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Abstract

While the theoretical analysis of evolutionary algorithms (EAs) has
made significant progress for pseudo-Boolean optimization problems
in the last 25 years, only sporadic theoretical results exist on how EAs
solve permutation-based problems.

To overcome the lack of permutation-based benchmark problems,
we propose a general way to transfer the classic pseudo-Boolean bench-
marks into benchmarks defined on sets of permutations. We then con-
duct a rigorous runtime analysis of the permutation-based (1+1) EA
proposed by Scharnow, Tinnefeld, and Wegener (2004) on the ana-
logues of the LeadingOnes and Jump benchmarks. The latter shows
that, different from bit-strings, it is not only the Hamming distance
that determines how difficult it is to mutate a permutation σ into
another one τ , but also the precise cycle structure of στ−1. For this
reason, we also regard the more symmetric scramble mutation oper-
ator. We observe that it not only leads to simpler proofs, but also
reduces the runtime on jump functions with odd jump size by a factor
of Θ(n). Finally, we show that a heavy-tailed version of the scramble
operator, as in the bit-string case, leads to a speed-up of order mΘ(m)

on jump functions with jump size m. A short empirical analysis con-
firms these findings, but also reveals that small implementation details
like the rate of void mutations can make an important difference.

∗Extended version of a paper that appeared in the proceedings of GECCO
2022 [DGI22]. This version contains all proofs that were omitted in [DGI22] for reasons
of space. It contains as new results the tight runtime estimates for the permutation-based
LeadingOnes problem when using the classic or the heavy-tailed scramble operator. It
also contains a section with experimental results, which includes an analysis of the proba-
bility that the four mutation operators discussed in this work generate an offspring equal
to the parent.
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1 Introduction

Mathematical runtime analyses have raised our understanding of evolution-
ary algorithms (EAs) for many years now (see [DJW02] for an early, very
influential work in this field). They have explained their working principles,
have given advice on how to set their parameters, and have even lead to the
development of new operators and algorithms.

A closer look at these results [NW10, AD11, Jan13, DN20], however,
reveals that the vast majority of these works only consider bit-string repre-
sentations, that is, the search space is the space Ω = {0, 1}n of bit strings of
length n. Hence for the practically also relevant case of permutation-based
optimization problems (see, e.g., [ES15]), that is, the search space is the
set Sn of permutations of [1..n] := {1, . . . , n}, our rigorous understanding
is much less developed (see Section 2 for a detailed account of the state of
the art). This shortage is visible, e.g., from the fact that there are no es-
tablished benchmark problems except for the sorting problem and there are
no mathematical runtime analyses discussing how to set the parameters of
permutation-based evolutionary algorithms.

With this work, we aim at contributing to the foundations of a system-
atic and principled analysis of permutation-based evolutionary algorithms.
Noting that the theory of evolutionary algorithms for bit-string represen-
tations has massively profited from the existence of widely accepted and
well-understood benchmarks such as OneMax, BinVal, linear functions,
LeadingOnes, royal road functions, Trap, Jump, and many others, we
first propose a simple generic way to translate benchmarks defined on bit
strings into permutation-based benchmarks.

Since the resulting permutation-based OneMax problem is equiva-
lent to a sorting problem regarded in [STW04], we proceed with math-
ematical runtime analyses of the two next most prominent benchmarks
LeadingOnes [Rud97] and Jump [DJW02]. As algorithm, we consider the
permutation-based (1 + 1) EA of [STW04] performing as mutation a Poisson-
distributed number of swaps (called exchanges in [STW04]).

For LeadingOnes, without greater problems, we prove an upper bound
via fitness level arguments analogous to [Rud97] and a lower bound via the
observation that, different from the bit-string case, it is unlikely to gain more
than two fitness levels while the fitness is below n

2
. This observation saves us

from counting so-called free-riders as in [DJW02]. The final result is a Θ(n3)
runtime guarantee for the permutation-based (1 + 1) EA on this Leading-
Ones benchmark. Given that the probability of a fitness improvement in
the permutation-based case is Θ(n−2) (as opposed to Θ(n−1) in the bit-string
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case), this runtime estimate, higher by a factor of Θ(n) than for the bit-string
case, is very natural.

Our analysis for jump functions, in contrast, reveals a subtle difference
to the bit-string case. Similar to the bit-string case, also in the optimization
of a permutation-based jump function, the most difficult step is to mutate a
local optimum into the global optimum, which is the only improving solution
here. This requires flipping m particular bits in the bit-string case and per-
muting m particular elements in the permutation-case, where m is the jump
size parameter of the jump function. Different from the bit-string case, the
probability that one application of the mutation operator achieves this goal
depends critically on the current permutation, more precisely, on its cycle
structure. Consequently, the success probability for this event can be as low
as Θ(n−2(m−1)) and as high as Θ(n−2⌈m/2⌉). By analyzing the random walk
on the plateau formed by the local optima, we manage to show a runtime
guarantee of only Θ(n2⌈m/2⌉), but this analysis is definitely more involved
than for the bit-string case.

Both from the complicated analysis and the slightly odd result that jump
functions with jump size m and m + 1, m odd, have the same asymptotic
optimization time, we were led to wonder if the mutation operator regarded
in [STW04] is really the most appropriate one. We therefore also considered
a variant of the scramble mutation operator, which randomly permutes a
subset of the ground set. To be comparable with the previous operator,
we choose again a number k from a Poisson distribution with expectation
λ = 1, then choose a random set of k elements from the ground set [1..n],
and randomly permute these in our given permutation. For this operator, we
prove that the runtime of the (1 + 1) EA on jump functions with jump sizem
becomes Θ(nm) regardless of the parity ofm, hence a factor of Θ(n) less when
m is odd. Both from the more natural result and the easier proof, we would
speculate that this is a superior way of performing mutation on permutation
spaces. For reasons of completeness, we prove that this operator also leads
to a Θ(n3) runtime on the permutation-based LeadingOnes problem.

Finally, we analyze the performance of a heavy-tailed variant of the
scramble mutation operator. For bit-string representations, it was observed
in [DLMN17] that heavy-tailed mutation operators, and more generally
heavy-tailed parameter choices [ABD21], can greatly speed up the runtime
of evolutionary algorithms. In particular, on jump functions with gap size m
the (1 + 1) EA with a heavy-tailed mutation rate was shown to be by a factor
of mΘ(m) faster than with the standard mutation rate 1

n
. We show the same

result for permutation-based jump functions: Choosing the number k in the
scramble operator not according to a Poisson distribution with expectation
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λ = 1, but from a power-law distribution on [1..n], gives a speed-up of order
mΘ(m).

We also analyze the runtime of this heavy-tailed EA on the permutation-
based LeadingOnes problem. Given that this is a unimodal problem and
that the previous proofs obtained the asymptotically optimal runtime via
local mutations (swapping two items) only, we do not expect a runtime dif-
ferent from Θ(n3). This is also the result we shall prove, however, with more
technical effort than expected. The reason is that the generally higher num-
ber of items moved leads to different upper bounds for the probability to
bring a certain set of items onto the right position. For example, the classic
scramble operator moves a particular misplaced item onto the right position
with probability Θ(n−2), but the heavy-tailed one does so with probability
Θ(n−β), where β is the power-law exponent (which can be arbitrarily close
to one).

To see if the insights stemming from our asymptotic analysis are visible
already for realistic problems sizes, we conduct a small empirical analysis
as well. We defer the details to Section 9 and note here only that the dif-
ferent rates of void mutations (mutations that create an offspring equal to
the parent) of the different operators have a significant impact on the perfor-
mance. This suggests that a finetuning of the operators can give considerable
performance gains over the canonical definitions of the mutation operators.

In summary, our results on the LeadingOnes and Jump benchmarks
show that several arguments and methods from the bit-string world can eas-
ily be extended to permutation search spaces, however, the combinatorially
richer structure of the set of permutations also leads to new challenges and
new research problem such as what is the best way to perform mutation.
From our results on Jump functions, we would rather suggest to use scram-
ble mutations than swap mutations, and rather with a heavy-tailed mutation
strength than with a Poisson distributed one. We hope that our general way
to translate bit-string benchmarks into permutation-based benchmarks eases
the future development of the mathematical analysis of permutation-based
evolutionary algorithms, a subfield where, different from bit-string repre-
sentations, many fundamental questions have not yet been studied under a
theoretical perspective.

2 Previous Work

In this section, we describe the most relevant previous works. In the inter-
est of brevity, we only concentrate on runtime analysis works, knowing well
that other theoretical aspects have been studied for permutation problems as
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well. Since the theory of evolutionary algorithms using bit-string represen-
tations has started with and greatly profited from the analysis how simple
EAs optimize polynomial-time solvable problems, we mostly focus on such
results.

To the best of our knowledge, the first mathematical runtime analysis
for a permutation-based problem is the study of how the (1 + 1) EA can be
used to sort an array of n elements, which is formulated at the optimization
problem of maximizing the sortedness of a permutation [STW04]. In that
work, several mutation operators are proposed for permutations. Imitating
the classic bit-wise mutation operator with mutation rate 1

n
, which flips a

number of bits that asymptotically follows a Poisson law with expectation
λ = 1, a random number k is chosen according to such a Poisson law and then
k + 1 elementary mutations are performed1. As elementary mutations, ex-
changes of two neighboring elements (called “swap” in [STW04]), exchanges
two arbitrary elements (called “exchange” in [STW04], but “swap” in the
textbook [ES15]), jumps and reversals were proposed. Since the majority of
the results in [STW04] concern exchange mutations, we shall only discuss
these here. We shall adopt the language of [ES15] though and call these
“swaps”. A swap thus swaps two random different elements in the word no-
tation of a permutation, or, equivalently, replaces the current permutation σ
by τ ◦σ, where τ is a random transposition (2-cycle) on the ground set [1..n].

We omit the results for some measures of sortedness and only state the
result most relevant for our work, namely that if the sortedness is mea-
sured by the number of items that are placed correctly, that is, the fitness
is Ham(σ) = |{i ∈ [1..n] | σ(i) = i}|, then the (1 + 1) EA with swap-based
mutation operator takes an expected number of Θ(n2 log n) iterations to sort
a random permutation.

The seminal work [STW04] has seen surprisingly little follow-up work on
permutation-based EAs. There is a second early work on sorting [DH08] re-
garding a tree-based representation and a series of works on how the choice of
the (problem-specific) mutation operator influences the complexity of com-
puting Eulerian cycles [Neu08, DHN07, DKS07, DJ07]. In [CDEL18], the
sorting problem appears in one of several applications of the level-based
method to analyze non-elitist algorithms. In [GGL19], sorting via swaps
in the presence of noise is investigated. Finally, in [BB20] it is discussed
how to adjust the (1 + (λ, λ)) GA to permutation spaces and then an O(n2)

1The change from the natural value k to k + 1 was done in [STW04] because for
the problems regarded there, a mutation operation that returns the parent, that is, the
application of k = 0 elementary mutations, cannot be profitable. It is easy to see, however,
that all results in [STW04] remain valid when using k elementary mutations as mutation
operator.
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runtime of the resulting algorithm on the sorting problem with Ham fit-
ness is proven. Slightly less related to the focus of this work, there is an
interesting a sequence of results on how EAs optimize NP-hard variants
of the travelling salesman problem (TSP) in the parameterized complex-
ity paradigm [CLNP16, SN12, SNN14], works on finding diverse sets of TSP
solutions [DBNN20, DGNN21], a fixed-budget analysis for the TSP [NNS17],
and a result on how particle swarm algorithms solve the sorting prob-
lem [MRSW22].

In summary, there are a few runtime analyses for permutation search
spaces, however much fewer than for bit-string representations and strongly
concentrated on very few problems.

3 Preliminaries: Basic Notation, Per-

mutations, and the Permutation-based

(1 + 1) EA

In this section, we define the notation used in the remainder of the paper
and we describe the permutation-based (1 + 1) EA from [STW04].

We write [a..b] := {z ∈ Z | a ≤ z ≤ b} to denote the set of integers
between a and b, where a and b can be arbitrary real numbers. We denote
the problems size of an algorithmic problem by n. When using asymptotic
notations such as O(·) or Θ(·), these will be with respect to n, that is, for n
tending to ∞.

A mapping σ : [1..n] → [1..n] is called permutation (of [1..n]) if it is bi-
jective. As common, we denote by Sn the set of all permutations of [1..n].
Different from some branches of algebra and combinatorics that regard per-
mutation groups, we use the standard composition ◦ of permutations: For
σ, τ ∈ Sn, the permutation τ ◦ σ is defined by (τ ◦ σ)(i) = τ(σ(i)) for all
i ∈ [1..n].

We recall that there are two common notations for permutations. The
most intuitive one is to describe the permutation σ ∈ Sn via the vector
(“word”) of its images, that is, we write σ = (σ(1), σ(2), . . . , σ(n)). To under-
stand the structure of a permutation, the cycle notation is more convenient.
A cycle of length k, also called k-cycle, is a permutation σ ∈ Sn such that
there are pair-wise distinct elements i1, . . . , ik ∈ [1..n] such that σ(ij) = ij+1

for all j ∈ [1..k − 1], σ(ik) = i1, and σ(i) = i for all i ∈ [1..n] \ {i1, . . . , ik}.
The notation σ = (i1 . . . ik) is standard for such a cycle. Two cycles (i1 . . . ik)
and (j1 . . . jℓ) are called disjoint if they are moving different elements, that
is, if {i1, . . . , ik} and {j1, . . . , jℓ} are disjoint sets. Every permutation can
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be written as composition of disjoint cycles of length at least 2. This cycle
decomposition is unique apart from the order of the cycles in the composi-
tion, which however is not important since disjoint cycles commute, that is,
satisfy σ ◦ τ = τ ◦ σ. To ease the writing, the ◦ symbols are usually omitted
in the cycle notation. For example σ = (12)(345) is the cycle notation of
the permutation σ = (2, 1, 4, 5, 3) in word notation. We finally recall the
fact that every permutation σ ∈ Sn can be written as composition of (usu-
ally not disjoint) 2-cycles (called transpositions). This writing is not unique.
For a k-cycle σ = (i1 . . . ik), a shortest way to write it as composition of
transpositions uses k−1 transpositions, e.g., σ = (i1i2)◦ (i2i3)◦ · · · ◦ (ik−1ik).
Consequently, a permutation that is the product of ℓ disjoint cycles of lengths
k1, . . . , kℓ can be written as product of

∑ℓ
i=1(ki − 1) transpositions, but not

of fewer.
We note the following well-known fact about fixed points of random per-

mutations, which we shall frequently use to estimate the quality of random
initial solutions. We note that much stronger results are known, e.g., that the
probability to have a constant number of exactly k fixed points is (1±o(1)) 1

ek!
,

that is, asymptotically follows a Poisson law with mean 1 [RdM13] (for a more
recent and accessible treatment of this topic, see the chapter on derangements
and rencontre numbers in any good combinatorics textbooks).

Lemma 1 ([RdM13]). Let σ ∈ Sn be random. Denote by fp(σ) := |{i ∈
[1..n] | σ(i) = i}| the number of fixed points of σ. Then Pr[fp(σ) = 0] =
1
e
± o(1), where the asymptotic notation refers to n tending to infinity.

We finally discuss the evolutionary algorithm (EA) considered in this
study. As in most previous theoretical works, we shall regard a very sim-
ple EA. This is justified both by the fact that many questions cannot be
answered for more complicated algorithms and by the fact that simple al-
gorithms consisting essentially of only one component allow a more focused
study of this component. With this reasoning, as in the classic first theory
works on EAs for bit-string representations, we shall regard the (1 + 1) EA,
which is essentially a hill-climber using a mutation operator to create new
solutions. In this sense, we are following the approach of the first runtime
analysis work on permutation-based EAs [STW04]. As sketched in the in-
troduction already, a number of different mutation operators was proposed
in [STW04], but the most promising results were obtained by building on
swap operations. We first note that if σ = (i1, . . . , in) in word notation and
τ is the transposition swapping ik and iℓ (that is, τ = (ikiℓ) in cycle no-
tation), then τ ◦ σ = (j1, . . . jn) with jk = iℓ, jℓ = ik, and ja = ia for all
a ∈ [1..n] \ {ik, iℓ}. In other words, we obtain the word representation for
τ ◦ σ by swapping ik and iℓ in the word representation of σ.
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It is clear that a local mutation operator such as a single random swap is
not enough to let an EA leave local optima. Noting that the classic bit-wise
mutation operator for bit-string representations (that flips each bit indepen-
dently with probability 1

n
) performs a number of local changes (bit-flips)

that asymptotically follows a Poisson law with parameter λ = 1, the au-
thors of [STW04] argue that it is a good idea in the permutation-case to
sample a number k ∼ Poi(1) and then perform k random swap operations.
Since in their application mutation operations that return the parent cannot
be useful, they exclude the result of zero swaps by deviating from this idea
and instead performing k+1 random transpositions. To ease the comparison
with the bit-string case, we shall not follow this last idea and perform instead
k ∼ Poi(1) random transpositions as mutation operation. We note that in
many EAs for bit-string representations, zero-bit flips cannot be profitable
as well, but nevertheless the standard bit-wise mutation operator is used,
which with constant probability flips no bit.

With these considerations, we arrive at the permutation-based (1 + 1) EA
described in Algorithm 1.

Algorithm 1 The permutation-based (1 + 1) EA for the maximization of a
given function f : Sn → R. It is identical to the one in [STW04] except that
we perform only k random swaps, not k + 1.

1: Choose σ ∈ Sn uniformly at random
2: repeat
3: Choose k ∼ Poi(1)
4: Choose k transpositions T1, T2, ..., Tk independently and uniformly at

random
5: σ′ ← Tk ◦ Tk−1 ◦ ... ◦ T1 ◦ σ
6: if f(σ′) ≥ f(σ) then
7: σ ← σ′

8: until forever

4 Benchmarks for Permutation-based EAs

As discussed in the introduction, the theory of evolutionary computation
has massively profited from having a small, but diverse set of benchmark
problems. These problems are simple enough to admit mathematical runtime
analyses for a broad range of algorithms including more sophisticated ones
such as ant colony optimizers or estimation-of-distribution algorithms. At
the same time, they cover many aspects found in real-world problems such
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as plateaus and local optima. Being synthetic examples, they often come
with parameters that allow one to scale the desired property, say the radius
of attraction of a local optimum.

Such an established and generally accepted set of benchmarks is clearly
missing for permutation-based EAs, which might be one of the reasons why
this part of EA theory is less developed. To overcome this shortage, and to
do this in a natural and systematic manner, ideally profiting to the maxi-
mum from the work done already for EAs using bit-string representations,
we now propose a simple way to transform benchmarks for pseudo-Boolean
optimization into permutation-based problems. We are sure that future work
on permutation-based EAs will detect the need for benchmarks which can-
not be constructed in this way, but we are confident that our approach sets
a good basis for a powerful sets of benchmarks for permutation-based EAs.

We note that there are different classes of permutation-based problems.
In problems of the assignment type, we have two classes of n elements and
the task is to assign each member of the first class to a member of the sec-
ond in a bijective fashion. The quadratic assignment problem or the stable
marriage problem are examples for this type. In problems of the order type,
we have precedence relations that must be respected or that are profitable to
be respected. Such problems occur in production scheduling, where a given
set of jobs have to be placed on a given machine in an optimal order. Fi-
nally, in problems of the adjacency type, it is important that certain items are
placed right before another one (possibly in a cyclic fashion). The travelling
salesman problem is the classic hard problem of this type, the Eulerian cycle
problem is a polynomial-time solvable example. We note that the order and
adjacency types were, also under these names, already described in [ES15,
p. 68]. Due to the different nature of these types of problems, it appears
difficult to define benchmarks that are meaningful for all types. We there-
fore restrict ourselves to defining benchmarks that appear suitable for the
assignment type.

In an assignment type permutation-based problem, what counts is that
each element of the first class is assigned to the right element of the second
class. Without loss of generality, we may assume that both classes are equal
[1..n]. Then each possible solution to this type of problem is described by a
permutation σ ∈ Sn. Since the way we number the elements of the original
sets is arbitrary, we can without loss of generality assume that the optimal
solution is the identity permutation, that is, the σ such that σ(i) = i for all
i ∈ [1..n]. With this setup, each permutation σ ∈ Sn defines a bit-string x(σ)
which indicates which of the elements are already assigned correctly, namely
the string x(σ) ∈ {0, 1}n defined by x(σ)i = 1 if and only if σ(i) = i. Now an
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arbitrary f : {0, 1}n → R defines a permutation-based problem g : Sn → R
via g(σ) := f(x(σ)) for all σ ∈ Sn.

This construction immediately defines permutation-based versions of the
classic benchmarks such as OneMax, LeadingOnes, and Jump functions.
We note that the sorting problem with the Ham fitness function regarded
in [STW04] is exactly what we obtain from applying this construction to
the classic OneMax benchmark. We are not aware of any other classic
benchmark for which the permutation-based variant (as constructed above)
has been analyzed so far. Being the next most prominent benchmarks after
OneMax, in the remainder of this work we shall conduct a mathematical
runtime analysis for the permutation variants of the LeadingOnes and
Jump benchmarks.

5 Runtime Analysis for the Permutation-

LeadingOnes Benchmark

We start our runtime analysis work for permutation-based EAs with an
analysis of the runtime of the (1 + 1) EA on the permutation version of the
LeadingOnes benchmark.

5.1 Definition of the Problem

The classic LeadingOnes benchmark on bit-strings was defined by
Rudolph [Rud97] as an example for a unimodal function that is harder for
typical EAs than OneMax, but still unimodal. The LeadingOnes func-
tions counts the number of successive ones from left to right, that is, we
have

LeadingOnes(x) :=
n∑

i=1

i∏
k=1

xk = max{i ∈ [0..n] | ∀j ∈ [1..i] : xj = 1}

for all x = (x1, ..., xn) ∈ {0, 1}n.
LeadingOnes has quickly become an intensively studied benchmark

in evolutionary computation. The (1 + 1) EA optimizes LeadingOnes in
quadratic time, as has been shown in [Rud97] (upper bound) and [DJW02]
(lower bound).

From our general construction principle for permutation-based bench-
marks proposed in Section 4, we immediately obtain the following
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permutation-variant PLeadingOnes of this problem. For all σ ∈ Sn, let

PLeadingOnes(σ) := LeadingOnes(x(σ))

= max{i ∈ [0..n] | ∀j ∈ [1..i] : σ(j) = j}.

5.2 Runtime Analysis

We now show that the expected runtime of the permutation-based (1 + 1) EA
on PLeadingOnes is Θ(n3). As in the bit-string case, this result follows
from a fitness level argument (upper bound) and the argument that a typical
run will visit a linear number of fitness levels. This second argument is
actually easier in the permutation setting: We can show that the probability
to gain three or more levels in one iteration is so small that with constant
probability this does not happen in O(n3) iterations. Hence in this time, each
iteration can increase the fitness by at most two. Since any improvement
takes Ω(n2) expected time and, when assuming that no fitness gains of more
than two happen, Ω(n) improvements are necessary to reach the optimum,
an Ω(n3) lower bound for the runtime follows.

Lemma 2. In each iteration of a run of the permutation-based (1 + 1) EA
(Algorithm 1) on the PLeadingOnes benchmark, the probability of a fitness
improvement is at most 6

(n−1)2
.

Proof. To increase the fitness via a mutation operation, it is necessary that
the first element that is not in place is moved away from its position and that
the correct element is moved there. In particular, these two elements have to
be among the 2k elements (counted with repetition) the k transpositions are
composed of. We recall that the probability that k transpositions are applied
as mutation is 1

ek!
. Hence the probability for this latter event is at most

∞∑
k=0

2

e · k!

(
2k

2

)(
1

n− 1

)2

.

We compute

∞∑
k=0

1

ek!

(
2k

2

)
=

∞∑
k=1

k(2k − 1)

ek!
= 2

∞∑
k=0

k2

ek!
−

∞∑
k=0

k

ek!

and note that
∑∞

k=0
k
ek!

and
∑∞

k=0
k2

ek!
are the first and second moment of the

Poisson distribution with parameter λ = 1. These moments are well-known
and are equal, in the general case, to λ and λ2+λ (the latter is possibly better
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known as the equivalent statement that the variance of this distribution is λ).
Hence

∞∑
k=0

1

ek!

(
2k

2

)
= 3

and thus
∞∑
k=0

2

e · k!

(
2k

2

)(
1

n− 1

)2

= 6

(
1

n− 1

)2

.

Theorem 3. The expected runtime of the permutation-based (1 + 1) EA on
PLeadingOnes is Θ(n3).

Proof. If the current state σ is such that PLeadingOnes(σ) = i, then the
element i + 1 is at some position j with j > i + 1. Thus, a transposition
between i+1 and j increases the fitness by at least 1. Picking this transposi-
tion as a random transposition has probability 2

n(n−1)
. Thus the probability

of increasing the fitness with one local operation (which happens with prob-
ability 1

e
) is at least 2

en(n−1)
. Needing at most n of such steps, the expected

waiting time can be bounded from above by en2(n−1)
2

= O(n3); this argument
is known as Wegener’s fitness level method [Weg01].

For the lower bound, our analysis will rely on the fact that large fitness
gains occur rarely. Let us consider the event that we raise the fitness by at
least 3 and call it Ai. Let Bi be the event that elements i + 2 or i + 3 were
in place before the mutation step. Then

Pr[Ai] = Pr[Ai | Bi] Pr[Bi] + Pr[Ai | Bi] Pr[Bi]

≤ Pr[Ai | Bi] Pr[Bi] + Pr[Ai | Bi].

To increase the fitness by at least 3, when neither i+ 2 nor i+ 3 were in
place, we need that i + 1, i + 2 and i + 3 be amongst the elements touched
by some transposition of the mutation step. We can hence bound Pr[Ai | Bi]
by

Pr[Ai | Bi] ≤
∞∑
k=0

3!

e · k!

(
2k

3

)(
1

n− 1

)3

=
4

(n− 1)3

(
2

∞∑
k=0

k3

ek!
− 3

∞∑
k=0

k2

ek!
+

∞∑
k=0

k

ek!

)

= 20

(
1

n− 1

)3

,
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where we used that the second and third moment of a Poisson distribution
with parameter λ are λ2 + λ and λ3 + 3λ2 + λ.

Similarly, to increase the fitness in general, we need that i+1 and σ(i+1)
be amongst the elements touched by a transposition. Hence, by Lemma 2,

Pr[Ai | Bi] ≤
∞∑
k=0

2

e · k!

(
2k

2

)(
1

n− 1

)2

= 6

(
1

n− 1

)2

.

Finally, to estimate Pr[Bi], we note that, for a permutation σ and un-
til reaching PLeadingOnes(σ) = i, the elements i + 2, i + 3, . . . , n play
symmetric roles for the decisions taken by the algorithm. Hence i + 2 and
i + 3 are equally likely to be at any position i + 2 through n, and thus
Pr[Bi] ≤ Pr[σ(i+ 2) = i+ 2] + Pr[σ(i+ 3) = i+ 3] ≤ 2 1

n−i−1
. Putting these

estimates together, we obtain Pr[Ai] ≤ 44
(n−1)3

for all i ≤ n
2
− 1

2
.

Since we aim at an asymptotic result, let us assume that n is at least 4.
Let E be the event of reaching fitness greater than n

2
− 1

2
, that is, at least

n
2
in at most t = ⌊ (n−1)3

m
⌋ steps starting from a fitness of 0, where m is a

constant we will explicit later. Let F be the event of having at least one
fitness increase of at least 3 during this time span. If F does not occur, we
need at least ∆ = ⌈n

4
⌉ fitness improvements, giving the following bound for

m sufficiently large.

Pr[E] ≤ Pr[F ] + Pr[E | F ]

≤ t
44

(n− 1)3
+

(
t

∆

)(
6

(n− 1)2

)∆

≤ 44

m
+

(
(n−1)3

m
e

∆

)∆(
6

(n− 1)2

)∆

≤ 44

m
+

(
24e

m

)n
4

≤ 1

2
.

Since n ≥ 4, the initial random permutation has fitness 0 with probability
at least 3

4
. Hence the expected time to reach a fitness of at least n

2
from a

random initial permutation is at least 3
4
Pr[E](t+1) = Ω(n3). Thus, also the

unconditional expected runtime is Ω(n3).

6 Runtime Analysis for the Permutation-

Jump Benchmark

We proceed with a runtime analysis of the permutation variant of the Jump
benchmark. In contrast to our analysis for LeadingOnes, where mild adap-

13



tations of the proofs for the bit-string case were sufficient, we now observe
substantially new phenomena, which require substantially more work in the
analysis. In particular, different from the bit-string case, where all local
optima of the jump function were equivalent, now the cycle structure of the
local optimum is important. Consequently, the probability of jumping from a
local optimum to the global one in one iteration can range from Θ(n−2(m−1))
to Θ(n−2⌈m/2⌉), where m is the (constant) jump parameter. By analyzing the
random walk which the (1 + 1) EA performs on the set of local optima while
searching for the global optimum, we shall nevertheless prove a runtime of
order Θ(n2⌈m/2⌉) only.

6.1 Definition of the Problem

The Jump benchmark as pseudo-Boolean optimization problem was proposed
in [DJW02]. It is the by far most studied multimodal benchmark in the
theory of evolutionary algorithms and has led to a broad set of interesting
insights, mostly on crossover and on how evolutionary algorithms cope with
local optima [DJW02, JW02, DDK15, DFK+16, DLMN17, HS18, DFK+18,
WVHM18, RA19, RW21a, Doe21, BBD21, RW22, Doe22, ADK22].

We now define its permutation version, following our general construc-
tion from Section 4. To ease the notation, let g denote the function that
counts the number of fixed points of a permutation, that is, the number
i ∈ [1..n] of elements that are “in place”, that is, that satisfy σ(i) = i. By
our general construction principle, this is nothing else than the permutation-
variant of the OneMax benchmark. The permutation-based version of the
Jump benchmark, again following our general construction, is now defined
as follows.

For all n,m ∈ N, such that m ≤ n, let PJumpn,m be the map from Sn to
N defined by

PJumpn,m(σ) :=

{
m+ g(σ) if g(σ) ≤ n−m or g(σ) = n,
n− g(σ) otherwise.

Since a permutation cannot have exactly n − 1 fixed points, we see that
PJumpn,2 is equal to g + 2, hence essentially a OneMax function. For that
reason, we shall always assume m ≥ 3.

For the complexity analysis, we define the sets

A1 = {σ ∈ Sn | g(σ) > n−m and g(σ) ̸= n},
A2 = {σ ∈ Sn | g(σ) ≤ n−m},
A+

2 = {σ ∈ Sn | g(σ) = n−m},
A3 = {Id[1..n]}.

14



By definition, for all
(
σ1, σ2, σ

+
2 , σ3

)
∈ A1 × A2 × A+

2 × A3, we have

PJump(σ1) < PJump(σ2) ≤ PJump(σ+
2 ) < PJump(σ3).

6.2 Runtime Analysis, Upper Bound

To prove an upper bound on the runtime of the permutation-based
(1 + 1) EA on jump functions, we first show the following upper bound on
the expected time spent on A+

2 , which will be the bottleneck for the runtime
of the algorithm.

Theorem 4. Let m ≥ 3 be a constant. The permutation-based (1 + 1) EA
started in a local optimum finds the global optimum of PJumpn,m in an ex-
pected number of O(n2⌈m

2
⌉) iterations.

The key to prove this result is the following observation. Since we use
sequences of swap operations as mutation operation, the probability that we
mutate a local optimum into the global optimum heavily depends on the
smallest number ℓ such that the local optimum can be written as product of
ℓ transpositions. This number can range from ⌈m

2
⌉ to m− 1. Hence to prove

a good upper bound on the time to go from a local to the global optimum,
we argue that the algorithm regularly visits local optima with this shortest
possible product length and then from there has a decent chance to generate
the global optimum.

For this, we shall need the following estimate for the probability of mod-
ifying the cycle structure of a given local optimum.

Lemma 5. If the current permutation is a local optimum, then the probability
that one iteration of the (1 + 1) EA changes the number of its cycles in the
cycle decomposition is at most 3( m

n−1
)2.

Proof. For the number of cycles to change, by applying k transpositions, at
least 2 elements among the 2k elements which appear in the k transpositions
have to be among them deranged ones. Otherwise, applying these k transpo-
sitions would either lead to a permutation of inferior fitness or to an identical
permutation; in both cases the new parent would be identical with the old
one. Hence, an iteration modifies the number of cycles with probability at
most

∞∑
k=0

1

e · k!

(
2k

2

)(
m

n− 1

)2

≤ 3

(
m

n− 1

)2

,

where the sum was estimated already in the proof of Lemma 2.
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We call a permutation σ ∈ A+
2 good if it consists of as many disjoint

cycles as possible. This means that, apart from the n −m cycles of length
one, which are not that interesting, the remaining m elements are permuted
via (i) a product of m/2 disjoint transpositions if m is even, or (ii) a product
of (m − 3)/2 disjoint transpositions and a 3-cycle, also disjoint from these,
if m is odd. We first show that any σ ∈ A+

2 can be transformed into a good
permutation in A+

2 by applying at most m/2 transpositions.

Lemma 6. Let σ ∈ A+
2 . Then there is an ℓ ≤ m

2
and a sequence of transpo-

sitions τ1, . . . , τℓ such that τℓ ◦ · · · ◦ τ1 ◦ σ is a good permutation in A+
2 .

Proof. Let c denote the number of cycles of odd length larger than one in
the cycle decomposition of σ. Note that two such odd-length cycles can
be merged by applying a transposition that contains one element from each
cycle. Hence there are c′ = ⌊ c

2
⌋ transpositions τ1, . . . , τc′ such that σ′ :=

τc′ ◦ · · · ◦ τ1 ◦ σ contains exactly c− 2c′ cycles of odd length larger than one
(which is one such cycle if c is odd and no such cycle if c is even). Note that
σ′ ∈ A+

2 since σ and σ′ have the same fixed points.
We note that a cycle of some length k can be split into a 2-cycle and a

(k − 2)-cycle by applying one transposition. Since σ′ is the product of at
least c′ disjoint cycles (of length larger than one) whose lengths add up to
at most m, we see that there are ℓ′ ≤ m

2
− c′ and transpositions τ ′1, . . . , τ

′
ℓ′

such that τ ′ℓ′ ◦ · · · ◦ τ ′1σ′ is the product of disjoint 2-cycles and possibly one
3-cycle (namely when m is odd). This is the good permutation proving this
lemma.

We are now ready to prove Theorem 4. This proof will be divided into
two steps:

(i) We show that from the current local optimum, a good permutation can

be reached within the next (n−1)2

m
iterations with at least a constant

probability.

(ii) We give a lower bound on the probability of reaching the global opti-

mum from a good local optimum within again (n−1)2

m2 iterations.

Proof of Theorem 4. Step 1: Since we aim at an asymptotic statement, we
can always assume that n is sufficiently large. Let σ ∈ A+

2 be the current
permutation. By Lemma 6, there are ℓ ≤ m

2
and transpositions τ1, . . . , τℓ

such that τℓ ◦ · · · ◦ τ1 ◦ σ is a good permutation in A+
2 .

Let E be the event of applying this sequence of transpositions during a

timespan of t = (n−1)2

m
iterations, using mutations which keep the intermedi-

ate states unmodified in the remaining t− ℓ iterations. Each of these latter

mutations occurs with probability at least pu = 1− 3
(

m
n−1

)2
by Lemma 5.
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Using ℓ ≤ m
2
and n−1

n
≥ 1

2
, we estimate

Pr[E] ≥
(
t

ℓ

)(
2

en(n− 1)

)ℓ

pt−ℓ
u

≥
(
2

e

)ℓ(
1

ℓm

)ℓ(
n− 1

n

)ℓ

ptu

≥
(

2

em2

)m
2

ptu

≥
(

2

em2

)m
2

(
1− 3

(
m

n− 1

)2
)t

.

Since
(
1− 3

(
m

n−1

)2) (n−1)2

m → e−3m for n sufficiently large, we have

Pr[E] ≥ 1

2
·
(

2

m2

)m
2

exp

(
−7

2
m

)
:= Bm,

which is a constant independent of n.
Step 2: The second argument is a lower bound on the probability of going

from a good local optimum to the global optimum in t′ = (n−1)2

m2 steps. For
this, we first observe that a good local optimum can be written as the prod-
uct of ⌈m

2
⌉ transpositions (namely the disjoint transpositions the good local

optimum consists of plus possibly two more for the 3-cycle in the case that
m is odd). Hence the good local optimum can be mutated into the global
optimum by applying k = ⌈m

2
⌉ suitable transpositions. The probability for

this is at least
1

e⌈m
2
⌉!

1(
n(n−1)

2

)⌈m
2
⌉ .

To estimate the probability that this happens within t′ steps, we regard the
t′ disjoint events that this happens in one iteration and that the state is
not changed in the remaining t′ − 1 iterations (it is necessary that we are
in a good local optimum in the iteration which shall bring us to the global
optimum).
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The probability of this event (assuming n sufficiently large), is

t′
1

e⌈m
2
⌉!
(

n(n−1)
2

)⌈m
2
⌉

(
1− 3

(
m

n− 1

)2
) (n−1)2

m2 −1

≥ (n− 1)2

m2

1

e4⌈m
2
⌉!

(
n(n− 1)

2

)−⌈m
2
⌉

:= Dn,m.

Combining Steps 1 and 2, we see that in each interval of Cm(n − 1)2 itera-
tions (Cm := 1

m2 +
1
m
), independently of what happened before, we find the

optimum with probability at least BmDn,m.
For each positive integer t, let At be the event of not reaching the global

optimum in t iterations. We therefore have

Pr[At] ≤ (1−BmDn,m)

⌊
t

Cm(n−1)2

⌋

≤ exp

(
−BmDn,m

⌊
t

Cm(n− 1)2

⌋)
.

Thus, for t > λCm(n−1)2

BmDn,m
for some positive real λ, we have Pr[At] ≤

exp(−λ).
We conclude that the expected time for reaching the global optimum is

O(n2⌈m
2
⌉), where we recall that we treat m as a constant.

We are now ready to prove the upper bound on the runtime of the
permutation-based (1 + 1) EA on PJump. In the light of Theorem 4, all
that is missing is a fitness-level argument bounding the time to reach at least
the local optimum. We note that we cannot directly reuse the analysis on
the permutation-based OneMax problem (sorting) from [STW04], see the
proof below for the details.

Theorem 7. Let m ≥ 3 be a constant. The expected runtime of the
permutation-based (1 + 1) EA on PJumpn,m is O(n2⌈m

2
⌉).

Proof. We show upper bounds on the times spent on each of the sets A1, A2,
and A+

2 , which together give an upper bound for the global process.
For a permutation σ in A1, let k be the number of 1-cycles. We have

n−m < k < n. Thus the number of fitness increasing transpositions, which
are transpositions that create more elements out of place, is

n(n− 1)

2
− (n− k)(n− k − 1)

2
= k

(
n− k + 1

2

)
≥ k(n− 1)

2
.
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Therefore the probability of decreasing the number of 1-cycles by applying
a single random transposition is at least 1

e
k(n−1)/2
n(n−1)/2

= k
en
. Hence the expected

time spent in A1 is bounded above by

E[TA1 ] ≤ e
n−1∑

k=n−m

n

k
≤ en log(n).

Assume now that the current permutation σ is in A2 \ A+
2 . Then σ has

n − d fixed points for some d > m, that is, it is in Hamming and fitness
distance d steps away from the optimum. For each i ∈ [1..n] such that
σ(i) ̸= i, the transposition τ = (i σ(i)) has the property that τ ◦ σ inherits
all fixed points of σ, has i as additional fixed point, and possibly has σ(i)
as additional fixed point. If d ≥ m + 2, the permutation τ ◦ σ has a higher
fitness than σ, that is, it would be accepted as offspring. Since there are at
least d

2
such improving transpositions, the probability that one iteration gives

such a fitness improvement is at least d
2
1
e

(
n
2

)−1
, hence the expected waiting

time for an improvement is O(n2/d). Summing up these waiting times for
all d ∈ [m + 2..n] gives a runtime guarantee of O(n2 log n) for reaching a
permutation in distance d ∈ {m+ 1,m, 0} from the optimum.

If the current permutation σ has distance m+1 from the optimum, then
a reduction of the distance by two would give a permutation in the valley of
low fitness, which would not be accepted. Since we cannot rule out that any
transposition reducing the distance reduces it by two (this happens when
σ is the product of d

2
disjoint transpositions), we need to be more careful

here. If the cycle decomposition of σ contains a cycle of length larger than
two, then there is a transposition τ such that τ ◦ σ has distance m from

the optimum. Hence with probability at least 1
e

(
n
2

)−1
= Ω(n−2) the current

iteration increases the fitness (and thus reaches the local or the global opti-
mum). Assume now that σ is the product of disjoint transpositions. Let τ1
be one of these. Now τ1 ◦ σ has n−m+ 1 fixed points. Hence any transpo-
sition τ2 containing one of these and one of the m− 1 items not in place has
the property that τ2 ◦ τ1 ◦ σ has distance m from the optimum. Since there
are exactly (n−m+1)(m−1)

2
choices for τ2, we see that the probability that the

mutation operator picks k = 2 transpositions, the first equal to τ1 and the
second equal to such a τ2, is at least Ω(n

−3). Hence in either case, we have a
probability of Ω(n−3) to leave this fitness level, and thus this takes another
O(n3) time. In summary, we see that the time to reach the local or global
optimum is O(n3) and thus of lower order than the time we have proven for
going from the local to the global optimum.
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The sum of all these times is asymptotically negligible compared to the
time O

(
n2⌈m

2
⌉) proven in Theorem 4, which therefore is our upper bound on

the full runtime.

6.3 Runtime Analysis, Lower Bound

We now prove that our upper bound from Section 6.2 is asymptotically tight.
The main argument in this lower bound proof is that applying a single trans-
position on a permutation σ increases the number of cycles by at most 1, and
this only if the transposition operates on elements belonging to a common
cycle of σ. We first give an upper bound on the probability that a random
transposition increases the number of cycles.

Lemma 8. Given a permutation σ ∈ Sn with r > 0 distinct cycles (possibly
of length one), the probability that a random transposition consists of two

elements from the same cycle is at most (n−r)(n−r+1)
n(n−1)

.

Proof. Denoting by n1, . . . , nr the lengths of the different cycles, the exact

probability for this event is p =
∑r

i=1 ni(ni−1)

n(n−1)
. Hence it suffices to show that∑r

i=1 ni(ni − 1) ≤ (n − r)(n − r + 1). To this aim, note that f : Rr →
R; (n1, . . . , nr) 7→

∑r
i=1 ni(ni − 1) is convex. Let ei be the i-th unit vector

of the standard basis and 1 =
∑r

i=1 er. Then (n1, . . . , nr) =
∑r

i=1
ni−1
n−r

(1 +
(n− r)ei). By the convexity of f , we have

f(n1, . . . , nr) = f

(
r∑

i=1

ni − 1

n− r
(1+ (n− r)ei)

)

≤
r∑

i=1

ni − 1

n− r
f(1+ (n− r)ei)

= (n− r)(n− r + 1)
r∑

i=1

ni − 1

n− r

= (n− r)(n− r + 1).

We are now ready to prove the main result of this subsection.

Theorem 9. Let m ≥ 3 be a constant. The expected runtime of the
permutation-based (1 + 1) EA on PJumpn,m is Ω(n2⌈m

2
⌉).

Proof. We consider first the case that the current permutation is in A2, thus
with q ∈ [m..n] elements out of place. Let us call R the number of cycles of
length at least 2 in the cycle notation of σ. Consequently, the total number
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of cycles is n − q + R. Composing by a transposition increases the number
of cycles by at most 1. Thus, in order to reach the global optimum, the
sequence of transpositions in a mutation step should at least be composed of
q − R transpositions, each raising the number of cycles from i to i + 1 with
i ∈ [n− q +R..n− 1]. Thus, with k transpositions applied, an upper bound
on the probability of reaching the global optimum from a state of fitness n−q
and with R cycles of size ≥ 2 is given by Lemma 8 as(

k

q −R

) q−R−1∏
i=0

(n− (n− q +R + i))(n− (n− q +R + i) + 1)

n(n− 1)

=
k!(q −R + 1)!

(k − q +R)!

1

(n(n− 1))q−R
.

Since 1 ≤ R ≤ ⌊ q
2
⌋, the bound becomes at most

k!q!

(k − q +R)!

1

(n(n− 1))⌈
q
2
⌉ .

Finally, considering the random choice of k, we obtain an upper bound on
the probability to reach the global optimum in one step from a state of fitness
n− q and with R cycles of size ≥ 2 of

∞∑
k=q−R

1

e · k!
k! · q!

(k − q +R)!

1

(n(n− 1))⌈
q
2
⌉ =

m!
∏q

i=m+1 i

(n(n− 1))⌈
q
2
⌉

≤ (m+ 1)!

(n(n− 1))⌈
m
2
⌉ := p.

Hence, considering the fact that the bound above holds for any point in A2,
the expected time to reach the global optimum from a permutation σ in A2

is at least 1
p
= Ω(n2⌈m

2
⌉).

For a random permutation, the expected number of fixed points is 1
(this is well-known; to see this, note that by symmetry the probability that
σ(i) = i is exactly 1

n
; hence the expected number of fixed points equal to i is

1
n
and thus the expected number of all fixed-points is precisely one). Thus,

for n −m ≥ 1, we estimate with Markov’s inequality that having an initial
random permutation with at most one fixed point and thus belonging to A2

happens with probability at least 1
2
. Thus, the runtime is also Ω(n2⌈m

2
⌉) when

taking into account the random initial permutation.

7 Scramble Mutation

Both the complexity of the proofs above and the slightly obscure result,
a runtime of Θ(n2⌈m

2
⌉), raise the question whether our permutation-based
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(1 + 1) EA is optimally designed. The asymmetric behavior of the different
local optima suggested to us to look for a mutation operator which treats
all these solutions equally. A natural choice, known in the literature on
permutation-based EAs [ES15], is the scramble mutation operator, which
shuffles a random subset of the ground set [1..n]. More precisely, this opera-
tor samples a number k according to a Poisson distribution with mean λ = 1,
selects a random set of k elements from [1..n], and applies a random permu-
tation ρ to this set (formally speaking, the mutation operator returns ρ ◦ σ,
when σ was the parent permutation). The pseudocode for the (1 + 1) EA
using this mutation operator is given as Algorithm 7.

We note that this scramble operator returns the unchanged parent when
k ∈ {0, 1}. We note further that we allow ρ to have fixed points. Hence the
Hamming distance of σ and ρ ◦ σ could be smaller than k. We do not see
any problem with this. We note that one could choose ρ as a fixed-point free
permutation (also called derangement) to ensure that the Hamming distance
is exactly k. Such random derangements can be generated efficiently in linear
time, see, e.g., [MPP08].

Algorithm 2 The permutation-based (1 + 1) EA with the scramble muta-
tion for the maximization of a given function f : Sn → R.
1: Choose σ ∈ Sn uniformly at random
2: repeat
3: Choose k ∼ Poi(1)
4: Choose S ⊆ [1..n] of size k uniformly at random
5: Choose a permutation ρ operating on S uniformly at random
6: σ′ ← ρ ◦ σ
7: if f(σ′) ≥ f(σ) then
8: σ ← σ′

9: until forever

For this mutation operator, we shall show a runtime of Θ(nm) on
PJumpn,m when m is constant. This is faster by a factor of Θ(n) com-
pared to when using swap mutation operator if m is odd. Technically much
easier, here without any effort we obtain bounds that are tight apart from
constant factors even when allowing that m is a function of n.

Theorem 10. Let m ≥ 3, possibly depending on n. The expected runtime
of the permutation-based (1 + 1) EA with the scramble mutation operator on
PJumpn,m is Θ((m!)2

(
n
m

)
).

Proof. For the upper bound, and adopting previously introduced notations,
the expected time spent in A1 and A2 \ A+

2 can again easily be bounded by
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O(n2 log n) via elementary fitness level arguments. We note that both the
swap and the scramble mutation operator apply a particular transposition
with probability Θ(n−2) and such mutation steps suffice to make progress in
A1 and A2 \ A+

2 .
Once the current permutation is in A+

2 , a mutation step which leads to
the global optimum can be one operating exactly on them displaced elements
and bringing them into place. Such an event occurs with probability exactly
1

em!

(
n
m

)−1
(m!)−1. Thus, the expected waiting time for such an event is at

most e(m!)2
(
n
m

)
. This proves an upper bound on the expected runtime of

e(m!)2
(
n
m

)
+O(n2 log n) = (1 + o(1))e(m!)2

(
n
m

)
.

For the lower bound, we note that with probability (1+o(1))1
e
, the random

initial permutation has no fixed point (see Lemma 1), and thus is in A2.
Reaching the global optimum from any point of A2 with q ∈ [m..n] elements
out of place demands a mutation step operating on a set containing at least
these q elements and bringing (or leaving) all these elements on the desired
position. Thus, an upper bound for the probability of reaching the optimum
from A2 is

n∑
k=q

1

ek!

(
n−q
k−q

)(
n
k

) 1

k!
=

(n− q)!

n!

n∑
k=q

1

ek!(k − q)!

≤ (n− q)!

n!

1

q!

n∑
k=q

1

e(k − q)!

≤ (n−m)!

n!

1

m!
=

1

(m!)2
(
n
m

) .
Since this bound holds for any permutation σ in A2, the expected time to
reach the global optimum from a permutation in A2 is at least (m!)2

(
n
m

)
.

Starting from a random initial solution, the expected runtime is at least
(1 + o(1))1

e
(m!)2

(
n
m

)
.

For reasons of completeness, we also determine the runtime of the
(1 + 1) EA with scramble mutation on the permutation version of the
LeadingOnes benchmarks. For our lower bound proof, we need the fol-
lowing elementary result, which might be useful in other analyses of scram-
ble mutations as well. It determines the probability that scramble mutation
changes the position of ℓ items in a prescribed way. Here and in the re-
mainder, we shall use the standard notation σ(I) := {σ(i) | i ∈ I} for a set
I ⊆ [1..n].
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Lemma 11. Let σ ∈ Sn. Let I ⊆ [1..n] and ℓ := |I|. For all i ∈ I, let
ri ∈ [1..n] \ σ(i), and this in a way that the ri, i ∈ I, are pairwise distinct.
Let I ′ = σ(I) ∪ {ri | i ∈ I} and ℓ′ = |I ′|.

Let τ be the outcome of applying scramble mutation to σ. With ℓ2 :=
max{ℓ, 2}, we have

Pr[∀i ∈ I : τ(i) = ri] =

(
n∑

k=ℓ′

(k − ℓ) . . . (k − ℓ′ + 1)

ek!

)
(n− ℓ′)!

n!

≤ (n− ℓ′ + 1)−ℓ′ ≤ (n− ℓ2 + 1)−ℓ2 .

Proof. Let S ⊆ [1..n]. Let τ be obtained from randomly scrambling the
elements of S (formally, let ρ ∈ Sn be random such that ρ(i) = i for all
i ∈ [1..n] \ S and let τ = ρ ◦ σ). If I ′ ̸⊆ S, then surely τ does not satisfy
that τ(i) = ri for all i ∈ I. Hence let I ′ ⊆ S. By elementary counting,

Pr[∀i ∈ I : τ(i) = ri] =
(|S|−ℓ)!

|S|! . Since there are exactly
(
n−ℓ′

k−ℓ′

)
sets S ⊆ [1..n]

with I ′ ⊆ S and |S| = k, we have

Pr[∀i ∈ I : τ(i) = ri] =
n∑

k=ℓ′

1

ek!

(
n− ℓ′

k − ℓ′

)(
n

k

)−1
(k − ℓ)!

k!

=

(
n∑

k=ℓ′

(k − ℓ) . . . (k − ℓ′ + 1)

ek!

)
(n− ℓ′)!

n!

≤

(
n∑

k=ℓ′

1

e(k − ℓ′)!

)
(n− ℓ′)!

n!

≤ (n− ℓ′)!

n!
≤ (n− ℓ′ + 1)−ℓ′ ≤ (n− ℓ2 + 1)−ℓ2 .

Here the last estimate follows from the fact that ℓ′ ≥ ℓ2, among others,
because ℓ′ necessarily is at least two.

Theorem 12. The expected runtime of the (1 + 1) EA with scramble muta-
tion on the PLeadingOnes benchmark is Θ(n3).

Proof. As in the proof of Theorem 10, we observe that the scramble mu-
tation operator applies a particular transposition with probability Ω(n−2).
Since for each non-optimal search point there is a transposition increasing its
PLeadingOnes fitness, the expected waiting time for a fitness improvement
is O(n2), and the expected runtime, which is at most the waiting time of n
fitness improvements, is O(n3).

For the lower bound, we also follow the general outline of the proof of
Theorem 3. Consider a run of the (1 + 1) EA with scramble mutation on
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the PLeadingOnes benchmark. Let i ∈ [0..n] with i < n
2
. Consider an

iteration in which the current parent σ has fitness exactly i. Let Bi be the
event that σ(i+2) = i+2 or σ(i+3) = i+3. As in the proof of Theorem 3,
we have Pr[Bi] ≤ 2

n−i−1
≤ 4

n−1
.

Let Ai be the event that this iteration increases the fitness by at least
three. For this, at least σ(i+1) has to be modified by the mutation. When Bi

is not satisfied, also σ(i+2) and σ(i+3) have to be modified. By Lemma 11,
this happens with probability at most Pr[Ai | Bi] ≤ (n − 2)−3. Let Ci be
the event that we increase the fitness by at least one in this iteration. This
requires σ(i + 1) to be modified. Hence Pr[Ai | Bi] ≤ Pr[Ci] ≤ (n − 1)−2,
again by Lemma 11. Consequently, Pr[Ai] ≤ Pr[Ai | Bi] Pr[Bi] + Pr[Ai |
Bi] ≤ 5(n− 2)−3.

Assume that the random initial solution has a fitness of zero (note that
this happens with probability 1 − 1

n
) and consider the first t = 1

20
(n − 2)3

iterations. By a union bound, the probability that in this time interval the
fitness increases at least once from a value below n

2
by three or more is at

most t ·5(n−2)−3 = 1
4
. The expected number of fitness improvements in this

interval is at most t(n− 1)−2 ≤ 1
20
(n− 2), hence by Markov’s inequality the

probability that there are more than 1
5
(n − 2) improvements, is at most 1

4
.

Hence with probability at least 1
2
, none of these two events happens, and in

this case, the resulting fitness is at most 2
5
(n − 2). Including the random

initialization, we see that the runtime is larger than t with probability at
least (1 − 1

n
)1
2
, which gives the claimed Ω(n3) lower bound on the expected

runtime.

8 Heavy-tailed Mutation Operators

A precise runtime analysis of the classic (1 + 1) EA on the bit-string Jump
benchmark [DLMN17] has shown (i) that the classic mutation rate of 1

n
is

far from optimal for this benchmark, (ii) that the optimal mutation rate
asymptotically is equal to m

n
, and (iii) that a heavy-tailed mutation operator

gives a performance very close to the optimal mutation rate, but without the
need to know the gap parameter m. Given the similarity of the permutation-
based and the bit-string jump benchmark, it is natural to expect similar
results also for the permutation-based jump benchmark, and this is what we
show in this section.

For reasons of brevity, we shall concentrate on the most interesting result
in [DLMN17], namely that a heavy-tailed choice of the mutation strength
gives a significant speed-up for all jump functions. We note cursory that
heavy-tailed parameter choices found ample uses subsequently and often
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overcame in an elegant manner the problem to set one or more parame-
ters of an evolutionary algorithm [FQW18, FGQW18, QGWF21, WQT18,
ABD20, AD20, ABD21, DZ21, COY21, DR22, DELQ22, ABD22, DQ22].

Since our analyses so far suggest that the scramble mutation operator is
more natural than the one based on swaps, we shall only regard a heavy-tailed
version of the former. So we proceed by defining a heavy-tailed scramble
mutation operator. We say that an integer random variable X follows a
power-law distribution with parameters β and u if

Pr[X = i] =

{
Cβ,ui

−β if i ∈ [1..u],
0 otherwise,

where Cβ,u = (
∑u

i=1 i
−β)−1 denotes the normalization coefficient. We write

X ∼ pow(β, u) and call u the range of X and β the power-law exponent.
Now we call heavy-tailed scramble mutation (with power-law exponent β)

the mutation operator that first samples a number k ∼ pow(β, n), then
selects a random subset of k elements from [1..n], and finally applies a random
permutation on this set. Hence this operator is identical to the previously
regarded scramble operator apart from the random choice of k, which now
follows a power-law distribution instead of a Poisson distribution.

For the (1 + 1) EA using this mutation operator, we now conduct an
asymptotically tight mathematical runtime analysis on the jump benchmark.
Compared to the Θ((m!)2

(
n
m

)
) runtime for the standard scramble operator,

it shows a speed-up by a factor of Θ(m!/mβ).

Theorem 13. Let m ≥ 3, possibly depending on n. The expected runtime of
the permutation-based (1 + 1) EA with heavy-tailed scramble mutation with
power-law exponent β on PJumpn,m is Θ(mβm!

(
n
m

)
).

Proof. Since the heavy-tailed scramble mutation differs from the standard
scramble operator only in the probability distribution used to sample the
size k of the set of items randomly permuted, we can reuse large parts of the
analysis for the standard scramble operator.

For the upper bound, we note that also the heavy-tailed operator has a
constant probability of applying a random transposition; note that the nor-
malization coefficient Cβ,n is Θ(1) since β > 1. Hence again O(n2 log n) time
suffices for the easy parts of the optimization. When on the local optimum,
the much higher probability of scrambling m elements gives a much higher

probability of Ω(m−β
(
n
m

)−1
(m!)−1) of reaching the global optimum. Hence

this part takes time O(mβ
(
n
m

)
m!) only, and being asymptotically larger than

O(n2 log n), this is also the upper bound for the whole expected runtime.
For the lower bound, again with constant probability (see Lemma 1) we

start in A2. To reach the global optimum at some time we need a mutation
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that from some point of A2 with q ∈ [m..n] elements out of place scrambles
a set containing at least these q elements and moves all element to the right
position. We estimate the probability for this to happen in one iteration by

n∑
k=q

Cβ,nk
−β

(
n−q
k−q

)(
n
k

) 1

k!
=

(n− q)!

n!

n∑
k=q

Cβ,nk
−β 1

(k − q)!

≤ Cβ,nq
−β (n− q)!

n!

n∑
k=q

1

(k − q)!

≤ eCβ,nm
−β (n−m)!

n!
= eCβ,nm

−β 1(
n
m

) 1

m!
.

Consequently, the expected waiting time for such an event is Ω(mβ(m!)
(
n
m

)
),

and this shows our lower bound on the expected runtime.

Again, we also determine the runtime of the (1 + 1) EA with heavy-
tailed scramble mutation on the permutation version of the LeadingOnes
benchmark. This analysis will, naturally, very roughly follow the lines of
the analysis for the standard scramble operator. However, the now much
higher probability to change certain points to certain values asks for some
non-trivial adjustments in the main proof.

We start by proving the following estimate for the probability to change a
certain set of function values, which is analoguous to Lemma 11. This result
will not be sufficient for our purposes. Since (given the proof of Lemma 11) its
proof is very simple, we nevertheless show it to demonstrate the fundamen-
tal difference between the classic and the heavy-tailed scramble operator.
The reader not interested in this discussion is invited to jump directly to
Lemma 15, a generalization of the simpler result we show first.

Lemma 14. Let σ ∈ Sn. Let I ⊆ [1..n] and ℓ := |I|. For all i ∈ I, let
ri ∈ [1..n] \ σ(i), and this in a way that the ri, i ∈ I, are pairwise distinct.
Let I ′ = σ(I) ∪ {ri | i ∈ I} and ℓ′ = |I ′|.

Let τ be the outcome of applying the heavy-tailed scramble mutation to σ.
Then

Pr[∀i ∈ I : τ(i) = ri] =

(
n∑

k=ℓ′

Cβ,nk
−β

k−ℓ∏
j=k−ℓ′+1

j

)
(n− ℓ′)!

n!

= O(n−ℓ−β+1),

where the asymptotic notation assumes that ℓ is a constant.
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Proof. Proceeding as in the proof of Lemma 11, but changing the probability
of scrambling exactly k elements from 1

ek!
to Cβ,nk

−β, we obtain

Pr[∀i ∈ I : τ(i) = ri] =
n∑

k=ℓ′

Cβ,nk
−β

(
n− ℓ′

k − ℓ′

)(
n

k

)−1
(k − ℓ)!

k!
.

Different from the proof of Lemma 11, we compute

Pr[∀i ∈ I : τ(i) = ri]

=

(
n∑

k=ℓ′

Cβ,nk
−β(k − ℓ)(k − ℓ− 1) . . . (k − ℓ′ + 1)

)
(n− ℓ′)!

n!

≤

(
n∑

k=ℓ′

Cβ,nk
ℓ′−ℓ−β

)
(n− ℓ′)!

n!

= O

(
nℓ′−ℓ−β+1 (n− ℓ′)!

n!

)
= O(n−ℓ−β+1).

The bound above is significantly weaker than the bound proven in
Lemma 11 for the standard scramble operator. For example, for ℓ = 1,
that is, the case that we want to change one value of the permutation to a
given (different) value, we showed here an upper bound of O(n−β), which can
be O(n−1−ε) if β is small enough, whereas Lemma 11 gave an upper bound
of O(n−2). We note that this difference “is true”, that is, the probability of
changing a particular value is indeed Θ(n−β). To show this, we regard the
precise estimate

Pr[∀i ∈ I : τ(i) = ri] =

(
n∑

k=ℓ′

Cβ,nk
−β

k−ℓ∏
j=k−ℓ′+1

j

)
(n− ℓ′)!

n!
,

we note that ℓ = 1 necessarily implies ℓ′ = 2, and we estimate

Pr[∀i ∈ I : τ(i) = ri]

≥

 n∑
k=⌊n/2⌋

Cβ,nk
−β(k − ℓ)(k − ℓ− 1) . . . (k − ℓ′ + 1)

(n− ℓ′)!

n!

≥ n

2
Cβ,nn

−β(⌊n
2
⌋ − 1)

(n− ℓ′)!

n!
= Ω(n−β).

Hence we cannot hope to improve Lemma 14 to obtain an O(n−2) proba-
bility for the event of changing a particular position to a particular value.

28



This bound, which also is an upper bound for the probability of a fitness
improvement, is crucial to prove an Ω(n3) runtime bound.

Fortunately, we can obtain this upper bound, and more generally an upper
bound of O(n−ℓ′), when we additionally require that the mutation result is
a permutation that agrees with the parent in a fixed set of Ω(n) positions.
This situation naturally arises in the optimization of PLeadingOnes when
the current fitness is Ω(n).

Lemma 15. Let σ ∈ Sn. Let X ⊆ [1..n] and Y = [1..n] \X. Write x = |X|
and y = |Y |. Let I ⊆ Y and ℓ := |I|. For all i ∈ I, let ri ∈ [1..n] \
(σ(X) ∪ {σ(i)}), and this in a way that the ri, i ∈ I, are pairwise distinct.
Let I ′ = σ(I) ∪ {ri | i ∈ I} and ℓ′ = |I ′|.

Let τ be the outcome of applying heavy-tailed scramble mutation to σ.
Then

Pr[(∀i ∈ I : τ(i) = ri) ∧ (∀j ∈ X : τ(j) = σ(j)]

= Cβ,n

x∑
a=0

y∑
b=ℓ′

(
x
a

)(
y−ℓ′

b−ℓ′

)
(b− ℓ)!

(a+ b)β
(

n
a+b

)
(a+ b)!

≤ Cβ,n

y∑
b=ℓ′

e
(b− ℓ) · . . . · (b− ℓ′ + 1)

bβ n · . . . · (n− ℓ′ + 1)

(
y − ℓ′

n− ℓ′

)b−ℓ′

.

When ℓ is constant and x ≥ εn for some constant ε > 0, then this expression
is O(n−ℓ′).

Proof. Let S ⊆ [1..n], ρ be a random permutation of S, and τ = ρ̄◦σ, where
ρ̄ is the natural extension of ρ to a permutation of [1..n] that has all elements
of [1..n] \ S as fixed points. We say that τ is valid if τ(i) = ri for all i ∈ I
and τ(j) = σ(j) for all j ∈ X. We easily see that τ is valid if and only if

(i) for all j ∈ S ∩ σ(X), we have ρ(j) = j;

(ii) I ′ ⊆ S;

(iii) for all i ∈ I, we have ρ(σ(i)) = ri.

Hence τ is valid with probability exactly (|S\σ(X)|−ℓ)!
|S|! .

Let now τ be the outcome of applying heavy-tailed scramble mutation
to σ. By the considerations above, the probability of τ being valid is∑

I′⊆S⊆[1..n]

Cβ,n
(|S \ σ(X)| − ℓ)!

|S|β
(

n
|S|

)
|S|!

.
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By aggregating the identical contributions of sets S with identical intersection
sizes a = |S ∩X| and b = |S ∩ Y |, this probability is

x∑
a=0

y∑
b=ℓ′

Cβ,n

(
x

a

)(
y − ℓ′

b− ℓ′

)
(b− ℓ)!

(a+ b)β
(

n
a+b

)
(a+ b)!

=
x∑

a=0

y∑
b=ℓ′

Cβ,n

· x · . . . · (x− a+ 1) (y − ℓ′) · . . . · (y − b+ 1) (b− ℓ) · . . . · (b− ℓ′ + 1)

(a+ b)β a!n · . . . · (n− a− b+ 1)
.

We note that for all α ∈ [0..a−1] and b ∈ [ℓ′..y], we have x−α = n−y−α ≤
n− b− α. Also, for b ∈ [ℓ′..y] and λ ∈ [ℓ′..b− 1], we have y−λ

n−λ
≤ y−ℓ′

n−ℓ′
. With

these estimates, we see that the above expression is at most

Cβ,n

x∑
a=0

y∑
b=ℓ′

(b− ℓ) · . . . · (b− ℓ′ + 1)

bβ a!n · . . . · (n− ℓ′ + 1)

(
y − ℓ′

n− ℓ′

)b−ℓ′

.

Using
∑x

a=0
1
a!
≤
∑∞

a=0
1
a!
= e, we have shown the non-asymptotic claims.

For the asymptotic claim, we note that by definition ℓ ≤ ℓ′ ≤ 2ℓ. Hence
both ℓ and ℓ′ are constant. With our assumption x ≤ εn for a constant ε > 0,
we further have that y−ℓ′

n−ℓ′
≤ y

n
≤ 1−ε is at most a constant less than one. This

allows to estimate the above expression by O(n−ℓ′
∑∞

b=ℓ′ b
ℓ′−ℓ−β(1 − ε)b) =

O(n−ℓ).

Theorem 16. Let β > 1. The expected runtime of the (1 + 1) EA
with heavy-tailed scramble mutation with power-law exponent β on the
PLeadingOnes benchmark is Θ(n3).

Proof. The upper bound, as several times already in this work, is a simple
fitness level argument based on the observation that also the heavy-tailed
scramble mutation operator in any search point moves a particular item on
a particular position via a 2-cycle with probability Ω(n−2).

For the more interesting lower bound, consider a run of the (1 + 1) EA
with heavy-tailed scramble mutation on PLeadingOnes. Let T be the
first time that the parent individual has a fitness of at least n

4
. Let c be a

sufficiently small constant and ℓ = ⌊cn3⌋. We consider the event E that

• T ≥ cn3 or the fitness of the parent in iteration T is at most n
4
+6; and

• in each iteration t ∈ [T..T + ℓ− 1] that starts with a search point with
fitness at most n

2
, the fitness increases by at most 3; and
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• there are at most 1
15
n fitness improvements in the iterations

T, . . . , T + ℓ− 1.

We first show that this event implies a runtime of Ω(n3). There is nothing
to show when T ≥ cn3, so let us assume that the parent in iteration T has
a fitness of at most n

4
+ 6. By the third condition of the definition of E ,

we know that there are at most 1
15
n fitness improvements in the following ℓ

iterations. By induction, we see that the fitness before the i-th improvement,
i = 1, . . . , 1

15
n, is at most n

4
+6+3(i−1), which is less than n

2
(when n is suffi-

ciently large), hence by the second condition the i-th improvement increases
the fitness by at most 3, giving a fitness of at most n

4
+6+3i. Consequently,

after iteration T + ℓ− 1, we have a fitness of at most n
4
+ 6 + 1

5
n < n, hence

the runtime is at least T + ℓ ≥ ℓ = Ω(n3).
Hence it suffices to show that the event E shows up with at least constant

(positive) probability. To do so, we consider the inverse event, which is that
one of the three conditions above is not satisfied.

If T < cn3 and the fitness of the parent in iteration T is more than n
4
+6,

then by definition of T , in the first cn3 iterations a fitness improvement of at
least 7 has occurred at least once or the random initial solution had a fitness
of more than n

4
. The latter event occurs with probability at most 1

n
(which is

the probability for the initial individual to have a positive fitness at all). For
the fitness to increase by at least 7 in one iteration before time T , we need
that the mutation operation sets four items previously not in place onto the
right position (probability O(n−4) by Lemma 14) or we need that four items
out of the six “next” ones (not counting the first item out of place) are in
place by chance (so-called free-riders). Since, as discussed earlier, the items
not contributing to the fitness are uniformly distributed (on the positions not
contributing to the fitness), the probability that four fixed such items are in

place is (n−f(x)−1−4)!
(n−f(x)−1)!

= 1
(n−f(x)−1)·...·(n−f(x)−4)

, which is at most ( 4
3n
)4 + o(1)

since the current fitness f(x) is below n
4
by definition of T . A union bound

over the
(
6
4

)
ways to have four free-riders in six positions shows that the

probability for having four or more free-riders here is O(n−4) as well. Hence
the probability that one such iteration increases the fitness by 7 or more is
O(n−4). A union bound over the T = cn3 iterations shows that such a fitness
increase occurs only with probability o(1) in the first T iterations. Overall,
we see that the probability that the first item of the definition of E is not
satisfied, is o(1).

For the third item, by Lemma 15, the probability for a fitness improve-
ment when the fitness is already Ω(n) is at most Cn−2, where C is a con-
stant derived from the asymptotic O(n−ℓ′) statement in the lemma. Note
that when the current fitness is already Ω(n), then a fitness improvement
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is possible only when the corresponding Ω(n) positions are not changed by
the mutation. Hence we can take |X| = Ω(n) in the lemma. As discussed
earlier, ℓ = 1 necessarily implies ℓ′ = 2. Hence expected number of fit-
ness improvements in the ℓ iterations starting with iteration T is at most
ℓCn−2 ≤ cCn. By Markov’s inequality, the probability to have more than
1
15
n fitness improvements in the ℓ iterations starting with iteration T is at

most (cCn)/( 1
15
n), which can be made less than 1

3
by taking c sufficiently

small.
For the second item, we reuse arguments from the previous lower bound

proofs for PLeadingOnes. To have a fitness gain of at least three when
starting with a parent with fitness between n

4
and n

2
, we either need that

the mutation operator sets three items previous not in place onto the right
position and keeps all Θ(n) items in place which contribute to the fitness
(this happens with probability O(n−3) by Lemma 15), or it sets at least one
wrongly placed item right, keeps the Θ(n) previous ones in place, and there is
at least one free-rider in the two following bits. By Lemma 15, the probability
that the mutation operation is of this kind is O(n−2), by arguments used
previously (uniform distribution of the items not contributing to the fitness),
the probability for a free-rider in a fitness level below n

2
is O(n−1). Hence the

probability that one iteration increases the fitness by three or more is O(n−3).
By taking c sufficiently small, a Markov bound argument analogous to the
previous paragraph shows that the second item is violated with probability
at most 1

3
.

In summary, we see that E holds with probability at least 1−(o(1)+ 1
3
+ 1

3
),

which is a positive constant as desired.

9 Experiments and Fine-Tuning of the Mu-

tation Operator

To see to what extent our asymptotic results are meaningful already for
moderate problem sizes, and also to see differences inside the same asymp-
totic runtime class, we also conducted a small experimental evaluation of
the permutation-based (1 + 1) EA with four different mutation operators
(swap and scramble, both with k ∼ Poi(1) and k ∼ pow(n, 1.5)) on the
permutation-based LeadingOnes and Jump benchmark.

For all experiments, we report the runtime in terms of the number of
fitness evaluations until the optimum is found. From the definitions of the
different mutation operators, it is clear that they have different probabilities
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to create an offspring identical to the parent. Since this will have an influence
on the performance, we first discuss this aspect in more detail.

9.1 Void Mutations

To ease the language, we call a mutation operation void if it creates an off-
spring that is identical to the parent. It is clear that such an offspring does
not require a new fitness evaluation, however, it is less clear to what degree
one should ignore such operations in the performance evaluation of an algo-
rithm (we refer to [JZ11] for a detailed discussion of this non-trivial question).
Clearly, in simple elitist optimization processes, void mutations are not very
helpful. We note that via sampling k ∈ {0, 1}, the Poisson scramble operator
already has a probability of 1

e
+ 1

e
≈ 0.74 to perform a void mutation. Hence

by sampling k conditional on being at least 2, the probability for a void mu-
tation can be reduced significantly, leading to a factor-four performance gain.
We remark that void mutations are not always useless. For example, in non-
elitist evolutionary algorithms, they help to preserve a good solution for some
while in the population. The known runtime guarantees for such algorithms,
e.g., [JS07, Leh10, RS14, DL16, CDEL18, DK21b, FS21] all critically depend
on the fact that standard bit mutation with constant probability creates a
copy of the parent.

We now discuss the ratio of void mutations of the different mutation oper-
ators regarded in this work. We quickly repeat their precise definitions. For
the operators using a Poisson distribution, we sample a number k according
to a Poisson distribution with mean λ = 1. For the heavy-tailed operators,
we sample k from a power-law distribution with range [1..n] and power-law
exponent β > 1, where the choice β = 1.5 was recommended in [DLMN17].
We use this number k as follows. In the case of swap mutations, we apply
k random transpositions (recall that this is different from [STW04], where
k+1 swaps were applied). We choose the k transpositions independently and
uniformly at random from the set of

(
n
2

)
transpositions on [1..n]. In the case

of scramble mutations, we scramble (that is, randomly permute) a random
set of k items if k ≤ n and we return the parent for k > n.

For the swap operators, we see that for k = 0, the offspring always equals
the parent, whereas for k = 1, it never equals the parent. For k ≥ 2 (and
k even) the offspring can equal the parent, but this happens with negligible
probability O(n−2) only (see below for a proof of this claim). For the scramble
operators, the offspring is always equal to the parent if k = 0, k = 1, or
k > n. For k ∈ [2..n], the offspring equals the parent if and only if the
permutation describing the scrambling was chosen as identity, hence with
probability 1

k!
. We note that for the typical case that k is constant, this
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contributes non-negligibly to the probability of recreating the parent. From
these considerations, we obtain the following elementary result.

Lemma 17. Let P0 := P0(n) (or P0 := P0(n, β) for the heavy-tailed op-
erators) denote the probability that one of the mutation operators discussed
above creates an offspring that is equal to the parent. Then, independent of
the parent, P0 satisfies the following.

• Swap mutation, Poisson distribution: 0.367879... ≈ 1
e
≤ P0 ≤ 1

e
+
(
n
2

)−1
.

• Swap mutation, power-law distribution: P0 ≤
(
n
2

)−1
.

• Scramble mutation, Poisson distribution:

0.838612... ≈ I0(2) ≤ P0 ≤ I0(2) +
1

e(n+ 1)!

n+ 2

n+ 1
.

Here In(·) is a modified Bessel function of the first kind.

• Scramble mutation, power-law distribution:

P0(n, β) = Cβ,n

n∑
k=1

k−β 1

k!
.

For any n0 ∈ N and all n ≥ n0, we have

P−
0 (n0, β) :=

1

ζ(β)Cβ,n0

P0(n0, β) ≤ P0(n, β) ≤ P0(n0, β).

Here ζ(·) is the Riemann zeta function. In particular, ζ(1.5) =
2.612375.... Some concrete values for P0(n, β) are given in Table 1.

Proof. Consider a sequence τk, . . . , τ1 of random transpositions and let τ =
τk ◦ · · · ◦ τ1. If k is odd, then the sign of τ is −1, and hence τ cannot be the
identity permutation. Hence let k be even and positive. We condition on
the outcomes of τk−1, . . . , τ1. For τ to be the identity permutation, we need
that τk is the inverse of τk−1 ◦ · · · ◦ τ1. If the latter is not a transposition,
then this is just not possible. Otherwise, τk is this particular transposition

with probability exactly
(
n
2

)−1
. Consequently, also without conditioning on

τk−1, . . . , τ1, the probability that τ is the identity is at most
(
n
2

)−1
.

From this preliminary consideration, we immediately derive the first two
claims, recalling that k = 0 with probability 1

e
in the Poisson case and with

probability zero in the power-law case.

34



For the scramble operator, the probability that the parent equals the
offspring is Θ(1) for all constant k ≥ 1. For this reason, the following two es-
timates are more technical. More precisely, for a given k ≤ n, the probability
that the scramble mutation operator recreates the parent is exactly 1

k!
(and

it is one for k > n). Consequently, the probability to recreate the parent
when using the Poisson scramble operator is

P0 =
n∑

k=0

1

ek!

1

k!
+ Pr[Poi(1) > n].

Since Pr[Poi(1) > n] =
∑∞

k=n+1
1
ek!

, we see that this number is at least∑∞
k=0

1
e(k!)2

and at most
∑∞

k=0
1

e(k!)2
+ Pr[Poi(1) > n]. We note that∑∞

k=0
1

e(k!)2
= 1

e
I0(2) ≈ 0.838612..., where In(·) is a modified Bessel func-

tion of the first kind and the specific value I0(2) = 2.2795853023... can
be found in [OEI22, A070910]. Also, Pr[Poi(1) > n] =

∑∞
k=n+1

1
ek!
≤

1
e(n+1)!

∑∞
i=0(n+ 2)−i = 1

e(n+1)!
n+2
n+1

.
Finally, with analogous arguments, for the heavy-tailed scramble operator

we have

P0 = P0(n, β) = Cβ,n

n∑
k=1

k−β 1

k!
.

We have not found a closed formula for this expression. However, we observe
that P0 is decreasing for growing value of n. This is because Cβ,n is decreasing
in n, so the term 1

k!
appears with a smaller coefficient in the sum when n

grows. Since this sum is a convex combination of 1
k!
, k ∈ [1..n], and since

these are decreasing for growing k, our claim that P0 is decreasing in n
follows. This immediately gives the claimed upper bound for P0(n, β).

For a lower bound, we note that Cβ,n by definition is decreasing with limit
limn→∞Cβ,n = 1

ζ(β)
, where ζ is the Riemann zeta function. Hence we have

P0(n, β) ≥ 1
ζ(β)

∑n
k=1 k

−β 1
k!
≥ 1

ζ(β)

∑n0

k=1 k
−β 1

k!
= 1

ζ(β)Cβ,n0
P0(n0, β) for all

n0 ≤ n. The specific value ζ(1.5) = 2.6123753486... can be found in [OEI22,
A078434].

The proof above has shown that many void mutations are easy to avoid by
adapting the mutation operator suitably, that is, by sampling k conditional
on k ≥ 1 (for swap mutation) and k ∈ [2..n] (for scramble mutation) and by
sampling the scrambling permutation in the scramble operator different from
the identity. For swap mutations, there is also the type of void mutation that
chooses k ≥ 2 and swaps τk, . . . , τ1 such that τk ◦· · ·◦τ1 is the identity. While
these are not truly difficult to detect, they are less immediate to detect than
the void mutations discussed before. At the same time, these void mutations
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Table 1: The normalizing constant Cβ,n, the probability P0(n, β) that heavy-
tailed scramble mutation creates an offspring identical to the parent, and
its lower bound P−

0 (n, β) for some values of n and β = 1.5. We also have
Cβ,∞ := limn→∞ Cβ,n = 1

ζ(β)
and thus C1.5,∞ = 0.382793. All values are

rounded to six digits.

n C1.5,n P0(n, 1.5) P−
0 (n, 1.5)

10 0.501169 0.608876 0.465060
100 0.414444 0.503512 0.465060
1000 0.392288 0.476596 0.465060

are rare, showing up with probability at most
(
n
2

)−1
= O(n−2). With such a

small rate of occurrence, it does not pay off to try to detect such mutations
and replace them by a non-void one via resampling. For this reason, we shall
ignore such void mutations in the following, that is, in our experiments we
do not try to detect them and we do count them as fitness evaluation. To fix
a notion, we call such void mutations hard to detect. Consequently, we call
easy-to-detect void mutation a mutation step with k = 0 for swap mutation
and with k ∈ {0, 1} or k > n for scramble mutation. We also call a scramble
mutation easy-to-detect void if the scrambling mutation is the identity. In
other words, all void mutations are easy to detect except for the O(n−2)
ratio of swap mutations in which a positive number of transpositions gives
the identity.

9.2 Experiments on PLeadingOnes

In Figure 1, we report the runtime (number of function evaluations, averaged
over 50 runs) of the (1 + 1) EA with the four different mutation operators on
the permutation-based LeadingOnes benchmark, both when counting all
fitness evaluations and when ignoring easy-to-detect void mutations. To keep
the plot readable, we do not display variances or other dispersion measures.
We note that our mathematical runtime analyses have shown that a constant
fraction of the runtime stems from a period in which improvements are found
with probability Θ(n−2) and each improvement gains a constant number of
fitness levels only. This suggests that the runtime is determined by many
stochastically independent ingredients (the iterations), each of which has
only a small influence on the final result. Such random variables usually are
strongly concentrated around their mean. A glimpse into the raw data of
our experiments confirms this intuitive reasoning. For example, for n = 100,
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swap/Poi swap/Poi* swap/HT swap/HT* scramble/Poi scramble/Poi* scramble/HT scramble/HT*

Figure 1: Runtimes of the (1 + 1) EA with different mutation operators
on the permutation-based LeadingOnes problem for problems sizes n =
20, 30, . . . , 200. The starred versions (dotted lines) are those that do not
count easy-to-detect mutations in which parent and offspring are identical.
Since the heavy-tailed swap operator does not have such mutations, these
two lines are identical and cannot be seen separately in the figure.
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in all eight data sets we have a standard deviation that is below 13% of the
respective mean.

In the double-logarithmic plot in Figure 1, we clearly see eight curves
that display a polynomial growth. The (eight) ratios of corresponding values
for n = 200 and n = 150 are between 2.37 and 2.45 (rounded to two digits),
which is very close to the (4/3)3 = 2.37 a function x 7→ Cx3 would give. So
this data shows that the cubic runtime behavior shown in our asymptotic
results can also be observed for moderate problem sizes.

More interesting are the leading constants revealed by the plots, that is,
how the Θ(n3) runtimes compare when looking inside the asymptotic order
of growth. Here, apparently the void mutations have an important influence:
The algorithm with Poisson-scramble mutation is the slowest when counting
all iterations, but is the fastest when ignoring easy-to-detect void mutations.
Since for a (1+1)-type algorithm void mutations cannot bring any advantage,
it appears most sensible to concentrate our remaining analysis on the data
that ignores void mutations, but to take the note that void mutations are
more critical here than in bit-string representations – the Poisson-scramble
(1 + 1) EA becomes faster by a factor of roughly 1

1−0.838613
≥ 6 when ignoring

or avoiding void mutations, whereas the (1 + 1) EA using bit-wise mutation
for bit-string representations only improves by a factor of roughly 1

1− 1
e

≈ 1.58.

These estimates are based on the theoretical values computed in Lemma 17
and the corresponding, elementary and well-known result for bit-wise muta-
tion. As Table 2 shows, the true speed-ups are essentially identical to the
theoretical predictions.

Concentrating on the plots ignoring easy-to-detect void mutations, that
is, the dotted lines in Figure 1 (note that there are no void mutations for the
heavy-tailed swap operator, hence this line is identical to (and thus covered
by) the corresponding solid line), we see that the Poisson scramble operator
leads to the best runtimes, whereas the heavy-tailed scramble operator gives
the least favorable results. Recalling that the LeadingOnes problem is a
relatively simple, unimodal problem, we suggest to not over-interpret these
results and, in particular, to not try to generalize them to more difficult
problems. It is not surprising that the two heavy-tailed operators, which
put more probability mass on higher values of k, that is, on mutations that
change more items, do not profit from this property on a unimodal problem.
Comparing the two operators building on the Poisson distribution, we note
that the scramble operator (due to the fact that k = 2 is the first non-void
value) has a much higher probability of swapping to elements, namely of
1
2e
/(1 − 1/e − 1/e) ≈ 0.6961, than the swap operator (having a probability

of 1
e
/(1 − 1/e) ≈ 0.2325). Hence the true reason for the scramble opera-
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Table 2: Ratio of easy-to-detect void mutations in our experiments for
n = 100 compared to the theoretical values from Lemma 17. All values
are rounded to six digits.

operator experiment theory
swap/Poi 0.367882 0.367879
swap/HT 0 0

scramble/Poi 0.838570 0.838613
scrambe/HT 0.503550 0.503512

tor being superior might not be related to scrambling versus swapping, but
rather to the precise probabilities for applying certain minimal changes to the
individual. Clearly, a mathematical runtime analysis aiming at making pre-
cise the leading constant of the runtime would be a good way to completely
understand the reasons for the different runtimes observed in Figure 1.

9.3 Experiments on PJump

In Figure 2, we report our experimental results for the permutation-based
jump problem. Due to the difficulty of this problem, we could only regard
relatively small problem sizes and moderate jump sizes. For that reason,
we display only results for the largest problem size (n = 20) for which we
could obtain a decent number of results, and we vary the jump size m from
3 to 7 (but skipped m = 7 for the Poisson scramble operator due the high
runtimes). Possibly due to these limitations, but possibly also due to our
incomplete understanding of the random walk on the local optima for the
swap operator, our results are not fully conclusive.

We report in Figure 2 the averages over 30 runs. We again do not display
standard deviations in the figure, but we note here that in all experiments
the standard deviation was between 75% and 122% of the expectation. This
fits to our intuition, which is that the typical optimization process on a jump
function consists of an easy and fast move to the local optimum and then of a
large number of attempts to reach the global optimum. This intuition would
suggest that the runtime is well described by a geometric distribution, and
such distributions have a standard deviation very close to the expectation
(when the success probability is low, as in our experiments). This intuition
could be made precise for the algorithms using scramble mutation, whereas
for the swap algorithms the random walk on the local optimum makes such
arguments more difficult. That said, we could not detect that the standard
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Figure 2: Runtimes of the (1 + 1) EA with different mutation operators on
the permutation-based Jump problem of fixed problem size n = 20 with
jump sizes m ∈ [3..7] (no data point for the Poisson scramble operator for
m = 7 due to the excessive runtimes). The starred versions (dotted lines)
are those that do not count easy-to-detect mutations in which parent and
offspring are identical. Since the heavy-tailed swap operator does not have
such mutations, these two lines are identical and cannot be seen separately
in the figure.

deviations showed some consistent differences between the two operators. We
give exemplarily the variances for the case m = 6 in Table 3.

What is very clear is that for the scramble mutation operator, the heavy-
tailed variant clearly beats the Poisson one. This agrees with our mathe-
matical results. Somewhat surprisingly, the heavy-tailed version is not that
clearly superior for the swap operator, in particular, when comparing the
plots without void mutations (which again appears more fair). One reason
could be that, as can be seen from the proof of Theorem 4, the best way
to leave the local optima is to wait until the random walk has reached a
permutation that can be written as product mostly of disjoint transposi-
tions, and then move to the optimum from this. For the case m = 6, for
example, this means that the typical way to reach the global optimum is
to apply three particular disjoint swaps (in an arbitrary order). In terms
of the distribution of k, this means that only the value k = 3 has to be
sampled, and this value has similar probabilities under the Poisson law con-
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Table 3: Variances of the jump experiments for m = 6 and when exclud-
ing the easy-to-detect void mutations (the differences to the numbers when
counting all fitness evaluations differ by less than 10−5). All values are
rounded to six digits.

Poisson heavy-tailed
swap 1.095519 0.748826

scramble 1.120062 0.944077

ditional on avoiding the value one ((1− 1
e
)−1 1

e3!
= 0.0969...) and the power-

law (C1.5,n3
−1.5 ≈ 0.443255 · 0.192450 = 0.0853...). In contrast, the typical

way to leave the local optimum via a scramble mutation uses k = 6, and
for this value the Poisson and the power-law distribution differ significantly
((1− 1

e
)−1 1

e6!
= 0.0008... versus C1.5,n6

−1.5 ≈ 0.443255 · 0.068041 = 0.0301...).
We recall that we do not well understand the random walk on the local

optimum, and consequently, we cannot estimate at the moment how this
part of the optimization process is affected by the distribution of k. We
note that for m = 7 the heavy-tailed swap operator is clearly superior to
the Poisson one (more than a factor-3 difference in the runtimes). This and
the very different asymptotics of the Poisson and power law suggest that the
performance similarity observed for m ≤ 6 will not repeat for larger values
of m. For this reason, our general recommendation would be to prefer a
power-law for sampling k, regardless of which mutation operator is employed.

Also well visible in the data is that the two scramble operators show a run-
time behavior which is little affected by the parity of the jump size, whereas
the two swap operators have a harder stand whenm is odd. This again agrees
with our theoretical results (where we note that we have no proven results
for the heavy-tailed swap operator because it appeared less interesting and
much harder to analyze than the heavy-tailed scramble operator).

10 Conclusions

We designed a simple and general way to transfer the classic benchmarks from
pseudo-Boolean optimization into permutation-based benchmarks. Our hope
and long-term goal is that the theory of permutation-based EAs can profit
from these in a similar manner as the classic EA theory has profited from
benchmarks for bit-string representations.
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As a first step in this direction, we conducted a mathematical run-
time analysis on the permutation-based LeadingOnes and Jump function
classes, PLeadingOnes and PJump. While the PLeadingOnes analyses
provided no greater difficulties and the results, Θ(n3) runtimes for all muta-
tion operators regarded, were as expected, the situation was more interesting
for PJump. Both from the resulting runtime and the difficulties in the proof,
we deduced that the previously commonly used mutation operator of apply-
ing a random number of transpositions has some drawbacks not detected so
far. We overcame these difficulties by switching to the scramble mutation
operator, which both leads to better runtimes and to more natural proofs.
We also observed that heavy-tailed mutation strengths, proposed a few years
ago for the bit-string representation, are profitable in permutation-based EAs
as well.

From a broader perspective, this work confirms what is known from em-
pirical and applied research, see, e.g., [ES15], namely that it is not imme-
diately obvious how to transfer expertise in evolutionary computation for
bit-string representations to permutation-based optimization. In this light,
this work suggests as interesting future work to investigate how some recently
discussed questions can be answered in the permutation world. We find the
following three particular topics most interesting and timely.

• Precise runtime analyses: Runtime results that are only tight up to
the asymptotic order of magnitude (such as our Θ(n3) runtime bounds
for the PLeadingOnes benchmark) often do not allow to discrimi-
nate different algorithms, different variants of an algorithm, or differ-
ent parameter settings. Here runtime results that include the lead-
ing constant, that is, which are tight apart from (1 + o(1)) factors,
can be more useful. For bit-string representations, such results have
existed for a long time, see, e.g., the early works on OneMax and
Needle [GKS99] or LeadingOnes [BDN10, Sud13], and have given
interesting additional information, e.g., that the optimal mutation rate
on OneMax is p = (1 ± o(1)) 1

n
[GKS99] and on LeadingOnes is

p ≈ 1.59
n

[BDN10]. In contrast, no tight runtime analyses are known for
permutation representations.

We are optimistic, though, that also for the PLeadingOnes bench-
mark precise runtime results can be obtained for the four mutation
operators discussed in this work. Most likely, the variant of the fitness-
level method proposed in [DK21a], which allows a convenient treat-
ment of free-riders, is a good tool here. There remains some work to
be done, though. In particular, the estimate of the probability that a
fitness level is not reached due to free-riders might be more challenging
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in the permutation case where, as our proofs reveal, the probability
for a free-rider depends significantly on the fitness level and varies in
a range from Θ( 1

n
) to constant. While a precise runtime analysis for

PLeadingOnes is maybe the most natural continuation of this work,
we note that there have been many other interesting and insightful
precise runtime analyses for bit-string representation (see the short
survey [Doe22, Section 2.2]) which would be interesting to extend to
permutation representations.

• Stagnation detection: Stagnation detection was proposed in [RW22]
(and further developed in [RW21b, RW21a, DR22]) as a natural way
to improve the performance of evolutionary algorithms when they get
stuck in a local optimum. Given the power of this approach, it would
be interesting to extend it to permuation-based optimization. Clearly,
this needs a good understanding how the safety parameter R has to
be chosen, but possibly other adjustments are necessary as well. We
note that any reasonable implementation of stagnation detection on the
PJumpm benchmark would, with at least constant probability, reach
a local optimum that can only be written as product of m − 1 trans-
positions. Since stagnation detection, at least so far, is very restricted
in moving to search points of equal fitness, this would be the current
solution until the global optimum is found. Consequently, the random-
walk arguments used in Section 6 to prove an upper bound ofO(n2⌈m/2⌉)
cannot be applied, and thus a runtime of Θ(n2(m−1)) would most likely
result (with the classic swap mutation operator).

• Drift analysis and linear functions: In this first work, we were
able to prove all our upper bounds via the elementary fitness level
method [Weg05]. In the runtime analysis for bit-string representa-
tions, drift analysis has become a standard method to deal with many
problems where fitness level arguments could not be employed, see the
survey [Len20]. The problem which has most propelled this progress
is the innocent-looking question how the (1 + 1) EA optimizes linear
functions x 7→

∑n
i=1wixi [DJW02], leading to the first use of drift ar-

guments in this community [HY01] and subsequently to many technical
refinements such as average drift [Jäg11], multiplicative drift [DJW12],
and drift with tail bounds [DG13]. With this development in mind,
the question how drift arguments can be employed in the analysis of
permutation-based evolutionary algorithms is very interesting. Clearly,
the permutation-based linear functions benchmark (derived from the

43



classic linear functions problem via our general construction) appears
a good starting point for such research.
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