optimal size for radial migration (see Fouchet et al. 2007, and
Section 2), is of the order of 1 m in a Minimum Mass Solar Nebula
(MMSN) and is related to the so-called ‘metre-size barrier’, first
mentioned in W77, which is thought to prevent pre-planetesimal
formation. However, the value of s, varies with r and depends
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strongly on the disc structure, which for observed discs is very
different from that of the MMSN, explaining why the term ‘radial-
drift barrier’ is more appropriate.

2.3 Radial drift
When Z = 0, this implies
St = SoR”. ©)

The radial dust motion is therefore governed by the equations

& _ B np(rt3) _ 1
d7 — R So R?
: , (6)
dig _ _ el _ Do/ x—MmOR”Y R*(P+§>
ar — R So :

This radial motion of dust particles is a well-studied problem (W77).
Because of the radial pressure gradient which counters the gravity
of the central star, the azimuthal velocity of the gas is sub-Keplerian.
The sub-Keplerian gas motion is the source of the differential ve-
locity between gas and dust, which tends to be attenuated by gas
drag and leads to a radial-drift motion or migration of the dust (it
should not be confused with planetary migration, which has a dif-
ferent physical origin, namely tidal torques). Therefore, two effects
control the radial motion: gas drag (whose intensity depends on
St) and the sub-Keplerian motion of the gas, which produces the
differential velocity and is characterized by the 1, parameter. An
expansion at small pressure gradients of order O(ng) (see NSH86)
reduces equation (6) to

y =

noSoRP—+

2
T+ rusy T O ) @

Thus, depending on the value of St, the particle experiences various
modes of inward drift, as stressed in LGM12.

If St = SoR” <« 1 (which we call the A mode, where drag dom-
inates over gravity), particles are damped in a few stopping times,
which is smaller than the orbital time-scale. The dust is then forced
by the gas to orbit at a sub-Keplerian velocity, and hence cannot
counter the gravity of the central star and migrates inward. This
radial motion is then quickly counterbalanced by gas damping: par-
ticles migrate with a limited radial-drift velocity, which is low for
the smallest grains for which the drag is strongest. If such particles
have an initial radial velocity, drag circularizes their orbit in a few
ts. In the A mode, equation (7) reduces to
U, = % = —T)()S()R’F‘H%- (®

When St = SyR” > 1 (which we call the B mode, where gravity
dominates over drag), particles have a stopping time larger than
the orbital time-scale: they orbit with an approximately Keplerian
velocity. Gas drag exerts a torque which makes the particles lose
angular momentum. As the angular momentum is an increasing
function of the radius (I o< 4/7), the dust migrates inwards. The
larger the particle, the longer the response to the torque action and
thus larger particles migrate at a slower rate. However, d//dr «
r~1/2 is a decreasing function of radius. To lose the same amount
of angular momentum, grains in the inner part of the disc cover
less distance than grains in the outer part: the radial-drift motion
becomes less efficient as dust migrates closer to the central star. In
the B mode, equation (7) reduces to
5 = IR _ Mo ppgrt )

dr So

Growing dust grains: radial drift 3027

If St ~ 1, both previous effects combine, leading to a large radial-
drift velocity: particles with such sizes migrate very efficiently on
to the central star.

However, since St = SyR” tends to zero at small radii, the grains
radial motion ends in the A mode. Integrating equation (8) gives the
time at which a migrating grains reach a given radius R:

S

T(R) = .
) (=p+4q+3)n0So

10)

if —p+q+1#0[and T = —In(R)/(noSo) if —p +¢q + 1 =0].
The final outcome of the grains is therefore determined by the sign
of —p+gq+ % (LGM12). This criterion determines the effect of
the acceleration due to the increase of the pressure gradient which
is counterbalanced by the increase of gas drag. If —p + g + % > 0,
the dust particles are accreted on to the central star in a finite
time

1
T(R=0)= , (11)
10So (—P +q+ %)
butif—p—|—q—|—% <0
T(R) = O(RP*1+7) (12)

for small values of R and the dust particles take an infinite time to
be accreted (i.e. grains pile up and survive the radial-drift barrier),
or more rigorously, the time required to reach R — 0 diverges as a
power law. Importantly, this also means that, although the grain’s
kinematics depends on the local values of the velocities, its outcome
results from the integration of its global motion through the disc.
Figs 1 and 2 show plots of the dust radial motion for different sizes
Sy and different signs of —p + g + % For the remainder of this
paper, we study grain growth and will present similar plots to Figs 1
and 2, allowing easy comparison of the effects grain growth has on
the dynamics. In LGM 12, we have shown that finite disc inner radii
and disc lifetime only slightly mitigate this result: in a Classical
T-Tauri Star disc, the grains pile-up prevents almost all the grains
up to millimetre sizes in the disc from being accreted.

0.8 [ —— ]
06 [ — ]

04 f ~ 1

E
3
E
1

10-10 1 I
1000 104 108 108
T

Figure 1. Radial motion R(7) of non-growing dust grains for o = 1072,
p=0andg=3/4(—p+q+ % > 0). S varies from 107 to 10%. Top:
linear scale; bottom: logarithmic scale. Grains are accreted in a finite time
on to the central star.
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Figure 2. Same as Fig. | forp =3/2and ¢ =3/4 (—p+q + % < 0).
Grains experience a pile-up which prevent them to be accreted on to the
central star. Compare the black curve of this figure with the black curve of
Fig. 1 to clearly see the grain’s pile-up.

3 TOY MODELS OF GRAIN GROWTH

3.1 The Stokes number

To study grain growth, we generalize the relation of equation (5) by
introducing the quantity S(7) defined by

St = SR?, (13)

where S corresponds to the part of the Stokes number which is
related only to the grain size and does not depend on the radial
coordinate. St and § are related to the physical quantities s, 5o, and
Sopt, 0 Via:

N

St = , (14)
Sopt

and

s

S = . (15)
snpl,O

The initial grain size is denoted as s(r = 0) = s, and we define

So =0 — ST =0). (16)
Sopt.0

Since initially R = 1, we have also

St(T =0) = S,. a7

From a practical point of view, all the equations of motion derived
from the NSH86 expansion in LGM12 can be used for studying
the grain growth, replacing Sy by S since they do not depend on
the grain size. The evolution of S(7) has to be itself specified by a
model of grain growth.

3.2 Equations of evolution

Retaining full generality, the equations of motion given by equa-
tion (6) become

a7 T R ST) R?

dg _ _ Vobr _ f’r\/%*rmk’"’ R*(/#%)

dr R ST)

v _ % vy R*([iJr%) 1

(18)

The expansion with respect to ny does not depend on S(7)) and can be
generalized when the grain size depends on time. Thus, substituting
equation (13) into equation (7), the expression of % becomes

_dR _ —noS(T)RP™+3
T dT T 1+ R S(T)™

o +O0(15). (19)

The remaining equation describes the evolution of S(7). This
can be rigorously determined from the physical growth rates (see
Paper II) or prescribed by a toy model.

3.3 Toy growth models

We start to study the radial motion of growing grains using toy
growth models for two reasons. First, we want to understand the
impact of the grain size evolution on the dynamics independently
of the radial dependence of the physical growth rate. We shall see
that even with a prescribed growth rate, the dust behaviour may be
rather complex. Secondly, the equation of evolution is analytically
tractable. It should be noted that the toy models we shall use cor-
respond for some specific configurations to physical growth rates
(see Paper II).
The simplest toy model consists of the following linear relation:

Equation (20) is equivalent to setting:

s(t) = so + Sot, @2n
giving
S0
y=——— (22)
Sopt,0/ k.0

for the dimensionless parameter which measures the growth effi-
ciency. Even though this model is the simplest to treat the grain
growth, it cannot handle the cases of accelerating or decelerating
growth. To be able to investigate what happens in those cases, we
adopt a power-law prescription for the grain sizes given by

S(T) = (S;/” i yT)" . 23)

The initial size Sy is chosen to be small enough (rigorously,
So < O(1)) so that grains will experience all drag regimes as they
grow. Indeed, varying y modifies the growth rate and choosing
n < 1,n>1orn=1 ensures the growth slows down, speeds up
or keeps a constant rate, respectively. While crude, these models
allow us first to separate the effect coming from the increase of the
grain size only to that due to the radial dependency of the growth
model, and secondly to distinguish different dynamical evolutions
for the growing grains by allowing an analytical integration of the
equations of motion. Since we are considering grain growth, y > 0.

4 THE LINEAR GROWTH REGIME

4.1 Analytic solution

For the linear growth case, we give an analytical expression for the
grain size evolution which provides important information on the
radial behaviour of grains. Starting from

dR =y (So+yT) R+
dT ~ 14+ R (So+yT)

(24)
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and setting u = (Sy + yT)* gives
dR _dRAT _ ny R9%:

- -0 - 25

du 4T du 2y 1+ R?ruy 25

Here, the dimensionless parameter, A defined by

a=2 (26)
Mo

naturally arises from the equations. It compares the efficiency of the
growth and the migration processes. Equation (25) can be rewritten
as

d

S L OARPHIT Iy = QAR @7
dR

which can be integrated by the method of variation of parameters.
Assuming that both p and g take positive values as expected for real

discs, p +q + % > 0 and we obtain the following expression

T(R) =+ [\/u(®) - ]
14

gty QP
1 24 T —2A ;
LW T fane T sy - 8|, 29)
14

where
1 R’7+q+% 1 1
A y+1
J(R)_/ Rpra=ie rrtl dR = 7/ W e T T du,
R X Jwl/x
29)
with
X =p+qg+ % >0
y=-p+qg—3 (30)

w = RPHITI

While not transparent, the global behaviour of the radial motion of
a growing dust grain strongly depends on —p 4 g + % and A. The
following considerations apply:

—If —p+4¢+1 <0, JR) diverges for R — 0. This is the
generalization for growing grains of the result found for the radial
motion of non-growing grains: the slowdown due to the gas drag
dominates the acceleration due to the pressure gradient, and grains
fall on to the star in an infinite time.

—If —p+g+ 3 >0, the limit at R — 0 is defined as J(R)
converges and the grains are accreted in a finite time 7,,, = T(R =
0). Taking the limit of equation (29) at R — 0 with x > 0 provides

1o )
J(0) f/ R Pl
0

X

1 1 1 2A
M(y+ Y+ ) 31

, +1, —
y+1 X

X X
where M(a, b, ) is the M-Kummer confluent hypergeometric func-
tion of indices a and b with respect to z. Thus, for —p + g + % > 0,
the M function is defined and we obtain for different values of y the
expression of the accretion time on to the central star. Introducing

Cptgtd _ o
a="= p';q:ﬁ , we find the expression of the accretion time
2
given by
1 L 2A 2A
Tw=—-[1/S2e™ + —M|a,a+1,— | —S|. (32)
noAA ax X

Growing dust grains: radial drift 3029

4.2 Grain radial motion

The function o Ty, (A) is plotted in Fig. 3 for Sy = 1072 and different
pairs of (p, g) values. The main remarks on the shape of the curves
are the following. We first fix the value of —p +¢q + % > (0 and
vary A. Noting that M(a,a + 1, 27{\) — 1 when A — 0, a first
order Taylor expansion of equation (32) in A gives

1 S2 1 4A
Tn=— (24— )+ —=Sfu(S)+0(A%, 33)
nSo \ x  ax nox?

where

1S2@+D+2  1(Sa+1)°
W (So) = — 2 —= . 34
faSo) =4 SZa+1) 8 aS; ©H

Withx = p+g+ 5 andax =y+1=—p+q+ 3, we recover
the limit found without grain growth (see equation 34 of LGM12).
Indeed, the case A <« 1 corresponds to a growth time-scale
that is very long compared to the migration process. Moreover,
Fu(S0) = =gz + O(Sy”) when So — 0, fu(So) = 5+ O(S;)

when Sy — oo and £,(Sy) = 0 for Sy = % ‘)“m Thus, if

the initial grain size is small enough, a small amount of growth de-
creases the accretion time. Indeed, growth takes the grain closer to
the fast intermediate-size (St > 1) regime of migration. On the con-
trary, the size of an initially large grain can only grow away from the
intermediate-sized regime and growth slows down the dust radial
motion.

Moreover, when A — oo, T, — oo due to the exponential term
in the square root. More precisely,

L TFSE 2
Tm:eHSow(e ) 35)

noA A?

The deceleration of the migration due to the grain growth is very
efficient as T, reaches exponentially large values as A increases.
In this case, growth is so efficient that grains only very briefly
experience the St = O(1) regime of fast radial migration and are
accreted on to the central star at very large times. As a result, for
initially small grains, 7}, reaches a minimum value as A varies.

T ™ T T ———

(p.a)=(c,3/4)

(pa)=(3/43/4) We———— 3
100 L (p.a)=(1243/4) ~ ] ]
~_ 104 4
1000 |
S~ 1 n n 1 L n
—_ 10 10 10-7
e T~
S ~
10 F 1
1 1 1 1
0.1 1 10

A

Figure 3. Accretion time as a function of A, the relative efficiency of
growth versus migration. Logarithmic plot of 79 Tin(A) for So = 1073, (p,
q)=1(0,3/4),(3/4,3/4) and (1.24, 3 /4). The plot shows an optimal accretion
time for A = O(1) (the migration time and the growth time have the same
order of magnitude) and —p + ¢ + 1/2 > 0 (no pile-up). The inset shows
that limu —, 9107 is indeed finite, as shown by equations (32) and (33).
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The migration process is therefore optimized for a given value of
A= %, when the grain size is optimized for the migration process
by the growth during the whole radial motion. This minimum is
called Tiy,, -

Now, if —p +¢g + % — 0, the grain motion reaches the regime
of accretion in an infinite time. As an example, the case (p = 1.24, ¢
= 3/4) in Fig. 3, which corresponds to —p + g + % = 0.01, shows
a large value of T}, » compared to the case (p =0, g = 3/4). If
-p+q+ % is far enough from zero, T, , = O(1) is reached for
A = O(1). As an example, for (p =0, g = 3/4), Ty, » = 1.98 for
A=1.

5 GROWTH AS A POWER LAW

5.1 Qualitative behaviour

We now refine the growth prescription and study the radial motion
of a dust grain whose size evolution is given by the power law
of equation (23). As for the case without growth (see Section 2),
information about the dust behaviour can be obtained by studying
the limiting cases of the A and B modes. As both S and R vary with
respect to 7, the related mode of migration is given by

SWT) = [SR”] (T). (36)

If St « 1 (respectively St > 1), grains are in the A mode (respec-
tively the B mode). Thus, the evolution of R(7) for grains in the A
mode of migration satisfies (see equation 8)

dR

n
= (8" +yT) R, 37

and if the grain migrates in the B mode (see equation 9)

R M prard (38)

For clarity, we are now describing the grain motion in the (R, S)
plane, non-growing grains move horizontally from right to left.
The drag-dominated A mode lies below the R™” curve, while the
gravity-dominated B mode lies above the R™” curve. As S increases
with time 7, the grain does not move horizontally in the (R, S)
plane anymore. Consequently, the dynamics of the grain has some
additional properties compared to the case without growth. Quali-
tatively, Fig. 4 shows various outcomes for the growing grain radial
motion depending on values of A, n and on the initial grain size,
represented by initial positions ¢, 8 (A mode) and y (B mode) in
the (R, S) plane:

(i) Case 0 (A = 0, initial position «): grain migrate without
growing, stay in the A mode and reach the central star in a finite or
infinite time, depending on the sign of —p + g + %

(i1) Case 1 (A small, n > 1, initial position «): grain growth is not
fast enough to reach the B mode region. Thus, grains will continue
their motion towards the central star in the same stable A mode.

(iii) Case 2 (A large, n > 1, initial position «): grain growth
is very efficient and it reaches the B-mode region at a given time
T,. The growth is then so efficient that the grain will not migrate
inside the critical radius R.. Physically, the contribution of the drag
integrated over the grain trajectory is too weak to dissipate all the
energy and angular momentum of the grain, which is the only way
to reach the central region of the disc.

(iv) Case 3 (A # 0, n < 1, initial position 8): at the beginning of
its motion, the growth is efficient enough so that the grain reaches
the B-mode region at a time 7. However, the growth slows down

S A \ :
A0\ |
i
|
1
%
. N
1 +—=< :
S5 9 / ?
————— Q./_.:.\_‘._i-_-:‘_;'a
A-mode :
| X
0 R 1 R

Figure 4. Trajectories of growing dust grains in the dimensionless size
versus dimensionless radius plane (R, S) for three initial positions «, B and
y, which are discussed in the text. Very different behaviours are expected
for these grains.

and the grain cannot sustain migration in the B mode. At a time 7>,
it returns to the A mode, where it completes its migration towards
the central object.

(v) Case 4 (A small, n > 1, initial position y): the acceleration of
the grain’s growth is not large enough for the B mode to be stable.
The grain reaches the A mode at a time 7' and ends its migration
in the A mode.

(vi) Case 5 (A large, n > 1, initial position y): the acceleration
of the grain’s growth is large enough and the B mode is stable.

In this case, we will say that this mode is stable for the grain
dynamics. Mathematically speaking, we have to determine the evo-
lution of R(T) and St(7) from the knowledge of S(7) to describe the
grain behaviour.

5.2 A mode
5.2.1 Grain evolution

To understand the grain’s radial behaviour, we first study the func-
tion R(7) for a grain starting in the A mode (initial positions o and
B in Fig. 4). Starting from equation (37) and separating variables, a
direct integration provides:

O If—p+g+1#0:
1

_ 1 n+l nt1 ] T T

R = {1— Ll {(sg/uyr) — 5, H e

1
ntl | n+T
| _ p-ptqtiy_Am+D o _gl/n
T =% (|:(1 R 2)7_p+q+% + S :| Sy .

(39)
(i) If—p+qg+1=0:
n ntl
R = | () 5]
i w1 7 1/n “o
T=L {—A(n—l— DIn(R) + S," } -5y .
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Thus, in the A mode, whatever the value of the growth exponent
n, the grain’s behaviour is the direct extension of the results found in

absence of growth. If —p +¢q + % <0, lim P R =0 and the

grain never reaches the star. If —p + ¢ + % > 0, lim _ R=0,

the grain reaches the star in a finite time

1

Th=——
m nOA

1
A 1 gt | T
(n+1) ] g )

1+S0H
—p+q+5

In this case, we study the asymptotic behaviour of 7, for small
and large values of A. For small values of A, we perform a Taylor
expansion of T, to O (A) and obtain

1 nA

T, = -
m0So (—p+4q+ %)

2(-p+q+1) syt
L oY), “2)

This expression corresponds to the migration time in the absence of
growth (see equation 24 of LGM12) decreased by a term propor-
tional to the growth efficiency. For large values of A,

1 n+1
Tm=<

i
S - AT 4+ O (A*ﬁﬂ K
no —p+q+5

This expression of T}, does not depend on Sy: the growth is so effi-
cient that it erases the memory of the grain’s initial size. However,
one has to remember that the expression given by equation (43) is
only valid in the A mode of migration.

5.2.2 Stability of the A mode

To determine if the A mode is stable or not, we now study the
function St(7). We study its behaviour near 7 = 0 with a Taylor
expansion and in the limit at 7 — oo, and then find the maximum
value of St compared to 1 and determine if at a given time 7 the
grain reaches the B mode. We use equations (39) or (40) and (23)
to calculate S(7)). We first find that in the limit at large time:

(i)if—p+q+%>0, lim St=0,
T—Tm
() if—p+g+1=0 lim St= lim O ™17 =0,
T—+00 T—+o00
(n+])p1 +n
(i) if —=p+ ¢+ 3 <0, lim St= lim O(T "2 )=0,
T—+00 T—+00

for n > 0 and both p > 0 and ¢ > 0 (like in protoplanetary
discs). Indeed, the exponent of T takes only negative values when
—-p+q+ % < 0. As a result, whatever the surface density and
temperature profiles, St(7) — 0 at large times.

Secondly, expanding St at small times provides

_1
St(T) = So + (SS "ny — pnoS§) T+0(T?)
_1
= So+nonSy " (A— AN T +0(T?), (44)

with

Ay =D, 5)
n
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St

TA /!
I B-mode
1
A I A-mode
S, ¢ (i) I
LR —

If-p+q+1/2>0 [If-p+q+1/2<0

Figure 5. Behaviour of the function St(7) for different values of A for a
grain originally starting its migration in the A mode. See text for details of
the three cases. If the growth is efficient enough, grains are able to reach the
B mode of migration.

and St, from its initial value of S, increases or decreases with time
depending on the sign of A — A,. Thus, if A < Ay, St initially
decreases with respect to time and reaches zero in a finite or infi-
nite time. For Sy ~ 1073, Ax ~ 1073, with 5y ~ 1072, y has to
be smaller than 10 to be in this regime. On the other hand, if A
> A, St initially increases with time before decreasing to zero,
passing through a maximum at 7,,. We find St(7,) = (’)(Aﬁ).
As a result, there exists a value A = A (necessarily >A,) such
that A; = O(1) and for which St(7,) = O(1). This is the limit-
ing case for which in a time T, = T,, St(T}) = St(T,,) = O(1).
The different behaviours of growing grains starting their motion in
the A mode are summarized in Fig. 5. We distinguish three main
behaviours:

(i) case (i): if A < Ax: St(T) < 1, the A mode of migration is
stable.

(ii) case (ii): if Ay < A < A;: the grain continues its radial
motion in the stable A mode. If Ay < A < 1, St(T,,) < 1.

(iii) case (iii): if A > A,:the grain leaves the A mode of migration
for the B mode. If A > 1, St(T,) > 1, and St reaches 1 in a time
T, « T, for which St <« 1.

Returning to Fig. 4, the behaviour of grains 0 and 1 corresponds
to cases (i) or (ii) and the behaviour of grains 2 and 3 to case (iii).

5.3 B mode

5.3.1 Grain evolution

We now study the radial motion of growing grains in the B mode
of migration (i.e. St > 1) in the same way. Initially small growing
grains can reach the B mode of migration at a time 7, where they
are located at a radius R; and have a size S, (case (iii) of Fig. 5).
They can also start their motion in the B mode. In this case, S| = So,
T; =0 and R, = 1. Starting with equation (38), a direct integration
provides:
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(i) if n # 1:
p 1 p i n 1=n
R = [RI- mst (s1 )
I T
—n g+t
_(Sll/r1+yT]> Hz+q+_ ’
(46)
1
T — UDLA H:(R{ﬁtﬁ—i _ Rp+q+%) ;\J(rlq:rnl)
2
e
1n l—n| T-n 1n
+(S, +yT,) —sim
(i) ifn = 1:
1
_ | prtats _ pratd SiayT ) | PHtS
R = |:Rl t - A ’ ln<sll+;n> ’
A(R1)+LI+%—R’)+'7+%> 47)
T=ox |Si+yTye  7or =

For simplicity, we now consider only the case of p + q¢ + % >0
(the exponent of R in equations 46 and 47), which is the case
in real nebulae. Here, contrary to the A mode, the asymptotic
behaviour of R(7) depends on the value of n > 0. If n < 1,

lim . R =0 (weak growth). If n > 1, two cases arise. First,

. 1 Sl/” 1-n .

if A < M = A, lim R = 0 (weak growth).
Pty T—Tn

R, (n-1)
Secondly, if A > A, lim S R = R, the grain asymptotically

approaches a radius

1
I—n ot T
(p-f—q-l—%) (Sll/r1+yTl) Pty
Ro=R|1- — (48)
R mn—1A

(intense growth).

5.3.2 Stability of the B mode

To determine in which case the B mode is stable, we study the
asymptotic behaviour of St(7) for small and large A. First, in the
limit at large time:

(1) For weak growth (if n < 1 or n > 1 and A < A.):

lim . St = 0. Consequently, whatever the initial evolution of
m

St, there is a time 7, for which the grain switches to the A mode:
the B mode of migration is unstable. This situation corresponds to
trajectories 3 and 4 of Fig. 4.

(ii) For strong growth (if » > 1 and A > A.): lim B St =

+o00. In this case, the growth is efficient, like for trajectory 5 of
Fig. 4: the grain cannot drift inwards past a critical radius R..

Secondly, expanding St at times close to T provides

st= R’ (8" +y7)" + AR (s + 1)
t=Ry |5, +v1i) + P AS v

—n+1
Yp (Sll/,l+)/T1)

1
praty
ARITTT2

+0 (T -T))?)

x | ny — (T -T)

1—1

= R} (81" +y1) + RO (5" +yT1)
xnno(A — Ap)T —T)) + O (T = Th)’) (49)

where

Sl/” I1—n
p 1 + VTI

Ap = , (50)
B n R {7+q+%

and St, from its value of S| at T, increases or decreases with time

depending on the sign of A — Ag. Thus, if lim - St=0and A

< Ag, St(7) is initially decreasing and tends to zero at large times.

If lim . St =0and A > Ag, Stis initially increasing, reaches a

maximum value and tends to zero at large times. If lim e too St =

400 and A < Ag, St is initially decreasing, reaches a minimum
value at a time 7, and tends to infinity at large times. There exists a
value A = A, (necessarily <Ag), for which St(7,,) = 1. Thus, if A
< Ay, St(T,) < landif A > A,, St(T,) > 1. Iflim S St = 400

and A > Ag, St(7) is initially increasing and tends to infinity at
large times.

The different behaviours of growing grains experiencing a radial
motion in the B mode are summarized in Fig. 6. We distinguish five
main behaviours:

(i) case (i)y: weak growth and A < Ag: St decreases and the B
mode is unstable.

(ii) case (if),: weak growth and A > Ag: St increases and then
decreases as it tends to zero, the B mode is thus unstable. Therefore,
whatever the value of A, the grain will always reach the A mode.

(iii) case (i);: intense growth and A < A;: even though Streaches
values large enough at large time, its initial decrease due to small
values of A leads to a transition to the A mode.

(iv) case (ii);: intense growth and A, < A < Ag: even if St
decreases at small times, A is large enough for the grain to stay in
the B mode.

(v) case (iii);: intense growth and A > Ag: St increases and the
B mode is stable.

Returning to Fig. 4, the behaviour of grains 3 and 4 corresponds
to cases (i)y and (ii)y,, for which the B mode is unstable, and the

st

RPS, &

T T

Figure 6. Behaviour of the function St(7) for different values of A for a
grain originally starting its migration in the B mode. The five behaviours are
described in the text. An efficient growth is required to maintain the particle
in the B mode.
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behaviour of grains 2 and 5 corresponds to cases (i7); and (iii);, for
which the B mode is stable.

5.4 Combining A and B modes

The radial behaviour of initially small growing grains for the differ-
ent values of the parameters can now be interpreted and a summary
is presented in Fig. 7. If A < A, orif Ay < A < Ay = O(1), the
growth is not efficient enough to reach the B mode of migration and
the A mode is stable. The dust behaviour at large times depends on
the value of —p +¢g + % (as for non-growing grains, which ulti-
mately migrate in the A mode). If —p + g + % > 0, the radial-drift
efficiency is increased by growth and the particle is accreted in a
finite time which decreases with A. If —p + g + % < 0 the particle
reaches the inner region of the disc, but will never be accreted on to
the central object.

If A > A, the growth is efficient enough and the A mode is
unstable. The grain reaches the B mode at a rate that depends on A.
For weak growth, or for intense growth with A < A,, the B mode
is unstable and the particle reaches the A mode again. However, the
new value of A; which determines the stability of this migration in
the A mode depends of the new initial position in the disc. If A,
remains small enough, an oscillation between the two modes may
occur until St is large enough. Then, the A mode will be stable as
A, reaches large enough values. Again, the final grain behaviour
depends on —p +¢q + % For intense growth with either A, < A
< Ap or A > Ag, the growth is very efficient. The B mode is
stable and the particles converge to a limit radius R, in an infinite
time. In this case, the fact that the particle is not accreted on to
the central star does not depend on the profile effect (described
in LGM12, and mentioned in Section 2) as for a weak growth
process, but on the ‘growth effect’, which is defined by the value
of A.

A-mode
> B-mode \\

VA—>
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Finally, the results of the analysis we performed analytically in
this section are confirmed by a direct integration of the equations
of motion in Appendix B.

6 CONCLUSIONS AND PERSPECTIVES

We have studied the impact of grain growth on to the radial motion
of grains in protoplanetary discs using two toy models: a linear and
a power law of grain growth. We found the following.

(i) Depending on the relative efficiency between growth and mi-
gration which is given by the value of the dimensionless parameter
A, three behaviours are possible for the radial motion of the dust
grains. If A < 1, the impact of the growth on the migration consists
only of a slowly varying correction compared to the case without
any growth. Conversely, for A > 1, the migration is efficiently
slowed down by the growth. Indeed, grains spend a relatively little
time in the regime where St = O(1) and become more and more
decoupled from the gas as they grow. Thus, the migration occurs
on a time-scale much longer than that without any growth since
the time where the particle stays in the regime St = O(1) is neg-
ligible. For the intermediate case — i.e. St = O(1) — the growth
and the migration are occurring together, leading to efficient radial
drift.

(ii) The final outcome of the grain’s radial migration is, however,
aresult of its global motion through the disc. The grains experience
a pile-up from the competition between the drag and the increasing
pressure gradient if —p + g + 1/2 < 0. If the grain does not
experience any pile-up, there exists a value of A suchthat A = O(1)
—i.e. a critical value for migration y = O(19) — which minimizes
the time for the grain to reach the central star.

(iii) In addition to the standard grain pile up close to R = 0 which
occurs for non-growing grains, the discs can retain solid material
with a high growth efficiency. Indeed, for n > 1, the particle can

G )

)(X/ >0 lim R=0
—~P +4 2 T—Tn \
A-mode or 4 >>/1 X7 Ty large: slow accretlon]
—>Vn &I]d
stable \f 3 1
D+g4 1
7+ ) <0 [ lim R=0:no accrotion]

N B-mode [T lim R=R,: no ac('l'@ti()ll}

NZ stable
intense

growth
B-mode
unstable

weak
growth

Figure 7. Summary of the global evolution of an initially small growing grain.

For intense accelerating growth, particles decouple from the gas at a finite

radius, staying in the B mode of migration. Otherwise, grains survive the radial-drift barrier if they pile-up, i.e. if —p + ¢ + 1/2 < 0 since they migrate in the
A mode. The grains radial migration is always more efficient when the ratio between growth and migration time-scales is of the order of unity.
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end its migration in the B mode and converges in an infinite time
to a finite radius R.. This growth effect happens when the grain
size increases so quickly that the integrated contribution of the drag
cannot dissipate either the grain energy or its angular momentum.

(iv) Allowing the growth to accelerate or decelerate enriches the
grains’ possible behaviours. As shown in Fig. 7, we distinguish four
regimes for the radial motion of growing dust grains: (1) accretion
enhanced by growth, (2) accretion slowed down by growth, (3) no
accretion by traditional pile up and (4) no accretion by decoupling
at a finite radius, depending on the sign of —p + ¢ + %, and the
values of A and n.

While useful, these toy growth models are not sufficient to quan-
titatively predict the behaviour of the grains in protoplanetary discs
since the growth rate of the particles does not depend on the radial
position of the grains. This assumption is incorrect for physical
growth models. In this case, the growth and the radial drift of the
grain interact and the grain dynamics may be complicated. This
issue is addressed in Paper I1.
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APPENDIX A: NOTATIONS

The notations and conventions used throughout this paper are sum-
marized in Table Al.

Table A1. Notations used in the article.

Symbol  Meaning

M Mass of the central star

g Gravity field of the central star
o Initial distance to the central star
Pg Gas density

bg(”) ,Og(hZ=0)

Cs Gas sound speed

G (r) cs(r,z=0)

Cs0 Gas sound speed at ro

T Dimensionless time

T Gas temperature (Z: value at rg)
%o Gas surface density at ro

P Radial surface density exponent
q Radial temperature exponent

P Gas pressure

vk Keplerian velocity at r

VKo Keplerian velocity at ro

Hy Gas scale height at ry

bo Square of the aspect ratio Hy/rq at ro
no Sub-Keplerian parameter at rq

K Grain size

S Dimensionless grain size

So Initial dimensionless grain size
St Stokes number

y Grain size exponent in the drag force
Vg Gas velocity

v Grain velocity

Pd Dust intrinsic density

mq Mass of a dust grain

[ Drag stopping time

150 Drag stopping time at ry
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APPENDIX B: RADIAL EVOLUTION
WITH THE POWER-LAW TOY MODEL

To compare this analysis for the evolution directly obtained from
the equation of motion, we integrate numerically equation (18) for
different values of the parameters 7o, So, p, ¢, ¥ and n. We set the
dimensionless acceleration due to the pressure gradient o = 1072
to mimic a real nebula and an initial size So = 1073 to start with
grains small enough (like in the planet formation process) so as to
initially have St < 1. We verify that with Sy = 10~ or 1072 the
results do not significantly change. We then explore the parameter
space by first varying the order of magnitude of y from 10~ to 10?
and second setting n = 0.5, 1, 2 so as to treat one convex, one linear
and one concave evolution of St(7). Thus, 7 x 3 = 21 trajectories
are computed for each of the nine (p, ¢) pairs formed by p =0, 3/4,
3/2andg=1/2,3/4, 1.

To show how growth affects the radial grain motion, we focus
on the two cases: (p = 0, ¢ = 3/4) and (p = 3/2, g = 3/4),
shown in Figs B1 and B2, which we analysed in absence of grain
size evolution in LGM12. We note that a large class of migration
regimes occur, depending on the growth parameters y and n. The
following major behaviours can be highlighted.
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Figure B1. Radial motion R(7) of dust grains for ny = 1072, S = 1073,
p =0, g =3/4, and values of y ranging from 10~ to 10? in linear (top
panel) and logarithmic scale (bottom panel). From top to bottom in each
panel: n =0.5, | and 2.
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Figure B2. Same as Fig. Bl forp =3/2 and ¢ = 3/4.

(i) When varying y while fixing all the other parameters, migra-
tion to the inner regions is optimal for a value which depends on p,
g and n and is close to 1072, With 5y = 1072, this corresponds to
A = 1. The corresponding migration time for R to reach 0 is of the
order of 10? = n,", which agrees with the result found above (see
Fig. 3, which is only valid for n = 1, or equation 41). When y >
1, the grain migrates slowly to the central star or to the limit radius,
R., as predicted by equation (48).

(i) When increasing n while fixing all the other parameters, mi-
gration at small and large values of y is less efficient.

(iii) When comparing the case p = 3/2 (—p + ¢ + % < 0) and
the case p =0 (—p+qg + % > 0) while fixing all the other pa-
rameters, the dust dynamics is modified by the grains pile-up.
For example, comparing the cases at y = 1072, even with dif-
ferent values of n for each value of p, the particle is accreted
on to the central star in a finite time for —p + ¢ + % > 0, but
only migrates slowly to the disc inner regions for —p +¢q +
% < 0 (the curvature of the trajectory becomes convex at large
time).

Thus, the results obtained from the equation of motion confirm
the prediction performed from (1) the small pressure gradient and
(2) the A- and B-mode expansions. It is also important to note that
the grain’s radial trajectories are given in dimensionless coordinates.
In some cases (for example p = 3/2, g =13/4,170 =102,y = 1072,
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see the black curve in Fig. B2), the particle drastically slows down
between R = 0.05 for n = 0.5 and R = 0.1 for n = 2 because of
the profile effect. This corresponds to 10 au for a grain which starts
to migrate at 200 au, which is still relevant for planet formation.
Moreover, even if the accretion time on to the central star is finite,
the accretion process can be long enough, especially for large values

of A or values of —p +¢q + % close to zero to allow particles to
grow in real nebulae before the disc disappears.

This paper has been typeset from a TX/IAIEX file prepared by the author.
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